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Abstract

A new trend uses LLMs as dense text encoders
via contrastive learning. However, since LLM
embeddings predict the probability distribution
of the next token, they are inherently generative
and distributive, conflicting with contrastive
learning, which requires embeddings to cap-
ture full-text semantics and align via cosine
similarity. This discrepancy hinders the full
utilization of LLMSs’ pre-training capabilities,
resulting in inefficient learning. In response
to this issue, we propose AutoRegEmbed, a
new contrastive learning method built on em-
bedding conditional probability distributions,
which integrates two core tasks: information
compression and conditional distribution align-
ment. The information compression task en-
codes text into the embedding space, ensur-
ing that the embedding vectors capture global
semantics. The conditional distribution align-
ment task focuses on aligning text embeddings
with positive samples embeddings by leverag-
ing the conditional distribution of embeddings
while simultaneously reducing the likelihood of
generating negative samples from text embed-
dings, thereby achieving embedding alignment
and uniformity. Experimental results demon-
strate that our method significantly outperforms
traditional contrastive learning approaches and
achieves performance comparable to state-of-
the-art models when using the same amount
of data. Our code is available at https://
github.com/TrustedLLM/AutoRegEmbed

1 Introduction

Text embeddings, which represent the semantic
content of natural language text as vectors, are ex-
tensively utilized in domains such as information
retrieval (Xia et al., 2015), semantic similarity as-
sessment, retrieval-augmented generation (RAG)
(Khandelwal et al., 2020; Shi et al., 2024; Deng
et al., 2023; Ding et al., 2024; Xu et al., 2024b,
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Figure 1: Comparison of pareto front between Au-
toRegEmbed and other methods. The horizontal axis
represents the number of training samples, while the
vertical axis indicates the average performance across
10 STS datasets. The upper left corner represents the
region with the highest learning efficiency.

2025), LLMs-based agents (Chen et al., 2024a;
Xu et al., 2024a) and data attribution (Beigi et al.,
2024). Traditional text embedding models typi-
cally employ transformer-based architectures with
encoder-only designs, including examples like Bert
(Devlin et al., 2019), DeBERTa (He et al., 2021)
and MPNet (Song et al., 2020), and are trained
using contrastive learning.

After extensive pre-training on a large-scale cor-
pus, LLMs have outperformed previous encoder-
only small models (Deng et al., 2022) and demon-
strated strong adaptability across diverse down-
stream tasks (Zhao and Zhang, 2024; Wang et al.,
2024b; Zhao et al., 2025; Duan et al., 2025; Liu
et al., 2025). Recently, contrastive learning has
been directly applied to decoder-only LLMs, which
are trained to generate embedding vectors based
on task-specific instructions, enabling adaptability
to various embedding scenarios (Lee et al., 2024;
BehnamGhader et al., 2024). Despite initial ad-
vancements, training a high-performance 7B-scale
text embedding model using this approach remains
highly resource-intensive. It typically requires mil-
lions of triplets (Wang et al., 2024a; Li et al., 2024b,
2023) and substantial computational power, includ-

12661

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 12661-12677
November 4-9, 2025 ©2025 Association for Computational Linguistics


https://github.com/TrustedLLM/AutoRegEmbed
https://github.com/TrustedLLM/AutoRegEmbed

ing thousands of hours on an A100 80GB GPUs
(Muennighoff et al., 2024; Ma et al., 2024), even
with the application of Parameter-Efficient Fine-
Tuning (PEFT) (Hu et al., 2022; Dao, 2024). The
high resource consumption might reasonably be
attributed to the inability of the discriminative con-
trastive learning method to fully harness the ca-
pabilities of generative LLMs (Li et al., 2024a).
Firstly, the constraint of unidirectional attention in
LLMs leads to the aggregation of information in
the hidden state of the output layer corresponding
to the final token. However, as LLMs are opti-
mized for next-token prediction, this hidden state
can only represent the semantics of the next token
(local) rather than the semantics of the input text
itself (global). Consequently, employing this hid-
den state directly in contrastive learning requires
additional training time and computational cost to
transition from a localized to a more global se-
mantic representation. Secondly, the hidden state
in LLMs is used to generate the probability dis-
tribution of the next token, whereas contrastive
learning optimizes the cosine distance between the
hidden states of different texts. This divergence in
optimization objectives introduces additional train-
ing costs. This raises an important question: Is it
feasible to develop a method that follows the auto-
regressive nature while generating high-quality text
embeddings and significantly reducing resource re-
quirements?

We formalize three key requirements to address
this problem. Firstly, embeddings should capture
global semantics rather than focusing solely on
next-token semantics. Secondly, they must follow
alignment and uniformity principles (Wang and
Isola, 2020). Finally, the transformation from the
original embedding to one that meets these crite-
ria should follow an autoregressive nature. To this
end, we propose AutoRegEmbed, which encom-
passes two tasks: information compression and
conditional distribution alignment.

The information compression task is inspired
by the concept of context compression (Cheva-
lier et al., 2023; Ge et al., 2024; Mu et al., 2023),
which addresses the limitations of context window
length and the high computational cost faced by
LLMs when processing long texts. Specifically,
we encode the context and instructions into a set
of compressed variables, which are then passed
to a decoder with the same architecture but frozen
parameters, forcing it to reconstruct the correspond-
ing target. By restricting the decoder to rely solely

on the compressed variables—without access to
the original context or instructions—we introduce
an information bottleneck. This ensures that the
compressed variables effectively capture the global
semantics of the instructions and context.

The conditional distribution alignment task
draws inspiration from traditional contrastive learn-
ing and LLM alignment techniques (Wang et al.,
2024c). We begin by treating the compressed
vectors as embeddings of their corresponding in-
puts. Then, we adopt the structure of the InfoNCE
(van den Oord et al., 2018) loss function, but re-
define the similarity metric. Simply put, we align
the distance between the conditional probability
distributions of text and positive sample embed-
dings while increasing the likelihood of text em-
beddings generating positive samples and decreas-
ing the likelihood of generating negative samples.
This approach promotes the alignment and unifor-
mity of compressed variables while maintaining
the autoregressive nature.

Experimental results demonstrate that Au-
toRegEmbed outperforms traditional contrastive
learning methods while utilizing the same compu-
tational resources, making it a highly efficient and
scalable solution. Remarkably, even with a lim-
ited number of training samples, AutoRegEmbed
achieves performance on par with the current state-
of-the-art (SOTA) models, showcasing its superior
ability to learn robust and generalizable representa-
tions from scarce data. As shown in Figure 1, the
Pareto frontier of AutoRegEmbed consistently out-
performs traditional contrastive learning methods,
demonstrating a more optimal trade-off between
computational efficiency and performance. This in-
dicates that AutoRegEmbed achieves superior rep-
resentation learning while maintaining a balanced
resource utilization.

2 Related Works

Text embedding is a technique that maps text data
into a numerical vector space, capturing both se-
mantic and contextual features of the text. Re-
search in this area can be divided into three cate-
gories based on the underlying model: Early mod-
els, LLMs with fine-tuning, and LLMs without
fine-tuning.

Early Models Early approaches include Sen-
tenceBERT (Reimers and Gurevych, 2019) (su-
pervised) and SimCSE (Gao et al., 2021) (unsu-
pervised), which leverage contrastive learning to
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generate high-quality text embeddings using small
encoder-only models. Inspired by instruction fine-
tuning, recent research (Su et al., 2023; Asai et al.,
2023) has shifted toward using text paired with in-
structions to enhance the generalization and trans-
ferability of text embeddings in complex scenar-
10s. At this stage, several studies have investigated
the use of generative tasks to enhance text em-
beddings. For example, coCondenser (Gao and
Callan, 2022) proposes a pre-training strategy that
improves the expressiveness of the [CLS] token
using unsupervised corpora. PaSeR (Wu and Zhao,
2022) and RetroMAE (Xiao et al., 2022) adopt
encoder-decoder architectures: PaSeR emphasizes
the reconstruction of key phrases, while RetroMAE
employs a masked-token objective to recover the
original sentence. However, these approaches do
not incorporate contrastive supervision signals into
their generative objectives. Moreover, they are eval-
uated only on smaller-scale models, making them
fundamentally different from our method in both
design philosophy and scaling strategy.

LLMs with Fine-Tuning Many studies have fo-
cused on transforming LL.Ms into text embedding
models through contrastive learning fine-tuning.
RepLLaMA (Ma et al., 2024), for example, fol-
lows the DPR (Karpukhin et al., 2020) pipeline,
using the hidden state of the last token generated
by LLaMA as a text embedding vector and ap-
plying contrastive learning fine-tuning. Recogniz-
ing that the unidirectional attention mechanism in
LLMs may limit text embedding quality, LLM2Vec
(BehnamGhader et al., 2024) introduces a bidirec-
tional attention mechanism combined with average
pooling to enhance embedding quality. NV-Embed
(Lee et al., 2024) takes this further by incorporating
an additional Latent Attention Layer to generate
pooled embeddings. bge-en-icl (Li et al., 2024b)
suggests that retaining the original framework of
LLMs and leveraging in-context learning is the
optimal approach for generating text embeddings.
Some studies (Wang et al., 2024a) even use syn-
thetic data generated by LLMs, rather than real-
world data, for fine-tuning and achieve competi-
tive performance on the MTEB leaderboard (Muen-
nighoff et al., 2023). However, these approaches of-
ten overlook the fundamental differences between
language modeling and contrastive learning, fail-
ing to fully leverage the potential of LLMs. More
closely related to our work is Llama2Vec (Li et al.,
2024a), which proposes two pretext tasks to en-

able unsupervised adaptation of LLMs, followed
by contrastive learning fine-tuning to achieve better
performance. In contrast, our approach achieves
strong results without any need for traditional con-
trastive learning fine-tuning (cosine-based), as our
task fully exploits the inherent potential of LLMs.

LLMs without Fine-Tuning Several studies
have explored methods to transform LLMs into
text encoders without fine-tuning. (Liu et al,,
2024) proposed using possible trajectory distribu-
tions as text representations, achieving effective-
ness but at a high computational cost. (Springer
et al., 2024) introduced echo embeddings by re-
peatedly feeding text into autoregressive models,
addressing architectural limitations but doubling
computational requirements. Other methods fo-
cus on prompt adjustments to produce meaning-
ful embeddings. PromptEOL (Jiang et al., 2024)
introduced a One-Word Limitation prompt to im-
prove embedding performance, while MetaEOL
(Lei et al., 2024) extended this idea by using eight
different prompt types to generate multi-view em-
beddings. GenEOL (Thirukovalluru and Dhingra,
2024) leveraged LLMs to create various sentence
transformations that retain their meaning, aggregat-
ing the resulting embeddings to enhance the overall
sentence representation. Meanwhile, PromptReps
(Zhuang et al., 2024) developed a hybrid document
retrieval framework leveraging prompts to address
challenges in information retrieval tasks. Despite
these innovations, these approaches either perform
poorly or require multiple inferences to achieve
good results. By contrast, our method surpasses
these methods with minimal training costs.

3 Method

In this section, we first introduce the preliminary
information about the task of text embedding with
instructions. We then discuss the information com-
pression, which transitions LLM embeddings from
local semantics to global semantics, followed by
the conditional distribution alignment, which op-
timizes the conditional probability distribution of
embeddings to ensure alignment and uniformity.

3.1 Preliminary

Text embeddings with instructions can adapt to var-
ious downstream tasks. Formally, given a large
collection D = {di,ds,...,dy} containing N
documents, as well as a text ¢ and an instruction
t, the embedding e, ; = F(q,t) generated from ¢
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Figure 2: Overall framework of AutoRegEmbed. Firstly, we perform the information compression task to inject
key information from the context and instruction into the compressed tokens. Then, we optimize the conditional

probability distribution of these tokens to align the distributions of e, 1

wexe ADd eg+ 1 as closely as possible through

S1(g,d™), while increasing the probability of e, ..., generating positive samples and reducing the probability of

€q. 1o, ZENErating negative samples through Sy (d*, d~; q)

and ¢ can match documents d € D that are rele-
vant to ¢, according to ¢, where E represents the
text encoder. Thus, by simply changing the in-
struction t, the relevance measure can be adapted
to different downstream tasks. For example, for
dense retrieval tasks, the instruction might be “find
documents that can answer this question,” while
for semantic similarity tasks, the instruction could
be “find sentences that are semantically similar to
this text”. Numerous studies have explored various
embedding techniques and instruction diversities.
Our goal is to identify a simple yet effective way to
enable LLMs to generate high-quality embeddings
directly from autoregressive framework.

3.2 Information Compression: from
Discriminative to Generative Embeddings

In this section, we first explain the motivation for
transitioning from discriminative embeddings to
generative embeddings, followed by a formal defi-
nition of the information compression task.

In decoder-based LL.Ms, embeddings are typi-
cally generated by extracting the hidden state of
the final token in the input sequence. However, this
approach primarily captures the semantics of the
first output token rather than encoding the global
semantics of the entire input. Various pooling tech-
niques, such as average pooling and attention pool-
ing, have been explored to mitigate this limitation,
yet they introduce their own challenges. The av-
erage pooling method, which computes the mean
of all token hidden states, does not necessarily en-
capsulate global semantics but instead serves as a
mechanism for "convexity preservation" (Li et al.,

. Encoder and decoder share a structure.

2020). Conversely, attention pooling modifies the
attention mechanism or introduces additional pa-
rameters, thereby altering the original architecture
of LLMs. Such modifications deviate from the
model’s pre-training design and can lead to unin-
tended consequences, as prior studies (Li et al.,
2024b) indicate that maintaining the original LLM
framework often yields optimal performance. To
enable LLMs to generate embeddings that repre-
sent global semantics, we introduce an information
compression task. This task compels LLMs to re-
construct the original target using a compressed
embedding derived from the input text. Given that
this compressed embedding models the conditional
probability distribution of the target, we designate
it as the generative embedding to contrast it with
the discriminative embedding produced by conven-
tional pooling approaches.

The information compression task is inspired by
the concept of context compression. Specifically,
we append k compressed tokens ¢ = (¢, .. ., k),
where k << n + m, to the text ¢ = (q1,...,qn)
and instruction t = (t1,...,ty,), with n and m
representing their respective token lengths. This
combined (g, t, ¢) is then fed into an encoder E to
generate the embedding e, = (e¢,, ..., € ). As
mentioned earlier, we expect the embedding e, to
capture the global semantics of the text ¢ and the
instruction ¢. To achieve this, we input e, into a
frozen decoder D, which shares the same archi-
tecture, and force it to generate the most relevant
document d. The optimization objective for this
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task can be expressed as:

Lic = max P(dlec,,...,ec:0D)

€cyyes€ey,

= HéaxP(d|cl e Clyti et @1 - QR 0E,0D),
E

where 0 and 6p denote the parameters of E and
D, respectively.

3.3 Conditional Distribution Alignment: from
Data-Point to Distribution Perspective

After addressing the global semantic representation
issue of the embedding vector, we also require the
embedding vector to meet the criteria of alignment
and uniformity. In general, we optimize these two
properties asymptotically using a contrastive loss,
such as InfoNCE,

EInfoNCE(f; T) =
@I/

E[—log -
el @TI@H/T 4 S el DT fd)/T

],
ey

where 7 denotes the temperature parameter and d,;
represents the ¢-th negative sample. Clearly, Equa-
tion 1 differs fundamentally from the generative
pre-training task, as it optimizes the cosine distance
between sample embeddings, aligning data points
in the embedding space rather than modeling the
next-token probability distribution, which is central
to pre-training. So, using this loss function to opti-
mize an LLM may not fully unlock its potential.

To address this, we propose the Conditional Dis-
tribution Alignment task to minimize this discrep-
ancy as much as possible. The concept is straight-
forward: Instead of using the cosine distance be-
tween embeddings, we assess similarity based on
the conditional probability distribution correspond-
ing to each embedding. Simply put, we extend
point alignment to distribution alignment. For-
mally, the decoder Lp is a well-trained autoregres-
sive language model with the following conditional
probability distribution:

T

pldlec) = Hp(dt\d<t7 e),

t=1

where e, = (e, ..., e, ) is the embedding vari-
ables, d = (d1,da,...,dr) represents the gener-
ated sentence, and d.; denotes the part of the sen-
tence before time step ¢. Intuitively, the similarity
between corresponding samples ¢ and d can be

measured by computing the distance between the
conditional probability distributions of their em-
beddings, e, and eg4:

1 T

S(q,d) = 7 Y D(p(dild<s, eq). p(dild<, ea)),
t=1

where D(-,-) is any function that measures
the divergence between two probability distribu-
tions. Given that the embedding distribution is
instruction-dependent (see Section 3.1), we can
adopt multiple approaches to measure similarity be-
tween q and d*/d~." Our empirical approach uses
a basic alignment strategy: aligning the probabil-
ity distributions of q and d via distinct instructions
(Thext and Iggs; see Appendix D). This increases
the probability of q generating d™ and decreases
that of generating d~—. As shown in Appendix E,
this simple alignment outperforms more complex
alternatives. Building on the above insights and
incorporating the structure of InfoNCE, we empiri-
cally derive the final loss function:

651(q7d+)/7_
S1(a.dh)/m 4 3 eSa(dtdiig)/7

Por (A7 |€q, 1ot
Sl q,d+ = _¢o /3 IOg E yInex
( ) ( ’ peE (d+‘ed+1fsclf)

Lcpa = E[—log

— Do (d+|6ql )

So(dt,d; 5 q) = —o (B log—E———L=nexts

2(d”,d; 3 q) (B8 B et (a1
peE (di_|eQ7Inext)

— B log =
pref(di |eq,lnext)

)

2
where 7 and [ are temperature parameters, and
Pe,, represents the initial model. p,.; denotes the
log probability of the model generating the target
before conditional distribution alignment. We use
the Sigmoid function o(-) (see Appendix C for
analysis) to normalize the similarity measured from
the conditional probability distribution to the range
[0,1]to prevent overflow during the exponential op-
eration. 57 represents the similarity function be-
tween text ¢ and the positive sample d*. We define
it by measuring the absolute value of the difference
in the logarithmic probability of their correspond-
ing embeddings, ey 1., and eg+ 1., generating
the positive sample d*. To minimize this differ-
ence, we apply the absolute value function. In
addition, we then add a negative sign to ensure that
the value of S7 increases as the similarity between
q and d™ increases. So calculates the difference
between the logarithmic probabilities of generating
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positive and negative samples for text ¢, similar
to DPO (Rafailov et al., 2023). We amplify this
difference to boost the probability of embedding
€q,Inexe ZENErating positive samples and decrease
the probability of generating negative samples. We
normalize the probabilities by dividing them by the
corresponding values from the initial model to ac-
count for the length discrepancy between positive
and negative samples. Note that during inference,
the model still computes similarity between e, 1,
and eq 1, using inner product matching, enabling
seamless integration with existing embedding sys-
tems.

4 Experiments

4.1 Experimental Settings

Evaluations Previous studies (Gao et al., 2021;
Li et al., 2020) highlight that a key goal of text
embedding is to cluster semantically similar sen-
tences. Following this approach, we use the MTEB
(Muennighoff et al., 2023) evaluation framework
to evaluate AutoRegEmbed on ten semantic text
similarity datasets, including STS12 (Agirre et al.,
2012), STS13 (Agirre et al., 2013), STS14 (Agirre
et al., 2014), STS15 (Agirre et al., 2015), STS16
(Agirre et al., 2016), STS17 (Cer et al., 2017),
STS22 (Chen et al., 2022), STS-B , BIOSSES and
SICK-R. Each pair of text in the STS dataset is
labeled with a similarity score ranging from O to 5
or 0 to 4, indicating their semantic similarity. The
evaluation metric is the Spearman correlation be-
tween the similarity scores predicted by the model
and the scores annotated by humans. In addition, to
evaluate retrieval performance, we assess the model
on MS MARCO (Nguyen et al., 2016), NFCorpus
(Boteva et al., 2016), and SCIDOCS (Cohan et al.,
2020) using nDCG@10 as the evaluation metric.

Training In the information compression stage,
we use the training set of the instruction fine-tuning
dataset PWC (Ge et al., 2024), which includes a di-
verse range of instruction types, as the training data.
The original dataset contains 241,564 (context, in-
struction, target) samples. To reduce redundancy
caused by repeated contexts, we remove duplicates,
resulting in the PWC-Unique dataset with 16,382
samples as the final training data. In the condi-
tional distribution alignment stage, we use the NLI
part of the MEDI (Wang et al., 2024a) and BGE
(Chen et al., 2024b) datasets as training data. The
former contains 50,000 samples, while the latter
consists of 274,951 samples. Each sample includes

an anchor, a positive sample, and a negative sam-
ple. Unless otherwise specified, the AutoRegEm-
bed results presented in the experiment section are
based on the NLI part of the MEDI. For the re-
trieval task, we train our model on the MS MARCO
training set. Because of the asymmetric nature of
the retrieval task, the gap between the cosine dis-
tance—based evaluation metric and the conditional
probability—based optimization objective becomes
pronounced. To mitigate this, we perform an ad-
ditional epoch of contrastive fine-tuning to better
align with the evaluation process. Based on prior
studies and empirical observations, the quality of
negative samples plays a crucial role in training
effectiveness. To enhance negative sampling, we
adopt NV-Embed for hard negative mining. Specif-
ically, we randomly select 7 hard negatives from
the ranked list positions 30 to 210, treating these as
challenging negative samples during training.

Baselines We categorize the baselines into three
groups: (1) models without contrast training, in-
cluding base models with various embedding meth-
ods using the same instructions as AutoRegEm-
bed and prompt-adjusted embedded models, in-
cluding Echo (Springer et al., 2024), PromptEOL
(Jiang et al., 2024), MetaEOL (Lei et al., 2024), and
GenEOL (Thirukovalluru and Dhingra, 2024); (2)
unsupervised contrast training models, primarily
LLM2Vec (BehnamGhader et al., 2024) with differ-
ent base models; and (3) supervised contrast train-
ing models, which consist of NV-Embed (Lee et al.,
2024), SFR-Embedding-2_R (Meng et al., 2024),
gte-Qwen2-7B-instruct (Li et al., 2023), LLM2Vec
(BehnamGhader et al., 2024), and fair baselines.

4.2 Main Results

Table 1 summarizes the results of various baselines
and AutoRegEmbed on ten STS datasets, along
with the training data required for each method.

AutoRegEmbed vs. Without Contrastive Train-
ing Models without contrastive training are di-
vided into two categories. The first is our own
fair baseline model, which performs significantly
worse than AutoRegEmbed, with an average perfor-
mance 20% lower. This highlights the difficulty of
untrained LLMs in directly generating high-quality
embeddings. While some methods enhance the
base model’s embeddings through prompt optimiza-
tion, their improvements remain limited—even on
a 13B-parameter model—and come with signifi-
cant additional reasoning costs.
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Method Params BIOSSES SICK-R STS12 STS13 STS14 STS15 STS16 STS17 STS22 STS-B Avg. Vol.
Without Contrastive Training

LLaMA2-L 7B 63.29 65.10 4526 70.83 56.69 6248 6327 49.76 -7.76 60.43 60.58(7)/56.91(10) 0
LLaMA2-M 7B 65.96 60.01 4476 64.13 48.66 62.33 63.16 6435 27.59 53.50 56.65(7)/58.6710) 0
Mistral-v0.1-L 7B 54.40 6740 4854 6427 5489 65.05 62.12 4822 1371 63.05 60.76(7)/56.20(10) 0
Mistral-v0.1-M 7B 67.46 6242 50.11 6645 52.60 61.93 65.02 7128 29.79 54.19 58.96(7)/61.13(19) 0
Echo-LLaMA2 7B - 64.39 5240 7240 61.24 7267 7351 - - 65.73 66.05(7)/- 0
Echo-LLaMA?2 13B - 70.27 5936 79.01 69.75 79.86 76.75 - - 71.31 72.337)/- 0
PromptEOL-LLaMA2 7B - 69.64 58.81 77.01 6634 7322 73.56 - - 71.66 70.03 7)/- 0
PromptEOL-Mistral 7B - 69.47 63.08 7858 69.40 77.92 79.01 - - 75.77 73.32(7)/- 0
PromptEOL-LLaMA3 8B - 60.88 68.94 7857 68.18 76.75 77.16 - - 72.83 71.90(7)/- 0
PromptEOL-LLaMA?2 13B - 68.23 56.19 76.42 6542 7273 7521 - - 67.96 68.83(7)/- 0
MetaEOL-LLaMA?2 7B - 7486 64.16 81.61 73.09 81.11 78.94 - - 77.96 75.967)/- 0
MetaEOL-Mistral 7B - 7513  64.05 8235 71.57 8136 79.85 - - 78.29 76.09(7)/- 0
GenEOL-LLaMA2-Mistral 7B - 78.08 7024 83.43 78.03 81.79 80.65 - - 80.46 78.957)/- 0
GenEOL-LLaMA2-ChatGPT 7B - 7871  70.78 8328 77.75 82.10 80.45 - - 79.83 78.997)/- 0
Unsupervised Contrastive Training

LLM2Vec-LLaMA2* 7B 8241 7177 6539 7926 7298 82.72 81.02 86.70 63.47 78.32 75.92(7)/76.41() ~160,000
LLM2Vec-Mistral® 7B 83.29 7555 67.65 83.90 7697 83.80 81.91 85.58 6593 8042 78.60(7)/78.50(10) ~160,000
Supervised Contrastive Training

NV-Embed*® 7.73B  85.59 82.80 76.22 86.30 82.09 87.24 8477 8742 69.85 86.14 83.65(r)/82.84(19) 1,054,000
SFR-Embedding-2_R* 7B 87.60 71.01  75.67 8240 79.93 8582 84.50 8893 67.10 83.60 81.28(7)/81.26(19)  ~1,751,000
gte-Qwen2-7B-instruct® 7.49B  81.37 79.16  79.53 88.97 8387 8848 8649 88.75 67.16 86.81 84.76(7)/83.06(19) ~791,000,000
LLM2Vec-LLaMA2* 7B 82.13 83.01 78.85 86.84 84.04 B88.72 86.79 90.63 67.55 88.72 85.28(7)/83.73(1g) 544,000
LLM2Vec-Mistral® 7B 85.24 83.70 78.80 86.37 84.04 88.99 87.22 90.19 67.68 88.65 85.40(7)/84.01(10) 544,000
LLaMA2-L 7B 77.58 7785 73.72 84.04 79.82 85.03 84.78 87.53 26.87 86.18 81.63(7)/76.34(10) 50,000
LLaMA2-inbatch-L 7B 78.81 82.76 7770 85.01 81.82 88.30 86.12 90.53 20.70 87.94 84.24(7)/77.97 1) 50,000
LLaMA2-M 7B 75.65 78.92  74.12 84.17 80.00 85.63 8328 85.65 65.09 86.27 81.77(7)/79.88(10) 50,000
LLaMA2-inbatch-M 7B 78.09 83.17 77.10 82.82 80.53 8740 8443 90.02 64.59 87.18 83.23(7)/81.53(19) 50,000
LLaMA2-inbatch-M 7B 7743 8226 7795 8490 82.06 87.22 8643 8822 6642 86.12 83.85(7)/81.90(10) 274,951
Information Compression and Conditional Distribution Alignment

AutoRegEmbed-LLaMA2 7B 84.65 8146 79.98 86.35 8333 89.21 8691 87.67 6590 86.98 84.89(7)/83.24(1p) 50,000(16,382)
AutoRegEmbed-Mistral 7B 86.84 80.32 78.92 86.18 8329 88.98 86.75 88.77 64.53 87.24 84.53(7)/83.18(19) 50,000(16,382)
AutoRegEmbed-LLaMA2 7B 85.62 83.87 79.60 8736 84.29 89.43 87.72 89.46 67.78 87.96 85.75(7)/84.31(19) 274,951(16,382)
AutoRegEmbed-Mistral 7B 87.48 83.90 7956 87.64 84.11 89.58 B87.46 89.87 67.77 88.48 85.82(;)/84.59(1p) 274,951(16,382)

Table 1: Results on STS tasks (Spearman correlation scaled by 100x). The parentheses in the Avg. column indicate
the number of datasets used to compute the average. Vol. denotes the number of training triplets, while the numbers
in brackets indicate the instruction fine-tuning data used by AutoRegEmbed during the information compression

stage. The symbol “~” denotes an estimated value. "

" represents our own fair baselines, and we apply a grid

search to ensure optimal performance. "-L" and "-M" denote the hidden state of the last token and the average
pooling of all token hidden states, respectively. The symbol & indicates that not all data are open source. Bold
indicates the best result, and underline indicates the second-best (suboptimal) result.

AutoRegEmbed vs. Unsupervised Contrastive
Training LLM?2Vec enhances existing LLMs us-
ing an unsupervised contrastive learning approach
similar to SimCSE, leading to significant perfor-
mance gains. Compared to the base model, the
unsupervised version of LLM2Vec improves per-
formance by over 15%. Although it utilizes almost
160,000 data samples, its performance remains
4.74% lower than AutoRegEmbed, demonstrating
its lower efficiency.

AutoRegEmbed vs. Supervised Contrastive
Training Supervised contrastive learning is the
mainstream approach for building high-quality em-
bedding models. We first compared SOTA meth-
ods that once ranked on the MTEB leaderbord,
including NV-Embed, SFR-Embedding-2_R, gte-
Qwen2-7B-instruct, and LLM2Vec. In terms of
performance, AutoRegEmbed surpasses all leading
methods across 10 STS datasets, outperforming
LLM2Vec by a margin of 0.58. From a data effi-

ciency perspective, AutoRegEmbed achieves per-
formance comparable to the previous SOTA models
with just 66,382 training samples, whereas the lat-
ter requires tens of millions of triplets to reach peak
performance. Additionally, previous SOTA models
employ multi-task learning (e.g., retrieval and clus-
tering), whose impact on STS performance remains
unclear. To ensure a fair comparison, we use single-
task contrastive learning as a baseline. Unlike tra-
ditional contrastive learning, AutoRegEmbed does
not rely on in-batch negative samples. So we add
two baselines to single-task contrastive learning
that also exclude the in-batch negative sample strat-
egy. As shown in Table 1, even under identical
training data, AutoRegEmbed outperforms four dif-
ferent single-task contrastive learning, further vali-
dating its effectiveness.
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4.3 Performance on retrieval tasks

Table 2 summarizes the performance of various
baseline methods and AutoRegEmbed across three
retrieval datasets. On MS MARCO, AutoRegEm-
bed outperforms most prior state-of-the-art (SOTA)
models and ranks second only to gte-Qwen2-7B-
instruct. It also achieves competitive results on
the other two datasets, NFcorpus and SCIDOCS.
This outcome is expected, as AutoRegEmbed is
trained solely on MS MARCO, whereas previous
SOTA models are trained on large-scale datasets
spanning diverse distributions, which contributes
to their strong generalization on NFcorpus and SCI-
DOCS.

Notably, AutoRegEmbed consistently outper-
forms LLaMAZ2-inbatch-M, which is trained on
the same data, across all three datasets. This fur-
ther confirms the effectiveness of our method in re-
trieval tasks, even without large-scale multi-domain
training.

Method MS MARCO NFcorpus SCIDOCS
LLM2Vec(Unsupervised) 18.81 26.81 10.00
LLM2Vec(Supervised) 41.45 40.33 21.05
SFR-Embedding-2_R 42.18 41.34 24.69
gte-Qwen2-7B-instruct 45.98 40.60 2348
LLaMAZ2-inbatch-M 41.67 34.19 16.15
AutoRegEmbed 42.49 38.16 19.79

Table 2: Evaluation results on MS MARCO, NFcorpus,
and SCIDOCS.

4.4 Ablation Study

To verify the effectiveness of AutoRegEmbed, we
conducted an ablation study. First, we removed
Conditional Distribution Alignment to evaluate its
impact on model performance. Second, since Equa-
tion 2 was derived empirically in our previous work,
we tested different variants of this equation to con-
firm that it remains the optimal choice. Different
variants of Equation 2 include Log_sigmoid, which
maps similarity to a logarithmic scale for integra-
tion with the exponential function e, as well as KL
divergence and JS divergence, which quantify
the distance between the conditional probability
distributions of positive and negative sample em-
beddings in distinct ways.

Table 3 presents the ablation results. The experi-
ments on different tasks indicate that Conditional
Distribution Alignment improves performance by
9.17%, while Information Compression contributes
a 16.99% improvement, demonstrating the effec-
tiveness of both tasks. Additionally, experiments

Method Avg.
AutoRegEmbed-LLaMA2 83.24(10)
Tasks

w/o Conditional Distribution Alignment  73.90;()
LLaMAZ2-L (Without Training) 56.91(10)
Equation 2

Log_sigmoid 82.93(10)
KL divergence 79.82(10)
JS divergence 79.0210)

Table 3: Ablation experiments of AutoRegEmbed. We
conduct ablation and contrast experiments on various
tasks and Equation 2 to demonstrate the effectiveness
of AutoRegEmbed.

Ours consistently better
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Figure 3: We evaluate the learning efficiency of our
method against traditional contrastive learning on 10
STS datasets, comparing their performance under the
same number of samples. Further details are provided
in Appendix A.

on variants of Equation 2 reveal that, although us-
ing a logarithmic scale for similarity and employ-
ing KL or JS divergence to measure distribution
distance are more intuitive approaches, they do
not surpass the performance of the original loss
function in Equation 2. Thus, Equation 2 can be
regarded as a more effective loss function. The
specific equations and more detailed analysis are
provided in Appendix B.

4.5 Learning Efficiency

To verify that AutoRegEmbed is better suited for
LLMs, we compare its performance with four con-
trastive learning baselines under the same training
data. Figure 3 shows that as the training data in-
creases, the performance of both AutoRegEmbed
and other contrastive learning methods improves,
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but AutoRegEmbed exhibits the fastest growth. No-
tably, with just 15,000 samples, AutoRegEmbed
already surpasses the maximum performance of
other contrastive learning models. The results indi-
cate that AutoRegEmbed significantly outperforms
the baseline models in learning efficiency.

5 Conclusions

To address the limitation that traditional contrastive
learning does not adhere to the autoregressive na-
ture of LLMs, we propose AutoRegEmbed—a
novel contrastive learning method based on em-
bedded conditional probability distributions. Au-
toRegEmbed ensures that LLM-generated embed-
dings capture global semantics while maintain-
ing alignment and uniformity through information
compression and conditional distribution alignment
tasks. AutoRegEmbed achieves comparable perfor-
mance to SOTA models with fewer training sam-
ples and superior learning efficiency.

6 Limitations

The primary advantage of AutoRegEmbed lies in
its ability to effectively harness the power of large
language models (LLMs) to construct robust and
high-quality text embeddings. However, it is im-
portant to acknowledge several limitations of our
approach.

AutoRegEmbed does not possess inherent mech-
anisms to filter or detect malicious or harmful con-
tent in the data it processes. While the model is ca-
pable of generating embeddings from a wide range
of text inputs, it lacks the ability to evaluate the eth-
ical or safety implications of the data. This makes
it vulnerable to issues related to biased, offensive,
or otherwise problematic content present in the
training corpus. In cases where the training data
contains harmful or discriminatory material, the
embeddings generated by AutoRegEmbed may in-
advertently carry forward these biases, potentially
leading to unintended and undesirable outcomes
when applied to real-world tasks.

To mitigate this risk, we recommend that users
of AutoRegEmbed ensure that the training data is
carefully curated, and ideally, filtered for harm-
ful content. Additionally, users should be cau-
tious when applying AutoRegEmbed to sensitive
domains, where the generation of unsafe or biased
embeddings could have significant consequences.
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A Implementation details

AutoRegEmbed For the information compres-
sion task, we set the learning rate to 2e-5, the batch
size to 32, and train for 2 epoch. To represent the
semantics of the input, we use 5 compressed tokens.
For the conditional distribution alignment task, the
learning rate is set to 5e-6, with a batch size of
32 and 4 epochs. The temperature parameters 7
and (3 are set to 0.05 and 0.1. For the above two
tasks, we set the maximum token length of con-
text, instruction, and target to 512. Furthermore,
we employ the bfloat16 format, enable FlashAt-
tention 2, and train on four A100-80G GPUs with
DeepSpeed and Zero-2. The information compres-
sion task takes 20 minutes, while the conditional
distribution alignment task, involving 50,000 sam-
ples, takes approximately 1 hour. In theory, our
approach eliminates the need for in-batch negative
sampling, which substantially reduces memory us-
age. In traditional contrastive learning, a batch size
of 64 requires 64 * 64=4096 pairwise computations.
In contrast, our method requires only 64, reducing
the number of pairwise comparisons per step by
a factor of 64 and lowering memory consumption
accordingly.

Fair Comparative Learning Baselines We train
our own fair contrastive learning baseline based on
the standard InfoNCE loss, with some code avail-
able in the FlagEmbedding repository'). For base-
lines utilizing the in-batch negative sample strategy
(LLaMAZ2-inbatch-L and LLaMA2-inbatch-M), we
experimented with batch sizes of 128, 256, 512,
and 1024, determining that 512 yields the best per-
formance. Additionally, we ensure that gradients
are propagated across different devices. For base-
lines that do not use the in-batch negative sample
strategy, we set the batch size to 32, maintaining
consistency with AutoRegEmbed. Regarding the
learning rate, we tested le-5, Se-5, le-4, and 2e-4,
finding that 1e-4 delivers the best results. All train-
ing data is consistent with AutoRegEmbed. We
train the fair contrastive learning baseline using
DeepSpeed and Zero-2 on four A100-80G GPUs
in 1 hour.

B Variants of Equation 2

This section explores various possible modifica-
tions and extensions of Equation 2.

"https://github.com/FlagOpen/FlagEmbedding
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Log_sigmoid Given that most loss functions are
logarithmic in nature, we can modify the similarity
function in Equation 2 by replacing the sigmoid
with a Log-Sigmoid function, resulting in a more
interpretable formulation:

eSl (Q7d+)/7—

Lopa = E[-1
ops = Ef Ogesl(q,dﬂ/T+Ziesz<d+,d;sqw]’

peE (d+ |€Q7Inext)
E (d+ |ed+ ,Iself)

peE (d+ ’e%lnext)
pref(dJr |6q,Incxt)

Si(g,d™) =

—logo (83 Ilog

)

S2(d",d; 3 q) = —logo (5 log

peE (d; |eq7]next)

— B log L .
pref(di |eq71next)

KL divergence We also experimented with re-
placing the difference in log probabilities with the
KL divergence between the conditional probability
distributions:

Si(ad)/r

E = E —l 9y
cpa = E[ Yy S 632(%6,;)/7]
1 T
Sl(q’d+) = _O-(f ZKL(}?QE (dﬂdit’@dtlself)’
t=1

peE (d+ ’diﬂ qunext)))?

1
So(q,d;) =

peE (d ’d<t7 e%lnext)))

JS divergence In addition to KL divergence, we
also employed JS divergence as a measure of dis-
tribution distance:

Si(ad)/r

L =[E[-1
CDA [ Ogesl(q,d+)/7 +3, GSQ(Q:d;)/T]’

T
1
Sl(q’dJr) = *U(f ZJS(pGE(dﬂdim6d+,fself),
t=1
peE (d;r’dit7 €Q7Inext)))7

T
ZJS po, (df \d;. <t €d; Iself)’
t=1

S2(Q7 dz_) =

H\H

peE (d ’d<t7 e%lncxt))

Why do KL divergence and JS divergence fail to
achieve good performance in this setting? We
hypothesize that the effectiveness of using log-odds
ratios stems from its ability to directly supervise
the generation probability of a specific label to-
ken, thus providing a strong and targeted learning

T
ZKL pOE d |dl <t7ed Isclf)7
t:l

signal. In contrast, KL and JS divergence oper-
ate over the entire output distribution across the
vocabulary. While these measures are theoreti-
cally well-founded for capturing distributional dif-
ferences, they often suffer from instability in prac-
tice—especially in models like LLaMA?2, which
have large vocabularies ( 30,000 tokens). This in-
stability weakens the gradient signal and ultimately
degrades performance.

C Selection Analysis of the o

To stabilize exponential operations, we apply the
o function to map distribution-based distances to
a bounded range. Sigmoid and Tanh are typical
choices. Table 4 presents their comparative perfor-
mance under uniform settings.

Overall, under identical data and training set-
tings, the Tanh variant slightly outperforms Sig-
moid on 7 STS datasets, while Sigmoid shows a
marginal advantage across all 10 datasets. Given
the minimal performance gap, either function is a
reasonable choice.

D Explanation of /. and /.

Embedding tasks can be broadly categorized
into sentence-to-sentence (STS) and sentence-to-
document (retrieval), each associated with distinct
instructions, Inext and Iger. Based on prior stud-
ies (Jiang et al., 2024), the instructions used in
this work are summarized in Table 5. Due to the
symmetric nature of STS, both instructions are the
same.

E Analysis of Alignment Strategies for
Conditional Probability Distributions

The motivation behind our naive alignment strategy
is as follows: I« aims for g to generate d, while
I guides d to generate itself. Therefore, we
align the probability distribution of ¢ generating d*
with that of d* generating itself. Intuitively, when
the conditional distributions produced by their em-
beddings e, .., and eg+ 1 are closely matched,
their embeddings are likely to be similar as well.
Additionally, inspired by Direct Preference Op-
timization (DPO), we introduce negative sample
feedback by encouraging e, 1., to increase the
distance to negative samples while decreasing the
distance to positive ones.

However, the use of instructions enables more
sophisticated strategies for aligning the probability
distributions between ¢ and d. To explore this, we
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Method

BIOSSES SICK-R STS12 STS13 STS14 STS15 STS16 STS17 STS22 STS-B Avg.

AutoRegEmbed-LLaMA?2(Tanh)
AutoRegEmbed-LLaMA2(Sigmoid)

83.97 80.75
85.50 79.07

80.58 86.92 83.19 88.98 86.96 8580 6591
79.57 8690 83.28 88.45 86.57 88.61

85.98 84.777 / 82.90(10)
66.16 86.59 84.357/83.070,

Table 4: Performance comparison of different o functions for AutoRegEmbed under the same settings.

Retrieval Task

Use one word to represent the query in a

I R P
next  retrieval task. The word is: “

I Use one word to represent the passage in a
self retrieval task. The word is: “

STS Task

Iwext  This sentence means in one word:

Tserr This sentence means in one word: “

Table 5: Instructions used for Retrieval and STS tasks.

conducted a comprehensive and detailed analysis.
We begin by introducing several alignment strategy
configurations.

Strategy 1 In this strategy, we align the condi-
tional probability distribution of generating g rather
than d*. Specifically, we adjust the instructions to
treat ¢ as the anchor, aligning the probability dis-
tribution between ¢ and d*. This is implemented
by simply replacing the corresponding prompts, as
detailed in Equation 3. For the STS task, where
symmetry holds, Is¢ and I, are identical. For
the asymmetric retrieval task, an example of [jrey
could be: “Use a word to express the question that
this article can answer: .

Do (q|€Q7Iself ) ‘
o (4| €d+,1prev)
Do (qleq+ ,Iprev)
Pref(qleq+ Jprev )

Si(g,d") = —o (B |log

Sy(d*,d; 5 q) = —o(Blog 3)

peE <q‘ed: 7IPreV)

pref(Q‘ed;[prev)

— B log ).

Strategy 2 We treat both ¢ and d* as anchors
and compute a weighted similarity between their

respective conditional distributions.

1 Pog (aleq 1)
S ?dJr - __ 1 E 9, 1self
l(q ) QU(ﬁ | ngGE (q|6d+7[prev) D

Po (AF |eq,1ext) |

Pog (d* |ed+:lself)

Po (A7 |eg,1next)
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1
- 50'(5 llog

1
So(dt,d; 5 q) = —50(8 log

P05 (4 |€q,1nexi)
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1 0 €4+
——o(B logw
2 pref(q‘ed+,1prev)
peE (q|6di_,lprev)

— Blog— ey
pref(Q‘edi—,[prev)

— P log

“

Strategy 3 We can flexibly expand the range of
negative samples by varying instructions—for ex-
ample, by increasing the probability of positive
samples generating themselves, while decreasing
the probability of them generating negative sam-
ples.

Si(g.dt)/r

gesl(qadﬂ/T + 3, eS(dhdia)/T ’

Lcpa = E[-lo

Do (dﬂeql t)
S1(g,d*) = ~o(f [log 222 G L thes )
(@,d7) = —o(Bllog e 1))

d+
(B logpeE( |e(I7Inext)

Sy(dt,d;;q) = Drot(dF a1 )
2( 1 q) pref(d+|e%[next)

——0c
2
_ B logP0e (% | tuex)
pref(di |6q7lncxt)
1 dtle
B fU(ﬁ logpeE( +| d+7]self)
pref(d |€d+,fse1f)
Dog (di_|ed+alself)
pref(di_|6d+71self)

— Blog

&)

Strategy 4 Similar to Strategy 3, we can also
increase the probability of negative samples gen-
erating themselves, while reducing the probability
of them generating positive samples, as shown in
Equation 6.
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Method Params BIOSSES SICK-R STS12 STS13 STS14 STS15 STS16 STS17 STS22 STS-B Avg.

Strategy 1 7B 86.31 81.97 81.05 8627 82.80 88.51 8631 8643 6423 8635 84.75¢7)/83.020)
Strategy 2 7B 83.34 81.87  79.82 8411 8197 89.11 8639 88.79 66.11 8690 84.32( /82.84(10
Strategy 3 7B 86.03 83.20 7835 81.54 8127 87.80 87.04 89.16 64.55 8628 83.64(7 /82.520)
Strategy 4 7B 84.10 80.74  78.09 8379 81.77 88.01 86.14 89.64 64.14 87.16 83.67(7 /82.36(10)
AutoRegEmbed 7B 85.50 79.07 7957 8690 83.28 8845 86.57 88.61 66.16 86.59 84.357)/83.07x0)

Table 6: Performance comparison of AutoRegEmbed under different alignment strategies on STS benchmarks.

Method Params BIOSSES SICK-R STS12 STS13 STS14 STS15 STS16 STS17 STS22 STS-B Avg.

AutoRegEmbed(7=0.1, 5=0.1) 7B 85.50 79.07 79.57 86.90 83.28 88.45 86.57 88.61 66.16 86.59  84.3507/83.0710)
AutoRegEmbed(7=0.02, 3=0.1) 7B 84.90 79.85 78.58 85.54 84.64 88.71 86.88 87.57 65.61 86.02  84.327)/82.83(10)
AutoRegEmbed(7=0.05, =0.1) 7B 84.65 81.46 79.98 86.35 83.33 89.21 86.91 87.67 65.90 86.98  84.89(7) / 83.24.10)
AutoRegEmbed(7=0.2, 3=0.1) 7B 83.85 81.72 79.77 86.73 83.19 88.41 86.53 87.69 66.22 86.37  84.67(7)/83.05010)
AutoRegEmbed(7=1.0, 5=0.1) 7B 81.23 80.57 77.63 83.90 81.92 87.08 85.75 88.18 63.91 85.95  83.26(7)/ 81.61(10)
AutoRegEmbed(7=0.1, $=0.2) 7B 84.06 81.49 80.32 87.15 83.49 88.67 86.85 87.22 66.45 86.56  84.93(7/83.23(19)
AutoRegEmbed(7=0.1, 5=0.3) 7B 84.50 79.56 79.45 86.62 83.55 87.78 86.01 89.77 65.63 86.13  84.16¢7) / 82.90x10)
AutoRegEmbed(7=0.1, 3=0.4) 7B 84.27 81.04 78.92 85.76 82.44 88.54 86.05 87.48 65.99 86.08  84.127)/82.65(10)
AutoRegEmbed(r=0.05, 3=0.2) 7B 84.31 79.65 79.59 84.16 81.95 89.53 87.54 89.37 66.78 87.48  84.277)/83.0410)

Table 7: Ablation of temperature 7 and alignment weight 5 on STS benchmarks. The Avg. column shows results

over 7 and 10 datasets.

Table 6 presents the performance of the
LLaMAZ2-7B model trained on the STS split of the
MEDI dataset under various alignment strategies.
Both 7 and S are fixed at 0.1.
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The experimental results reveal a consistent trend:
the simpler the modification to the original loss
function (Equation 2), the better the performance.
Specifically, Strategy 1 alters the generation tar-
get from d™ to q. Given the inherent symmetry
between the two, this change leads to no significant
performance difference. Strategy 2 computes a
weighted average of the generation probabilities
for ¢ and d™; however, despite its increased com-
putational cost, it does not improve performance.
Strategies 3 and 4 introduce more complex align-
ment designs involving positive and negative sam-

ples, but these result in inferior performance.

F Analysis of Temperature Coefficients T
and

The reasons for introducing these two temperature
coefficients are as follows:

* We introduce the temperature coefficient 7 to
align our loss function more closely with the
InfoNCE objective. Intuitively, 7 controls the
strength of separation between positive and
negative samples—the lower the value, the
sharper the contrast enforced by the loss.

* The temperature coefficient 5 is inspired by
the DPO (Direct Preference Optimization)
loss, which uses a similar scaling factor to
modulate the influence of preference differ-
ences—also expressed as log probability ra-
tios. In our setting, 3 controls the sensitivity
of the loss to differences between distribu-
tions.

To empirically assess the impact of these hy-
perparameters, we conducted a grid search us-
ing the LLaMA2-7B model and the STS split
from the MEDI dataset. For 7, we adopted
values commonly used in contrastive learning:
0.02, 0.05, 0.1, 0.2, 1.0. For 3, we selected val-
ues based on prior DPO studies: 0.1, 0.2, 0.3, 0.4.
After systematic evaluation, we identified the best-
performing (7, 3) pair.

To empirically assess the impact of these hy-
perparameters, we conducted a grid search us-
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ing the LLaMA?2-7B model and the STS split
from the MEDI dataset. For 7, we adopted
values commonly used in contrastive learning:
0.02, 0.05, 0.1, 0.2, 1.0. For 3, we selected val-
ues based on prior DPO studies: 0.1, 0.2, 0.3, 0.4.
After systematic evaluation, we observe that the
model performs better when 7 = 0.05 or 5 = 0.2.
Furthermore, except for a few extreme cases (e.g.,
7 = 1.0 or § = 0.4), the model’s performance
remains relatively stable across different settings,
which demonstrates the robustness of our method.
When 7 = 0.05 and 8 = 0.2 are applied simul-
taneously, the model does not exhibit improved
performance. This suggests that the effects of these
two temperature parameters may not be orthogonal.
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