
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 12501–12520
November 4-9, 2025 ©2025 Association for Computational Linguistics

Examining False Positives under Inference Scaling
for Mathematical Reasoning

Yu Wang1,2†, Nan Yang2⋆, Liang Wang2, Furu Wei2, Fuli Feng1⋆

1University of Science and Technology of China, 2Microsoft Research Asia
terencewang0809@gmail.com

{nanya, wangliang, fuwei}@microsoft.com
fengfl@ustc.edu.cn

Abstract

Recent advancements in language models have
led to significant improvements in mathemati-
cal reasoning across various benchmarks. How-
ever, most of these benchmarks rely on auto-
matic evaluation methods that only compare
final answers using heuristics, without verify-
ing the underlying reasoning steps. This limi-
tation results in false positive solutions, where
models may produce correct final answers but
with flawed deduction paths. In this paper,
we systematically examine the prevalence of
false positive solutions in mathematical prob-
lem solving for language models. We ana-
lyze the characteristics and extent of this issue
across different open-source models, datasets
of varying difficulty levels, and decoding strate-
gies. Specifically, we explore how “false posi-
tives” influence the inference time scaling be-
havior of language models. Our experimen-
tal results reveal that: (1) false positive solu-
tions persist across different models, datasets,
and decoding methods, (2) sampling-based in-
ference time scaling methods do not allevi-
ate the problem, and (3) the pass@N evalu-
ation metric is more susceptible to “false pos-
itives”, suggesting a significantly lower scal-
ing ceiling than what automatic evaluations in-
dicate. Additionally, we analyze specific in-
stances of “false positives” and discuss poten-
tial limitations in self-improvement techniques
and synthetic data generation under such con-
ditions. Our data and code are publicly avail-
able at https://github.com/Wloner0809/False-
Positives-in-Math.

1 Introduction

Recent developments in language models, includ-
ing improvements in inference time scaling and
self-improvement techniques, have significantly

† Work done during Yu’s internship at MSR Asia.
⋆ Corresponding authors

enhanced performance in mathematical reasoning
tasks (Snell et al., 2024; Shao et al., 2024). How-
ever, many of these mathematical benchmarks rely
on automatic evaluation methods that compare only
the final answers generated by the models to ref-
erence answers, often using heuristic approaches.
These methods do not guarantee the correctness
of the reasoning steps taken to arrive at the final
answer, raising concerns about the reliability of the
evaluation metrics.

In this paper, we systematically investigate the
prevalence and characteristics of “false positives”
in mathematical problem-solving tasks. A “false
positive” arises when the final answer is correct,
but the solution process contains errors or lacks
logical validity. We aim to provide a comprehen-
sive analysis of how often “false positives” occur,
and how they affect model performance across dif-
ferent open-source models, varying levels of diffi-
culty in mathematical datasets, and diverse decod-
ing strategies. Specifically, we select open-source
models, including LLaMA (8B and 70B) (Dubey
et al., 2024) and math-specialized models such as
Qwen-Math (7B and 70B) (Yang et al., 2024), to
generate solutions. We test these models on three
popular benchmarks—MATH (Hendrycks et al.,
2021), AIME (Numina), and OmniMATH (Gao
et al., 2024)—which vary in difficulty. Addition-
ally, we explore several sampling methods (e.g., re-
peated sampling, reward-guided beam search, and
tree search) to assess how “false positives” influ-
ence inference time scaling. Both automatic and
manual evaluation methods are employed to iden-
tify “false positives”.

Our findings reveal several key insights. First,
“false positives” are widespread across a variety of
language models, datasets, and decoding methods,
suggesting that this issue is not confined to any
specific model or evaluation setup, but is a perva-
sive challenge in mathematical reasoning. Second,
we explore whether different inference strategies,

12501

https://github.com/Wloner0809/False-Positives-in-Math
https://github.com/Wloner0809/False-Positives-in-Math

such as sampling-based methods, could mitigate
the occurrence of “false positives”. Our results
show that these strategies do not significantly re-
duce the frequency of “false positives”, indicating
that the underlying reasoning flaws are not easily
resolved by simply increasing the inference budget.
Third, we observe that the pass@N metric is more
susceptible to “false positives” than other metrics
in automatic evaluations, which suggests that the
ceiling for inference scaling may be substantially
lower than what automatic evaluations indicate.

Additionally, we conduct a preliminary inves-
tigation into how rule-based GRPO (Guo et al.,
2025) influences “false positives”, as well as how
the “false positive” phenomenon manifests in re-
cent Long-CoT models. We analyze specific in-
stances of “false positives”, identifying the types
of reasoning errors that lead to flawed solutions.
We also discuss the implications of these find-
ings for self-improvement techniques and synthetic
mathematical data. In particular, we argue that
“false positives” may limit the effectiveness of self-
improvement methods, as models may appear to be
learning correct reasoning patterns while, in reality,
they are merely providing correct answers based
on flawed deduction processes.

Ultimately, this paper aims to offer a more nu-
anced understanding of the challenges language
models face in mathematical reasoning and to ad-
vocate for more rigorous evaluation practices that
go beyond mere answer correctness.

2 Related Work

The “false positive” problem we investigate arises
primarily due to the evaluation methods employed
for assessing LLM performance on mathematical
tasks. Many existing approaches focus solely on
comparing the final answers to the ground truth.
These evaluation strategies are efficient, inexpen-
sive, and fully automated; however, they fail to
account for the intermediate reasoning steps in-
volved in generating the solution. Moreover, they
are not applicable to tasks such as mathematical
proofs, which do not have a single final answer.
To overcome these limitations, some studies lever-
age powerful LLMs to compare the reasoning steps
in generated solutions with reference answers or
directly identify step errors within the reasoning
path, in an attempt to evaluate the validity of math-
ematical reasoning (He et al., 2023; Tyen et al.,
2023; Hao et al., 2024). The effectiveness of this

approach is heavily reliant on the capabilities of
the LLM used, and it remains uncertain how reli-
ably LLMs can detect reasoning flaws produced by
strong LLMs themselves. Alternatively, other re-
search has explored the use of formal proof systems
for mathematical reasoning. Benchmarks such as
MiniF2F (Zheng et al., 2021) and ProofNet (Azer-
bayev et al., 2023) utilize formal languages like
Lean (Moura and Ullrich, 2021) to specify math
problems, and LLMs are tasked with generating
formal proofs, which can be rigorously checked
by the formal system. While formal proofs inher-
ently avoid the “false positive” issue present in nat-
ural language solutions, the translation of informal
mathematical statements into formal systems re-
mains a significant challenge, limiting the broader
applicability of this approach.

Previous studies, such as Hao et al. (2024) and
Zheng et al. (2024), have also highlighted the pres-
ence of “false positives” in LLM-generated mathe-
matical solutions. A significant line of research fo-
cuses on improving the accuracy of reasoning steps
through process supervision (Lightman et al., 2023;
Setlur et al., 2024; Luo et al., 2024). For instance,
Lightman et al. (2023) demonstrated that training
on explicitly annotated flaws in reasoning paths
could enhance the performance of reward mod-
els, leading to improved accuracy on mathematical
benchmarks. In addition, studies like Golovneva
et al. (2022), Prasad et al. (2023) and Xia et al.
(2024) have proposed filtering and rescoring strate-
gies, as well as novel metrics, to identify erroneous
reasoning steps and mitigate the “false positive”
problem. While Snell et al. (2024) investigated the
inference time scaling of LLMs on mathematical
problems, their work did not consider the impact
of “false positives”. Moreover, Stroebl et al. (2024)
studied how the “false positive” affects inference
scaling in the coding domain, showing that flawed
verifiers lead to a decrease in true accuracy as more
computational resources are allocated, due to the
growing rate of “false positives”.

3 Evaluation Methodology

In mathematical evaluations, two primary assess-
ment methods are commonly employed: automatic
evaluation and manual evaluation. Automatic eval-
uation includes rule-based assessment and the use
of powerful LLMs for evaluation. Currently, most
benchmarks for mathematical models typically rely
on rule-based automatic evaluation (Yang et al.,

12502

2024; Shao et al., 2024). This approach utilizes pre-
defined heuristic rules to evaluate the correctness
of a model’s output by comparing its final answer
to the ground truth. While this method is straight-
forward and easy to implement, it has notable lim-
itations. Specifically, it fails to effectively assess
the correctness and logical coherence of interme-
diate reasoning steps, leading to the phenomenon
of “false positives”. The detection of such “false
positives” can be conducted either through model-
based methods or human evaluation.

3.1 Model Detection of False Positives
To assess the ability of current models to detect er-
rors in intermediate reasoning steps, we can utilize
M(True or False | P, x, y), whereM denotes the
model used for error detection, x and y represent
the question and the model-generated response, re-
spectively, and P refers to the prompt utilized (see
Appendix A.1 for details). Although the costs of
employing the model for error detection are rela-
tively low, its effectiveness remains limited. We
present a comprehensive analysis and discussion in
Section 5.2.

3.2 Human Detection of False Positives
Due to the limited capability of existing models
to identify errors in reasoning steps, we introduce
manual evaluation as a complementary approach
to better understand the occurrence of “false pos-
itives”. Human evaluation involves a meticulous,
step-by-step review of the model’s responses by hu-
man annotators, ensuring not only the correctness
of the final answer but also the logical coherence
and mathematical validity of the intermediate steps.
While more resource-intensive, this method signifi-
cantly improves the accuracy and comprehensive-
ness of the evaluation, providing deeper insights
into the model’s reasoning processes.

In human evaluation, annotators classify a
model’s response as a “false positive” if it exhibits
any of the following errors, despite the final answer
being correct:

1. Jump in Reasoning: This occurs when es-
sential logical steps or intermediate calcula-
tions are omitted, resulting in a direct leap to
the final answer without adequate justification.
Such omissions undermine the validity of the
solution, even if the answer itself is correct.

2. Logical Error: This category encompasses
errors such as the misapplication of theorems

or rules, reliance on unjustified assumptions,
contradictory reasoning, and the incorpora-
tion of conditions absent from the problem
statement.

3. Calculation Error: Mistakes in arithmetic
or algebraic computations, while potentially
offset by other errors, still reflect a lack of
precision in the solution process.

4. Conceptual Error: Misinterpretation of
mathematical theorems, concepts, or the prob-
lem itself.

Additionally, human annotators may disregard
minor errors in the reasoning path that do not affect
the final answer. Furthermore, if the model suc-
cessfully identifies and corrects its own mistakes
through self-correction or reflection, such reason-
ing paths are considered valid and are not labeled
as “false positives”. In Section 5.3, we primarily ex-
amine the false positive phenomenon in Short-CoT
models and also discuss its manifestation in Long-
CoT models. For Long-CoT models, we focus only
on the <answer> part of the model output.

4 Inference Scaling Methods in the
Presence of False Positives

Recent studies have demonstrated that allocating
additional computational resources to the inference
phase can significantly enhance model performance
in mathematical tasks (Snell et al., 2024; Wu et al.,
2024). However, these studies typically rely on
rule-based evaluation methods, which may result
in “false positives”, as discussed in Section 3. To
investigate whether “false positives” also manifest
in inference scaling, this section offers a compre-
hensive overview of the inference scaling methods
utilized in our study.

We classify current sampling-based inference
scaling methods into two categories: solution-level
inference scaling and step-level inference scal-
ing. Solution-level inference scaling refers to the
approach where LLMs generate a complete rea-
soning path in a single sampling process, with the
optimal solution selected using a reward model or
heuristic methods. In contrast, step-level inference
scaling derives one reasoning step at a time, typi-
cally guided by a reward model or heuristic values.
Figure 1 provides a visual representation of these
methods, and the following sections offer a detailed
explanation of each approach.

12503

Figure 1: An overview of the inference scaling methods employed in this study. The numbers in the figure indicate
potential PUCT scores for MCTS and possible reward examples from the Process Reward Model (PRM) or Outcome
Reward Model (ORM) for other methods. For MCTS, the figure depicts its first iteration.

4.1 Solution-Level Inference Scaling

Currently, the most widely used solution-level in-
ference scaling methods are Best-of-N (Charniak
and Johnson, 2005; Pauls and Klein, 2009), Self-
Consistency (Wang et al., 2022), Weighted Self-
Consistency (Li et al., 2023). Let Y signify the out-
put space of large language models, A correspond
to the answer space, where answers are extracted
from the model outputs, and v : Y −→ R represent
the score function.

1. Best-of-N: Best-of-N is a simple yet effective
reranking algorithm (Welleck et al., 2024).
It begins by generating N candidate solu-
tions, and subsequently selects the one with
the highest score assigned by the score func-
tion. Best-of-N can be defined as: y⋆ =
argmaxyi∈Y|i∈{1,··· ,N} v(yi)

2. Self-Consistency: Self-Consistency is a trans-
formation algorithm (Welleck et al., 2024),
leveraging the idea that correct reasoning pro-
cesses, though diverse, often converge on
the same answer. This method first sam-
ples N candidate reasoning paths and then
determines the final answer by selecting the
one that appears most frequently. Self Con-
sistency is formally expressed as: a⋆ =

argmaxa∈A
N∑
i=1

1(a = ai)

3. Weighted Self-Consistency: Weighted Self-
Consistency extends Self-Consistency by in-
corporating the scores provided by the reward
model to weigh candidate solutions. The opti-
mal answer is chosen using the following for-

mula: a⋆ = argmaxa∈A
N∑
i=1

v(yi)1(a = ai)

In subsequent experiments, we employ Best-
of-N and Weighted Self-Consistency instead of
Self-Consistency. While both Weighted Self-
Consistency and Self-Consistency are based on
the principle of consistency, Weighted Self-
Consistency exhibits superior performance (Snell
et al., 2024). Within the Weighted Self-Consistency
algorithm, we first use it to select the candidate fi-
nal answer. To further detect “false positives”, the
solution with the highest reward among these can-
didates is selected as the final target for evaluation.

4.2 Step-Level Inference Scaling

4.2.1 Diverse Verifier Tree Search
Diverse Verifier Tree Search (DVTS, (Beeching
et al., 2024)) is an extension of step-level beam
search (Welleck et al., 2022; Yao et al., 2024) that
divides initial beams into independent subtrees.
The search process in DVTS is guided by a Process
Reward Model (PRM). Additionally, DVTS incor-
porates lookahead steps to enhance the accuracy of
PRM’s value estimation at each step of the search
process.

The detailed specifics of DVTS can be found in
Algorithm 1.

4.2.2 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS, (Browne et al.,
2012)) is a tree search algorithm designed to bal-
ance exploration and exploitation effectively. In
this work, We utilize the Vanilla MCTS implemen-
tation from Wang et al. (2024), which comprises
four main steps: selection, expansion, evaluation,
and backpropagation. During the selection stage,
Vanilla MCTS employs a variant of the PUCT algo-
rithm (Silver et al., 2016) to choose child nodes. In
the evaluation stage, it leverages PRM to compute

12504

state values. Each iteration of the algorithm contin-
ues until a complete reasoning path is obtained.

For further details on Vanilla MCTS, see Algo-
rithm 2.

5 Experiments

5.1 Experimental Setup

Benchmarks. To validate the proposed phe-
nomenon, we conduct experiments on three math-
ematical benchmarks: MATH (Hendrycks et al.,
2021), AIME (Numina), Omni-MATH (Gao et al.,
2024). MATH comprises problems collected from
high school math competitions. Following Light-
man et al. (2023), we use MATH500 as our test
set. AIME includes questions from AIME{22,
23, 24}, totaling 90 problems. Omni-MATH
is a highly challenging benchmark designed for
Olympiad-level mathematical reasoning, and we
utilize Omni-MATH-Rule (Gao et al., 2024), a sub-
set suitable for rule-based evaluation. For further
convenience of manual evaluation, We randomly
select 100 problems from MATH500 and 100 prob-
lems from Omni-MATH-Rule, which we refer to
as MATH100 and Omni-MATH100 respectively.
Policy Models. We select open-source general
and mathematical models as our base to investi-
gate whether the proposed phenomenon is present
in both types of models. Specifically, Llama-
3.2-3B-Instruct and Llama-3.1-{8B, 70B}-Instruct
(Dubey et al., 2024) are chosen to represent general-
purpose models, while Qwen2.5-Math-{1.5B, 7B,
72B}-Instruct (Yang et al., 2024) serve as represen-
tatives of mathematical models.
Reward Models. We leverage both the Outcome
Reward Model (ORM) and the Process Reward
Model (PRM). For ORM, we employ Qwen2.5-
Math-RM-72B (Yang et al., 2024) to identify the
optimal model response in solution-level inference
scaling methods. For PRM, we utilize Skywork-o1-
Open-PRM-Qwen-2.5-7B (o1 Team, 2024), which
is fine-tuned on Qwen2.5-Math-7B-Instruct, to
guide DVTS or MCTS processes.
Metrics. We primarily employ three metrics to
evaluate performance: automatic accuracy, false
positive rate, and manual accuracy. Automatic
accuracy is computed using rule-based methods,
following the implementation in Qwen2.5-Math
(Yang et al., 2024). False positive rate is defined
as the proportion of “false positives” among all
responses deemed correct by the automatic eval-
uation. Manual accuracy is determined through

human evaluation and reflects the proportion of
model responses that both match the ground truth
and are free of “false positives”.

Refer to Appendix A for additional parameter set-
tings and implementation details.

5.2 Model and Human Detection of False
Positives

Prior to investigating the “false positive” phe-
nomenon, we first analyze the differences between
the capabilities of models and humans in detect-
ing “false positives”. To this end, we construct a
comprehensive false positive detection benchmark
that encompasses multiple models, diverse mathe-
matical benchmarks, and various inference scaling
methods (Further details regarding the benchmark
are provided in Appendix B). The F1-score is uti-
lized as the evaluation metric for this task. Let
A represent the set of “false positives” identified
through manual evaluation, which serves as the
gold standard, and B denote the set of “false posi-
tives” identified by the model. Precision and recall
are defined as follows:

Precision =
#(A ∩B)

#B
, Recall =

#(A ∩B)

#A

Thus, the F1-score is calculated as:

F1 =
2× Precision×Recall

Precision+Recall

Figure 3 demonstrates that current open-source
models, despite their overall strong performance,
struggle to effectively detect errors in intermedi-
ate reasoning steps on the false positive detection
benchmark we construct. Notably, even the pow-
erful closed-source model, GPT-4o (Hurst et al.,
2024), fails to achieve satisfactory performance in
this regard.

5.3 Findings and Analysis
5.3.1 False Positives in Inference Scaling
In this section, we investigate the accuracy of the
inference scaling curve using solution-level and
step-level inference scaling methods. Specifically,
We analyze the relationship between automatic ac-
curacy and manual accuracy across varying values
of N in different approaches. Additionally, we ex-
plore the impact of model types and benchmark
difficulty on the false positive rate.
False positives occur in both inference scaling
methods. As shown in Figure 2, both automatic

12505

(a) Solution-Level Inference Scaling Methods (b) Step-Level Inference Scaling Methods

Figure 2: False Positives in Different Inference Scaling Methods. For solution-level inference scaling methods,
Llama-3.1-70B-Instruct and Qwen2.5-Math-72B-Instruct are used as policy models, with AIME as the evaluation
dataset. Qwen2.5-Math-RM-72B is employed as the reward model. For step-level inference scaling methods,
Llama-3.1-8B-Instruct and Qwen2.5-Math-7B-Instruct serve as policy models, evaluated on MATH100. Skywork-
o1-Open-PRM-Qwen-2.5-7B is selected as the reward model. Responses from Llama-3.1-8B-Instruct are selected
using Best-of-N, while responses from Qwen2.5-Math-7B-Instruct are chosen using Weighted Self-Consistency.

Figure 3: F1-Scores Across Different False Positive
Detection Models.

accuracy and manual accuracy generally increase
with N across all methods. However, the gap be-
tween automatic accuracy and manual accuracy
persists when N takes different values, indicating
a consistent presence of “false positives”. This ob-
servation reveals that inference scaling curves are
not as reliable as they might initially appear and
that inference scaling does not effectively mitigate
“false positives”.
General models exhibit higher false positive
rates than mathematical models. Figure 4 shows
how false positive rate and accuracy vary across
different model types. General models, which are
not specialized in solving mathematical problems,
exhibit significantly higher false positive rates than
mathematical models on the relatively challenging
AIME benchmark, regardless of whether their au-
tomatic accuracy is higher or lower. This suggests
that the correct answers generated by inference
scaling in general models are less reliable than
those produced by mathematical models for diffi-
cult datasets. Additionally, it is observed that the
smaller Qwen2.5-Math-1.5B-Instruct model yields

Figure 4: False Positive Rate and Automatic Accu-
racy in Different Models. The performance of four
policy models is assessed on AIME with the Best-of-N
method, where N is set to 256 and Qwen2.5-Math-RM-
72B serves as the reward model.

a lower false positive rate compared to the larger
Llama-3.1-70B-Instruct model. This is primarily
due to the Llama-3.1-70B-Instruct model produc-
ing a greater number of reasoning jumps and logi-
cal errors. We discuss further in Section 5.3.4.

False positive rates increase with benchmark dif-
ficulty. The results in Figure 5 show that the false
positive rate for Qwen2.5-Math-72B-Instruct rises
as dataset difficulty increases. Notably, the false
positive rates for more challenging datasets differ
significantly from those for simpler ones. This find-
ing highlights the tendency of inference scaling to
produce “false positives” when tackling problems
that exceed the model’s inherent capabilities.

To gain deeper insight into why false positive
rates increase with benchmark difficulty, we an-
alyze the model’s output length, as summarized
in Table 1. The table shows that, across all three
benchmarks, the average length of False Positive
Solutions is greater than that of Final Answer Cor-

12506

Figure 5: False Positive Rate in Different Datasets.
We employ the Best-of-N method to evaluate Qwen2.5-
Math-72B-Instruct’s performance on three datasets of
varying difficulty levels, with Qwen2.5-Math-RM-72B
as the reward model and N set to 256.

Table 1: Comparison of Solution Lengths Across Dif-
ferent Benchmarks and Solution Types (Same Setup
as Figure 5). Type1: All Solutions, Type2: Final Answer
Correct Solutions, Type3: False Positive Solutions.

Benchmark Sol. Type Avg. Len. Max. Len. Min. Len.

MATH100
Type1 571.92 1738 185
Type2 537.39 1279 193
Type3 875.75 1279 550

AIME
Type1 1116.59 4127 231
Type2 972.91 2217 485
Type3 1169.17 1780 588

Omni-MATH100
Type1 880.04 4180 197
Type2 701.67 1918 197
Type3 1019.33 1918 429

rect Solutions. This suggests that longer outputs
may increase the likelihood of “false positives”.
Meanwhile, an important observation is that the
average length of False Positive Solutions in Omni-
MATH100 is shorter than in AIME, while the cor-
responding false positive rate for Omni-MATH100
is significantly higher. This indicates that out-
put length alone does not fully explain the trend;
instead, the inherent difficulty of the benchmark
plays a critical role in affecting the model’s suscep-
tibility to “false positives”.

5.3.2 Is Automatic Pass@N the Upper Bound
of Inference Scaling?

To further investigate the potential and possible
upper limit of inference scaling, we examine the
relationship between Pass@N and Best-of-N in this
section.
Pass@N yields significantly more correct an-
swers than Best-of-N, but exhibits a substan-
tially higher false positive rate. Figure 6 demon-
strates that while the gap between automatic
Pass@N accuracy and automatic Best-of-N accu-

Figure 6: Pass@N vs. Best-of-N. Qwen2.5-Math-72B-
Instruct is utilized as the policy model, Qwen2.5-Math-
RM-72B serves as the reward model, and AIME is em-
ployed as the test set.

racy is substantial, the difference between manual
Pass@N accuracy and manual Best-of-N accuracy
is comparatively smaller. So in solution-level infer-
ence scaling methods, despite the use of an oracle
reward model capable of detecting “false positives”
across all responses, the inherent limitations of the
policy model hinder the reward model’s ability to
select as many truly correct responses as expected.
These limitations pose challenges to the broader
application of inference scaling.

5.3.3 How Does Rule-Based GRPO Affect
False Positives?

Recently, there has been a surge of research lever-
aging reinforcement learning to enhance math-
ematical reasoning, sparked by the release of
DeepSeek-R1 (Guo et al., 2025). Notable exam-
ples include SimpleRL-Zoo (Zeng et al., 2025),
DAPO (Yu et al., 2025), and Dr.GRPO (Liu et al.,
2025). These studies show that reinforcement learn-
ing algorithms guided by rule-based reward func-
tions—focus solely on final answer accuracy—can
improve a model’s ability to reflect and verify,
thereby strengthening its mathematical reasoning
capabilities. In this section, we aim to examine the
impact of rule-based GRPO on the occurrence of
“false positives”.

We compare the performance of Qwen2.5-Math-
1.5B-Oat-Zero (Liu et al., 2025), a model trained
using Dr.GRPO, with that of Qwen2.5-Math-1.5B-
Instruct. The results are presented in Table 2. As
shown, Qwen2.5-Math-1.5B-Oat-Zero exhibits a
higher false positive rate and demonstrates limited
reflection and self-verification. We attribute this
to the use of a rule-based reward function that pro-
vides no supervision over intermediate reasoning
steps, potentially contributing to the elevated false
positive rate. However, in scenarios where GRPO

12507

effectively enhances self-reflection and verification,
we hypothesize that the false positive rate may be
reduced.

Table 2: Comparison Between Qwen2.5-Math-1.5B-
Oat-Zero and Qwen2.5-Math-1.5B-Instruct. Using
AIME benchmark, we employ Qwen2.5-Math-RM-72B
as the reward model and adopt the Best-of-N method.

Model Best-of-256 False Positive Rate

Qwen2.5-Math-1.5B-Oat-Zero 0.300 0.259
Qwen2.5-Math-1.5B-Instruct 0.278 0.160

5.3.4 Analysis of False Positive Examples
Through manual inspection of the model’s outputs,
we find that “false positives” primarily fall into the
categories outlined in Section 3.2. Some examples
are in Appendix D.

We analyze and count the error types, with the re-
sults shown in Figure 7. Notably, Logical Error con-
stitutes the majority of “false positives”. Moreover,
We find that on relatively challenging datasets, gen-
eral models exhibit a higher frequency of reasoning
jumps and logical errors compared to mathematical
models. This results in the general models false
positive rate being significantly higher than that of
the mathematical models on AIME benchmark in
Figure 4.

Figure 7: Error Type Statistics. We count the false
positive error types under the settings of Figure 4, Figure
5, and the N = 256 configuration in Figure 2(b).

We also analyze the recent Long-CoT model.
Specifically, we use DeepSeek-R1-Distill-Llama-
70B (Guo et al., 2025) as the policy model and
Qwen2.5-Math-RM-72B as the reward model on
AIME. We adopt the Weighted Self-Consistency
method with N = 64 to perform false positive
analysis. We observe that a large proportion of
<answer> parts omit critical details of the solution
process, making it difficult to verify the correctness
of the reasoning steps. Furthermore, among the
69 solutions with correct final answers, we find 2

instances where the <answer> part contains inter-
mediate reasoning errors, while their corresponding
<think> parts are correct. This suggests a potential
misalignment between <think> and <answer>.

5.3.5 Deeper Analysis of False Positives Using
t-SNE

We conduct a comprehensive analysis by organiz-
ing responses from LLaMA and Qwen model se-
ries into separate datasets, each containing ques-
tions, model responses, and labels (Correct, False
Positive, and Incorrect). We analyze LLaMA re-
sponses using Llama-3.2-3B-Instruct and Llama-
3.1-{8,70}B-Instruct, while Qwen responses are an-
alyzed using Qwen2.5-Math-{1.5, 7, 72}B-Instruct.
We then extract hidden states from the last 6 lay-
ers, apply either last-token or mean pooling strate-
gies, and visualize the layer with the highest silhou-
ette score using t-SNE dimensionality reduction, as
shown in Figure 12, 13. Our findings reveal that
correct and incorrect responses tend to exhibit rela-
tively distinct clustering patterns with observable
boundaries. However, false positive responses do
not form a separate, cohesive cluster. Instead, they
are distributed across both correct and incorrect
regions, with only a slight tendency to appear more
frequently near incorrect responses than correct
ones.

These results suggest that false positive re-
sponses lack distinctive representational features
that would clearly differentiate them from either
correct or incorrect responses in the model’s inter-
nal representation space. This finding indicates that
detecting “false positives” may be inherently chal-
lenging due to their intermediate nature between
correct and incorrect responses.

6 Discussions

Synthetic Mathematical Data. Synthetic data has
gained prominence due to the high cost associated
with manual data creation. Current approaches of-
ten filter synthetic mathematical data based solely
on the correctness of the final answer (Yu et al.,
2023; Tong et al., 2024; Luo et al., 2023; Liu et al.,
2024). However, evaluating data quality exclu-
sively based on the final answer can lead to “false
positives”, thereby introducing low-quality data
into the dataset. To mitigate this issue, future re-
search should prioritize the development of simple
yet effective methods to accurately assess the cor-
rectness of intermediate reasoning steps, ensuring
higher-quality synthetic data for training purposes.

12508

Self-Improvement in Mathematical Reasoning.
The current standard approach involves employing
either solution-level sampling methods (Yuan et al.,
2023; Chow et al., 2024) or tree search methods
(Zhang et al., 2024; Xie et al., 2024; Shi et al.,
2025), followed by filtering out correct answers
using rule-based techniques. Subsequently, a re-
ward model is utilized to score the model-generated
responses, with high-quality outputs used for fur-
ther training. However, as demonstrated in Section
5.3, it often generates a notable number of “false
positives”, which are also incorporated into sub-
sequent training. These “false positives” are of
lower quality, as they fail to provide meaningful
insights into the reasoning steps, leading the model
to primarily learn the answers rather than the un-
derlying problem-solving logic. Consequently, the
effectiveness of self-improvement may fall short of
expectations.

7 Conclusions

In this paper, we have explored the “false positive”
phenomenon in mathematical reasoning and inves-
tigated its impact on inference scaling. Through
meticulous manual evaluation, we have demon-
strated that “false positives” are prevalent across
various models, datasets, and decoding methods.
Furthermore, we have discussed the broader impli-
cations of “false positives” for critical applications
such as self-improvement and data synthesis, where
they can propagate errors and degrade the quality
of generated outputs. This study underscores the
need for more robust evaluation methods that prior-
itize both final-answer correctness and the validity
of intermediate reasoning steps, offering a foun-
dation for future research to enhance the accuracy
and scalability of mathematical reasoning models.

Limitations

While this study provides valuable insights into
the phenomenon of “false positives” in the math-
ematical domain and their behavior under infer-
ence scaling, several limitations should be acknowl-
edged. First, we do not conduct extensive exper-
iments on the latest Long-CoT models. Second,
our inference scaling tests are restricted to paral-
lel sampling-based methods, without examining
sequential revision-based approaches. Finally, due
to resource constraints, we do not perform human
detection on large-scale datasets. Despite these lim-
itations, we believe this phenomenon is prevalent

in the mathematical domain. Future research could
expand the scope of datasets, explore additional
inference scaling methods, and incorporate more
Long-CoT models to validate the generalizability
and robustness of these findings.

References
Zhangir Azerbayev, Bartosz Piotrowski, Hailey

Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. 2023. Proofnet: Autoformalizing
and formally proving undergraduate-level mathemat-
ics. arXiv preprint arXiv:2302.12433.

Edward Beeching, Lewis Tunstall, and Sasha Rush.
2024. Scaling test-time compute with open models.

Cameron B Browne, Edward Powley, Daniel White-
house, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyri-
don Samothrakis, and Simon Colton. 2012. A survey
of monte carlo tree search methods. IEEE Transac-
tions on Computational Intelligence and AI in games,
4(1):1–43.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL‘05), pages 173–180, Ann Arbor, Michigan. As-
sociation for Computational Linguistics.

Yinlam Chow, Guy Tennenholtz, Izzeddin Gur, Vincent
Zhuang, Bo Dai, Sridhar Thiagarajan, Craig Boutilier,
Rishabh Agarwal, Aviral Kumar, and Aleksandra
Faust. 2024. Inference-aware fine-tuning for best-of-
n sampling in large language models. arXiv preprint
arXiv:2412.15287.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo
Miao, Qingxiu Dong, Lei Li, Chenghao Ma, Liang
Chen, Runxin Xu, et al. 2024. Omni-math: A univer-
sal olympiad level mathematic benchmark for large
language models. arXiv preprint arXiv:2410.07985.

Olga Golovneva, Moya Chen, Spencer Poff, Martin
Corredor, Luke Zettlemoyer, Maryam Fazel-Zarandi,
and Asli Celikyilmaz. 2022. Roscoe: A suite of
metrics for scoring step-by-step reasoning. arXiv
preprint arXiv:2212.07919.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

12509

https://huggingface.co/spaces/HuggingFaceH4/blogpost-scaling-test-time-compute
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862
https://doi.org/10.3115/1219840.1219862

Shibo Hao, Yi Gu, Haotian Luo, Tianyang Liu, Xiyan
Shao, Xinyuan Wang, Shuhua Xie, Haodi Ma,
Adithya Samavedhi, Qiyue Gao, et al. 2024. Llm
reasoners: New evaluation, library, and analysis of
step-by-step reasoning with large language models.
arXiv preprint arXiv:2404.05221.

Hangfeng He, Hongming Zhang, and Dan Roth. 2023.
Socreval: Large language models with the so-
cratic method for reference-free reasoning evaluation.
arXiv preprint arXiv:2310.00074.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Aaron Hurst, Adam Lerer, Adam P Goucher, Adam
Perelman, Aditya Ramesh, Aidan Clark, AJ Os-
trow, Akila Welihinda, Alan Hayes, Alec Radford,
et al. 2024. Gpt-4o system card. arXiv preprint
arXiv:2410.21276.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2023. Making
language models better reasoners with step-aware
verifier. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 5315–5333, Toronto,
Canada. Association for Computational Linguistics.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi,
Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
2025. Understanding r1-zero-like training: A critical
perspective. arXiv preprint arXiv:2503.20783.

Zihan Liu, Yang Chen, Mohammad Shoeybi, Bryan
Catanzaro, and Wei Ping. 2024. Acemath: Advanc-
ing frontier math reasoning with post-training and
reward modeling. arXiv preprint arXiv:2412.15084.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Liangchen Luo, Yinxiao Liu, Rosanne Liu, Samrat
Phatale, Harsh Lara, Yunxuan Li, Lei Shu, Yun Zhu,
Lei Meng, Jiao Sun, et al. 2024. Improve mathemati-
cal reasoning in language models by automated pro-
cess supervision. arXiv preprint arXiv:2406.06592.

Leonardo de Moura and Sebastian Ullrich. 2021. The
lean 4 theorem prover and programming language. In
Automated Deduction–CADE 28: 28th International
Conference on Automated Deduction, Virtual Event,
July 12–15, 2021, Proceedings 28, pages 625–635.
Springer.

Numina. Ai-mo/aimo-validation-aime.

Skywork o1 Team. 2024. Skywork-o1 open series.
https://huggingface.co/Skywork.

Adam Pauls and Dan Klein. 2009. K-best A* parsing.
In Proceedings of the Joint Conference of the 47th
Annual Meeting of the ACL and the 4th International
Joint Conference on Natural Language Processing
of the AFNLP, pages 958–966, Suntec, Singapore.
Association for Computational Linguistics.

Archiki Prasad, Swarnadeep Saha, Xiang Zhou, and
Mohit Bansal. 2023. Receval: Evaluating reasoning
chains via correctness and informativeness. arXiv
preprint arXiv:2304.10703.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang
Geng, Jacob Eisenstein, Rishabh Agarwal, Alekh
Agarwal, Jonathan Berant, and Aviral Kumar.
2024. Rewarding progress: Scaling automated pro-
cess verifiers for llm reasoning. arXiv preprint
arXiv:2410.08146.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, et al. 2024. Deepseekmath:
Pushing the limits of mathematical reasoning in open
language models. arXiv preprint arXiv:2402.03300.

Wentao Shi, Zichun Yu, Fuli Feng, Xiangnan He, and
Chenyan Xiong. 2025. Efficient multi-agent sys-
tem training with data influence-oriented tree search.
arXiv preprint arXiv:2502.00955.

David Silver, Aja Huang, Chris J Maddison, Arthur
Guez, Laurent Sifre, George Van Den Driessche, Ju-
lian Schrittwieser, Ioannis Antonoglou, Veda Pan-
neershelvam, Marc Lanctot, et al. 2016. Mastering
the game of go with deep neural networks and tree
search. nature, 529(7587):484–489.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Ku-
mar. 2024. Scaling llm test-time compute optimally
can be more effective than scaling model parameters.
arXiv preprint arXiv:2408.03314.

Benedikt Stroebl, Sayash Kapoor, and Arvind
Narayanan. 2024. Inference scaling flaws: The limits
of llm resampling with imperfect verifiers. arXiv
preprint arXiv:2411.17501.

Yuxuan Tong, Xiwen Zhang, Rui Wang, Ruidong Wu,
and Junxian He. 2024. Dart-math: Difficulty-aware
rejection tuning for mathematical problem-solving.
arXiv preprint arXiv:2407.13690.

Gladys Tyen, Hassan Mansoor, Peter Chen, Tony Mak,
and Victor Cărbune. 2023. Llms cannot find rea-
soning errors, but can correct them! arXiv preprint
arXiv:2311.08516.

Jun Wang, Meng Fang, Ziyu Wan, Muning Wen, Ji-
achen Zhu, Anjie Liu, Ziqin Gong, Yan Song, Lei
Chen, Lionel M Ni, et al. 2024. Openr: An open
source framework for advanced reasoning with large
language models. arXiv preprint arXiv:2410.09671.

12510

https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://doi.org/10.18653/v1/2023.acl-long.291
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/Skywork
https://huggingface.co/Skywork
https://aclanthology.org/P09-1108/

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Sean Welleck, Amanda Bertsch, Matthew Finlayson,
Hailey Schoelkopf, Alex Xie, Graham Neubig, Ilia
Kulikov, and Zaid Harchaoui. 2024. From de-
coding to meta-generation: Inference-time algo-
rithms for large language models. arXiv preprint
arXiv:2406.16838.

Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh
Hajishirzi, and Yejin Choi. 2022. Naturalprover:
Grounded mathematical proof generation with lan-
guage models. Advances in Neural Information Pro-
cessing Systems, 35:4913–4927.

Yangzhen Wu, Zhiqing Sun, Shanda Li, Sean Welleck,
and Yiming Yang. 2024. An empirical analysis of
compute-optimal inference for problem-solving with
language models.

Shijie Xia, Xuefeng Li, Yixin Liu, Tongshuang Wu,
and Pengfei Liu. 2024. Evaluating mathemati-
cal reasoning beyond accuracy. arXiv preprint
arXiv:2404.05692.

Yuxi Xie, Anirudh Goyal, Wenyue Zheng, Min-Yen
Kan, Timothy P Lillicrap, Kenji Kawaguchi, and
Michael Shieh. 2024. Monte carlo tree search boosts
reasoning via iterative preference learning. arXiv
preprint arXiv:2405.00451.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, et al. 2024. Qwen2.
5-math technical report: Toward mathematical ex-
pert model via self-improvement. arXiv preprint
arXiv:2409.12122.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2024. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural
Information Processing Systems, 36.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, et al. 2025. Dapo: An open-
source llm reinforcement learning system at scale.
arXiv preprint arXiv:2503.14476.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. 2023. Scaling relationship on learning
mathematical reasoning with large language models.
arXiv preprint arXiv:2308.01825.

Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Ke-
qing He, Zejun Ma, and Junxian He. 2025. Simplerl-
zoo: Investigating and taming zero reinforcement
learning for open base models in the wild. arXiv
preprint arXiv:2503.18892.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024. Rest-mcts*: Llm
self-training via process reward guided tree search.
arXiv preprint arXiv:2406.03816.

Chujie Zheng, Zhenru Zhang, Beichen Zhang, Runji
Lin, Keming Lu, Bowen Yu, Dayiheng Liu, Jin-
gren Zhou, and Junyang Lin. 2024. Processbench:
Identifying process errors in mathematical reasoning.
arXiv preprint arXiv:2412.06559.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2021. Minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. arXiv preprint
arXiv:2109.00110.

12511

A Implementation Details

A.1 Model Detection Prompt

Prompt:

You are an expert mathematician and
your task is to verify the correctness of a
step-by-step solution to a math problem.
Carefully analyze each step for logical
consistency, mathematical accuracy, and
adherence to any given formulas or rules.
Disregard minor errors that do not affect the
validity of the final answer or are irrelevant
to it.

Problem:
{problem}

Solution:
{solution}

Based on the problem and solution provided
above:
1. Output True if the solution is considered
correct.
2. Output False if the solution is considered
incorrect and contains some errors.

Please comprehensively evaluate all the
steps in the solution and provide only True
or False as your final output.

A.2 Solution-Level Inference Scaling Settings

We employ the vLLM inference framework for our
experiments. For the LLaMA series models, we
set the sampling parameters to a temperature of
0.6 and a top_p of 0.9, using the same prompts as
in the official evaluation. Similarly, for the Qwen
series models, we use a temperature of 0.7 and a
top_p of 0.8, maintaining consistency with the offi-
cial evaluation settings. For DeepSeek-R1-Distill-
Llama-70B, the parameters are set to a temperature
of 0.6 and a top_p of 0.95. For Qwen2.5-Math-
1.5B-Oat-Zero, we use a temperature of 0.7 and
a top_p of 0.8. Due to the potential for negative
outputs, Qwen2.5-Math-RM-72B can not directly
apply the Weighted Self-Consistency method. To
address this, we simply employ reward−min

max−min as its
final reward, where reward represents the score of
corresponding solution, max and min denote the
maximum and minimum scores across N model

responses, respectively.

A.3 Step-Level Inference Scaling Settings

The vLLM inference framework is also employed
for step-level inference scaling. Sampling param-
eters are set to a temperature of 0.7 and a top_p
value of 1.0 for both the LLaMA and Qwen series
models. For the DVTS method, we configure the
beam width to 4 and limit the process to a maxi-
mum of 40 iterations. In the MCTS method, we set
the tree’s maximum depth to 40 and the tree width
to 4.

B False Positive Detection Benchmark

We construct a false positive detection benchmark
by leveraging both solution-level and step-level
inference scaling methods. For solution-level infer-
ence scaling, we employ Llama-3.1-70B-Instruct
and Qwen2.5-Math-72B-Instruct as policy models,
evaluated on the AIME benchmark, with Qwen2.5-
Math-RM-72B serving as the reward model. For
step-level inference scaling, Llama-3.1-8B-Instruct
and Qwen2.5-Math-7B-Instruct are utilized as pol-
icy models, assessed using the MATH100 bench-
mark, with Skywork-o1-Open-PRM-Qwen-2.5-7B
as the reward model. Responses from Llama-
3.1-8B-Instruct are selected using the Best-of-N
method, while responses from Qwen2.5-Math-7B-
Instruct are chosen via Weighted Self-Consistency.
We adopt a sample size of N = 256 for our analy-
sis. Ultimately, this benchmark comprises 453 data
points, designed to evaluate the detection capabil-
ities of “false positives” across diverse inference
scaling approaches.

C Algorithmic Details of Step-Level
Inference Scaling

Algorithm 1 DVTS
Input: problem p, the number of candidate so-
lutions N , beam width M , lookahead step l, the
number of iterations n, policy model π, process
reward model V
Output: List of candidate solutions L
num_beams← N/M
Beam← Init(num_beams, p)
for i = 1 to n do

for j = 1 to num_beams do
Sample M next steps from π
for k = 1 to M do

Greedily generate l steps based on corre-
sponding history steps {Apply lookahead

12512

search}
end for
Compute values using V based on the next
steps and lookahead steps
Select the next step with highest value

end for
Update and prune Beam {Remove completed
beams}
Adjust num_beams {Decrement if beams ter-
minate}
Append M solutions to L for each completed
beam

end for
Return L

Algorithm 2 Vanilla MCTS
Input: problem p, the number of reasoning paths
n, tree width w, tree max depth d, policy model
π, process reward model V
Output: List of trajectories traj
T ← Init(p)
traj ← []
for i = 1 to n do
traj_single← “”
node← root(T)
done← False
while not done do
node ← argmax

node′∈children(node)
vnode′ + c ×

Pnode′ ×
√
Nnode

Nnode′+1 {Node Selection}
Update traj_single {Record action after
active node update}
done ← terminated or truncated {ter-
minated is controlled by eos_token or
sep_token while truncated is determined
by d}
if not done and is_leaf(node) then

Expand(node, w, π, V) {Expand the leaf
node, get w children, and assign them
initial values}

end if
end while
Backpropagate(node)
Append traj_single to traj

end for
Return traj

12513

D False Positive Examples

Problem1:

Problem:
For any finite set X , let |X| denote the number of elements in X . Define

Sn =
∑
|A ∩B|,

where the sum is taken over all ordered pairs (A,B) such that A and B are subsets of
{1, 2, 3, · · · , n} with |A| = |B|. For example, S2 = 4 because the sum is taken over the
pairs of subsets

(A,B) ∈ {(∅, ∅), ({1}, {1}), ({1}, {2}), ({2}, {1}), ({2}, {2}), ({1, 2}, {1, 2})} ,

giving S2 = 0+1+0+0+1+2 = 4. Let S2022
S2021

= p
q , where p and q are relatively prime positive

integers. Find the remainder when p+ q is divided by 1000.

Response:
Step 1: Understand the problem
We are tasked with finding the value of Sn, which represents the sum of the sizes of the intersections
of all pairs of subsets (A,B) of the set {1, 2, 3, · · · , n} where |A| = |B|. We are then asked to
find the ratio S2022

S2021
and express it as p

q , where p and q are relatively prime positive integers.
Step 2: Break down the problem into cases
To tackle this problem, let’s first consider the possible cases for the intersection of two subsets A
and B. We can categorize these cases based on the size of the intersection, which can range from 0
to n.
Step 3: Calculate the number of pairs for each case
For a given size k of the intersection, we can calculate the number of pairs (A,B) that satisfy this
condition. This involves choosing k common elements for the intersection and then selecting the
remaining elements for A and B from the remaining n− k elements.
Step 4: Derive a formula for the sum of intersection sizes
Using the calculated number of pairs for each case, we can derive a formula for the sum of the
intersection sizes, Sn. This formula will involve a summation over all possible intersection sizes k.
Step 5: Simplify the formula for Sn

After deriving the formula, we can simplify it to obtain a more manageable expression for Sn. This
simplification will help us in calculating the ratio S2022

S2021
.

Step 6: Calculate the ratio S2022
S2021

Using the simplified formula for Sn, we can calculate the ratio S2022
S2021

and express it as p
q , where p

and q are relatively prime positive integers.
Step 7: Find the remainder when p+ q is divided by 1000
Finally, we need to find the remainder when p+ q is divided by 1000 to obtain the final answer.
The final answer is: 245

Figure 8: An Example of Jump in Reasoning. The response lacks any intermediate calculations before providing
the final answer.

Problem2:

Problem:

12514

Let a, b, c be real numbers such that

|ax2 + bx+ c| ≤ 1

for all 0 ≤ x ≤ 1. Find the largest possible value of |a|+ |b|+ |c|.

Response:
To find the largest possible value of |a|+ |b|+ |c| given that |ax2 + bx+ c| ≤ 1 for all 0 ≤ x ≤ 1,
we start by examining the polynomial f(x) = ax2 + bx+ c at specific points in the interval [0, 1].
These points are x = 0, x = 1, and x = 1

2 .
First, we evaluate f(x) at these points:

f(0) = c,

f(1) = a+ b+ c,

f

(
1

2

)
=

a

4
+

b

2
+ c.

Since |f(x)| ≤ 1 for all 0 ≤ x ≤ 1, we have the following inequalities:

|c| ≤ 1,

|a+ b+ c| ≤ 1,
∣∣∣∣
a

4
+

b

2
+ c

∣∣∣∣ ≤ 1.

We want to maximize |a| + |b| + |c|. To do this, we consider the system of equations formed
by setting f(x) to its boundary values at these points. Let’s assume f(0) = 1, f(1) = 1, and
f
(
1
2

)
= −1. This gives us the system:

c = 1,

a+ b+ c = 1,

a

4
+

b

2
+ c = −1.

Substituting c = 1 into the other two equations, we get:

a+ b+ 1 = 1 =⇒ a+ b = 0,

a

4
+

b

2
+ 1 = −1 =⇒ a

4
+

b

2
= −2.

Since a+ b = 0, we have b = −a. Substituting b = −a into the second equation, we get:

a

4
+
−a
2

= −2 =⇒ a

4
− 2a

4
= −2 =⇒ −a

4
= −2 =⇒ a = 8.

Then, b = −a = −8 and c = 1. Therefore, |a|+ |b|+ |c| = 8 + 8 + 1 = 17.
To confirm that this is indeed the maximum value, we check if the polynomial f(x) = 8x2−8x+1
satisfies the condition |f(x)| ≤ 1 for all 0 ≤ x ≤ 1. The vertex of the parabola f(x) = 8x2−8x+1
is at x = −−8

2·8 = 1
2 . Evaluating f(x) at the vertex, we get:

f

(
1

2

)
= 8

(
1

2

)2

− 8

(
1

2

)
+ 1 = 8 · 1

4
− 4 + 1 = 2− 4 + 1 = −1.

12515

At the endpoints x = 0 and x = 1, we have:

f(0) = 1,

f(1) = 8 · 12 − 8 · 1 + 1 = 8− 8 + 1 = 1.

Since |f(x)| ≤ 1 for all 0 ≤ x ≤ 1, the value |a|+ |b|+ |c| = 17 is indeed the maximum possible
value.
Thus, the largest possible value of |a|+ |b|+ |c| is 17 .

Figure 9: An Example of Logical Error. We can observe the reliance on unjustified assumptions: the model
assumes f(0) = 1, f(1) = 1, and f

(
1
2

)
= −1 and then get the final answer, without explaining the rationality of

this assumption.

Problem3:

Problem:
If

3
√
2 = a+

1

b+
1

c+
1

d+ · · ·

,

where a, b, c, d are positive integers, compute b.

Response:
To find the value of b in the expression

3
√
2 = a+

1

b+
1

c+
1

d+ · · ·

,

we start by isolating the fractional part. Since 3
√
2 ≈ 1.25992, we have a = 1. Therefore, we can

rewrite the equation as
3
√
2 = 1 +

1

b+
1

c+
1

d+ · · ·

.

Subtracting 1 from both sides, we get

3
√
2− 1 =

1

b+
1

c+
1

d+ · · ·

.

Next, we take the reciprocal of both sides:

b+
1

c+
1

d+ · · ·

=
1

3
√
2− 1

.

12516

To simplify 1
3√2−1

, we multiply the numerator and the denominator by the conjugate of the

denominator, which is (3
√
2)2 + 3

√
2 + 1:

1
3
√
2− 1

· (
3
√
2)2 + 3

√
2 + 1

(3
√
2)2 + 3

√
2 + 1

=
(3
√
2)2 + 3

√
2 + 1

(3
√
2)3 − 13

=
(3
√
2)2 + 3

√
2 + 1

2− 1
= (

3
√
2)2 +

3
√
2 + 1.

Since (3
√
2)2 = 3

√
4, we have

(
3
√
2)2 +

3
√
2 + 1 =

3
√
4 +

3
√
2 + 1.

We know that 3
√
4 + 3
√
2 + 1 ≈ 3.31758, so the integer part is 3. Therefore, b = 3.

To confirm, we can check the next term. Subtracting 3 from 3
√
4 + 3
√
2 + 1, we get

3
√
4 +

3
√
2 + 1− 3 =

3
√
4 +

3
√
2− 2.

Taking the reciprocal, we have
1

3
√
4 + 3
√
2− 2

.

Using the same method as before, we multiply the numerator and the denominator by the conjugate
(3
√
4)2− (2

√
2 · 2)+4, but for simplicity, we can see that the next term will be such that the process

repeats similarly.
Thus, the value of b is

3 .

Figure 10: An Example of Calculation Error. The model incorrectly calculates 3
√
4 + 3
√
2 + 1 ≈ 3.31758.

Problem4:

Problem:

The superfactorial n$ is defined as n$ = n!n!
··
·n!

︸ ︷︷ ︸
n!

. What is the units digit of 4$?

Response:
To determine the units digit of 4$, we start by evaluating the expression 4$ = 4!4!

4!4!

. First, we
calculate 4!:

4! = 4× 3× 2× 1 = 24.

Thus, 4$ = 2424
2424

. Next, we need to find the units digit of 2424
2424

. Notice that the units digit of
a power of a number depends only on the units digit of the base. The units digit of 24 is 4, so we

need to determine the units digit of 424
2424

.
To do this, we observe the pattern in the units digits of the powers of 4:

41 = 4 (units digit is 4),

42 = 16 (units digit is 6),

43 = 64 (units digit is 4),

44 = 256 (units digit is 6),
...

We see that the units digits repeat every 2 numbers: 4, 6, 4, 6, Therefore, the units digit of 4n

12517

depends on whether n is odd or even. If n is odd, the units digit is 4, and if n is even, the units
digit is 6.
Since 2424

24
is an even number (because any power of an even number is even), the units digit of

424
2424

is 6.
Thus, the units digit of 4$ is 6 .

Figure 11: An Example of Conceptual Error. The model misinterprets the meaning of n$. Specifically, 4$ should

be represented as 4!4!
··
·4!

︸ ︷︷ ︸
4!

rather than 4!4!
··
·4!

︸ ︷︷ ︸
4

E In-Depth Analysis of False Positives

12518

(a) LLaMA-3B (b) LLaMA-8B

(c) LLaMA-70B (d) Qwen-1.5B

(e) Qwen-7B (f) Qwen-72B

Figure 12: t-SNE Visualization with the Last Token Pooling Strategy. We analyze LLaMA responses using
Llama-3.2-3B-Instruct and Llama-3.1-{8,70}B-Instruct, while Qwen responses are analyzed using Qwen2.5-Math-
{1.5,7,72}B-Instruct. Green, red, and blue dots indicate correct responses, “false positives”, and incorrect responses,
respectively.

12519

(a) LLaMA-3B (b) LLaMA-8B

(c) LLaMA-70B (d) Qwen-1.5B

(e) Qwen-7B (f) Qwen-72B

Figure 13: t-SNE Visualization with the Mean Pooling Strategy. We analyze LLaMA responses using Llama-3.2-
3B-Instruct and Llama-3.1-{8,70}B-Instruct, while Qwen responses are analyzed using Qwen2.5-Math-{1.5,7,72}B-
Instruct. Green, red, and blue dots indicate correct responses, “false positives”, and incorrect responses, respectively.

12520

