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Abstract

Large language models (LLMs) have shown
promising first-order logic (FOL) reasoning
capabilities with applications in various areas.
However, their effectiveness in complex mathe-
matical reasoning involving multi-step FOL de-
ductions is still under-researched. While LLMs
perform competitively on established mathe-
matical reasoning benchmarks, they struggle
with multi-step FOL tasks, as demonstrated by
Deepseek-Prover-V2-7B’s low accuracy (4.2%)
on our proposed theorem proving dataset. This
issue arises from the limited exploration of di-
verse proof strategies and the potential for early
reasoning mistakes to undermine entire proofs.
To address these issues, we propose DREAM, a
self-adaptive solution that enhances the Diver-
sity and REAsonability of LLMs’ generation
strategies. DREAM incorporates an Axiom-
Driven Strategy Diversification mechanism to
promote varied strategic outcomes and a Sub-
Proposition Error Feedback to help LLMs re-
flect on and correct their proofs. Our contri-
butions include pioneering advancements in
LLMs’ mathematical reasoning through FOL
theorem proving, introducing a novel inference
stage solution that improves performance by
0.6% to 6.4%, and providing a curated dataset
of 447 mathematical theorems in Lean 4 format
for evaluation. Our code is available 1.

1 Introduction

Large language models (LLMs) have demonstrated
emerging capabilities in first-order logic (FOL) rea-
soning (Zhou et al., 2024c), with successful ap-
plications across legal precedent analysis (Alam
et al., 2023) and logical fallacy detection (Lalwani
et al., 2025; Ibragimov et al., 2025a). However,
their efficiency in addressing complex mathemat-
ical reasoning tasks characterized by multi-step
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Figure 1: Distinction between First-Order Logic (FOL)
and general math problems: FOL theorem proving
requires strict stepwise adherence to FOL inference
rules (e.g., universal instantiation, existential elimina-
tion), whereas general mathematical proving can utilize
domain-specific mathematical theorems without explic-
itly referencing FOL infrastructure (including FOL rules
and theorems).

FOL deductions remains underexplored (Cao et al.,
2021).

While contemporary LLMs attain competitive
performance on established formal mathematical
reasoning benchmarks such as miniF2F (formal
Olympiad-level mathematics (Zheng et al., 2022))
and ProofNet (formal undergraduate-level mathe-
matics (Azerbayev et al., 2023)), they reveal per-
sistent deficiencies in mathematical reasoning with
multi-step FOL deductions. Our controlled ex-
periments demonstrate that DeepSeek-Prover-V2-
7B (Ren et al., 2025) — despite comprehensive
pretraining on Lean 4’s formal mathematics cor-
pus— achieves merely 4.2% accuracy (pass@10)
on our proposed FOL-based mathematical theorem
proving tasks. This stark contrast between general
and FOL-based mathematical reasoning capabil-
ity, as shown in Figure 1, exposes limitations in
current LLMs’ capacity for handling nested quanti-
fier interactions and negation propagation through
extended deductive sequences (Qi et al., 2025).

For the FOL theorem proving problems, existing
LLMs face two challenges: (i) The Adaptive Strat-
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egy Starvation Dilemma: Unlike standard math-
ematical problems, where fixed solution methods
often suffice, FOL proofs demand both tactical flex-
ibility and strategic oversight. The high sensitivity
of proof chains to initial assumptions requires ex-
ploring multiple proof strategies and maintaining
logical consistency throughout the deduction pro-
cess. But current training paradigms predominantly
utilize fixed logical structures from proof assistant
libraries (e.g., Lean 4’s Mathlib) (Lin et al., 2025),
which encapsulate only a constrained subset of
FOL applications, further preventing models from
capturing the whole combinatorial space of poten-
tial logical constructions and reasoning patterns.
While inference-stage solutions for general-domain
math theorem proving are proposed to mitigate this
issue (Yang et al., 2023; Zhao et al., 2024), they
overlook the specific features of FOL proving, re-
stricting their efficiency. (ii) The Severe Cascading
Error: Within the reasoning chains for FOL theo-
rem proving, early strategic errors can propagate
through subsequent inferences, further undermin-
ing the entire proof, which can be defined as a cas-
cading error (Kovács and Voronkov, 2013; Barwise,
1977). Compared with the modular error prop-
agation seen in numerical calculations and code
generation, the cascading error in FOL is more
challenging due to the interdependence of logical
steps and the lack of clear boundaries between er-
rors. Thus, low-level error signals from a formal
compiler are insufficient, as they fail to address the
broader implications of flawed strategies.

To address the above challenges, we propose a
novel inference stage solution that promotes the
Diversity and REAsonability of LLMs’ generation
strategies, assisted by the detected errors across
the entire proof, named DREAM. It includes two
key designs: Axiom-Driven Strategy Diversifi-
cation: To avoid strategy starvation, we propose
an axiom-driven strategy diversification mecha-
nism based on a k-wise combinational axiom tree.
This approach enables diverse strategy selection by
focusing on different axioms, resulting in varied
strategic outcomes. Sub-Proposition Error Feed-
back: To mitigate cascading errors, we propose
a sub-proposition error feedback mechanism that
aligns each error message with its corresponding
sub-proposition using inline comments. This ap-
proach provides insights into the sub-propositions,
encouraging LLMs to reflect on and revise their
proof strategies thoroughly.

Our contributions are summarized as three-fold:

• To the best of our knowledge, we are the first
to advance LLMs’ mathematical reasoning
via FOL theorem proving, which especially re-
quires LLMs to generate proof steps by strictly
adhering to FOL rules and theorems.

• We propose an inference stage solution
through axiom-driven strategy diversification
and sub-proposition error feedback mech-
anisms to enhance LLM’s performance in
this challenging FOL theorem proving task,
achieving average gains from 0.6% to 6.4%.

• A carefully curated dataset is provided for
extensive evaluation, containing 447 mathe-
matical theorems from 10 categories within
first-order logic written in Lean 4 format.

2 Related Work

2.1 First-Order Logic Reasoning
The interaction between FOL reasoning and LLMs
manifests in two key directions: (i) leveraging FOL
to enhance the faithfulness of LLM reasoning and
(ii) evaluating LLM’s long-chain deduction capa-
bilities. Recent advancements illustrate this dual
focus. For instance, LOGIC-LM (Pan et al., 2023)
and LINC (Olausson et al., 2023) employ LLMs
to translate natural language (NL) statements to
formal FOL expressions, then utilize symbolic rea-
soning tools for verification and self-refinement,
thereby grounding LLM outputs in rigorous log-
ical frameworks. Concurrently, studies such as
Ryu et al. (2025), Qi et al. (2025), and Thatikonda
et al. (2025) propose algorithms for constructing
high-quality FOL datasets and evaluating LLMs’
multi-step reasoning capabilities.

However, while these works mark significant
progress, their datasets predominantly center on
real-world scenarios (e.g., everyday life (Han et al.,
2024; Tian et al., 2021; Saparov and He, 2023;
Tafjord et al., 2021; Clark et al., 2020)). A criti-
cal gap persists in formal FOL mathematical rea-
soning. Despite efforts to evaluate LLMs’ logical
skills via NL-encoded FOL problems (Ibragimov
et al., 2025b), their capacity to handle formal ax-
iomatically defined systems (e.g., mathematical
theorems, formal proof chains, or abstract logical
relationships) remains underexplored. This omis-
sion limits understanding of LLMs’ ability to navi-
gate domains where precision, symbolic rigor, and
adherence to axiomatic structures are paramount.
To fill this gap, we create a formal FOL reasoning
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dataset in the mathematical domain by utilizing
the advanced FOL translation capabilities of LLMs.
The detailed comparison between our datasets and
previous datasets can be shown in Table 1.

2.2 Formal Theorem Proving
LLM-based theorem proving methods offer flexible
control over problem complexity and diversity (Jo-
hansson and Smallbone, 2023; Zhou et al., 2024b;
Wu et al., 2022; He et al., 2024; Wan et al., 2024;
Xiong et al., 2023). Research in this area splits
into two main approaches: complete proof genera-
tion and stepwise generation. For stepwise genera-
tion, models like BFS-Prover (Xin et al., 2025) and
InternLM2.5-StepProver (Wu et al., 2024) predict
proof steps based on current status, while Lean-
Dojo reduces hallucination through retrieval-based
premise selection (Yang et al., 2023). In contrast,
LEGO-prover and DTV focus on prompting LLMs
for complete proofs (Wang et al., 2023; Zhou et al.,
2024a). Baldur enhances proof accuracy using er-
ror feedback (First et al., 2023), and Zhao et al.
(2024) introduces a subgoal-based framework for
LLMs. However, these methods have not optimized
LLM’s abilities in FOL reasoning by fully leverag-
ing LLMs’ specialized mathematical knowledge or
utilizing the formal compiler effectively. Our work
addresses this gap through axiom-driven strategy
diversification and sub-proposition error feedback.

3 Preliminary & Motivation

3.1 Preliminary
We treat proof generation as a sequence-to-
sequence task. Given a formal FOL theorem (x),
which includes relevant axioms that describe the
features of the concepts mentioned in the theorem,
our goal is to generate a formal proof (y) that can
be automatically verified by the formal compiler
compile(.) (De Moura et al., 2015). A proof is
correct if it produces no error message, denoted
as compile(y) = pass. Given a set of theorems
{xi}Ni=1, the optimization goal for this task is to
prove as many theorems as possible.

The objective function can be defined as Eq. 1:

max

N∑

i=1

I(compile(yi) = pass), (1)

where N is the total number of theorems at-
tempted, yi is the r-th proof for theorem xi, and I
is an indicator function that equals 1 if the proof is
correct and 0 otherwise.

3.2 Motivation
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Figure 2: Comparison of strategy number distribution
for six generated solutions tested on Claude 3.5.

Strategy Diversity: We first explore the effect
of strategy diversity on LLM’s ability for FOL the-
orem proving tasks. Figure 2 reveals that repeated
sampling often yields repetitive proof strategies.
Since FOL deduction relies on the stepwise applica-
tion of logical rules and relevant axioms or lemmas,
the lack of strategy diversity will severely restrict
the search space for LLMs to discover valid solu-
tions. To mitigate this homogeneity, we experimen-
tally investigated whether explicitly guiding LLMs
to prioritize distinct axiom combinations during
proof generation could break this uniformity. Our
experiments demonstrate that such targeted axiom-
focused prompting significantly diversifies the gen-
erated strategies under fixed computational budgets
(Figure 2), unlocking latent reasoning pathways.
This finding motivates our proposed axiom-driven
strategy diversification module, which systemati-
cally exploits axiom relevance to enhance explo-
ration while maintaining logical coherence. Exam-
ples of diverse strategies generated by focusing on
different sets of axioms are shown in Appendix I.

Cascading Error: Another key factor influenc-
ing the reasonableness of FOL proofs is the cascad-
ing error (see examples in Appendix J). That’s be-
cause simply providing LLMs with error messages
from the formal compiler yields minimal improve-
ment since resolving such errors demands revisions
to the entire proof. To address this issue, we ex-
plore the effectiveness of mapping errors to specific
sub-propositions within the proof, as shown in Fig-
ure 3. From the results, we can observe that the
sub-proposition error feedback demonstrated sig-
nificant enhancement over direct error feedback,
motivating our proposal for a sub-proposition error
feedback module to target corrections and mitigate
cascading failures by linking errors to their corre-
sponding logical components.
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4 Method

4.1 Overall Framework

In this section, we elaborate on the FOL theorem-
proving framework that comprises two key compo-
nents: axiom-driven strategy diversification and
sub-proposition error feedback. (i) The axiom-
driven strategy diversification aims to encourage
the LLM to explore different ways of proving the
theorem. To achieve this goal, given a theorem x,
we can construct a k-wise combinatorial axiom tree
to update strategies, which are executed through
two or three times of revisions to prevent the LLM
from getting stuck in the same incorrect reasoning;
(ii) The sub-proposition error feedback aims to fur-
ther ensure the reasonability of reasoning chains
during theorem proving, which takes advantage
of back-propagating error messages from previ-
ous failed proofs. We create sub-proposition er-
ror feedback that enhances self-correction by link-
ing these error messages to sub-propositions. The
model learns from sub-proposition errors of ear-
lier attempts at each revision time. The overall
framework is illustrated in Figure 4.

4.2 Axiom-Driven Strategy Diversification

To address the adaptive strategy starvation, we aim
to expand the strategy search space by constructing
a k-wise combinatorial axiom tree. Similar tech-
niques can also be shown in Wang et al. (2024),
which focuses on the LLM planning. This tree al-
lows LLMs to systematically explore various strate-
gies, improving their success rate.

Denote the LLM as θ and pθ as the probability
distribution from the LLM. We can initially gener-
ate a set of first-level axioms based on the context
and the conjecture. The O = {o1, o2, . . . , oM}
are defined as axioms, where O is sampled from
the distribution pθ(· | x), oi denotes an individual
axiom, and M is the number of axioms.

Specifically, we employ the k-wise combinato-
rial generation tree, where the second-level axioms
O′ are generated based on these first-level axioms.

Each second-level axiom o′s is a leaf node of the
k-wise combinatorial generation tree and can be
derived from one possible k-wise combination of
the first-level axioms. We can denote the second-
level axioms as Eq. 2, where Sk stands for the
indexes of all possible k-wise combinations from
M axioms in the first-level as Eq. 3. The number
of elements in Sk,

(
M
k

)
, represents the number of

ways to choose k elements from a set of M dis-
tinct elements. Strategy P is generated using a
new second-level axiom set o′s. We can donate the
strategy as Eq. 4.

O′ =
{
o′s

∣∣∣ o′s ∼ pθ
(
· | {osi}ki=1; x

)
, s ∈ Sk

}

(2)

Sk =
{
s = (s1, . . . , sk)

∣∣∣ 1 ≤ s1 < · · · < sk ≤M
}

(3)

P ∼ pθ( ·
∣∣x; o′s) (4)

4.3 Sub-proposition Error Feedback

To address the cascading error propagation inherent
in formal proof correction, we leverage error feed-
back from formal verification compilers to itera-
tively refine LLM-generated proofs. However, FOL
theorem proofs have numerous sub-propositions
linked using logical connections like conjunction
∧ and disjunction ∨. Directly applying word-level
error messages generated by the formal compiler
may not lead LLMs to create the linkage modi-
fications between sub-propositions of first-order
logic, seriously damaging the thorough proof cor-
rection. Thus, we propose the sub-proposition-
level error feedback where the error messages are
strictly aligned with the sub-propositions of the
proof.

Denote the set of all previous r − 1 failed at-
tempts as E = {E1, E2, . . . , Er−1}. Each attempt
contains a formal proof of the statement yi and
corresponding error messages ei = Compiler(yi),
where Compiler(·) is the formal compiler. We
represent the aligned proofs y′ using inline com-
ments, placing sub-proposition annotations before
the code block and error messages after the cor-
responding error line. y′i is generated by an sub-
proposition annotator L, y′i = L(Ei). An analyzer
A examines mistakes at the sub-propositional level,
offering insights for the r-th revision Ir into error
patterns and suggesting strategies for improvement.
We denote Ir as Eq. 5, where r stands for the
current revision time.

Ir = A( x; {y′i}r−1
i=1 ) (5)
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Figure 4: The overall pipeline of our proposed method. Given a conjecture, our method first applies axiom-driven
strategy diversification to construct an axiom tree. Then, an axiom set is sampled from the second-level axiom
tree for strategy generation. A proof is then generated based on this strategy. Incorrect proofs are labeled with
sub-propositions and error messages from the formal compiler and placed into a feedback pool. Finally, an analysis
of error patterns is conducted to provide strategic recommendations for iteratively refining the next round of proving.

The proof of current revision time yr is generated
as Eq. 6:

yr ∼ pθ( ·
∣∣x; Ir; {Ej}r−1

j=1) (6)

where pθ represents the generative model, x de-
notes the theorem, Ir signifies the insight, and
{Ej}r−1

j=1 represents the collection of previous
proofs with corresponding error messages gener-
ated by the compiler.

5 Experiment

5.1 Experimental Setup
Baselines: We adopt two well-known inference-
stage solutions as comparisons to display the
effectiveness of our method: (i) Repeated sampling
(Repeated), where the LLM generates a correct
proof for a theorem until it either reaches the maxi-
mum attempts or passes the formal compiler; (ii)
Subgoal-based demonstration learning (Subgoal),
which breaks down the theorem into subgoals in
natural language and selects relevant examples for
in-text demonstration learning (Zhao et al., 2024).

Evaluation Metric: Following Zhao et al. (2024),
we select the cumulative pass rate as the metric for
evaluation, which is the proportion of theorems

solved at least once. A large pass rate is preferred.

Evaluation Dataset: Due to the lack of a math-
ematical evaluation benchmark with multi-step
FOL deductions, we construct it as follows: (i)
TPTP Revised Dataset. We converted 324 FOL
problems from the TPTP format (Sutcliffe, 2017)
to the Lean 4 format to support LLM proving.
Specifically, we utilize LLMs to translate axioms
and conjectures from TPTP to Lean 4 format, lever-
aging their exceptional expertise in Lean 4. Similar
to prior autoformalization approaches (Zhang et al.,
2024a; Yang et al., 2024), the dataset construction
pipeline is illustrated in Figure 5. It involves three
key steps: Step 1: Lean 4 Format Translation:
We employ DeepSeek-V3 to convert conjectures
and their associated axioms from TPTP to Lean
4 format. The translation prompt is detailed in
Appendix 18, and each translated example is
verified with the Lean 4 compiler (De Moura et al.,
2015). Step 2: Post-processing: To facilitate LLM
proving, we separate conjecture definitions from
their context, add necessary import statements, and
manually review the content for quality assurance.
Step 3: Context Optimization: To improve LLM
comprehension, we use DeepSeek-V3 to retain
only essential contextual elements. The formal
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compiler then verifies the simplified problems; (ii)
Manually Collected Dataset: We curated a new
dataset featuring 123 problems to cover various
topics in the FOL theorem proving theme. Specifi-
cally, we manually collect theorems from academic
papers and discrete mathematics textbooks. These
theorems were converted to LaTeX and verified as
valid first-order logic statements. They were then
transformed from LaTeX to Lean 4 format using
DeepSeek-V3, with up to 60 attempts. The dataset
emphasizes intuitionistic logic, set theory, and
computability, covering realizability, model theory,
substitution, tautologies, and relationships between
logical systems. Two human verifiers reviewed the
annotations and corrected any inaccuracies.

Dataset Creation Domain Formal Division

RuleTaker (Clark et al., 2020) Synthetic Real-world ✗ ✗
ProofWriter (Tafjord et al., 2021) Synthetic Real-world ✗ ✗

LogicNLI (Tian et al., 2021) Synthetic Real-world ✗ ✗
ProntonQA (Saparov and He, 2023) Synthetic Real-world ✓ ✗

FOLIO (Han et al., 2024) Manual Real-world ✓ ✗
ProverQA (Qi et al., 2025) Synthetic Real-world ✓ ✗

Our Proposed Dataset Synthetic & Manual Mathematics ✓ ✓

Table 1: Comparison between our mathematical FOL
reasoning dataset and existing FOL datasets. "Formal"
indicates the inclusion of a formal format, while "Divi-
sion" refers to the subcategories within the dataset.
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Figure 5: TPTP revision pipeline.

Implementation Details: We employ Claude 3.5
Sonnet (Anthropic, 2024) and DeepSeek-Prover-
V2-7B (OpenAI, 2024) as the LLMs. For FOL
theorem proving tasks, we utilize a 2-level, 2-wise
combinatorial axiom tree, generating three to five
axiom nodes at the first level. The maximum num-
ber of attempts is set to 10. Axiom-driven diversifi-
cation is applied in the 4th and 7th revisions.

5.2 Performance Comparison
As shown in Table 2 and Table 3, we have the
following key findings:

(i) Despite extensive training on formal mathe-
matical proving materials, the LLMs tested in our

dataset still performed poorly, highlighting the chal-
lenging nature of our proposed dataset. Claude 3.5
achieves a mere 0.2% pass rate, while DeepSeek-
Prover-V2-7B reaches only 4.2%. The models per-
form relatively better on the manually collected
dataset, which encompasses a broader range of
mathematical topics and includes shorter contexts
with fewer logical restrictions. This observation
suggests that LLMs struggle with reasoning under
strict logical constraints, such as FOL rules and
axioms.

(ii) Our proposed DREAM significantly outper-
forms other methods on the FOL theorem proving
task, achieving an average pass rate of 10.1% using
Claude 3.5 and 8.3% using DeepSeek-Prover-V2-
7B. Specifically, DREAM demonstrated its supe-
rior performance across all domains, showing its
efficiency in FOL theorem proving. The repeated
sampling method underperforms because of its lim-
ited search space on strategies, which prevents it
from exploring more possible solutions, leading to
repeated failures on the same errors. The subgoal-
based demonstration learning method has intro-
duced subgoal decompositions and demonstration
examples. However, this approach overlooks FOL
logic’s non-modular error propagation characteris-
tic, addressing errors only within specific modules.
In comparison, our method uses a k-wise combi-
natorial axiom tree, allowing for systematic explo-
ration of strategies. The specially designed axiom-
driven strategy diversification has guaranteed its
stable performance by systemically exploring dif-
ferent strategies. In contrast, the sub-proposition
error feedback designed according to the feature
of first-order logic stably guides the LLMs to the
correct proof pathway. These mechanisms have
resulted in the strong generalization ability of our
method, making it well-suited for more diverse
FOL theorem-proving tasks.

(iii) We also monitor the pass rates of various
approaches, as shown in Figure 6, where we adopt
different methods on our dataset using Claude 3.5.
Initially, our method may not have performed as
well as the subgoal-based demonstration learning
method on the TPTP revised dataset. However,
after the fourth revision, it began to show signif-
icant improvement. This trend suggests that our
approach benefits from the iterative learning pro-
cess, where each revision builds on the last. Our
method achieves the top rank significantly after the
second revision on the manually collected dataset,
while the Subgoal-based demonstration learning
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Models Methods FLD1 FLD2 GEO6 GEO8 GEO9 GRP5 NUM9 KRS1 SET1 Avg.

Claude 3.5 Repeated (Brown et al., 2024) 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.5% 0.0% 0.2%
Subgoal (Zhao et al., 2024) 5.2% 3.1% 4.5% 4.9% 12.5% 0.0% 0.0% 3.0% 0.0% 3.7%

DREAM(Ours) 14.3% 12.5% 13.6% 0.0% 0.0% 20.0% 5.6% 3.0% 22.2% 10.1%

DeepSeek-Prover-V2-7B Repeated (Brown et al., 2024) 1.3% 0.0% 6.8% 7.3% 0.0% 10.0% 0.0% 1.5% 11.1% 4.2%
Subgoal (Zhao et al., 2024) 0.0% 3.1% 9.1% 4.9% 25.0% 20.0% 5.6% 1.5% 0.0% 7.7%

DREAM(Ours) 3.9% 0.0% 11.4% 9.8% 12.5% 30.0% 5.6% 1.5% 0.0% 8.3%

Table 2: Performance comparison on the TPTP revised dataset. "Avg." refers to the average pass rate (%).

Models Methods Avg.

Claude 3.5 Repeated (Brown et al., 2024) 32.5%
Subgoal (Zhao et al., 2024) 27.6%

DREAM(Ours) 41.5%

DeepSeek-Prover-V2-7B Repeated (Brown et al., 2024) 12.2%
Subgoal (Zhao et al., 2024) 22.8%

DREAM(Ours) 21.1%

Table 3: Performance comparison on the manually col-
lected dataset. "Avg." denotes the average pass rate (%).

method ranks the lowest. This result demonstrates
the strong generalization ability of our method
across different types of problems.
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Figure 6: Passing rate comparisons on Claude 3.5 for
various methods on the TPTP revision dataset (left) and
the manually collected dataset (right) across attempts.
The x-axis indicates the attempt number. Our proposed
method achieves the highest passing rate starting from
the fourth attempt on the TPTP revised dataset and the
third attempt on the manually collected dataset.

5.3 Ablation Studies

To further understand the effectiveness of our pro-
posed DREAM, we analyze the factors that in-
fluence its efficiency based on the TPTP revised
dataset. Overall, as shown in Table 4, we can ob-
serve that DREAM achieves the highest perfor-
mance across most domains. This performance
underlines the effectiveness of various modules as
follows.

Analysis on axiom-driven strategy diversifica-
tion. The effectiveness of the axiom-driven strat-
egy diversification is evident when we analyze its
removal from our full method. Without it, the pass
rate decreased from 10.1% to 9.9% for Claude 3.5
and from 8.3% to 3.2% for DeepSeek-Prover-V2-

7B. Except for domains like GEO8, GEO9, and
SET1, its absence generally leads to lower pass
rates. However, using this mechanism alone does
not guarantee improved performance, as Claude
3.5’s pass rate increased, while DeepSeek-Prover-
V2-7B’s decreased.

Analysis on Sub-proposition Error Feedback.
The lack of sub-proposition error feedback has re-
sulted in a significant decrease in the average pass
rate, dropping from 10.1% to 5.6%, with all do-
mains showing a notable decline. This decline
may be because the sub-propositions in the proofs
allow LLMs to analyze the explored strategies, re-
fine the decomposition of the main theorem’s sub-
propositions, and offer targeted revision insights.

5.4 Discussion about Background Restrictions

In our experiments, we also observed an interest-
ing phenomenon related to the background restric-
tions for the axiom. Specifically, we can remove
standard mathematical axioms (FLD, GEO, GRP,
NUM, SET) to analyze LLMs’ internal abilities for
knowledge recall. Using 32 axiom-free problems
(4 per domain from 8 TPTP domains), Claude 3.5’s
success rate increased while DeepSeek-Prover-V2-
7B’s declined compared to axiom-dependent sce-
narios (Table 5). This contrast suggests Claude
owns broader mathematical knowledge as a general
LLM, flexibly applying familiar axioms. However,
the training of DeepSeek-Prover-V2-7B relies on
complete proofs related to predefined backgrounds,
leading to a model excelling in structured contexts
but struggling when axioms are removed. The di-
vergence highlights how training data (specialized
proofs vs general knowledge) shapes FOL problem-
solving approaches.

5.5 Case Studies

We provide two cases related to strategy diversity
and sub-proposition error feedback to visualize the
effectiveness of our method in solving FOL the-
orem proving problems. Figure 7 shows that our
method successfully generates the correct proof
after applying the axiom-driven strategy diversi-
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Models SD SE FLD1 FLD2 GEO6 GEO8 GEO9 GRP5 NUM9 KRS1 SET1 Avg.

Claude 3.5
- - 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 1.5% 0.0% 0.2%
✓ - 13.0% 0.0% 9.1% 2.4% 0.0% 0.0% 0.0% 3.0% 11.1% 5.6%
- ✓ 3.9% 3.1% 11.4% 2.4% 12.5% 20.0% 0.0% 3.0% 33.3% 9.9%
✓ ✓ 14.3% 12.5% 13.6% 0.0% 0.0% 20.0% 5.6% 3.0% 22.2% 10.1%

DeepSeek-Prover-V2-7B
- - 1.3% 0.0% 6.8% 7.3% 0.0% 10.0% 0.0% 1.5% 11.1% 4.2%
✓ - 0.0% 0.0% 2.3% 4.9% 12.5% 10.0% 2.8% 1.5% 0.0% 3.8%
- ✓ 0.0% 0.0% 2.3% 2.4% 0.0% 20.0% 2.8% 1.5% 0.0% 3.2%
✓ ✓ 3.9% 0.0% 11.4% 9.8% 12.5% 30.0% 5.6% 1.5% 0.0% 8.3%

Table 4: Ablation results on TPTP revised dataset. "SD" stands for axiom-driven strategy diversification. "SE"
stands for sub-proposition error feedback. "Avg." refers to the average pass rate (%).

fication. The strategy is derived from the total-
ity_of_order_relation axiom’s key feature of pro-
viding a disjunctive conclusion. This strategy, "Ap-
ply totality_of_order_relation to a and a", is di-
rectly implemented in the solution through have h
:= totality_of_order_relation A less_or_equal de-
fined a a h_def h_def, where both resulting cases
yield the desired reflexivity property. Figure 8 il-
lustrates how incorporating sub-proposition error
feedback enables the LLMs to make high-level
modifications, resulting in successful proofs.

Strategy:

Sub-proposition 1: Apply totality_of_order_relation to a and a

- Inference rules used: Direct application 

- Axioms used: 

• totality_of_order_relation

• a_is_defined

Conjecture:

theorem reflexivity_of_order_relation : less_or_equal a a := sorry

Context:

axiom symmetry_of_equality (X Y : A) :

    equalish Y X → equalish X Y

axiom totality_of_order_relation (X Y : A) :

defined X → defined Y → less_or_equal X Y ∨ less_or_equal Y X

...

Solution:

theorem reflexivity_of_order_relation

…

(h_def : defined a) : less_or_equal a a := by

-- Apply totality of order relation to get a ≤ a ∨ a ≤ a

have h := totality_of_order_relation A less_or_equal defined a a 

h_def h_def

-- Both cases give us exactly what we want to prove

cases h with

| inl h_left => exact h_left -- First case: a ≤ a directly

| inr h_right => exact h_right -- Second case: a ≤ a directly

Selected Axioms: totality_of_order_relation…

Figure 7: Case study: The effect of strategy diversifica-
tion on proving a theorem for Claude 3.5.

6 Conclusion

This work first advances LLMs’ mathematical rea-
soning abilities via first-order theorem proving.
Through detailed TPTP revision and manual col-
lection, we curated a challenging FOL theorem-
proving dataset that uncovers the drawbacks of

Sub-proposition error feedback

theorem prove_reflexivity (a : G) : equalish a a := by

/- /tmp/tmpfxlrz700:1:36: error: function expected at equalish term 

has type?m.9 -/

--Sub-proposition 1: multiply identity a = a holds (establishing the 

first equation needed for total_function2)

have h1 : multiply identity a = a := left_identity a

/- /tmp/tmpfxlrz700:3:39: error: unknown identifier 'left_identity' -/

/- /tmp/tmpfxlrz700:3:12: error: unknown identifier 'multiply' -/

--Sub-proposition 2: multiply identity a = a holds again (establishing 

the second equation needed for total_function2)

have h2 : multiply identity a = a := left_identity a

/- /tmp/tmpfxlrz700:5:39: error: unknown identifier 'left_identity' -/

/- /tmp/tmpfxlrz700:5:12: error: unknown identifier 'multiply’ -/

…

Revised correct proof

theorem prove_reflexivity 

…

-- First establish multiply identity a = a

have h1 : multiply identity a = a := left_identity a

-- Use the same equation again

have h2 : multiply identity a = a := left_identity a

-- Since both h1 and h2 show multiply identity a = a,

-- we can use total_function2 to prove equalish a a

exact total_function2 h1 h2

Figure 8: Case study: The effect of sub-proposition
error feedback on proving a theorem for Claude 3.5.

Models Methods w/o Background w Background

Claude 3.5 Repeated (Brown et al., 2024) 12.5% 0.0%
Subgoal (Zhao et al., 2024) 18.8% 3.1%

DREAM(Ours) 21.9% 12.5%

DeepSeek-Prover-V2-7B Repeated (Brown et al., 2024) 0.0% 9.4%
Subgoal (Zhao et al., 2024) 3.1% 6.3%

DREAM(Ours) 3.1% 9.4%

Table 5: The exploration is related to the background
constraint for axioms. We randomly selected 32 samples
from the TPTP revised FOL-based dataset.

existing formal LLMs (e.g., DeepSeek-Prover-V2-
7B). Moreover, we propose the DREAM frame-
work, a novel inference stage solution incorporat-
ing axiom-driven strategy diversification and sub-
proposition error feedback for efficient FOL theo-
rem proving. Our approach effectively addresses
the limitations of LLMs in handling mathematical
first-order logic-proving tasks in formal formats.
Extensive experiments can verify the effectiveness
of DREAM over previous methods for this chal-
lenging and complex reasoning task.
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7 Limitations

Our experiments demonstrate the effectiveness of
DREAM in enhancing LLMs’ performance in FOL-
based theorem-proving tasks, more diverse FOL-
based mathematical tasks could be considered in
the future. Additionally, the experimental results
show a consistent increase in performance, even
by the 10th revision. However, due to resource
limitations, we have no chance to extend the ex-
periment to identify our method’s saturation point.
Future research should also account for the model’s
internal structured reasoning patterns (Wen et al.,
2025). In addition to performance, the ethical and
societal acceptability, such as safety, honesty and
value, should also be incorporated to enhance the
controllability and reliability of reasoning (Cao
et al., 2025; Yang et al., 2025; Ju et al., 2025).
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A Pseudocode

The pseudocode for our proposed method is pre-
sented in Table 6.

Algorithm: ProveTheorem

Input: Conjecture x, LLM θ, max revision R
Output: Proof y

O ← GenerateFirstLevelAxioms(x, θ)
O′ ← GenerateSecondLevelAxioms(O, x, θ, k)
E ← {} // Initialize error collection
for r ← 1 to R do

o′s ← SelectAxioms(O′)
if r = 0 then

yr ← GenerateInitialProof(x, θ)
if r = 4 or r = 7 then

o′ ← SelectSecondLevelAxioms(O′)
P ← GenerateStrategy(x, o′)
yr ← GenerateProofBasedOnStrategy(x, P , θ)

else
Ir ← AnalyzeWithFeedback(x, o′s, {y′i}r−1

i=1 )
yr ← GenerateRevisedProof(x, Ir, E, θ)

if compile(yr) = pass then
return yr

er ← compile(yr)
y′r ← AnnotateProof(yr, er)
E ← E ∪ {(yr, er)}

return NULL

Table 6: Core pseudocode of DREAM for FOL theorem
proving.

B Dataset Statistics

The domain distribution from the TPTP library is
shown in Table 7

Domain Description TPTP Lean4
FLD1 Field Theory 136 77
FLD2 Field Theory 143 32
GEO6 Geometry 97 44
GEO8 Geometry 57 41
GEO9 Geometry 43 8
GRP5 Group Theory 10 10
NUM9 Number Theory 36 36
KRS1 Knowledge Representation 94 67
SET1 Set Theory 11 9

Total 627 324

Table 7: First-order theorems extracted from the TPTP
library (Sutcliffe, 2017).

C Data Quality Control

Similar to prior autoformalization approaches like
DeepSeek-Prover-V2 (Ren et al., 2025; Zhang
et al., 2024b; Lu et al., 2024), we employ Lean

verification to ensure logical accuracy and mitigate
potential biases in LLM-assisted dataset creation.

To assess the reliability of the manual verifica-
tion stage, we conducted a human annotation study
measuring inter-annotator agreement. Two experts
in formal reasoning independently evaluated 40
problems—20 from the manually collected corpus
and 20 from TPTP-Revised—for correctness and
logical consistency of theorem statements and their
Lean 4 formalizations. As shown in Table ??, the
overall problem-wise agreement was 82.5%. This
is consistent with the 81% human agreement re-
ported by Zheng et al. (2023), supporting the relia-
bility of our dataset.

D Detailed Statistics of Dataset
Construction

We provide detailed statistics for both steps of the
dataset construction pipeline in Table 9.

E Computational Efficiency

This section provides a detailed analysis of the com-
putational budget and runtime overhead. We evalu-
ate performance under two evaluation paradigms:
(1) fixed maximum iteration count, and (2) fixed
LLM call budget.

E.1 Comparison Under Fixed Iteration
Budget

To ensure a fair comparison with prior work such
as Subgoal, which also employs iterative refine-
ment within a bounded number of steps, we set
the maximum number of iterations to 10 for all
methods. Table ?? reports the average number of
LLM calls and token consumption using Claude
3.5, along with proof success rates across bench-
mark categories. Despite requiring more LLM calls
per iteration due to internal branching and feed-
back mechanisms, DREAM achieves significantly
higher overall accuracy (12.7% vs. 6.7%).

E.2 Comparison Under Fixed LLM Call
Budget

To further assess efficiency, we compare DREAM
and Subgoal under a constrained total budget of 17
LLM calls—the average number used by Subgoal
in the 10-iteration setup. This ensures equivalence
in resource usage while isolating algorithmic ef-
fectiveness. As shown in Table ??, DREAM main-
tains superior performance even under reduced bud-
get, achieving an average accuracy of 11.6%, com-
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Annotators Correct Rate (Manual) Correct Rate (TPTP-Revised) Avg. Correct Rate

Annotator 1 90% 85% 87.5%
Annotator 2 90% 95% 92.5%

Problem-wise Agreement 85% 80% 82.5%

Table 8: Problem-wise agreement between two annotators on manually collected and TPTP-revised problems.

Category Original Success
Translations

Success Translation
Rate (%)

Avg. Success
Translation Time

Success
Optimizations

Success Optimization
Rate (%)

FLD001 136 96 70.6 4.0 77 80.2
FLD002 143 38 26.6 5.0 32 84.2
GEO006 97 57 58.8 8.0 44 77.2
GEO008 57 45 78.9 2.0 41 91.1
GEO009 43 13 30.2 5.0 8 61.5
GRP005 10 10 100.0 2.0 10 100.0
NUM009 36 36 100.0 1.0 36 100.0
KRS001 94 75 79.8 2.0 67 89.3
SET001 11 9 81.8 5.0 9 100.0

Average 627 379 67.4 4.0 324 85.5

Table 9: Details of TPTP-Revised dataset construction. Translation refers to converting the TPTP theorem to Lean
4, while Optimization involves selecting the necessary context.

Method Avg. Calls Avg. Tokens FLD1 FLD2 GEO6 GEO8 GEO9 GRP5 NUM9 KRS1 SET1 Manual Avg.

Subgoal 18 53,378 5.2% 3.1% 4.5% 4.9% 10.0% 0.0% 7.1% 3.0% 0.0% 29.1% 6.7%
DREAM 26 73,184 14.3% 12.5% 13.6% 0.0% 0.0% 20.0% 0.0% 3.0% 22.2% 41.5% 12.7%

Table 10: Computational budget comparison over 10 iterations using Claude 3.5. "Avg. Calls" denotes the average
number of LLM calls per solution, and "Avg. Token" represents the average token consumption per solution.
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pared to 6.5% for Subgoal. This demonstrates that
DREAM’s structured reasoning framework yields
higher utility per call.

F Quantitative Error Analysis

To gain deeper insight into the sources of failure
in formal proof generation, we conducted a fine-
grained categorization of errors present in unsuc-
cessful proofs produced by DREAM. We employed
DeepSeek-V3 as an auxiliary classifier to automat-
ically identify and label error types based on the
Lean 4 rejection messages and surrounding proof
context. Only error categories occurring more than
once are included in the analysis to ensure mean-
ingful interpretation.

The results, summarized in Table ??, reveal that
the majority of errors stem from syntactic and
type-level inconsistencies. This highlights a key
limitation of large language models in generating
precise formal expressions. Future improvements
could therefore benefit from syntax-aware decod-
ing strategies or post-hoc correction modules de-
signed to enforce consistency in types and identi-
fiers.

G Dataset Examples

An example from our dataset is shown in Table 9.

H Illustrative Reasoning Tree and Axiom
Expansion

We provide a simplified visualization of the hierar-
chical axiom expansion process used in DREAM.
Starting from the target theorem, first-level axioms
are retrieved based on semantic relevance. Then,
second-level axioms are generated by combining
k = 2 first-level axioms, each leading to a distinct
proof strategy.

I Examples of Axiom-Driven Strategy
Diversification

Figures 11 to 15 illustrate how focusing on different
axioms results in varied proving strategies.

J Cascading Error in FOL Proofs

Illustrative examples of cascading errors in FOL
proofs are presented in Figures 16 and 17.

K TPTP to Lean 4 Format Conversion
Prompt

The prompt for converting TPTP to Lean 4 format
is shown in Table 18.
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Method Max Calls FLD1 FLD2 GEO6 GEO8 GEO9 GRP5 NUM9 KRS1 SET1 Manual Avg.

Subgoal 17 3.9% 3.1% 4.5% 4.9% 10.0% 0.0% 7.1% 3.0% 0.0% 28.2% 6.5%
DREAM 17 10.4% 9.4% 13.6% 0.0% 0.0% 20.0% 0.0% 3.0% 22.2% 37.4% 11.6%

Table 11: Accuracy comparison under equal LLM call budget (17 calls) using Claude 3.5.

Error Type Frequency

type mismatch 151
unknown identifier 92
incorrect application 26
incorrect tactic 25
unknown tactic 10
unsolved goals 7
unsolved metavariable 6
invalid syntax 6
incomplete proof 3
proof strategy error 3
declaration conflict 2
invalid constructor 2
missing dependency 2
missing instance 2

Table 12: Distribution of error types in proofs generated by DREAM using Claude 3.5. Only error types with
frequency greater than 1 are displayed.

import Mathlib

import Aesop

variable (α : Type)

variable (member : α → α → Prop)

variable (subset : α → α → Prop)

variable (equal_sets : α → α → Prop)

variable (intersection : α → α → α → Prop)

variable (h : α → α → α → α)

variable (a b c aIb bIc aIbIc : α)

axiom member_of_intersection_is_member_of_set1 (Element Set1 Set2 Intersection : α) :

¬ intersection Set1 Set2 Intersection ∨ ¬ member Element Intersection ∨ member Element Set1

axiom member_of_intersection_is_member_of_set2 (Element Set1 Set2 Intersection : α) :

¬ intersection Set1 Set2 Intersection ∨ ¬ member Element Intersection ∨ member Element Set2

axiom member_of_both_is_member_of_intersection (Element Set1 Set2 Intersection : α) :

¬ intersection Set1 Set2 Intersection ∨ ¬ member Element Set1 ∨ ¬ member Element Set2 ∨ member Element Intersection

axiom intersection_axiom1 (Set1 Set2 Intersection : α) :

member (h Set1 Set2 Intersection) Intersection ∨
intersection Set1 Set2 Intersection ∨
member (h Set1 Set2 Intersection) Set1

axiom intersection_axiom2 (Set1 Set2 Intersection : α) :

member (h Set1 Set2 Intersection) Intersection ∨
intersection Set1 Set2 Intersection ∨
member (h Set1 Set2 Intersection) Set2

axiom intersection_axiom3 (Set1 Set2 Intersection : α) :

¬ member (h Set1 Set2 Intersection) Intersection ∨
¬ member (h Set1 Set2 Intersection) Set2 ∨
¬ member (h Set1 Set2 Intersection) Set1 ∨
intersection Set1 Set2 Intersection

axiom a_intersection_b : intersection a b aIb

axiom b_intersection_c : intersection b c bIc

axiom a_intersection_bIc : intersection a bIc aIbIc

theorem prove_aIb_intersection_c_is_aIbIc : ¬ intersection aIb c aIbIc := sorry

FOL-MATH Problem Example

Figure 9: An example of FOL-MATH dataset (SET006).
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Root (Theorem)
|
|-- First-Level Axioms: {o₁, o₂, o₂, o₄, o₅}
|
|-- Second-Level Axioms (k=2 combinations):

|-- o₁₂ = combine(o₁, o₂) → Strategy P₁
|-- o₁₃ = combine(o₁, o₃) → Strategy P₂
|-- o₂₃ = combine(o₂, o₃) → Strategy P₃
|-- ...

Theorem: theorem conjecture (A : Point) (L M N : Line) :
(apart_point_and_line A L ∧ ¬apart_point_and_line A M ∧ ¬apart_point_and_line A N ∧ ¬convergent_lines M L ∧
¬convergent_lines N L) →¬distinct_lines M N := sorry

o₁: distinct_not_convergent (new): ∀ (X Y : Line), distinct_lines X Y → ¬convergent_lines X Y
o₂: not_convergent_distinct (new): ∀ (X Y : Line), ¬convergent_lines X Y → distinct_lines X Y
o₂: parallel_not_convergent (new): ∀ (X Y : Line), convergent_lines X Y → ¬distinct_lines X Y
o₄: not_convergent_parallel (new): ∀ (X Y : Line), ¬convergent_lines X Y → distinct_lines X Y
o₅: point_not_incident_parallel (new): ∀ (X : Point) (Y Z : Line),\napart_point_and_line X Y → convergent_lines Y Z 
→ ¬convergent_lines X Z

Visualization of a k-wise axiom tree

Figure 10: Visualization of a k-wise axiom tree.

Context+Conjecture

import Mathlib

import Aesop

variable (Point : Type) (Line : Type)

variable (distinct_points : Point → Point → Prop)

variable (distinct_lines : Line → Line → Prop)

variable (convergent_lines : Line → Line → Prop)

variable (apart_point_and_line : Point → Line → Prop)

variable (intersection_point : Line → Line → Point)

axiom apart3 (X : Line) : ¬ convergent_lines X X

axiom apart6 {X Y Z : Line} :

convergent_lines X Y → (convergent_lines X Z ∨ convergent_lines Y Z)

axiom con2 {X Y : Line} {Z : Point} :

convergent_lines X Y →

(apart_point_and_line Z X ∨ apart_point_and_line Z Y) →

distinct_points Z (intersection_point X Y)

axiom ceq3 {X Y : Line} :

convergent_lines X Y → distinct_lines X Y

theorem conjecture {X Y Z : Line} :

convergent_lines X Y →

apart_point_and_line (intersection_point X Y) Z →

distinct_lines X Z ∧ distinct_lines Y Z := sorry

Figure 11: Context and conjecture of the demonstrative example, from which the LLMs generate the following two
axiom sets.

Selected Axiom Set 1

(new) intersection_existence: For any lines X and Y, if they are convergent then their intersection point exists and is unique

Rationale: We need to ensure the intersection_point function is well-defined for convergent lines.

(new) point_on_line_distinct: For any point P and lines L1 L2, if P lies on L1 but not on L2, then L1 and L2 are distinct lines

Rationale: This helps establish that if a point (like the intersection point) lies on one line but is apart from another, those lines must be 

distinct.

These axioms together provide the necessary logical steps to prove that if an intersection point of two convergent lines is apart from a 

third line, then both original lines must be distinct from the third line.

Figure 12: The first set of axioms generated by the LLM based on the given context and conjecture.
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Strategy based on the Selected Axiom Set 1

To prove that when two lines X and Y are convergent, and their intersection point is apart from a third line Z, both X and Z are distinct lines 

AND Y and Z are distinct lines, I'll break this into sub-propositions:

Sub-proposition 1: The intersection point of X and Y exists and is well-defined

- Inference rules: Direct application

- Axioms used: intersection_existence

- Justification: Since X and Y are convergent (given in hypothesis), their intersection point exists

Sub-proposition 2: X and Z are distinct lines

- Inference rules: Indirect proof using point_on_line_distinct

- Axioms used: point_on_line_distinct

- Justification: The intersection point lies on X (by intersection_existence) but is apart from Z (given in hypothesis), therefore X and Z must 

be distinct lines

Sub-proposition 3: Y and Z are distinct lines

- Inference rules: Indirect proof using point_on_line_distinct

- Axioms used: point_on_line_distinct

- Justification: The intersection point lies on Y (by intersection_existence) but is apart from Z (given in hypothesis), therefore Y and Z must 

be distinct lines

Main Strategy:

1. First establish that the intersection point exists and lies on both X and Y using intersection_existence

2. Use the hypothesis that this intersection point is apart from Z

3. Apply point_on_line_distinct twice:

- Once for X and Z using the fact that the intersection point lies on X but is apart from Z

- Once for Y and Z using the fact that the intersection point lies on Y but is apart from Z

4. Combine these results to form the conjunction required in the conclusion

This strategy relies heavily on the relationship between points lying on or being apart from lines and the distinctness of lines, which is 

exactly what point_on_line_distinct provides.

Figure 13: Strategy generated by prompting the LLM to focus on the first set of axioms, utilizing a direct proof
method.

Selected Axiom set 2

(existing) ceq3: For any lines X and Y, if they are convergent then they are distinct

Rationale: This helps establish one part of the logical foundation - convergent lines must be distinct.

(new) intersection_existence: For any lines X and Y, if they are convergent then their intersection point exists and is unique

Rationale: We need to ensure the intersection_point function is well-defined for convergent lines.

Figure 14: The second set of axioms generated by the LLM based on the given context and conjecture.
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Strategy based on the Selected Axiom Set 2

To prove that if lines X and Y are convergent and their intersection point is apart from line Z, then both X and Z are distinct lines, and Y and 

Z are distinct lines, I propose the following strategy:

1. First sub-proposition: distinct_lines X Y

- Inference rules: Direct application

- Axioms used: ceq3

- This establishes that X and Y are distinct lines when they are convergent

2. Second sub-proposition: convergent_lines X Y → (convergent_lines X Z ∨ convergent_lines Y Z)

- Inference rules: Direct application

- Axioms used: apart6

- This shows that Z must be convergent with either X or Y (or both)

3. Third sub-proposition: ¬convergent_lines X Z

- Inference rules: Proof by contradiction

- Axioms used: con2, apart3

- If X and Z were convergent, then their intersection point would exist

- This would contradict the given hypothesis that intersection_point X Y is apart from Z

4. Fourth sub-proposition: ¬convergent_lines Y Z

- Inference rules: Similar to sub-proposition 3

- Axioms used: con2, apart3

- Similar contradiction argument as above

5. Final sub-proposition: distinct_lines X Z ∧ distinct_lines Y Z

- Inference rules: Combining previous results

- Previously proven lemmas: Results from sub-propositions 3 and 4

- Axioms used: ceq3

- The non-convergence of X with Z and Y with Z implies distinctness through ceq3's contrapositive

The strategy relies heavily on showing that Z cannot be convergent with either X or Y, which then implies distinctness through the 

contrapositive of ceq3. The key insight is that if Z were convergent with either line, it would contradict the given hypothesis about the 

intersection point being apart from Z.

Figure 15: Strategy generated by prompting the LLM to focus on the first set of axioms, employing a proof by
contradiction.
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Cascading Error Example 1

import Mathlib

import Aesop

variable {A : Type}

...

variable (defined : A → Prop)
axiom existence_of_inverse_multiplication (X : A) :

defined X → (¬equalish X additive_identity) →

equalish (multiply X (multiplicative_inverse X)) multiplicative_identity

axiom commutativity_multiplication (X Y : A) :

defined X → defined Y → equalish (multiply X Y) (multiply Y X)
...

axiom multiply_equals_k_11 : equalish (multiply a d) k

theorem multiply_not_equal_to_k_12 : ¬equalish (multiply b c) k := sorry

theorem multiply_not_equal_to_k_12 : ¬equalish (multiply b c) k := by

-- Sub-proposition 1: Assume for contradiction that multiply b c equals k
have h : ¬equalish (multiply b c) k := by

intro h_contra

-- Sub-proposition 2: Use the existence of multiplicative inverses to derive a contradiction

have h1 := existence_of_inverse_multiplication multiplicative_identity 0

/- /tmp/tmpx4ncf3v6:41:51: error: unknown identifier 'multiplicative_identity' -/
have h2 := existence_of_inverse_multiplication additive_identity 0

/- /tmp/tmpx4ncf3v6:42:51: error: unknown identifier 'additive_identity' -/

have h3 := commutativity_multiplication multiplicative_identity multiplicative_identity

/- /tmp/tmpx4ncf3v6:43:68: error: unknown identifier 'multiplicative_identity' -/

/- /tmp/tmpx4ncf3v6:43:44: error: unknown identifier 'multiplicative_identity'-/
have h4 := commutativity_multiplication additive_identity multiplicative_identity

have h5 := commutativity_multiplication multiplicative_identity additive_identity

have h6 := commutativity_multiplication additive_identity additive_identity

have h7 := transitivity_of_equality multiplicative_identity multiplicative_identity additive_identity

have h8 := transitivity_of_equality additive_identity multiplicative_identity multiplicative_identity
have h9 := compatibility_of_equality_and_multiplication multiplicative_identity multiplicative_identity multiplicative_identity

have h10 := compatibility_of_equality_and_multiplication additive_identity multiplicative_identity multiplicative_identity

have h11 := compatibility_of_equality_and_multiplication multiplicative_identity additive_identity multiplicative_identity

have h12 := compatibility_of_equality_and_multiplication additive_identity additive_identity multiplicative_identity

have h13 := different_identities
have h14 := a_is_defined

have h15 := b_is_defined

have h16 := c_is_defined

have h17 := d_is_defined

have h18 := k_is_defined
have h19 := s_is_defined

have h20 := b_not_equal_to_additive_identity

have h21 := d_not_equal_to_additive_identity

have h22 := multiply_equals_s_9

have h23 := multiply_equals_s_10
have h24 := multiply_equals_k_11

-- Simplify all the assumptions and derive a contradiction

simp_all

-- Conclude the proof

exact h

Figure 16: An illustrative example of cascading error.
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Cascading Error Example 2

import Mathlib
import Aesop
variable {F : Type}

variable (add : F → F → F)
variable (multiply : F → F → F)

variable (additive_identity : F)
variable (multiplicative_identity : F)
variable (equalish : F → F → Prop)

variable (defined : F → Prop)
axiom existence_of_identity_multiplication (X : F) :

defined X → equalish (multiply multiplicative_identity X) X
axiom well_definedness_of_multiplication (X Y : F) :
defined X → defined Y → defined (multiply X Y)

axiom compatibility_of_equality_and_multiplication (X Y Z : F) :
defined Z → equalish X Y → equalish (multiply X Z) (multiply Y Z)

variable (a b d : F)
axiom a_is_defined : defined a
axiom b_is_defined : defined b

axiom d_is_defined : defined d
axiom a_equals_d : equalish a d

theorem multiply_not_equal_to_multiply :
¬equalish (multiply d b) (multiply a b) := by
/- /tmp/tmpatssqx03:23:43: error: unsolved goals

F : Type
multiply : F → F → F

equalish : F → F → Prop
a b d : F
⊢ ¬equalish (multiply d b) (multiply a b) -/

--Sub-proposition 1: Multiplication by Identity Preserves Equality
have h₁ := existence_of_identity_multiplication multiplicative_identity

/- /tmp/tmpatssqx03:25:50: error: unknown identifier 'multiplicative_identity'-/
--Sub-proposition 2: Multiplication is Well-Defined
have h₂ := well_definedness_of_multiplication multiplicative_identity a

have h₃ := well_definedness_of_multiplication multiplicative_identity b
--Sub-proposition 3: Multiplication is Compatible with Equality

have h₄ := compatibility_of_equality_and_multiplication a multiplicative_identity b
have h₅ := compatibility_of_equality_and_multiplication d multiplicative_identity b
--Sub-proposition 4: `a` is Defined

have h₆ := a_equals_d
have h₇ := a_is_defined

have h₈ := b_is_defined
have h₉ := d_is_defined
intro h

simp_all
<;> aesop

Figure 17: An illustrative example of cascading error.
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System prompt:
Your task is to convert TPTP format axioms and conjectures into Lean
4 format. Follow these guidelines:

1. Type Declarations:
- Declare all necessary types using `Type `
- Define type variables when needed using uppercase letters (e.g.,
`A`, `B`)

2. Axiom Conversion:
- Convert each TPTP axiom into a complete Lean 4 definition
- Use appropriate Lean 4 syntax for logical operators:
- Do not use `sorry ` in axiom definitions

3. Conjecture Conversion:
- Convert the conjecture into a theorem statement
- Use `theorem ` for the declaration
- End the theorem with `sorry `
- Do not provide the proof

4. Code Format:
- Wrap all Lean 4 code with ```lean ``` markers
- Use proper indentation
- Include necessary imports
- Add brief comments explaining complex translations

5. Variable Handling:
- Declare all variables with appropriate types
- Maintain consistent variable naming between axioms and
conjecture
- Use meaningful variable names when possible

Please ensure each conversion preserves the original logical meaning
while following Lean 4's syntax and type system.

User prompt:
Input TPTP Format:

Axioms:
{axioms}

Conjecture:
{conjecture}

Please provide the Lean 4 conversion following the guidelines above.

Figure 18: Prompts for converting first-order axioms and conjectures from TPTP format to Lean4 format.
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