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Abstract

Recent advances in Automatic Speech Recog-
nition (ASR) have been largely fueled by mas-
sive speech corpora. However, extending cover-
age to diverse languages with limited resources
remains a formidable challenge. This paper
introduces Speech Back-Translation, a scal-
able pipeline that improves multilingual ASR
models by converting large-scale text corpora
into synthetic speech via off-the-shelf text-to-
speech (TTS) models. We demonstrate that
just tens of hours of real transcribed speech
can effectively train TTS models to generate
synthetic speech at hundreds of times the orig-
inal volume while maintaining high quality.
To evaluate synthetic speech quality, we de-
velop an intelligibility-based assessment frame-
work and establish clear thresholds for when
synthetic data benefits ASR training. Using
Speech Back-Translation, we generate more
than 500,000 hours of synthetic speech in ten
languages and continue pre-training Whisper-
large-v3, achieving average transcription error
reductions of over 30%. These results high-
light the scalability and effectiveness of Speech
Back-Translation for enhancing multilingual
ASR systems.

1 Introduction

Automatic Speech Recognition (ASR) technology
has become increasingly important in making digi-
tal services accessible across languages and modal-
ities (Baevski et al., 2020; Zhang et al., 2021; Rad-
ford et al., 2022). While recent transformer-based
architectures have achieved impressive results for
high-resource languages, e.g., English and Chinese,
many of the world’s languages still lack sufficient
transcribed speech for training robust ASR mod-
els (Pratap et al., 2020a; Babu et al., 2021; Chen
et al., 2024). This data scarcity creates a significant
barrier to developing effective multilingual speech
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technologies, particularly affecting communities
where manual data collection is resource-intensive
or logistically challenging (Costa-jussà et al., 2022;
Communication et al., 2023; Pratap et al., 2023).

A natural way to mitigate the data scarcity issue
is to leverage high-quality generative models. Re-
cent work has demonstrated successful applications
of these models for data augmentation in computer
vision (Fan et al., 2023; Azizi et al., 2023), natu-
ral language processing (Gunasekar et al., 2023;
Li et al., 2024), and speech recognition (Yang
et al., 2024). Despite their demonstrated potential,
the role of generative models in overcoming data
scarcity presents a paradox. These models them-
selves typically demand vast amounts of labeled
data to attain their remarkable capabilities. For in-
stance, Stable Diffusion (Rombach et al., 2022), a
leading text-to-image model frequently used for
data augmentation (Tian et al., 2023; Trabucco
et al., 2023), was trained on millions of labeled
images. This reliance prompts a fundamental ques-
tion: do synthetic data truly alleviate data scarcity
in downstream tasks, or do they simply shift the
burden of data collection to the pre-training stage
of generative models?

Our work investigates whether an off-the-shelf
text-to-speech (TTS) model can be trained with
limited real transcribed speech data—just tens of
hours—to generate synthetic data that enhances
multilingual ASR models. To address this chal-
lenge, we propose Speech Back-Translation
(see Figure 1), a scalable method that build large-
scale synthetic transcribed speech from text cor-
pora with TTS models. Our results demonstrate
that synthetic data, generated by TTS models
trained on just tens of hours of labeled audio, can
effectively expand small human-labeled datasets
to tens of thousands of hours. To assess the
quality of this back-translated synthetic dataset,
we propose a novel intelligibility-based metric
and use it to establish thresholds indicating when
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Figure 1: Pipeline of Speech Back-Translation. The main objective is to augment limited training data (≤100
hours) for low-resource languages by synthesizing extensive amounts of speech (>10,000 hours). Starting from a
multilingual TTS model pre-trained with high-resource languages, we fine-tune it on a small set of seed data, then
generate synthetic speech by conditioning the fine-tuned model on a large textual corpus and diverse audio prompts.

synthetic speech reliably enhances ASR perfor-
mance. Finally, we scale Speech Back-Translation
to 500K hours across ten languages and continue
pre-training Whisper-large-v31, one of the state-
of-the-art multilingual ASR models. As a result,
we observe consistent improvements across all lan-
guages, achieving an average reduction of over
30% in transcription error rates. To summarize,
our main contributions are listed as follows:

1. We demonstrate that just tens of hours of real
transcribed speech can effectively train TTS
models to generate tens of thousands of high-
quality synthetic speech, achieving a scaling
factor of several hundred.

2. We introduce an intelligibility-based evalua-
tion framework for synthetic speech and estab-
lish thresholds to determine when synthetic
data reliably benefits ASR performance.

3. We build the largest synthetic speech dataset
to date—500K hours spanning ten lan-
guages—and use it to further pre-train
Whisper-large-v3. This yields an average 30%
reduction on transcription error rates, high-
lighting the scalability of our approach.

2 Background

2.1 Back-Translation

Back-translation is a data augmentation technique
originally used in machine translation to expand
training data (Sennrich et al., 2016a; Edunov et al.,
2018). In a typical setup, a model trained to trans-
late from the target language back into the source
language (i.e., a “reverse” model) is used to gen-
erate synthetic source sentences from real target-
language data. These newly created source-target

1https://hf.co/openai/whisper-large-v3

pairs can then be used to train a forward trans-
lation model, effectively increasing its exposure
to a broader range of textual content. For speech
recognition, back-translation offers a mechanism
to supplement scarce or imbalanced datasets by
leveraging an abundance of target-side text. Here,
the “reverse” model is typically a text-to-speech
model that generates synthetic speech from textual
corpora. Integrating this synthetic speech with ex-
isting training data allows the model to handle a
wider range of speech variability, enhancing recog-
nition performance despite resource constraints.

2.2 Zero-shot Text-to-Speech Model
Zero-shot Text-to-Speech (TTS) models (Wang
et al., 2023; Casanova et al., 2024) represent a mile-
stone in speech synthesis, enabling the generation
of high-quality speech for previously unseen speak-
ers without additional fine-tuning. These models
typically contain the following components:

• Audio Tokenizer: Encodes raw acoustic inputs
(e.g., mel-spectrograms) into discrete audio to-
kens, forming the basis for synthesis.

• Speaker Embeddings: Contain speaker-specific
acoustic features, which are normally extracted
from audio clips, enabling zero-shot adaptation
to new voices.

• Decoder-only Transformer: Processes speaker
embeddings alongside textual tokens to generate
sequences of audio tokens. The Transformer
model is trained in an auto-regressive manner.

• Vocoder: Converts the generated audio tokens
into waveform audio, producing the final synthe-
sized output.

The synergy of these components allows zero-shot
TTS models to generalize effectively to speakers
not encountered during training, maintaining high
voice similarity and naturalness.
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3 Approach: Speech Back-Translation

In this section, we introduce the proposed Speech
Back-Translation (see Figure 1). we first detail how
we extend existing TTS models to support new low-
resource languages with fine-tuning (Section 3.1).
We then describe how we generate large-scale syn-
thetic speech dataset (Section 3.2).

3.1 Fine-tuning with Low-resource Languages
Obtaining high-quality transcribed speech for low-
resource languages poses a significant challenge for
multilingual ASR training. To address this, we ex-
tend existing multilingual TTS models—originally
trained on high-resource languages—to new, low-
resource languages via targeted fine-tuning with
limited data.

Vocabulary Expansion Before fine-tuning, we
expand the vocabulary of pre-trained TTS models
to accommodate words not encountered during the
initial training phase. We employ the Byte-Pair
Encoding algorithm (Sennrich et al., 2016b) on
textual data from the target language, appending
the newly derived subwords to the model’s original
vocabulary. This approach preserves the integrity
of the existing vocabulary while enabling effective
representation of new linguistic units.

Limited Data Fine-tuning Given the scarcity of
transcribed speech data, we adopt a conservative
fine-tuning strategy: we freeze modules responsi-
ble for low-level acoustic representations, such as
the audio tokenizer and vocoder, while selectively
fine-tuning only the transformer part of the TTS
model. This ensures stability in fundamental acous-
tic modeling while effectively adapting linguistic
and prosodic mappings to the target language. Dur-
ing fine-tuning, each pair of audio and transcript
data is processed by first extracting a speaker em-
bedding e from the audio clip. Then, we tokenize
both the transcript and audio clip, concatenating
the S text tokens x = [x1, . . . , xS ] and T audio
tokens y = [y1, . . . , yT ] into z = [z1, . . . , zS+T ].
The training objective minimizes the negative log-
likelihood of sequence z conditioned on the speaker
embedding e:

L = −
S+T∑

t=1

log p
(
zt | z1, . . . , zt−1, e

)
, (1)

Quality Estimation Evaluating the performance
of fine-tuned models is essential before deploy-

ing them for large-scale synthetic data generation.
Intelligibility—commonly measured as the Word
Error Rate (WER) using a robust ASR system—has
emerged as the standard metric for assessing syn-
thetic speech quality (Wang et al., 2023; Casanova
et al., 2024). Yet this conventional method has
two drawbacks: (1) the judge ASR introduces its
own errors, particularly in low-resource languages;
and (2) absolute WER values are not comparable
across languages. To alleviate these issues, we
propose a novel metric called Normalized Intel-
ligibility, leveraging ASR performance on natu-
ral speech as a reference baseline. We use the
Fleurs dataset (Conneau et al., 2022), which pro-
vides high-quality audio-transcript pairs across 102
languages, and Whisper-large-v3 as our judge ASR
system. By synthesizing speech using transcripts
from Fleurs, we measure two WER scores for each
language: WER on synthetic speech (WERs) and
WER on real speech (WERr). Normalized Intelli-
gibility (Norm_I) is defined as:

Norm_I = exp

(
WERr −WERs

WERr

)
(2)

This formulation offers several advantages: (1) it
normalizes ASR performance across languages us-
ing real speech as a baseline, (2) it enables mean-
ingful cross-language comparisons, and (3) it pro-
duces intuitive scores bounded between 0 and e,
where higher values reflect better synthetic speech
quality relative to natural speech.

3.2 Generating Large-scale Synthetic Speech
Zero-shot TTS converts text into audio by condi-
tioning on two indispensable inputs: (i) an audio
prompt that specifies the target voice style and (ii) a
text sentence that supplies the textual content. Both
inputs must therefore be covered at scale and with
maximal diversity.

• Audio Prompts: We curate around 1 million
short audio clips spanning diverse speakers and
recording conditions. After strict de-duplication
to remove near-identical voices, every retained
clip can serve as a style prompt that the TTS
model imitates. Details of data sources and filter-
ing are provided in Appendix C.

• Text Corpus: To maximize linguistic variety,
we sample sentences across various domains,
following the data-mixing practices of recent
open-source LLMs (Touvron et al., 2023a; Wei
et al., 2023). Construction and statistics of the
corpus appear in Appendix D.

12452



0 150 300 450 600 750

XTTS

+DS

+Batch Increasing inference speed by 32.5x

Inference speed (audio tokens per second)

Figure 2: XTTS inference speed measured on a single
NVIDIA V100-32GB GPU. “DS” refers to DeepSpeed-
Inference while “Batch” refers to batch inference. For
batch inference, we set batch size to be 16.

Inference Speed-up A key challenge in employ-
ing TTS models for large-scale dataset creation is
their inference speed. We address this bottleneck
using two complementary optimization techniques:

• DeepSpeed-Inference (Aminabadi et al., 2022):
Involving fused CUDA kernels integration and
optimized kernel scheduling, significantly en-
hancing inference throughput.

• Batch Inference: We group multiple sentences
with similar lengths using a single audio prompt,
then apply tailored attention masks to enable
simultaneous generation of multiple utterances
in one forward pass.

We evaluate the effectiveness of these techniques
using XTTS (Casanova et al., 2024) on a single
NVIDIA V100 GPU. As demonstrated in Figure 2,
we observe that these optimizations yield a more
than 30× speed-up, making large-scale speech syn-
thesis feasible for our experiments. More details
can be found in Appendix A.

4 Experimental Setup

4.1 ASR Backbone Models
Our experiments leverage Whisper models (Rad-
ford et al., 2022), a family of multilingual ASR
models pre-trained on 680,000 hours of labeled
speech data, as the backbone. The models are avail-
able in five sizes: Tiny (39M), Base (74M), Small
(244M), Medium (769M), and Large (1.5B). Fur-
ther training details are provided in Appendix E.

4.2 Zero-shot TTS Models
We employ two state-of-the-art zero-shot TTS mod-
els in our experiments: XTTS (Casanova et al.,
2024) and ChatTTS (2noise, 2024). XTTS sup-
ports 16 languages, covering a range of language
families and resource levels, while ChatTTS only
supports Chinese and English. More details about
these two models can be found in Appendix B.

Model
WER↓

vi cs hu

Whisper-medium 25.4 22.5 27.8
+ Real-only 22.8 15.6 16.9
+ Speech BT 19.0 10.3 13.2

Whisper-large 24.5 19.9 23.8
+ Real-only 19.9 12.5 13.9
+ Speech BT 16.0 9.1 11.1

Table 1: WER results for low-resource languages on
Common Voice. The “Real-only” rows indicate models
trained only on tens of hours of real audio, while the
“Speech BT” rows present performance achieved when
expanding training data to 10K hours using our method.

4.3 Languages

Our experiments span ten languages across diverse
language families and resource levels. Following
Whisper’s training data distribution, we categorize
them based on the relative resource availability:

• High (≥10K hours): English (en), Chinese (zh),
French (fr), German (de), Spanish (es)

• Mid (1K∼10K hours): Dutch (nl), Italian (it)

• Low (≤1K hours): Vietnamese (vi), Czech
(cs), Hungarian (hu)

Of these languages, XTTS supports all except Viet-
namese. To enable Vietnamese support, we fine-
tune XTTS with 100 hours of transcribed speech
sampled from viVoice2, a high-quality dataset de-
rived from YouTube.

4.4 Datasets

Most of our experiments use Common Voice
data (Ardila et al., 2019), chosen for its high qual-
ity and broad language coverage, and it also serves
as the primary training corpus for XTTS. To as-
sess generalization, we additionally evaluate our
ASR models on Voxpopuli (Wang et al., 2021) and
Multilingual LibriSpeech (Pratap et al., 2020b).

5 Results

We begin by demonstrating the effectiveness of our
approach in scaling limited real training data to
tens of thousands of hours using synthetic speech
(Section 5.1). We then evaluate the models’ mul-
tilingual performance and examine their general-
ization to out-of-domain data (Section 5.2). Next,

2https://hf.co/datasets/capleaf/viVoice
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Model Common Voice (In-Domain) Voxpopuli (Out-of-Domain)

High Mid Low Avg. ∆ High Mid Low Avg. ∆

Whisper-medium 11.5 10.6 25.2 - 11.3 21.8 23.4 -
+ Real-only 9.0 8.0 17.6 -4.0 11.0 20.9 19.9 -1.4
+ Speech BT 8.5 6.1 11.1 -6.6 10.0 19.4 13.3 -4.1

Whisper-large 10.5 9.1 21.9 - 11.4 20.3 18.1 -
+ Real-only 8.7 7.2 15.4 -5.0 10.7 19.3 16.2 -1.2
+ Speech BT 6.6 5.2 10.7 -6.3 9.5 17.7 12.5 -3.3

Table 2: Comparison of Whisper models’ WER across in-domain and out-of-domain data. Adding 3,800
hours of Common Voice data (Real-only) provides strong in-domain gains but limited out-of-domain improvements,
whereas scaling synthetic Speech BT data to 160,000 hours achieves robust gains across both domains.
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Figure 3: Comparison of dataset sizes across seven
languages (log-scale y-axis). Languages are catego-
rized by resource availability in the Whisper dataset: (a)
high-resource, (b) mid and low-resource groups.

we analyze the relationship between TTS quality
and ASR performance using our fine-tuned TTS
model (Section 5.3), and explore strategies for opti-
mally leveraging limited in-domain real data (Sec-
tion 5.4). Finally, we scale the synthetic corpus
to 500K hours and compare our results with prior
work (Section 5.5).

5.1 From Tens of Hours to Tens of Thousands

We first assess the effectiveness of our approach
by expanding the amount of training data for three
low-resource languages—Vietnamese (vi), Czech
(cs), and Hungarian (hu)—from mere tens of hours
to ten thousand hours. As a baseline, we sample
real audio in amounts matching the data originally
used for TTS training (100 hours for vi, 50 hours

for cs, and 60 hours for hu)3. Table 1 compares
these “Real-only” models against models enhanced
with our “Speech BT” method for both Whisper-
medium and Whisper-large. Consistently across all
three languages, Speech BT provides substantial
gains in WER, underscoring the effectiveness of
augmenting limited real speech with large-scale
synthetic data.

5.2 Multilingual Performance and
Out-of-Domain Generalization

To evaluate the effectiveness and scalability of our
approach in a multilingual setting, we generated
160,000 hours of synthetic speech spanning seven
languages at varying resource levels: French, Ger-
man, and Spanish (high-resource); Dutch and Ital-
ian (mid-resource); Czech and Hungarian (low-
resource). As a baseline, we also collected 3,800
hours of transcribed speech from Common Voice
as the training data. Figure 3 compares our syn-
thetic dataset with the original Whisper Dataset
and Common Voice. Our synthetic dataset pro-
vides substantially more training hours than the
original Whisper dataset for each language: a 3-
fold increase for high-resource languages, a 10-fold
increase for mid-resource languages, and a 40-fold
increase for low-resource languages. While both
Whisper training data and Common Voice exhibit
substantial resource imbalance across languages
(with high-resource languages having significantly
more data than mid and low-resource ones), our
Speech BT dataset maintains a more uniform dis-
tribution. This balanced allocation across language
resources enables more equitable training, address-
ing a key limitation of naturally collected datasets.

3Training data for vi comes from viVoice, whereas data
for cs and hu are sampled from Common Voice.
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Figure 4: Whisper’s performance improves consis-
tently with larger models and more training data. We
train five sizes of Whisper models with up to 160,000
hours of data and conduct evaluation on Common Voice
16. We report averaged WER across seven languages.

Out-of-Domain Generalization Table 2 shows a
detailed comparison of model performance in both
in-domain (Common Voice) and out-of-domain
(Voxpopuli) scenarios. Training with only real
transcribed speech from Common Voice (Real-
only) yields clear in-domain improvements for
both Whisper-medium and Whisper-large (4.0%
and 5.0% average WER reduction, respectively),
but the generalization to out-of-domain data is lim-
ited (just 1.4% and 1.2% average reduction). In
contrast, supplementing real data with Speech BT
significantly enhances both in-domain (6.6% for
Whisper-medium, 6.3% for Whisper-large) and out-
of-domain performance (4.1% and 3.3%, respec-
tively). This clearly demonstrates that our synthetic
data not only improves model robustness within-
domain but also enhances generalization capabili-
ties across diverse domains.

Scalability with Model and Data Size To fur-
ther assess scalability, we train five Whisper
model variants—tiny, base, small, medium, and
large—using the same data mentioned above. Fig-
ure 4 presents the averaged WER across all seven
languages for each model size at increasing scales
of training data up to 160,000 hours. The results
show two clear trends. First, adding more train-
ing data consistently lowers WER across all model
sizes. Second, larger models achieve substantially
lower WER at each data scale. These scaling trends
suggest that our Speech BT approach effectively
improves multilingual ASR performance across
different model and data scales.
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Figure 5: Impact of training data quantity and
epochs on Vietnamese TTS quality. The purple dashed
line shows the WER of natural speech from Fleurs.

5.3 TTS Quality vs ASR Performance

We now investigate extending TTS support to a
new language, Vietnamese, using limited amounts
of transcribed speech data. To explore how the
quantity of training data impacts TTS model per-
formance, we sampled datasets at increments of
{20,40,60,80,100} hours and trained each for up to
10 epochs. The results, shown in Figure 5, clearly
indicate that performance consistently improves
as the amount of training data and the number of
epochs increase. Specifically, the model trained on
the 100-hour dataset reaching a WER of 10% in the
end, which closely approaches the baseline WER
for natural speech.

Next, we analyze the relationship between TTS
model quality and downstream ASR performance.
We selected several checkpoints from the fine-
tuned TTS models, varying by the amount of train-
ing data and the number of epochs. For each check-
point, we generated 100 hours of synthetic speech
and subsequently used it to train Whisper-medium.
We then measured the resulting changes in WER
(denoted as ∆WER, where negative values indi-
cate improvement) on the Common Voice dataset.
The correlation between each checkpoint’s normal-
ized intelligibility score (see Equation 2) and ASR
performance is illustrated in Figure 6. Our anal-
ysis reveals a strong correlation between TTS in-
telligibility scores and ASR performance improve-
ments. Notably, we identified a critical intelligibil-
ity threshold around 0.01, serving as a clear inflec-
tion point. Below this threshold, TTS-generated
speech leads to increased WER, degrading ASR
performance by up to 2 points. Conversely, once
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Figure 6: Relationship between TTS quality and ASR
performance. Higher TTS intelligibility correlates with
greater ASR improvement.

the threshold is surpassed, synthetic speech consis-
tently enhances ASR accuracy, with greater intelli-
gibility corresponding to more pronounced reduc-
tions in WER. This underscores the importance of
achieving a minimum TTS quality level for effec-
tive ASR data augmentation. Additionally, the vol-
ume of TTS training data significantly influences
the ability to surpass this intelligibility threshold.
Models trained on larger datasets generally achieve
higher intelligibility scores and yield greater ASR
performance gains. However, we observe diminish-
ing returns as normalized intelligibility approaches
1.0, where WER reductions stabilize around 3 per-
centage points. This finding suggests that while
adequate training data is essential to cross the qual-
ity threshold, further improvements in ASR perfor-
mance may plateau beyond a certain point.

5.4 Effective Utilization of Limited
In-Domain Transcribed Audio

The experiments in Section 5.3 are essentially con-
ducted under out-of-domain conditions, as the TTS
models are trained on the viVoice dataset but the
final ASR performance are evaluated with the Com-
mon Voice dataset. Notably, we identified only
about three hours of transcribed audio in Com-
mon Voice Vietnamese available for training. This
prompts an important research question: how can
we effectively leverage such a small but valuable
amount of in-domain data? We propose three meth-
ods for effectively utilizing the in-domain data to
enhance model performance:

• Approach 1: Pre-train Whisper on large-scale
synthetic data followed by supervised fine-
tuning using the limited in-domain data.

Models WER↓
Whisper-medium 25.4
+ in-domain fine-tune 21.6

Approach 1
+ Synthetic data pre-train 21.2

+ in-domain fine-tune 20.4

Approach 2
+ Synthetic data pre-train 20.1

Approach 3
+ Synthetic data pre-train 18.6

Table 3: Vietnamese WER performance on Common
Voice using different approaches for leveraging limited
in-domain data.

• Approach 2: Prompt the fine-tuned Vietnamese
TTS model with in-domain audio clips for
speech synthesis.

• Approach 3: Further fine-tune the Vietnamese
TTS model with in-domain data before synthe-
sizing speech.

For all three approaches, we utilize fine-tuned
XTTS checkpoints trained on 100 hours of tran-
scribed speech and generate 1,000 hours of syn-
thetic speech for pre-training Whisper-medium.
Table 3 summarizes the resulting WERs. As a
baseline, we first fine-tune Whisper-medium on
three hours of in-domain data, which alone reduces
WER from 25.4 to 21.6 and demonstrates the ef-
fectiveness of even limited domain adaptation. By
combining synthetic speech pre-training on 1,000
hours and subsequent in-domain fine-tuning (Ap-
proach 1), we obtain further WER reduction to 20.4.
However, the most pronounced improvements arise
from leveraging in-domain data within the TTS
pipeline itself (Approach 2 and 3). Simply prompt-
ing a fine-tuned XTTS model with in-domain audio
achieves a WER of 20.1, already outperforming the
synthetic pre-training baseline. Adding a dedicated
fine-tuning stage for XTTS on the three hours of
Common Voice audio (Approach 3) yields the best
overall WER of 18.6—a 27.0% relative improve-
ment over the 25.4 baseline. This underscores the
value of adapting both the TTS and ASR models to
the target domain, especially for low-resource lan-
guages like Vietnamese. In summary, leveraging
a small in-domain dataset—through synthetic pre-
training, language-specific fine-tuning, and TTS-
based in-domain adaptation—proves highly effec-
tive for improving ASR performance under real-
world low-resource conditions.
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Model Size Common Voice Voxpopuli MLS

High Mid Low High Mid Low High Mid

SeamlessM4T-medium 1.2B 13.3 12.8 24.4 10.7 20.0 12.6 8.0 13.0
Whisper-large-v2 1.5B 11.4 8.1 19.9 9.8 19.5 16.3 6.3 11.5

Whisper-large-v3 1.5B 10.1 5.9 15.6 12.6 28.6 14.4 5.3 10.2
+ Real-only (15K Hrs) - 8.6 4.9 12.5 7.9 17.1 10.6 5.0 9.4
+ Speech-BT (500K Hrs) - 7.8 4.3 8.3 7.6 16.2 8.0 4.4 7.6

Table 4: Multilingual ASR performance on various benchmarks. Results are averaged for each language resource
category. Word Error Rate (WER) is reported for all languages except Chinese, which is measured with Character
Error Rate (CER). All results are normalized with Whisper Normalizer (Radford et al., 2022).

5.5 Scaling to 500,000 Hours

Building on insights from our previous analysis, we
now push the limits of multilingual ASR training
with Speech Back-Translation. Starting from the
baseline approach in Section 5.2, we implement
several key enhancements:

Training Data Expansion We expand cover-
age to ten languages by incorporating three addi-
tional ones—English, Chinese, and Vietnamese.
We also extend the amount of real speech: in
addition to Common Voice (Ardila et al., 2019),
we include real transcribed speech from Multilin-
gual LibriSpeech (Pratap et al., 2020b), Voxpop-
uli (Wang et al., 2021), and viVoice, bringing the
total amount of real data to 15,000 hours. Most
significantly, we scale our synthetic speech dataset
to 500,000 hours—a volume more than thirty times
larger than the real data. The statistics of training
data is illustrated in Appendix G.

Backbone Model and Baselines We adopt
Whisper-large-v3, one of the state-of-the-art
multilingual ASR models with 1.5B parame-
ters, as our backbone model. For compari-
son, we include two ASR models with simi-
lar sizes—SeamlessM4T-medium (Communication
et al., 2023) and Whisper-large-v2 (Radford et al.,
2022)—as our baselines for their competitive per-
formance and wide language coverage.

Results We evaluate both our models and base-
line models on three benchmarks, Common Voice,
Voxpopuli, and Multilingual LibriSpeech (MLS),
and present the results in Table 4. We report the
averaged results for each language category. Re-
sults demonstrate a clear performance trajectory,
training Whisper-large-v3 with 15K hours of real

audio consistently improves performance across all
benchmarks, while augmenting with 500K hours
of Speech-BT data yields further substantial gains,
achieving state-of-the-art results across all lan-
guage categories. On average across all bench-
marks, our full model achieves a 30% error rate
reduction over the base Whisper-large-v3. Break-
ing this down by language groups, high-resource
and mid-resource languages achieve 26% and 30%
improvements respectively, while low-resource lan-
guages achieve a remarkable 46% improvement.
These findings indicate that augmenting real data
substantially with our synthetic Speech BT data
contributes significantly to advancing multilingual
ASR systems, with particular benefits for tradition-
ally underserved language communities. Detailed
per-language results can be found in Appendix H.

6 Conclusion

This work introduced Speech Back-Translation, a
scalable approach to address the persistent chal-
lenge of data scarcity in multilingual ASR. Our
method demonstrates that TTS models trained on
merely tens of hours of transcribed speech can gen-
erate hundreds of times more synthetic data of suf-
ficient quality to significantly improve ASR perfor-
mance. The large-scale implementation across ten
languages with 500,000 hours of synthetic speech
yielded an average 30% reduction in Whisper-large-
v3’s transcription error rates, confirming the effec-
tiveness and scalability of our approach. Speech
Back-Translation challenges the need for massive
human-labeled datasets by effectively scaling lim-
ited data, making advanced speech recognition
more accessible across diverse languages. Future
work could extend to extremely low-resource lan-
guages, refine language-specific metrics, and com-
bine with other augmentation techniques.
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Limitations

While our approach demonstrates significant im-
provements in multilingual ASR performance, sev-
eral limitations should be noted.

First, the synthetic speech data generated
through TTS models may not fully capture the
acoustic complexity present in real-world environ-
ments, particularly in scenarios with background
noise, multiple speakers, or variable recording con-
ditions. This limitation could impact model robust-
ness when deployed in settings with poor signal-to-
noise ratios or challenging acoustic environments.

Second, although we introduce an intelligibility-
based metric for assessing synthetic speech quality,
this assessment framework may not comprehen-
sively capture all relevant aspects of speech that
could influence ASR training effectiveness. Future
work could explore additional quality metrics that
consider factors such as prosody and emotional
expression.

Third, our experimental validation is primarily
based on two TTS models (XTTS and ChatTTS),
which may not represent the full spectrum of TTS
capabilities and limitations. A more comprehensive
evaluation across a broader range of TTS systems
could provide additional insights into the gener-
alizability of our approach and identify potential
TTS-specific biases or artifacts.

Lastly, while we demonstrate the scalability of
our method by generating 500,000 hours of syn-
thetic speech, our language coverage remains lim-
ited to ten languages, with nine already supported
by existing TTS models. Further research is needed
to validate our approach’s effectiveness in other
low-resource languages, particularly those with dis-
tinct phonological characteristics or limited linguis-
tic resources.
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A Inference Optimization Details

We accelerate inference by integrating DeepSpeed-
Inference (Aminabadi et al., 2022) into the TTS
pipeline. DeepSpeed’s deep fusion merges multiple
tiny CUDA launches into a single, highly optimized
kernel that combines element-wise operations, ma-
trix multiplications, transpositions, and reductions.
Merging these operations reduce kernel-invocation
overhead and off-chip memory traffic, translating
into noticeably lower latency and higher through-
put. We compound these gains with batch infer-
ence. Input sentences are grouped by language
and length, then paired with a single audio prompt
that supplies the target voice. Custom attention
masks mark prompt–text boundaries, allowing the
TTS model to synthesize multiple utterances con-
currently. This batching strategy reduces redundant
computations and GPU idle time, dramatically im-
proving overall inference efficiency.

B XTTS vs ChatTTS

In this section, we present a comparative analysis
of XTTS and ChatTTS for generating synthetic
audio in Chinese and English. Table 5 summarizes
the architectural details of both models. As the
XTTS’s training data mainly come from Common
Voice, we treat Common Voice 16 as the in-domain
dataset and Fleurs as the out-of-domain dataset for
evaluation.

Performance Comparison We synthesize
speech from 100K Chinese and English sentences
using both models and train Whisper-medium
to assess the effectiveness of these synthetic
datasets. As shown in Figure 7 (a) and (b), XTTS
outperforms ChatTTS on in-domain Chinese
data, whereas ChatTTS excels on out-of-domain
Chinese data. For English, XTTS achieves a WER
of 4.0%, surpassing ChatTTS’s 4.4%. These
trends highlight each model’s distinct strengths in
handling language-specific characteristics.

TTS Quality Comparison To understand the
performance difference, We assess the TTS qual-
ity with our proposed normalized intelligibility
metric for both models. As shown in Figure 7,
XTTS achieves superior intelligibility in English
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Figure 7: Comparison of Whisper-medium ASR perfor-
mance on in-domain (CV16) and out-of-domain (Fleurs)
test sets, as well as TTS quality, when training with syn-
thetic Chinese and English speech generated by XTTS
and ChatTTS.

(0.96 vs 0.74) while ChatTTS excels in Chinese
(0.87 vs 0.59). Nevertheless, XTTS performs better
on in-domain Chinese data, suggesting that while
ChatTTS produces more intelligible speech in gen-
eral, XTTS is more effective within the specific
domain represented by Common Voice 16. This
discrepancy may be attributed to domain-matched
acoustic patterns and speaking styles that XTTS
models more accurately. Meanwhile, on out-of-
domain data (Fleurs), ChatTTS’s superior general
intelligibility dominates, leading to stronger per-
formance. In English, XTTS demonstrates higher
intelligibility and more robust ASR results com-
pared to ChatTTS. Overall, these findings under-
score how a TTS model’s domain alignment and
language-specific strengths can influence synthetic
data quality and downstream ASR performance.

C Audio Prompt Details

We collect a diverse set of audio clips from various
sources to serve as audio prompts for our TTS mod-
els. To prevent redundancy in voice characteristics,
we extract speaker embeddings from each reference
clip using the ECAPA2 speaker encoder (Thien-
pondt and Demuynck, 2023) and remove duplicates
by comparing their cosine similarity, applying a
threshold of 0.8. Table 6 summarizes the sources
of these audio clips.

D Textual Data Details

Our textual corpus is sourced from a wide range of
domains. Since some sources include sequences
that are too long for TTS synthesis, we first seg-
ment the text using a sentencizer. We then filter out
sentences that are either too short, too long, or con-
tain an excessive number of non-alphabetic charac-
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Model
Transformer Vocabulary

Vocoder Parameters Lang
Layers Width Heads Text Audio

XTTS 30 1,024 16 6,681 1,024 Hifi-GAN (2020) 467M 16
ChatTTS 20 768 12 21,178 626 Vocos (2023) 280M 2

Table 5: Architecture details of XTTS and ChatTTS.

Dataset Num. Clips

Emilia (He et al., 2024) 560K
CommonVoice (Ardila et al., 2019) 230K
WenetSpeech (Zhang et al., 2022) 102K
CML-TTS (de Oliveira et al., 2023) 92K
LibriTTS (Zen et al., 2019) 10K

Total 994K

Table 6: Audio prompt distribution. The audio clips
used for voice cloning comes from various sources.

ters. To reduce redundancy, we perform sentence-
level de-duplication. A detailed breakdown of our
corpus sources is provided below.

Wikipedia Wikipedia is a collaborative online
encyclopedia containing millions of articles, serves
as a valuable source of high-quality natural text,
therefore has been widely used for training lan-
guage models (Touvron et al., 2023a,b).

WMT (Barrault et al., 2019) We also collected
textual data from the training split of WMT19 trans-
lation task, which is a widely-used training data
source in machine translation research.

Books Our Books dataset is sourced primarily
from Project Gutenberg, a digital library of public
domain literature. Book-level de-duplication is
performed to ensure the quality and uniqueness of
the corpus.

Europarl (Koehn, 2005) Europarl is a parallel
corpus created for training machine translation
systems, containing aligned text in European lan-
guages extracted from European Parliament pro-
ceedings. We utilize 8th version of the dataset.

SkyPile (Wei et al., 2023) SkyPile is a large-
scale Chinese dataset containing approximately
150 billion tokens, curated specifically for pre-
training large language models. The corpus is
compiled from diverse Chinese web pages across
the public internet and undergoes rigorous qual-
ity control, including thorough document-level de-
duplication and content filtering.

E Training Details

Whisper We train Whisper using AdamW (β1 =
0.9, β2 = 0.98, ϵ = 1e − 8) with a weight de-
cay of 0.01. We use constant learning rate 7e− 6
after 5% warm-up steps. To optimize distributed
training, we leverage DeepSpeed ZeRO-2 (Rajb-
handari et al., 2019). Additionally, we concatenate
short audio clips—up to Whisper’s 30-second in-
put limit—to improve efficiency. Unless otherwise
specified, our batch size is 128. In experiments pre-
sented in Section 5.2, we increase it to 768, while
in Section 5.5 experiment, we further increase it to
1,024. For evaluation, we generate transcripts with
greedy decoding.

XTTS Before fine-tuning, we expand the model’s
text vocabulary by incorporating 2,000 additional
Vietnamese tokens by running Byte-Pair Encoding
algorithms over Vietnamese textual data. We used
the AdamW optimizer β1 = 0.9, β2 = 0.96, and
ϵ = 1e− 8 with weight decay 0.01, and a learning
rate of 5e-6. The batch size is set to 32.

F Related Work

F.1 Synthetic Data for Multilingual ASR

Recently we have witnessed the application of syn-
thetic data in various domains and modalities, e.g.,
contrastive representation learning (Wang and Lu,
2022; Tian et al., 2023), math reasoning (Wang
and Lu, 2023; Wang et al., 2024). Our work fo-
cuses on improving multilingual ASR models using
synthetic audio generated by zero-shot TTS mod-
els, with particular emphasis on low-resource lan-
guages. This research builds upon previous efforts
that address data scarcity through synthetic data
generation. Bartelds et al. (2023) demonstrated
that both self-training and TTS-generated data can
effectively overcome data availability limitations in
resource-scarce languages. Their work specifically
examined four languages: Gronings, West-Frisian,
Besemah, and Nasa, showing significant improve-
ments in ASR performance. Baas and Kamper
(2021) explored voice conversion (VC) models
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for data augmentation in low-resource languages.
Their key finding was that a VC system trained on
a well-resourced language like English could gen-
erate effective training data for previously unseen
low-resource languages. More recently, Gao et al.
(2024) proposed using diffusion models to gener-
ate high-quality synthetic audio for self-supervised
pre-training. The authors suggest that diffusion
models are particularly adept at capturing complex
speech structures from real audio, making the syn-
thetic data especially valuable for self-supervised
learning tasks.

F.2 Text-Based Back-Translation

Back-Translation (Sennrich et al., 2016a; Edunov
et al., 2018) is originally proposed machine trans-
lation (Sennrich et al., 2016b; Pan et al., 2024)
to augment the limited parallel training corpus
from the large amount of monolingual textual
data. It is designed to translate the target-language
data into the source language, generatin addi-
tional synthetic parallel data that boosts overall
translation quality (Sennrich et al., 2016a). This
method capitalizes on monolingual text resources,
which are more abundant than parallel corpora,
thereby increasing model robustness and reduc-
ing overfitting. Subsequent work has explored
variants of back-translation such as iterative back-
translation, filtering synthetic data by quality, and
domain adaptation strategies (Edunov et al., 2018;
Hoang et al., 2018). In addition, dual learning
frameworks have incorporated back-translation and
forward-translation jointly for unsupervised and
semi-supervised machine translation scenarios (He
et al., 2016; Lample et al., 2018). These develop-
ments underscore the broader impact of synthetic
data in enhancing model performance, even where
labeled data are sparse.

F.3 Speech Translation

Beyond text-based machine translation, speech
translation deals with converting audio signals in
one language to either text or audio in another lan-
guage, frequently via cascading automatic speech
recognition and machine translation modules or
through end-to-end systems (Cheng et al., 2024;
Huang et al., 2023). One persistent challenge in this
domain, especially for lower-resource languages,
is the scarcity of paired audio-transcript data. A
widely used approach to address this limitation is
to create pseudo-labeled data by transcribing ex-
isting audio and then translating the resulting tran-

Language
Amount (Hrs)

Real Synthetic

English 3,951 75,159
French 2,486 94,822
German 3,706 90,782
Spanish 1,674 47,745
Chinese 204 37,910
Dutch 1,525 41,095
Italian 839 38,069
Czech 119 33,312
Hungarian 156 33,492
Vietnamese 104 13,444

Total 14,864 505,830

Table 7: Statistics of the training data in our 500K-hour
experiment.

scripts (Communication et al., 2023; Puvvada et al.,
2024). A natural future direction for our Speech
Back-Translation approach could be extended to
speech translation tasks by synthesizing speech
from existing parallel corpora.

G 500K-Hour Training Data Statistics

The detailed statistics of training data used in our
500K-hour scaling up experiments are presented
in Table 7.

H Additional 500K-Hour Scaling Results

In this section, we show detailed results for each
languages from Section 5.5. The results for
Multilingual Librispeech (MLS), Voxpopuli, and
Common Voice 16 are presented in Table 8, Ta-
ble 9, and Table 10 respectively. Additionally, we
make comparisons with state-of-the-art multilin-
gual ASR models: SeedASR (Bai et al., 2024),
SeamlessM4T (Communication et al., 2023), Ca-
nary (Puvvada et al., 2024), and Whisper-large and
Whisper-large-v2 (Radford et al., 2022).
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Model Size
High Mid

en fr de es nl it

SeedASR - 4.1 5.1 - 3.8 - -
SeamlessM4T-medium 1.2B 9.8 7.9 8.9 5.4 13.6 12.3
Canary 1.0B 5.1 4.4 4.7 3.4 - -

Whisper-large 1.5B 7.2 8.8 7.4 5.3 11.1 14.1
Whisper-large-v2 1.5B 6.8 7.4 6.4 4.6 10.0 12.9

Whisper-large-v3 1.5B 5.3 5.6 6.0 4.0 10.4 9.9
+ Real-only (15K Hrs) - 5.5 5.1 5.7 3.5 10.2 8.5
+ Speech BT (500K Hrs) - 5.2 4.3 4.9 3.0 8.5 6.7

Table 8: Performance comparison across languages on Multilingual LibriSpeech (MLS).

Model Size
High Mid Low

en fr de es nl it cs hu

SeamlessM4T-medium 1.2B 8.2 11.8 14.0 8.8 17.2 22.8 11.0 14.1
Canary 1.0B 6.0 9.2 10.7 7.0 - - - -

Whisper-large 1.5B 8.1 10.5 15.2 8.5 17.6 22.9 17.7 18.4
Whisper-large-v2 1.5B 7.9 10.4 13.1 7.9 15.8 23.2 14.3 18.3

Whisper-large-v3 1.5B 9.7 10.4 19.7 10.6 24.9 32.3 12.4 16.3
+ Real-only (15K Hrs) - 6.0 8.9 9.6 7.0 12.5 21.7 9.5 11.7
+ Speech BT (500K Hrs) - 5.6 8.4 9.0 7.4 12.5 19.8 7.6 8.3

Table 9: Performance comparison across languages on Voxpopuli.

Model Size
High Mid Low

en fr de es zh nl it cs hu vi

SeamlessM4T-medium 1.2B 11.3 14.5 12.1 9.8 18.7 15.2 10.4 14.4 34.8 24.1
Canary 1.0B 8.6 6.9 5.1 4.4 - - - - - -

Whisper-large 1.5B 12.2 15.0 8.9 7.6 17.3 8.1 10.1 19.9 23.8 24.5
Whisper-large-v2 1.5B 11.7 13.7 7.8 6.9 16.9 6.9 9.3 16.5 20.3 22.8

Whisper-large-v3 1.5B 10.7 11.8 6.5 5.5 16.1 4.9 6.9 10.9 15.3 20.5
+ Real-only (15K Hrs) - 9.7 8.7 5.9 4.4 14.3 4.3 5.5 9.2 11.4 16.9
+ Speech BT (500K Hrs) - 8.8 7.3 5.0 4.2 13.6 3.7 4.9 5.2 6.0 13.6

Table 10: Performance comparison across languages on Common Voice 16.
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