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Abstract

The task of translating natural language ques-
tions into query languages has long been a cen-
tral focus in semantic parsing. Recent advance-
ments in Large Language Models (LLMs) have
significantly accelerated progress in this field.
However, existing studies typically focus on
a single query language, resulting in methods
with limited generalizability across different
languages. In this paper, we formally define
the Text-to-Query task paradigm, unifying se-
mantic parsing tasks across various query lan-
guages. We identify query skeletons as a shared
optimization target of Text-to-Query tasks, and
propose a general dynamic data augmentation
framework that explicitly diagnoses model-
specific weaknesses in handling these skele-
tons to synthesize targeted training data. Ex-
periments on four Text-to-Query benchmarks
demonstrate that our method achieves state-of-
the-art performance using only a small amount
of synthesized data, highlighting the efficiency
and generality of our approach and laying a
solid foundation for unified research on Text-
to-Query tasks. We release our code at https:
//github.com/jjjycaptain/Skeletron

1 Introduction

The task of translating natural language questions
into query languages (e.g., Text-to-SQL, Text-to-
Cypher, Text-to-nGQL) has long been a central
focus in semantic parsing (Popescu et al., 2004;
Zhong et al., 2017; Guo et al., 2022; Zhou et al.,
2024). It aims to facilitate user interaction with
databases by allowing input in natural language,
thereby improving the efficiency of data access.
Given this shared objective and task formulation,
in this paper, we unify these related tasks under
a single task paradigm, Text-to-Query, and de-
velop general methods for this unified setting. This
broader perspective invites us to examine common

*Corresponding authors.

-
m\w,\\ . Text-to-SQL

Text: What is the percentage of the ratings rated by user who was a subscriber?
SQL: SELECT CAST(SUM(CASE WHEN user_subscriber = 1 THEN 1 ELSE © END) AS REAL) *
100 / COUNT(*) FROM ratings

Query Skeleton: SELECT CAST(SUM(CASE WHEN <COLUMN> = <LITERAL> THEN <LITERAL> ELSE
<LITERAL> END) AS REAL) * <LITERAL> / COUNT(<COLUMN>) FROM <TABLE>

-
sNE04j Text-to-Cypher

Text: How many routers does datacenter DC1 hold?

Cypher: MATCH (e:DataCenter {name: "DC1"})-[:CONTAINS]->(r:Router) RETURN COUNT(r)
AS totalNumber

Query Skeleton: MATCH (<VAR>:<NODE> {<PROPERTY>:<LITERAL>})-[:<REL_TYPE>]-
>(<VAR>:<NODE>) RETURN COUNT(<VAR>) AS <VAR>

NebulaGraph Text-to-nGQL

Text: Find all entities that 'player100' is 'following' and return their ages.
nGQL: GO FROM "player100" OVER follow YIELD properties($”).age AS SrcAge,
properties($$).age AS DestAge

Query Skeleton: GO FROM <LITERAL> OVER <EDGE_TYPE> YIELD properties($")
.<PROPERTY> AS <VAR>, properties($$).<PROPERTY> AS <VAR>

Figure 1: Examples of query skeletons from three dif-
ferent query languages.

challenges and optimization opportunities in for-
mal query generation across different query lan-
guages. While concrete queries are tied to spe-
cific schemas and databases, many of them share
the same underlying syntactic and semantic struc-
tures once instance-specific elements are stripped
away. These abstract structures, which we refer
to as query skeletons, reveal recurring patterns in
how queries are composed across diverse contexts
(see in Figure 1). We argue that query skeletons
serve as a key abstraction for understanding model
behavior, diagnosing failure cases, and designing
generalizable optimization strategies for Text-to-
Query tasks.

Recently, the advancement of Large Language
Models (LLMs; OpenAl et al., 2024; Qwen et al.,
2025) has significantly accelerated progress in Text-
to-Query tasks. Current approaches can be broadly
categorized into In-Context Learning (ICL) and
Fine-Tuning (FT) paradigms. Specifically, ICL-
based methods (Pourreza and Rafiei, 2023; Gao
et al., 2023; Wang et al., 2024) rely on sophisticated
prompt engineering to guide proprietary LLMs in
generating queries, achieving impressive accuracy.
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However, these methods face concerns regarding
data privacy and high inference costs. As an al-
ternative, FT-based methods leverage open-source
LLMs and improve their performance through in-
cremental pre-training and supervised fine-tuning
(SFT) (Li et al., 2024; Pourreza and Rafiei, 2024).
Many of these methods construct training data us-
ing LLM-based data augmentation (Yang et al.,
2024b; Li et al., 2025; Tiwari et al., 2025; Zhong
et al., 2025).

Despite their promise, existing data augmenta-
tion approaches suffer from several key limitations:
(i) They overlook the critical value of query skele-
tons; (ii) Their strategies are static, lacking adap-
tation to different target model needs, which may
result in redundant data with limited benefit, often
sampling question types the model already handles
well; (ii1) They primarily focus on a single query
language, which may hinder their applicability to
other Text-to-Query tasks. To address these limita-
tions, we propose a dynamic data augmentation
method based on query skeletons for Text-to-
Query tasks.

Inspired by the theory of diagnostic teaching
(Reynolds and Fletcher-Janzen, 2007) in educa-
tional psychology, our approach begins with dy-
namically diagnosing the weaknesses of a target
LLM in a target dataset. We first diagnose model
failures on the training set to identify query skele-
tons it struggles with, forming an error-prone skele-
ton set that reveals its systematic weaknesses. Ad-
ditionally, To avoid overfitting the synthesized data
to a narrow set of skeletons, we train a skeleton
generator on the error-prone set to produce novel
ones, expanding the set into a more diverse candi-
date skeleton pool. Then, we introduce a skeleton-
guided backward-forward data synthesis pipeline,
where concrete queries are instantiated from skele-
tons and back-translated into natural language ques-
tions, then verified by reasoning forward from the
questions to ensure consistency using chain-of-
thought (CoT; Kojima et al., 2022; Wei et al., 2022)
prompting. Finally, the data synthesized through
the pipeline are used to fine-tune the target LLM,
thereby enhancing its understanding of the previ-
ously misaligned query skeletons.

In summary, our contributions are threefold:

* We are the first to formally define and system-
atize the Text-to-Query task paradigm, unify-
ing semantic parsing across a broad range of
query languages, and laying the foundation

for unified method development.

* We propose a unified data augmentation
framework for Text-to-Query tasks that dy-
namically identifies the query skeletons a
model struggles with and generates targeted
training examples accordingly, enabling both
behavioral analysis and performance improve-
ment across query languages.

* Our method achieves state-of-the-art perfor-
mance on Four Text-to-Query benchmarks
(Spider, BIRD, Text2Cypher and NL2GQL),
demonstrating its effectiveness and generality
across different Text-to-Query tasks.

2 Related Work

Text-to-Query Based On LLM  Currently, many
Text-to-Query methods are built on the powerful
reasoning ability of LLMs. A significant portion of
these methods rely on ICL. Some studies select few-
shot examples based on input similarity to guide
inference (Nan et al., 2023; Zhang et al., 2023a;
D’ Abramo et al., 2025), while others reduce task
complexity by decomposing tasks or questions into
simpler substeps (Pourreza and Rafiei, 2023; Dong
et al., 2023; Wang et al., 2025; Talaei et al., 2024).
Additional works enhance reasoning capabilities
through strategies like CoT (Pourreza et al., 2025;
Shah et al., 2024) and consistency-driven reason-
ing (Dong et al., 2023; Gao et al., 2023). However,
these ICL methods typically rely on proprietary
LLMs, raising concerns about privacy risks and
inference costs. To enhance open-source models’
Text-to-Query abilities, CODES (Li et al., 2024)
proposed incremental pretraining on hybrid corpus.
Nevertheless, incremental pretraining is resource-
intensive and collecting sufficient training corpus
is challenging for SQL and even harder for spe-
cialized query languages, limiting its applicability
across diverse Text-to-Query tasks.

Text-to-Query Data Augmentation High-
quality Text-to-Query datasets remain scarce due
to the high cost of manual annotation. To mitigate
this, many approaches adopt data augmentation to
automatically generate examples. Early methods
synthesize queries using context-free grammars
(CFGs) or rule-based slot filling over SQL
skeletons, followed by back translation into natural
language questions using Pretrained Language
Models (PLMs) or seq2seq models (Hu et al.,
2023; Wang et al., 2021; Wu et al., 2021; Zhong
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et al., 2020). However, these approaches rely on
manually crafted CFGs and language-specific
rules, limiting their generalizability across
Text-to-Query tasks. Moreover, the limitations of
conventional neural models often lead to unnatural
questions. Recent work typically employs LLMs
to synthesize data. SENSE (Yang et al., 2024b),
OmniSQL (Li et al., 2025), Auto-Cypher (Tiwari
et al., 2025), and SyntheT2C (Zhong et al., 2025)
design elaborate pipelines based on LLMs to
synthesize high-quality data. Compared with our
method, these methods lack explicit modeling and
utilization of the query skeleton and follow static
generation strategies, which leads to redundancy
and limited benefit of augmented data.

3 Task Formulation

To support theoretical modeling and general-
purpose solution development, We formally define
the Text-to-Query task as:

f(S,q9) = Q

where ¢ is the input question, S is the database
schema, and () is the generated query in a language
such as SQL, Cypher, or nGQL. The schema .S
provides structural and semantic context necessary
for interpreting the question. Its representation de-
pends on the underlying data model. The following
are illustrative examples of schema formulations
for common database types:

For relational databases (e.g., SQLite), the
schema can be represented as S = {(¢,c¢,7) | t €
T, ¢ € C, T € D}, where T denotes the set of
table names, C; is the set of columns in table ¢, and
T is the data type of column c.

For graph-based databases (e.g., Neo4j or Neb-
ulaGraph), the schema can be represented as S =
{(e1,7,e2) | e1,e2 € E, 7 € R}, where & is the
set of node types, and R is the set of relation types.

This formulation provides a unified foundation
for developing Text-to-Query models across het-
erogeneous query languages and databases.

4 Method

An overview of our proposed dynamic data aug-
mentation method based on formal query skeletons
is shown in Figure 2.

4.1 Dynamic Diagnosis on Query Skeletons

Unlike existing Text-to-Query data augmentation
methods, our approach is dynamic: it introduces

a diagnostic step before augmentation to identify
model-specific weaknesses, enabling more targeted,
intelligent, and efficient data synthesis.

Given a target LLM and a Text-to-Query dataset,
we first perform K-fold cross-validation on the
training set to identify cases where the model fails.
However, these failure cases can arise from a wide
range of issues, including schema-linking errors,
misunderstandings of database content, and syntac-
tic mistakes, as noted in prior work (Liu et al., 2025;
Li et al., 2023b). Since our goal is to diagnose the
ability of an LLM to handle query skeletons, we
aim to isolate and focus specifically on this type of
error during the diagnostic process.

To achieve this goal, we introduce a structural
similarity measure to detect whether a model has
generated the correct query skeleton. Specifically,
we provide two implementations of this measure,
AST-based structural distance and Token-based
structural distance, depending on the availability
of parsing tools for the target query language.

AST-Based Structural Distance Abstract syn-
tax trees (ASTs) represent the hierarchical structure
of code in tree form and are widely used in pro-
gram analysis for measuring code similarity (Song
et al., 2024; Yang et al., 2021). They also serve as
a common intermediate representation for parsing
query languages (Zhang et al., 2023b; Shen et al.,
2024). In this setting, we parse both the predicted
and gold queries into ASTs and compare their struc-
tural differences. Specifically, we apply the Change
Distiller algorithm (Fluri et al., 2007) to compute
the minimum set of edit operations (e.g., insert,
delete, update, keep, etc.) required to transform
one AST into another. We define the AST-based
structural distance as the total number of non-keep
operations, which reflects the degree of structural
discrepancy between the two query skeletons.

Token-Based Structural Distance In principle,
all query languages can be parsed into ASTs, as
their syntax is inherently hierarchical. However,
some less commonly used query languages (e.g.,
nGQL) lack a mature ecosystem, and open-source
parsers for these languages are often unavailable.
This creates practical engineering barriers to imple-
menting the AST-based structural distance, even
though the method itself remains theoretically ap-
plicable. In such scenarios, we provide a structural
similarity measure that compares the predicted and
gold skeletons using token-level edit distance. Al-
though this approximation is less fine-grained, it
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Figure 2: Our proposed method consists of three key components: (i) Dynamic Diagnosis on Query Skeletons:
We analyze model behavior to identify query skeletons it struggles with, constructing an error-prone skeleton set to
guide targeted data synthesis. (ii)Skeleton Generalizer: A skeleton generation model is trained on the error-prone
set to produce structurally novel skeletons, expanding the diversity of the skeleton pool. (iii) Skeleton-Guided
Backward-Forward Data Synthesis: We instantiate skeletons from the pool under diverse schema contexts and
synthesize high-quality, targeted training data through a backward-forward generation framework.

still captures structural divergence to a reasonable
extent and enables the diagnostic framework to
remain applicable across a wide range of query
languages. Implementation details of the two struc-
tural similarity measures are presented in the Ap-
pendix B.

Skeleton Error Detection Based on Structural
Similarity Measurement The most straightfor-
ward way to detect query skeleton errors is to
check whether the predicted and gold skeletons
yield identical structures. However, this criterion
is overly strict and may lead to false positives.
Through our analysis of prediction errors, we ob-
served that some predicted and gold skeletons differ
slightly in structure but remain semantically equiva-
lent—for example, differing only in the presence of
a DISTINCT keyword or a change in a single opera-
tor. To mitigate such cases, we introduce a relaxed
threshold-based criterion: if the structural distance
exceeds a threshold, we classify the sample as a
query skeleton error. More discussion on threshold
selection is provided in Section 5.7.

Finally, we select skeletons with an error rate

above 20% to construct the error-prone skeleton set,
which serves as the foundation for the subsequent
construction of the skeleton generalizer and data
synthesis.

4.2 Skeleton Generalizer

Although the error-prone skeleton set already con-
tains a rich and realistic collection of query skele-
tons, it is inevitable that novel skeletons will appear
in test scenarios. If data augmentation is performed
using only error-prone skeleton set, the resulting
model may fail to handle unseen patterns during
evaluation. To address this limitation, We propose
to use a skeleton generalizer to generate novel but
structurally meaningful skeletons that go beyond
the error-prone set.

Specifically, we fine-tune an LLM using the
previously collected error-prone skeleton set to
learn their underlying patterns, thereby construct-
ing a skeleton generation model capable of pro-
ducing new skeletons. Building on prior work
(Xu et al., 2024; Ding et al., 2024), we ex-
tract a portion of the LLM’s instruction template
(e.g., “<im_start>Assistant:”) as a prefix to
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guide skeleton generation, and fine-tune the model
on (prefix, skeleton) pairs constructed from the
error-prone skeleton set. During inference, we fol-
low the same prompt format to induce the genera-
tion of novel skeletons. These generated skeletons
are then combined with the original error-prone
ones to form a comprehensive skeleton pool for
data synthesis. Further details about the Skeleton
Generalizer can be found in the Appendix C.

4.3 Skeleton-Guided Backward-Forward
Data Synthesis

To leverage the query skeletons and dynamic diag-
nosis results, we perform controlled data synthe-
sis with a teacher LLM guided by the constructed
skeleton pool. A backward-forward generation
framework is adopted to ensure data quality and
reliability. The synthesis process consists of the
following key steps:

Skeleton Instantiation For each database in the
target dataset, we randomly sample a query skele-
ton from the skeleton pool and prompt the teacher
LLM to instantiate it by filling in appropriate
schema elements (e.g., tables, columns and nodes)
from given database schema. Once the query in-
stantiation is complete, we apply rule-based verifi-
cation to identify and filter out basic errors such as
syntax mistakes, execution failures, and invalid join
conditions. This process includes verifying query
executability, and checking whether the referenced
tables and columns satisfy necessary foreign key
constraints (for the Text-to-SQL task).

Backward Generation In this phase, the teacher
LLM is prompted to translate the completed query
into a corresponding natural language question ac-
cording to the database schema. Since query lan-
guages are formal and semantically unambiguous,
this backward translation is substantially easier
than the forward direction (i.e., generating queries
from natural language), which requires resolving
ambiguity in user intent and performing complex
schema linking. The clarity of query languages
and the relative simplicity of backward generation
help ensure the quality of the synthesized question-
query pairs.

Forward Verification Although the skeleton in-
stantiation and backward generation steps provide a
reasonable degree of quality assurance, large LLMs
can still suffer from hallucinations (Huang et al.,
2025; Xu et al., 2025), which may lead to mis-

matches between the synthesized questions and
their corresponding queries. To mitigate this issue,
we introduce a forward verification phase, where
the teacher LLM is prompted to assess the semantic
consistency between the synthesized question and
queries using chain-of-thought reasoning (Kojima
et al., 2022; Wei et al., 2022), and revise the query
if necessary. This process enhances the reliability
of the final synthetic dataset.

Finally, we select two open-source models,
Qwen2.5-Coder-7B and Qwen2.5-Coder-14B, as
base models, and perform SFT using training data
synthesized by our data augmentation method. The
input sequence for SFT consists of the task de-
scription, database schema, and question. We refer
to the resulting series of Text-to-Query LLMs as
Skeletron. The prompts used in the data synthesis
stage are provided in the Appendix.

S Experiments

5.1 Evaluation Benchmarks

We evaluate our method on three representative
Text-to-Query tasks: Text-to-SQL, Text-to-Cypher
and Text-to-nGQL, due to the prominent roles of
SQL, Cypher and nGQL in relational and non-
relational databases, respectively.

For the Text-to-SQL task, we evaluate our ap-
proach on Spider (Yu et al., 2018) and BIRD (Li
et al., 2023b). Spider is a cross-domain dataset cov-
ering 200 databases across 138 domains. BIRD is a
more realistic and challenging benchmark, contain-
ing 95 databases across 37 professional domains.
For Spider, we evaluate on both its development
and test sets, while for BIRD, we evaluate only on
the development set, as the test set is not publicly
available.

For the Text-to-Cypher task, We evaluate our
approach on Text2Cypher (Ozsoy et al., 2025),
a large-scale dataset released by Neo4j. How-
ever, many examples in this dataset lack executable
databases, making it difficult to evaluate the correct-
ness of generated queries. As a result, we extract a
subset of executable examples to form a new bench-
mark, Text2Cypher-Exec, which contains 22,093
training samples and 2,471 test samples.

For the Text-to-nGQL task, we evaluate our ap-
proach on NL2GQL (Zhou et al., 2024) dataset.
NL2GQL was manually constructed by humans
with assistance from LLMs, followed by subse-
quent refinement to correct errors and enhance nat-
uralness and diversity. The dataset comprises 3,862
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training samples and 1,254 test samples.

5.2 Evaluation Metrics

For the Text-to-SQL task, following prior work, we
use both EX and TS metrics on Spider, and EX
metirc on BIRD. EX measures the proportion of
predicted SQL queries that produce the same execu-
tion results as the corresponding gold queries. TS
is a more reliable metric that checks whether a SQL
query yields consistent results with the gold query
across multiple database variants constructed via
data augmentation. Notably, TS is only available
on the Spider dev.

For the Text-to-Cypher and Text-to-nGQL task,
as no official scripts are available for the corre-
sponding datasets, we compute EX following a
similar evaluation procedure as used in BIRD.

5.3 Baselines

LLMs with Zero-Shot Prompting We compare
our method against both proprietary and open-
source LLMs. The proprietary models include
GPT-40, GPT-4-Turbo, and GPT-40-mini', while
the open-source models include Qwen2 (Yang et al.,
2024a), Qwen2.5 (Qwen et al., 2025), Qwen2.5-
Coder (Hui et al., 2024), and Llama3.3 (Grattafiori
et al., 2024). These models vary in scale and ar-
chitecture, providing a diverse and representative
baseline for evaluation.

FT-Based Methods We also compare our
method with a range of method based on FT. RED-
SQL (Li et al., 2023a) proposes a method to decou-
ple schema linking and the skeleton parsing. DTS-
SQL (Pourreza and Rafiei, 2024) decomposes fine-
tuning into schema-linking and SQL generation
stages. CODES (Li et al., 2024) employs incremen-
tal pre-training along with strategic prompt con-
struction. OmniSQL (Li et al., 2025) performs SFT
using a large-scale dataset of 2.5 million synthetic
examples produced by its scalable framework.

Data Augmentation Methods To conduct a
fair comparison with other data augmentation ap-
proaches, we adopt the synthetic dataset released
by Li et al. (2025) and randomly sample a subset
of the same size as our synthesized data for SFT.
In addition, we construct two static variants of our
synthesis pipeline that exclude the dynamic diag-
nostic step:

'Results for GPT-40, GPT-4-Turbo, and GPT-4o0-mini are
reported from Li et al. (2025)

* Question-to-SQL, which first prompts the
LLM to generate a question, then translates it
into SQL.

* SQL-to-Question, which reverses the order by
first generating SQL and then translating it
into a corresponding question.

All of these methods are evaluated under the
same conditions: we apply SFT to the base model
using augmented dataset combined with the BIRD
original training set without introducing any other
optimization techniques, and adopt the same infer-
ence settings as used in Skeletron.

5.4 Implementation Details

During the dynamic diagnosis, we adopt an AST-
based structural similarity measure for the Text-to-
SQL task, while using a token-based measure for
the Text-to-Cypher and Text-to-nGQL tasks, and
set the threshold for skeleton error detection to 2.
We use Qwen2.5-Coder-14B-Instruct as the base
model to train the skeleton generalizer. For data
synthesis, we adopt Qwen2.5-72B-Instruct as the
teacher model to generate question-SQL pairs un-
der skeleton constraints. In the fine-tuning stage,
we combine the original training set with 10,000
synthesized data and fine-tune the base models with
a learning rate of 5e-6, a batch size of 64 and a co-
sine warmup schedule over 2 epochs. In both the
skeleton generator and the final fine-tuning stage,
we perform full-parameter fine-tuning using a con-
ditional next-token prediction loss.

During inference, we adopt a zero-shot setting
and generate one single prediction per question,
using greedy decoding. All experiments are con-
ducted on 8 NVIDIA A800 80GB GPUs.

5.5 Main Results

Results on the Text-to-SQL Task As shown in
Table 1, Skeletron outperforms all baselines on
both Spider and BIRD benchmarks, including its
teacher model Qwen2.5-72B-Instruct. Unlike pre-
vious FT-based methods that often involve addi-
tional optimization techniques such as incremental
pre-training or value retrieval, Skeletron achieves
comparable or better performance using SFT alone.
The only exception is on the Spider test set, where
it slightly underperforms OmniSQL. However, Om-
niSQL uses 2.5 million synthetic examples, while
Skeletron uses only 10,000, just 1/250 of the data,
yet still surpasses it by +0.6% TS on Spider dev
and +0.9% EX on BIRD dev.
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Spider Dev ‘ S,Il?ldter ]]3)IRD
Model/Method s ev
| EX TS | EX | EX

LLMs (Zero-Shot)

GPT-40-mini - 704 | 824 | 588
GPT-4-Turbo - 72.4 83.4 62.0
GPT-40 - 709 | 832 | 619
Qwen2.5-72B-Instruct | 83.6  74.1 | 85.6 | 58.7
Qwen2-72B-Instruct 81.5 742 83.3 58.5
Llama3.3-70B-Instruct | 77.2  68.1 75.8 60.0
FT-Based Methods

RESDSQL-3B 84.1 735 | 799 -

DTS-SQL 7B 85.5 - 844 | 558
CODES 7B 854 803 - 572
OmniSQL 7B - 812 | 879 | 639
CODES 15B 849 794 - 58.5
OmniSQL 14B - 814 | 883 | 64.2

Our Method
Skeletron 7B 857 782 | 847 | 614
Skeletron 14B 873 82.0 | 866 | 65.1
Table 1: Performance comparison on the Text-to-

SQL task. Best results are in bold; second-best are
underlined.

Table 3 presents a fair comparison of data aug-
mentation methods. Our approach yields the largest
performance gains across all settings, significantly
improving the base model. Under comparable con-
ditions, the gap between Skeletron and OmniSQL
widens substantially, reaching up to 9.5%. It also
outperforms both static variants of our method,
demonstrating the clear advantage of our synthe-
sis method. Notably, the improvement increases
with the difficulty of the question, increasing from
15. 1% to 22. 8%. This benefit comes from the dy-
namic diagnosis step, which identifies the skeletons
the model struggles with (often the more challeng-
ing ones) and uses them to construct harder training
data.

Results on other Text-to-Query Tasks As
shown in Table 2, Skeletron 14B also achieves state-
of-the-art performance on the Text-to-Cypher and
Text-to-nGQL Tasks, surpassing a range of mod-
els with significantly larger parameter sizes. In
particular, it outperforms the second-best model,
Qwen2.5-Coder-32B-Instruct, which is specifically
enhanced for code-related tasks and well-suited for
query languages, by a margin of 14.2% on the Text-
to-Cypher task and by xx% on the Text-to-nGQL
task. These results demonstrate that our method
is broadly applicable and effective across the full
spectrum of Text-to-Query tasks.

Model/Method ‘ EX
| Cypher | nGQL

LLMs (Zero-Shot)

Qwen2.5-72B-Instruct 429 26.9
Qwen2-72B-Instruct 37.8 11.1
Llama3.3-70B-Instruct 433 18.9
Qwen2.5-Coder-32B-Instruct 44.2 26.5
Qwen2.5-Coder-14B-Instruct 39.7 14.9
Qwen2.5-Coder-7B-Instruct 25.9 5.1
Our Method

Skeletron 7B 58.4 36.7
Skeletron 14B 58.6 45.1

Table 2: Performance comparison on additional Text-to-
Query tasks. Cypher denotes the Text-to-Cypher task
and nGQL denotes the Text-to-nGQL task, where their
respective datasets are used as the target datasets for
data augmentation.

5.6 Ablation Study

To assess the contribution of each component, we
conduct ablation studies under four modified set-
tings. As shown in Table 4, removing the synthetic
data and training only on the original dataset leads
to the most significant performance drop across all
benchmarks, demonstrating the high quality and
strong utility of our synthesized data. Eliminat-
ing Dynamic Diagnosis and instead using the full
set of skeletons from the original training set re-
sults in reduced performance, highlighting the ef-
fectiveness of model-specific augmentation. Dis-
abling the Skeleton Generalizer and relying solely
on error-prone skeletons limits structural diversity,
resulting in performance decline. Finally, skip-
ping Forward Verification and directly using un-
verified SQL-question pairs introduces semantic
mismatches and hallucinations, negatively impact-
ing performance. In conclusion, each component
contributes meaningfully to the overall effective-
ness of our method.

5.7 More Analysis

Can our method enhance LL.Ms’ understanding
of the skeletons of query languages? We evalu-
ate several state-of-the-art LLMs and our Skeletron
14B on the ability to predict correct query skele-
tons in Text-to-Query task. The results are shown
in Figure 3. We observe that even the most ad-
vanced open-source LLMs specialized in code still
frequently fail to generate correct skeletons dur-
ing inference. For instance, Qwen2.5-Coder-32B-
Instruct achieves a 35.7% overall error rate on the
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Base Model | simple moderate challenging total
Qwen2.5-Coder-7B 45.2 22.0 20.0 35.8
+ BIRD & Q2S Synthetic Data 64.8 51.7 43.5 58.8

+ BIRD & S2Q Synthetic Data 65.7 51.9 44.8 59.6

+ BIRD & OmniSQL Synthetic Data 60.4 41.0 324 51.9

+ BIRD & Skeletron Synthetic Data 67.6 53.5 47.6 614
Qwen2.5-Coder-14B 57.1 36.9 26.2 48.0
+ BIRD & Q2S Synthetic Data 71.0 55.8 44.8 64.0

+ BIRD & S2Q Synthetic Data 70.3 55.4 42.1 63.1

+ BIRD & OmniSQL Synthetic Data 65.4 44.4 37.9 56.5

+ BIRD & Skeletron Synthetic Data 72.2 56.0 49.0 65.1

Table 3: EX performance of the base model after SFT on data synthesized by different augmentation methods
across difficulty levels on the BIRD dev dataset. Q2S and S2Q refer to the Question-to-SQL and SQL-to-Question
augmentation strategies described in Section 5.3, respectively. BIRD denotes the original training data from the
BIRD dataset. Each synthetic dataset is limited to 10,000 examples.

. Spider | BIRD
Spider Dev ‘ Test Dev
| EX TS | EX | EX
Skeletron 7B 85.7 78.2 84.7 61.4
w/o Synthetic Data 83.3 75.6 82.8 57.5

w/o Dynamic Diagnosis 84.3 71.7 84.1 57.8
w/o Skeleton Generalizer 84.3 76.5 84.7 58.5
w/o Forward Verification 82.6 75.0 84.1 59.3

Table 4: Ablations on the synthetic data and 3 key com-
ponents of our method.

BIRD dev set, with 26.3% of predictions exhibit-
ing incorrect skeletons, accounting for 73.4% of all
errors. This indicates that current LLMs still fall
short in reliably handling query languages. In con-
trast, Skeletron 14B not only reduces the overall
error rate but also lowers the skeleton error rate to
24.0%, demonstrating improved understanding of
skeletons of query languages.

How to choose the structural distance threshold
in dynamic diagnosis? We further investigate
how the choice of threshold for structural similarity
affects the effectiveness of dynamic diagnosis. As
shown in Figure 4, we evaluate model performance
on the Text-to-SQL task using different threshold
values. We find that setting the threshold too low
can lead to overly strict error detection, mistakenly
classifying semantically well-aligned predictions
as skeleton errors and introducing noisy or unnec-
essary cases into the augmentation process. Con-
versely, a threshold that is too high (e.g., 4) may
overlook genuinely misaligned skeletons, miss-
ing critical opportunities to strengthen the model’s
weak points. Although this experiment is based on
the Text-to-SQL task, it highlights a general prin-
ciple for Text-to-Query: the criterion for detecting
skeleton errors in dynamic diagnosis should strike

mmm Overall Error Rate (1 - EX)
Query Skeleton Error Rate

|

Qwen2.5- 41.3%

72B-Ins 31.0%

41.5%

Qwen2-

72B-Ins 32.4%

o
Llama3.3- 40.0%

70B-Ins

31.0%

35.7%

Qwen2.5-
Coder-32B-Ins 26.3%

34.9%

Skeletron
148 24.0%

(=]

5 10 15 20 25 30 35 40
Error Rate (%)

Figure 3: Comparison of overall error rate (1 - EX)
and query skeleton error rate across different LLMs
and Skeletron 14B on the BIRD Dev. The method for
identifying query skeleton errors follows Section 4.1.

a balance between strictness and leniency.

6 Conclusion

In this paper, we introduce and formally define
the Text-to-Query task paradigm, unifying seman-
tic parsing tasks across various query languages.
We identified query skeletons as a critical and uni-
versal abstraction for analyzing model behaviors,
diagnosing weaknesses, and guiding data synthesis.
Based on this abstraction, we proposed a dynamic
data augmentation framework that explicitly di-
agnoses model-specific structural weaknesses and
generates targeted, high-quality training examples
accordingly. Experimental results across four di-
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Figure 4: EX on the BIRD and Spider Dev sets under
different structural edit distance thresholds used in the
dynamic diagnosis step.

verse Text-to-Query benchmarks demonstrated that
our approach achieves state-of-the-art performance,
even with a limited amount of synthesized training
data. These findings not only highlight the effi-
ciency and generality of our method but also lay a
robust foundation for future unified research in the
Text-to-Query Task.

Limitations

Although our method demonstrates strong perfor-
mance and generality across multiple query lan-
guages, there remain several limitations.

First, beyond the Text-to-SQL domain, the avail-
ability of high-quality datasets and standardized
evaluation protocols remains limited. As a result,
our experiments and baseline comparisons in other
domains such as Text-to-Cypher and Text-to-nGQL
are relatively constrained. We hope that future
work will introduce more comprehensive datasets
and unified evaluation settings to better assess our
method.

Second, while our data augmentation framework
is broadly applicable to different Text-to-Query
tasks, the augmentation process is still performed
independently for each task. The current setup does
not support a unified model that can handle multi-
ple query languages simultaneously. Developing
a strong general Text-to-Query model remains an
exciting direction for future work.
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A Schema Components

A.1 SQLite Database

The schema of an SQLite database is organized
in the form of DDL statements, including table
names, column names, column types, optional col-
umn comments, optional sample values, and pri-
mary/foreign key constraints. Column comments
consist of column descriptions and value illustra-
tions, which are only available in the BIRD dataset.
Therefore, they are included exclusively in the
BIRD schemas. An example schema is shown in
Figure 5.

During the SFT stage, we provide as much con-
textual information as possible for training. Thus,
the schema includes column comments and 3 sam-
ple values for each column. However, due to GPU
memory limitations, we restrict the input length
to below 8192 characters, if the input exceeds this
limit, we prioritize retaining the schemas of the
gold tables corresponding to the SQL, while dis-
carding the remaining table schemas.

In the data synthesis stage, for the same purpose
of providing LLLMs with sufficient information to
better accomplish the task, we use the complete

SQLite database schema

CREATE TABLE "Author™ (

“Id° INTEGER /*Id of the author Examples: 9, 14, 15*%/,

“Name™ TEXT /*Author Name Examples: 'Ernest Jordan', 'K. MORIBE',
'D. Jakominich'*/,

“Affiliation’ TEXT /*Organization name with which the author is
affiliated. (the name of an organization with which an author can
be affiliated) Examples: 'Cavendish Laboratory|Cambridge

University', 'Department of Molecular Biology|School of
Science|Nagoya University', 'HASLab / INESC TEC and Universidade do
Minho'*/,

PRIMARY KEY (“Id')
)

CREATE TABLE ~Conference™ (

“Id° INTEGER /*Conference Id Examples: 1, 2, 4%/,

“ShortName™ TEXT /*Short name Examples: 'IADIS', 'IADT', ''*/,
“FullName' TEXT /*Full name Examples: 'International Association
for Development of the Information Society', 'Issues and
Applications of Database Technology', 'IBM Germany Scientific
Symposium Series'*/,

"HomePage™ TEXT /*Homepage URL of conference Examples: '‘,
‘http://www.informatik.uni-trier.de/~ley/db/conf/iadt/index.html’,
*http://www.informatik.uni-trier.de/~ley/db/conf/ibm/index.html"*/,
PRIMARY KEY ("Id")

)3

Figure 5: An example of SQLite database schema.

schema with all available content, except that ex-
cessively long sample values in some columns are
selectively omitted.

In the inference stage, following the common
evaluation setup (Li et al., 2023b; Yu et al., 2018;
Pourreza and Rafiei, 2023), we exclude column
comments from the schema and retain only 3 sam-
ple values per column along with other mandatory
elements.

A.2 Neodj Database

The Text2Cypher dataset (Ozsoy et al., 2025)
already includes the corresponding database
schemas, which we directly use. Each database
schema consists of nodes, node properties (with
types and sample values), and relation types. An
example of a Neo4j database schema is shown in
Figure 6.

A.3 NebulaGraph Database

For the schema of NebulaGraph databases, we fol-
low the setup of Zhou et al. (2024) and organize the
graph schema using Python code, which ensures se-
mantic integrity across entities, relationships, and
attributes while minimizing information loss.
Specifically, the code-structured schema encodes
the graph in terms of Tags and Edges, where Python
constructs are employed to provide detailed and
precise descriptions: (1) concepts are defined as
Python classes; (2) class annotations offer explana-
tory details; (3) class inheritance captures hierarchi-
cal relations; and (4) initialization functions specify
the attributes of tags or edges. Figure 7 illustrates
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Neo4j database schema

Node properties:

- **Stream**

- “createdAt’ : DATE_TIME Min: 2007-05-22T10:39:53.259969Z, Max: 2021-
05-09T14:16:40.370294Z

- "id’: STRING Example: "129004176"

- “description’: STRING Example: "Welcome to my Channel, I'm Big
Chase, 31 living in"

- “url : STRING Example: "https://www.twitch.tv/itsbigchase"

- “name’: STRING Example: "itsbigchase"

- “followers™: INTEGER Min: ©, Max: 10243195

- “total_view_count’: INTEGER Min: 21, Max: 1451487256

- kkGame**

- “name’: STRING Example: "Rust"

- **Language**

- “name’: STRING Example: "en"

Relationship properties:

The relationships:
(:Stream)-[:PLAYS]->(:Game)
(:Stream)-[ :HAS_LANGUAGE]->(:Language)
(:Stream)-[ :MODERATOR]->(:Stream)
(:Stream)-[ :MODERATOR]->(:User)
(:Stream)-[:CHATTER]->(:Stream)
(:Stream)-[:CHATTER]->(:User)
(:Stream)-[:HAS_TEAM]->(:Team)
(:Stream)-[:VIP]->(:Stream)

NebulaGraph database schema

class Tag():
def __init__ (self, tag_name):
self.tag_name = tag_name

class person(Tag):
def __init__ (self, vid, name: str, age: int, gender: str):
self.vid = vid
self.name = name
self.age = age
self.gender = gender

class teacher(Tag):
def __init_ (self, vid, grade: str, subject: str):
self.vid = vid
self.grade = grade
self.subject = subject

class Edge():
def __init__(self, edge_type_name):
self.edge_type_name = edge_type_name

class is_schoolmate(Edge):
def __init__(self, src_vid, dst_vid, start_year: int, end_year
int):
self.src_vid = src_vid
self.dst_vid = dst_vid
self.start_year = start_year
self.end_year = end_year

Figure 6: An example of Neo4j database schema.

an example of such a graph schema.

B Implementation of Structural
Similarity Measure

For the computation of AST-based structural dis-
tance, we leverage SQLGlot?, a comprehensive
and generic SQL parser. SQLGlot provides an
implementation of the Change Distiller algorithm,
which computes the minimal set of edit operations
required to transform one SQL AST into another.
Further details of this implementation can be found
in its documentation®. For token-based structural
distance, we simply split queries into tokens using
whitespace as the delimiter.

C Details on Skeleton Generalizer

We fine-tune Qwen2.5-Coder-14B-Instruct with
the error-prone skeletons obtained from the dy-
namic diagnosis step to derive a Skeleton Gen-
eralizer. Inspired by prior work (Xu et al.,
2024; Ding et al., 2024), we provide only a
partial prefix of the LLM’s instruction tem-
plate to guide the model in generating the cor-
responding skeletons. Instruction-tuned LLMs
such as Qwen2.5-Coder-14B-Instruct have already
learned to produce responses based on question-
answer pairs (e.g., "<lim_start|>User: {instruc-
tion}<lim_end|>\n<lim_start|>Assistant: {out-
put}<im_end>"). Since in our setting the model

2https ://github.com/tobymao/sqlglot
3https ://github.com/tobymao/sqlglot/blob/main/
posts/sql_diff.md

Figure 7: An example of NebulaGraph database schema.

{
"instruction"
"input"
"output”

}

Figure 8: An example from the fine-tuning dataset in
Alpaca format.

is only used for skeleton synthesis without any
specific user questions, and query statements are
more likely than questions to appear in the an-
swer position during instruction tuning, we adopt
the answer part of the instruction template (i.e.,
"<lim_start|>Assistant:") to guide skeleton genera-
tion. This setup encourages more diverse skeletons.
Nevertheless, to further promote the generation of
error-prone skeletons and suppress unrelated con-
tent, additional fine-tuning is required.
Concretely, during fine-tuning we adjust the in-
struction template to "<lim_start|>Assistant: {out-
put}<im_end>". An example from the fine-tuning
dataset in Alpaca format is shown in Figure 8. At
inference time, we use the same instruction tem-
plate, and the model can directly output diverse
skeletons without requiring any explicit instruction.

D Skeletons Extraction

To extract the skeletons of SQL queries, we employ
SQLGlot to parse SQL queries into ASTs. We then
traverse the ASTs to identify all tables, columns,
and literals, replacing them with corresponding
placeholders to obtain the SQL skeletons. For other
query languages such as Cypher and nGQL, due to
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Cypher Skeleton Extraction Rules

# Task Description

You are required to analyze the following Cypher query statements and
replace their node labels, relationship types, properties, variables,
and literals with specific placeholders. Each placeholder is defined
as follows:

- <TAG>: Vertex (tag) types

- <REL_TYPE>: Relationship types

<VAR>: All user-defined variables / aliases

<PROPERTY>: Property names

<LITERAL>: String / numeric / temporal literals

# Requirements

1. Identify every occurrence of node labels, relationship types,
properties, variables, and literals.

2. Replace them with the corresponding placeholders exactly as
defined above.

3. Preserve all keywords, symbols, function names and punctuation.

Figure 9: Extraction rules for Cypher skeletons.

nGQL Skeleton Extraction Rules

# Task Description

You are required to analyze the following nGQL statements and replace
their graph-specific elements with unified placeholders. Each
placeholder is defined as follows:

- <SPACE>: Graph space names

<TAG>: Vertex (tag) types

<EDGE_TYPE>: Edge types

<VAR>: All user-defined variables / aliases

<PROPERTY>: Property names

<LITERAL>: String / numeric / temporal literals, including list
literals and step counts

- <INDEX>: Index names

# Requirements

1. Identify every occurrence of graph spaces, tags, edge types,
variables, properties, literals, and index names.

2. Replace them with the corresponding placeholders exactly as
defined above.

3. Preserve all keywords, symbols, step ranges, function names (dst,
sum, etc.) and punctuation.

Figure 10: Extraction rules for nGQL skeletons.

the lack of powerful open-source parsers, we pre-
define skeleton extraction rules and leverage LLMs
to accomplish the extraction. The extraction rules
for Cypher skeletons are illustrated in Figure 9, and
those for nGQL skeletons are shown in Figure 10.

E Impact of Teacher Models

To examine how our method performs with teacher
models of different capacities, we conducted ex-
periments using two smaller models, Qwen2.5-
14B-Instruct and Qwen2.5-32B-Instruct, as alterna-
tives to the original teacher model Qwen2.5-72B-
Instruct used in the paper. The base model we used
is Qwen2.5-Coder-7B and we evaluate it on the
BIRD dataset. As shown in Table 5, while using a
weaker teacher does lead to a slight drop in perfor-
mance, the overall decline is modest, indicating the
robustness of our method to the choice of teacher
model. At the same time, stronger teacher mod-
els do yield better results, suggesting that, when
resources permit, such as using larger open-source
models or even proprietary ones, the benefits of our
method can be further amplified.

Teacher Model \ simple moderate challenging total
Qwen2.5-14B-Instruct 64.8 50.2 42.1 58.2
Qwen2.5-32B-Instruct 65.2 50.4 435 58.7
Qwen2.5-72B-Instruct 67.6 535 47.6 61.4

Table 5: EX performance variations across different
teacher models, evaluated on the BIRD dev set using
Qwen2.5-Coder-7B as the target model.

1227



Prompt For Skeleton Instantiation (Text-to-SQL)

You are an SQL expert with advanced database knowledge.

# Instruction

You have an SQLite database along with its Schema, which includes helpful comments on
the columns and sample data. Given an SQLite query skeleton with its tables, columns
and values replaced by the placeholders <TABLE>, <COLUMN> and <LITERAL> respectively,
you are tasked with replacing the placeholders with appropriate tables, columns and
values based on your understanding of the database schema.

# Requirements:

1. a <TABLE> stands for a specific table (It is just a single table, not a table
formed by joining several tables.) in the database, a <COLUMN> stands for a specific
column in the database and a <LITERAL> stands for a value (its type could be text,
int, float etc.) related to relevant column, DONT confuse these three placeholders
(e.g. using a number to replace <COLUMN> or <TABLE>).

2. The tables, columns and values you use should be resonable and correct, don't make
up a table or column that don't belong to the database.

3. It's best for each query you write to be able to map a meaningful real-world
natural language question which may be raised by a database user

4. You are allowed to make minor changes to the skeleton to make the final SQL more
reasonable and more suitable for the database schema, large-scale changes are not
allowed.

5. The return results of the Filled-in query should not be empty.

6. Please provide ONLY the Filled-in SQLite query with placeholders filled in without
showing the process or steps to correct errors or any other information that doesn't
belong to an SQL.

# Output Format
Your output should be enclosed within <answer> and </answer>

# Database Schema
{SCHEMA_SLOT}

# Demonstrations
{DEMONSTRATIONS_SLOT}

# Your Response
Skeleton:{SKELETON_SLOT}
SQL:

Figure 11: Prompt for Skeleton Instantiation in the Data Synthesis Pipeline of Text-to-SQL.
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Prompt For Backward Generation (Text-to-SQL)

You are an SQL expert with advanced database knowledge.

# Instruction

You have an SQLite database along with its Schema, which includes helpful comments on
the columns and sample data. Now, given an SQLite query on this database, you are asked
to translate the SQLite query into a corresponding natrual language question.

# Requirements:

1. the question you raised can be answered by the SQLite query given to you precisely
2. you should ensure the quetion is readable, natural and meaningful.

3. DONT revise the query given to you.

1+

Output Format
Your output should be enclosed within <answer> and </answer>

# Database Schema
{SCHEMA_SLOT}

# Demonstrations
{DEMONSTRATIONS_SLOT}

# Your Response
SQL: {SQL_SLOT}
Question:

Figure 12: Prompt for Backward Generation in the Data Synthesis Pipeline of Text-to-SQL.
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Prompt For Forward Verification (Text-to-SQL)

You are an SQL expert with advanced database knowledge.

# Instruction

You have an SQLite database along with its Schema, which includes helpful comments on
the columns and sample data. Based on its Schema, your colleagues generated a lot of

question-query (SQLite query) pairs. However, the SQLite query in some pairs may not

correctly solve the corresponding question. Now, given a question-query pair, you are
asked to revise the SQLite query to make it able to correctly solve the corresponding
question if you think the original query cannot solve the question correctly with the
help of database schema.

# Requirements:

1.If you believe the question matches the SQL, you should return the original SQL
without making any changes. If you think they do not match, You must provide a
reasonable explanation, detailing why the original question-SQL pair is incorrect and
the reasoning behind your modifications and then return your revised SQL.

2.In your response, there's no need to list the original question and SQL again.
3.Think step by step before you answer.

# Database Schema
{SCHEMA_SLOT}

# Output Format
Your output should be enclosed within <answer> and </answer>

# Demonstrations
{DEMONSTRATIONS_SLOT}

# Your Response

Question: {QUESTION_SLOT}
SQL: {SQL_SLOT}

Your Response:

Figure 13: Prompt for Forward Verification in the Data Synthesis Pipeline of Text-to-SQL.
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Prompt For Skeleton Instantiation (Text-to-Cypher)

You are a Cypher expert with advanced Neo4j database knowledge.

# Instruction

You have an Neo4j database along with its Schema. Given an nGQL skeleton with its
graph-specific elements: node labels, relationship types, properties, variables, and
literals replaced by the placeholders <LABEL>, <REL_TYPE>, <VAR>, <PROPERTY> and
<LITERAL> respectively, you are tasked with replacing the placeholders with appropriate
elements based on your understanding of the schema.

# Requirements

1. The graph-specific elements you use should be resonable and correct.

2. The graph-specific elements you use must come from the schema, you cannot make it up
yourself.

3. It's best for each query you write to be able to map a meaningful real-world natural
language question which may be raised by a graph user

4. You are allowed to make minor changes to the skeleton to make the final Cypher more

reasonable and more suitable for the schema, large-scale changes are not allowed.

5. Please provide ONLY the Filled-in Cypher with placeholders filled in without showing
the process or steps to correct errors or any other information that doesn't belong to

a Cypher.

# Output Format
Your output should be enclosed within <answer> and </answer>

# Schema
{SCHEMA_SLOT}

# Demonstrations
{DEMONSTRATIONS_SLOT}

# Your Response
Skeleton: {SKELETON_SLOT}
Cypher:

Figure 14: Prompt for Skeleton Instantiation in the Data Synthesis Pipeline of Text-to-Cypher.
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Prompt For Backward Generation (Text-to-Cypher)

You are a Cypher expert with advanced Neo4j database knowledge.

# Instruction

You have an Neo4j database along with its Schema. Now, given a Cypher query on this
database, you are asked to translate the Cypher query into a corresponding natrual
language question.

# Requirements

1. the question you raised can be answered by the Cypher query given to you precisely
2. you should ensure the quetion is readable, natural and meaningful.

3. DONT revise the query given to you.

H*

Output Format
Your output should be enclosed within <answer> and </answer>

# Schema
{SCHEMA_SLOT}

# Demonstrations
{DEMONSTRATIONS_SLOT}

# Your Response
Cypher: {CYPHER_SLOT}
Question:

Figure 15: Prompt for Backward Generation in the Data Synthesis Pipeline of Text-to-Cypher.
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Prompt For Forward Verification (Text-to-Cypher)

You are an Cypher expert with advanced Neo4]j database knowledge.

# Instruction

You have an Neo4j database along with its Schema. Based on its Schema, your colleagues
generated a lot of question-query (Cypher query) pairs. However, the Cypher query in
some pairs may not correctly solve the corresponding question. Now, given a question-
query pair, you are asked to revise the Cypher query to make it able to correctly solve
the corresponding question if you think the original query cannot solve the question
correctly with the help of database schema.

# Requirements

1.If you believe the question matches the Cypher, you should return the original Cypher
without making any changes. If you think they do not match, You must provide a
reasonable explanation, detailing why the original question-Cypher pair is incorrect
and the reasoning behind your modifications and then return your revised Cypher.

2.In your response, there's no need to list the original question and Cypher again.
3.Think step by step before you answer.

# Output Format
Your output should be enclosed within <answer> and </answer>

# Schema
{SCHEMA_SLOT}

# Demonstrations
{DEMONSTRATIONS_SLOT}

# Your Response

Question: {QUESTION_SLOT}
Cypher: {CYPHER_SLOT}
Your response:

Figure 16: Prompt for Forward Verification in the Data Synthesis Pipeline of Text-to-Cypher.
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Prompt For Skeleton Instantiation (Text-to-nGQL)

You are an nGQL expert with advanced NebulaGraph database knowledge.

# Instruction

You have an NebulaGraph database along with its Schema. Given an nGQL skeleton with its
graph-specific elements: graph space, vertex types, edge types, variables, properties,
values and index names replaced by the placeholders <SPACE>, <TAG>, <EDGE_TYPE>, <VAR>,
<PROPERTY>, <LITERAL> and <INDEX> respectively, you are tasked with replacing the
placeholders with appropriate elements based on your understanding of the schema.

# Requirements

1. The graph-specific elements you use should be resonable and correct.

2. The graph-specific elements you use must come from the schema, you cannot make it up
yourself.

3. It's best for each query you write to be able to map a meaningful real-world natural
language question which may be raised by a graph user

4. You are allowed to make minor changes to the skeleton to make the final nGQL more
reasonable and more suitable for the schema, large-scale changes are not allowed.

5. Please provide ONLY the Filled-in nGQL with placeholders filled in without showing
the process or steps to correct errors or any other information that doesn't belong to
an nGQL.

# Reference

The following is a simple document to provide you with a reference to the common syntax
of nGQL:

{REFERENCE_SLOT}

# Output Format
Your output should be enclosed within <answer> and </answer>

# Schema
{SCHEMA_SLOT}

# Demonstrations
{DEMONSTRATIONS_SLOT}

# Your Response
Skeleton: {SKELETON_SLOT}

\¥nGQL: p

Figure 17: Prompt for Skeleton Instantiation in the Data Synthesis Pipeline of Text-to-nGQL. The {REFER-
ENCE_SLOT} part will be replaced with the Code-Structured Skeleton for GQL (including the framework of nGQL
keywords) described in Zhou et al. (2024).
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Prompt For Backward Generation (Text-to-nGQL)

You are an nGQL expert with advanced NebulaGraph database knowledge.

# Instruction

You have an NebulaGraph database along with its Schema. Now, given an nGQL query on
this database, you are asked to translate the nGQL query into a corresponding natrual
language question.

# Requirements

1. the question you raised can be answered by the nGQL query given to you precisely
2. you should ensure the quetion is readable, natural and meaningful.

3. DONT revise the query given to you.

# Reference

The following is a simple document to provide you with a reference to the common syntax
of nGQL:

{REFERENCE_SLOT}

# Output Format
Your output should be enclosed within <answer> and </answer>

# Schema
{SCHEMA_SLOT}

# Demonstrations
{DEMONSTRATIONS_SLOT}

# Your Response
nGQL: {NGQL_SLOT}
Question:

Figure 18: Prompt for Backward Generation in the Data Synthesis Pipeline of Text-to-nGQL.
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Prompt For Forward Verification (Text-to-nGQL)

You are an nGQL expert with advanced NebulaGraph database knowledge.

# Instruction

You have an NebulaGraph database along with its Schema. Based on its Schema, your
colleagues generated a lot of question-query (nGQL query) pairs. However, the nGQL
query in some pairs may not correctly solve the corresponding question. Now, given a
question-query pair, you are asked to revise the nGQL query to make it able to
correctly solve the corresponding question if you think the original query cannot solve
the question correctly with the help of database schema.

# Requirements

1.If you believe the question matches the nGQL, you should return the original nGQL
without making any changes. If you think they do not match, You must provide a
reasonable explanation, detailing why the original question-nGQL pair is incorrect and
the reasoning behind your modifications and then return your revised nGQL.

2.In your response, there's no need to list the original question and nGQL again.
3.Think step by step before you answer.

# Reference

The following is a simple document to provide you with a reference to the common syntax
of nGQL:

{REFERENCE_SLOT}

# Output Format
Your output should be enclosed within <answer> and </answer>

# Schema
{SCHEMA_SLOT}

# Demonstrations
{DEMONSTRATIONS_SLOT}

# Your Response

Question: {QUESTION_SLOT}
nGQL: {NGQL_SLOT}

Your response:

Figure 19: Prompt for Forward Verification in the Data Synthesis Pipeline of Text-to-nGQL.
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