

DiagramEval: Evaluating LLM-Generated Diagrams via Graphs

Chumeng Liang¹, Jiaxuan You¹

¹University of Illinois Urbana-Champaign

chumengl@illinois.edu, jiaxuan@illinois.edu

Abstract

Diagrams play a central role in research papers for conveying ideas, yet they are often notoriously complex and labor-intensive to create. Although diagrams are presented as images, standard image generative models struggle to produce clear diagrams with well-defined structure. We argue that a promising direction is to generate demonstration diagrams directly in textual form as SVGs, which can leverage recent advances in large language models (LLMs). However, due to the complexity of components and the multimodal nature of diagrams, sufficiently discriminative and explainable metrics for evaluating the quality of LLM-generated diagrams remain lacking. In this paper, we propose DiagramEval, a novel evaluation metric designed to assess demonstration diagrams generated by LLMs. Specifically, DiagramEval conceptualizes diagrams as graphs, treating text elements as nodes and their connections as directed edges, and evaluates diagram quality using two new groups of metrics: node alignment and path alignment. For the first time, we effectively evaluate diagrams produced by state-of-the-art LLMs on recent research literature, quantitatively demonstrating the validity of our metrics. Furthermore, we show how the enhanced explainability of our proposed metrics offers valuable insights into the characteristics of LLM-generated diagrams. Code: <https://github.com/ulab-uiuc/diagram-eval>.

1 Introduction

Diagrams play a central role in research papers for conveying ideas, *e.g.*, the diagram of Transformer (Vaswani et al., 2017) has played a pivotal role in presenting and publicizing the idea, making it one of the most cited deep learning papers. However, generating high-quality diagrams is often notoriously complex and labor-intensive to create. Consequently, automated diagram generation is a central challenge in AI-assisted scientific discovery (Eger et al., 2025), potentially saving millions

of hours for researchers while improving the quality of research publications. Although diagrams are presented as images, standard image generative models struggle to produce clear diagrams with well-defined structure (Zala et al., 2023). We argue that a promising direction is to generate demonstration diagrams directly in textual form as SVGs, which can leverage recent advances in large language models (LLMs).

Existing methods on automated diagram generation with LLMs rely heavily on proprietary LLMs, either through direct planning (Mondal et al., 2024; Zhang et al., 2024; Cui et al., 2025) or as assistance in diagram generation (Belouadi et al., 2023, 2024; Cui et al., 2025). Given this reliance, advancements in cutting-edge proprietary LLMs, such as Claude 3.7 Sonnet (Anthropic, 2025) and Gemini 2.5 Pro (Google DeepMind, 2025), directly enhance automated diagram generation through SVG code generation capabilities (Blecher et al., 2023).

However, existing evaluation metrics lack the expressiveness needed to differentiate diagrams of varying quality. Most benchmarks employ model-based, diagram-level metrics (Hessel et al., 2021; Fu et al., 2023), which were originally designed for general text-to-image tasks rather than text-within-image generation specific to diagrams (Rodriguez et al., 2023). These metrics evaluate entire diagrams using general vision models, which limits their explainability and their ability to accurately capture detailed logical correctness, resulting in only moderate correlation with human judgments (Eger et al., 2025). Thus, there is a critical need for new metrics.

In this paper, we propose DiagramEval, a novel evaluation metric designed to assess demonstration diagrams generated by LLMs. Specifically, DiagramEval conceptualizes diagrams as graphs, treating text elements as nodes and their connections as directed edges, and evaluates diagram quality using two new groups of metrics: node alignment

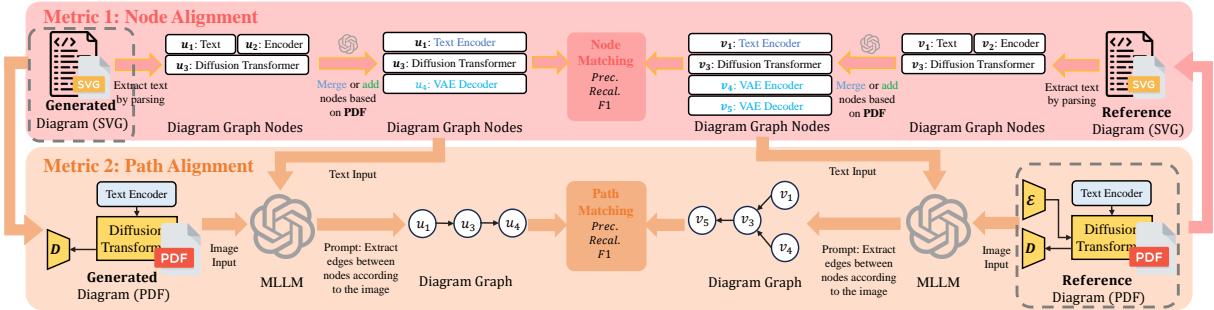


Figure 1: **DiagramEval framework overview**. Intuitively, **Node Alignment** measures the correctly matched text elements between generated and groundtruth diagrams while **Path Alignment** measures the correctly matched connections upon matched elements.

and path alignment. Specifically, we transform diagrams into SVG format, parsing text elements as nodes. Connections between elements are then extracted as edges. Our metrics quantify the node and path (multi-hop edges) alignment between generated and ground-truth diagrams using precision, recall, and F1 scores. For the first time, we effectively evaluate diagrams produced by state-of-the-art LLMs on recent research literature, validating the proper consistency between our metrics and existing metrics. We also demonstrate metric statistics and case studies that reveal some previously unrecognized shortcomings of existing metrics due to their moderate explainability, for example, over-sensitivity to spatial layouts and other visual elements and metric hacking. We furthermore show empirically how the enhanced explainability of our metrics helps overcome these shortcomings and meanwhile offers valuable insights into the characteristics of LLM-generated diagrams.

2 Related Works

Extensive research has addressed both the understanding (Han et al., 2023; Liu et al., 2023; Wang et al., 2024b; Hu et al., 2024) and generation (Madigan and Susnjak, 2023; Yang et al., 2024) of scientific images, with specific efforts targeting diagram generation (Zala et al., 2023; Zhang et al., 2024; Mondal et al., 2024; Cui et al., 2025). Current automated evaluation metrics fall into two main categories: 1) diagram-to-diagram similarity (Fu et al., 2023), and 2) caption-to-diagram similarity (Zhang et al., 2019; Hessel et al., 2021). Both metric types primarily measure overall similarity between generated diagrams and references in latent space, neglecting detailed logical accuracy, such as verifying element-wise connections against the paper context. Closely related to our approach

is the VPEval metric (Cho et al., 2023), which evaluates element and connection accuracy via visual question answering (VQA). However, VPEval often struggles to accurately identify connections even in diagrams involving common knowledge, requiring manual annotations (Zala et al., 2023). Our approach extends the concept of VPEval by leveraging vision-language models (VLMs) and file parsing to reliably extract elements and connections, thus better suited for evaluating diagrams generated from academic papers.

3 Preliminary

Problem Definition Following existing research working on diagram generation (Zala et al., 2023; Mondal et al., 2024), we define the task of automated generation of scientific diagrams from academic papers: Given the input corpus $\{T, c, \pi\}$, which includes original paper context T , original diagram captions c_{orig} , and layout captions c_{layout} , our goal is to **generate a diagram \mathcal{D} which demonstrates the overall idea of research paper T** . We have a groundtruth diagram \mathcal{D}_{gt} , which we use to generate the layout captions with an independent vision language model. \mathcal{D}_{gt} also serve as reference to evaluate generated diagrams. As mentioned, the diagram generation is done in the SVG format (Blecher et al., 2023), which is both editable and widely adopted by proprietary LLMs.

4 Methodology

As illustrated in Figure 1, our evaluation framework for LLM-generated diagrams is based on the core idea of treating diagrams as text-attributed graphs (TAGs) (Yang et al., 2021). In these graphs, diagram elements associated with text are defined as nodes, while connections between elements form

directed edges. We introduce novel metrics to evaluate these diagrams from two complementary perspectives: **Node Alignment**, which assesses the matching of nodes between the generated and reference diagrams, and **Path Alignment**, which evaluates the consistency of paths in both diagrams connecting matched nodes.

The primary challenge in performing this detailed evaluation lies in effectively extracting nodes and edges from SVG diagram files, which we address in the following section.

4.1 Constructing Diagram Graphs

Node Extraction: Text exists in SVG files in the form of SVG text items. Since they are accessible by scanning SVG files, the key problem of node extraction is to determine what text items belong to one node. We combine the spatial and semantic factors in a two-step process to tackle this process.

The upper half of Figure 1 outlines the node extraction process. First, we form a draft node list by parsing the SVG file. We collect spatial coordinates and span lengths of all text items in the file. Then, we investigate every item pair about whether 1) their y -coordinates differ by less than $K \times$ font size, and 2) their spans in the x -coordinate overlap for more than τ . If both conditions are fulfilled, two items are considered as one node. We apply above parsing to get the draft node list.

Second, we exploit a light-weight multi-modal LLM to refine the draft node list according to the text semantic. This step takes the rendered SVG image and draft node list as input. The LLM is tasked with several refinement operations: (1) **Merging** spatially contiguous and semantically related text nodes; (2) **Adding** missing conceptual nodes, which may include non-textual elements (such as icons or logos); and (3) **Removing** nodes with unclear semantics. We obtain the final node list $V = \{v_i\}$ from the LLM output.

Edge Extraction: Edges are represented implicitly in the diagram, making their identification challenging. Manually defining rules to capture diverse visual forms of connections (e.g., arrows with various styles, lines, and spatial arrangements indicating logical flows) from raw SVG data is highly complex. Thus, we again employ an LLM with vision capabilities. As depicted in the lower half of Figure 1, this model is provided with the rendered diagram image and a curated list of nodes, each with a unique identifier and textual content.

The LLM analyzes visual cues—such as arrows, lines, and proximities—to identify all directed connections between node identifiers. This yields a set of directed edges $E = (v_i, v_j), \dots$, where $v_i, v_j \in V$. Combining edge set E with node set V results in the complete extracted graph $\mathcal{G}(V, E)$.

This node and edge extraction process is independently applied to both the LLM-generated diagram \mathcal{D} , resulting in the graph \mathcal{G}_{gen} , and the groundtruth diagram \mathcal{D}_{gt} , yielding the reference graph \mathcal{G}_{ref} . We evaluate its accuracy in Section 5.4.

4.2 Evaluation Metrics

Node Alignment These metrics appraise the fidelity of the textual content within the generated diagram. This involves assessing the degree to which the set of text elements V_{gen} in the generated diagram aligns with the set V_{ref} from the reference diagram. The core of this comparison is a node-matching procedure: each node in V_{gen} is compared against all unmatched nodes in V_{ref} . A match is established if the textual similarity between a pair of nodes, surpasses a predefined threshold. Denoting M_V as the set of successfully matched node pairs (v_{gen}, v_{ref}) , where $v_{gen} \in V_{gen}$ and $v_{ref} \in V_{ref}$, we quantify performance as follows:

- **True Positives (TP_V):** The cardinality of the set of matched node pairs, $|M_V|$.
- **False Positives (FP_V):** The count of nodes in V_{gen} that remain unmatched, $|V_{gen}| - TP_V$.
- **False Negatives (FN_V):** The count of nodes in V_{ref} that remain unmatched, $|V_{ref}| - TP_V$.

Based on these quantities, we compute information retrieval metrics—Precision_V, Recall_V, and F1-score_V as our proposed metrics for node alignment.

Path Alignment We also assess the node-wise structural fidelity encoded in \mathcal{G}_{gen} corresponds with that in \mathcal{G}_{ref} in addition to node alignment. We choose to investigate *path*, whose existence is a reachability indicator between two nodes. Not limited to neighborhood, paths reveal all relationships in the diagram, thus being a better feature for relational information comparison.

Crucially, this comparison is constrained to the subgraph induced by the previously matched nodes M_V , because node appearance has been evaluated

Model	Node Alignment			Path Alignment			CLIPScore	
	prec.	recal.	F1	prec.	recal.	F1	Text	Image
Llama 4 Maverick	0.4737	0.3121	0.3470	0.2260	0.2506	0.2005	0.6962	0.6950
Gemini 2.5 Pro	0.3600	0.3741	0.3341	0.2503	0.2817	0.2261	0.6090	0.7021
Claude 3.7 Sonnet	0.2921	0.5087	0.3500	0.3353	0.2108	0.2419	0.6206	0.7324

Table 1: Results on diagram generation of three LLMs over our metrics and two CLIPScore metrics (Hessel et al., 2021), the most widely-used evaluation measurement.

in the Node Alignment. Specifically, we exclude those unmatchable nodes in one graph that are not possible to get involved a path in the other graph.

Let $M_V = (v_{gen}, v_{ref})$ denote the set of matched node pairs. We define V_M as the set of matched nodes, i.e., $V_M = \{v_{gen} \mid (v_{gen}, v_{ref}) \in M_V\} = \{v_{ref} \mid (v_{gen}, v_{ref}) \in M_V\}$. For simplicity, we maintain a one-to-one correspondence between nodes in V_{gen}^M and V_{ref}^M via the mapping defined by M_V .

We then induce subgraphs \mathcal{G}_{gen}^M and \mathcal{G}_{ref}^M on the matched nodes V_M in both the generated and reference graphs, respectively.

For each ordered pair of distinct matched nodes (u, v) where $u, v \in V_M$ and $u \neq v$, we assess: 1) whether there exists a path from u to v in \mathcal{G}_{gen}^M , and 2) whether there exists a path from the corresponding node u' to v' in \mathcal{G}_{ref}^M , where $(u, u') \in M_V$ and $(v, v') \in M_V$. Formally, we define:

$$\begin{aligned} P_{gen} &= \{(u, v) \mid u \neq v, \\ &\quad \text{path from } u \text{ to } v \text{ exists in } \mathcal{G}_{gen}^M\} \\ P_{ref} &= \{(u, v) \mid u \neq v, \\ &\quad \text{path from } u' \text{ to } v' \text{ exists in } \mathcal{G}_{ref}^M\} \end{aligned} \quad (1)$$

where, for each $(u, v) \in P_{gen}$ or P_{ref} , u and v are matched nodes and u' and v' are their respective counterparts in the other graph according to M_V . We can then compare P_{gen} and P_{ref} by defining:

- True Positives (TP_P): The number of node pairs for which a path exists in both induced subgraphs, i.e., $|P_{gen} \cap P_{ref}|$.
- False Positives (FP_P): Node pairs where a path exists only in \mathcal{G}_{gen}^M , i.e., $|P_{gen} \setminus P_{ref}|$.
- False Negatives (FN_P): Node pairs where a path exists only in \mathcal{G}_{ref}^M , i.e., $|P_{ref} \setminus P_{gen}|$.

Based on these quantities, we compute Precision_P , Recall_P , and F1-score_P as our metrics for path alignment.

In concert, metrics for **Node Alignment** and **Path Alignment** furnish a fine-grained and explainable evaluation of LLM-generated diagrams. They discriminate diagrams by exactly telling the mismatching of text elements and their relationship. Our advantage in interpretability also provides guidance on where the generation could be improved. In the next section, we support this point by results.

5 Experiment

This section discuss our experiments conducted to validate our metrics by comparison with CLIPScore (Hessel et al., 2021), the most widely-used evaluation metrics for diagram generation. We first explain our experiment setup in Section 5.1. Then, we give the main result of our experiment in Section 5.2. Section 5.3 demonstrates the statistics of metrics in the experiment. Section 5.4 validates our metrics by comparing to human evaluation. Section 5.5 explains with cases what happen when our metrics and CLIPScore differ, respectively. Throughout our experiment, we show that our metrics provide unique and beneficial information towards better evaluation of automated diagram generation.

5.1 Experimental Setup

As mentioned in Section 3, we first prompt state-of-the-art LLMs to generate diagrams based on the text input. Then, we evaluate the generated diagrams over our 6 metrics (3× Node Alignment, 3× Path Alignment) and CLIPScore (Hessel et al., 2021), the most common metric for diagram generation. Following are our detailed setup:

Diagram Generation We pick three cutting-edge LLMs for diagram generation: Llama 4 Maverick, Gemini 2.5 Pro, and Claude 3.7 Sonnet, which we access by their official APIs. The unified prompts we use to generate diagrams are omitted to Appendix A.3. The layout caption is generated by Gemini-2.0-Flash-lite by prompting to generate

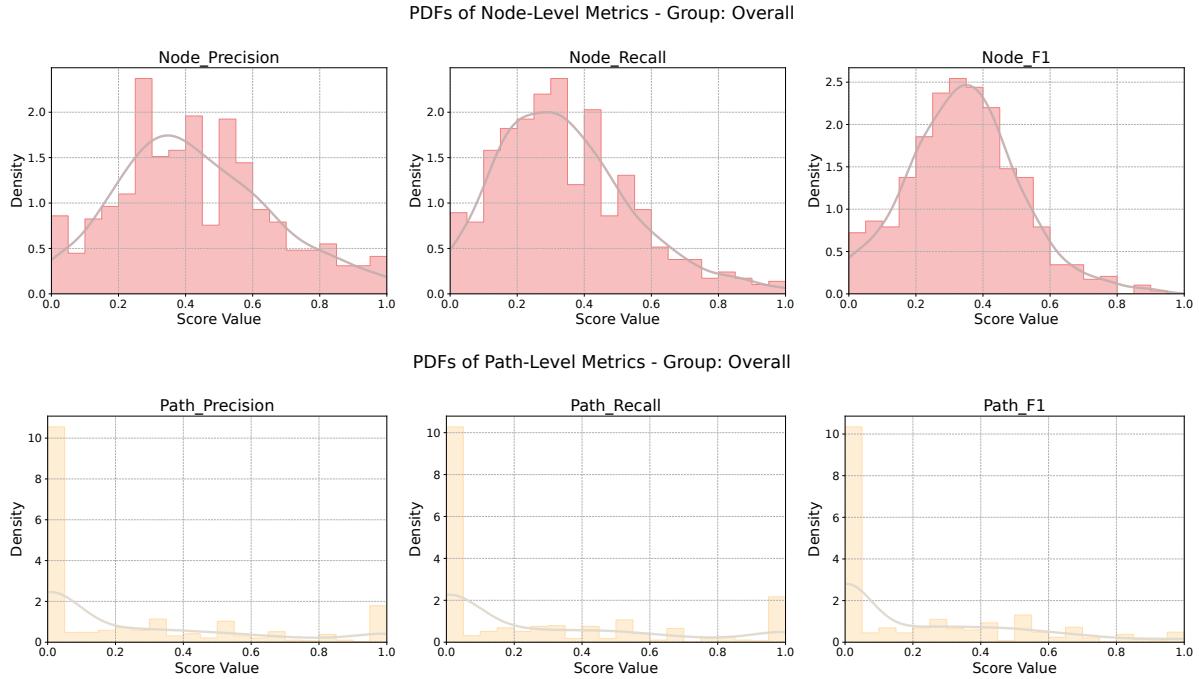


Figure 2: Statistic results: probability density functions (PDFs) of our 6 novel metrics.

a layout caption for the diagram image. The used prompts are omitted to Appendix A.3.

DiagramEval We use Gemini-2.0-Flash-lite as the LLM used in our evaluation pipeline, including node extraction refinement and edge extraction. The used prompts are omitted to Appendix A.3. K and τ in the node extraction are empirically set to 1.5 and 0.2.

Baseline We use the code ¹ of DiagrammerGPT (Zala et al., 2023) for computing CLIP-Score. Following their implementation, we use SigLIP (Zhai et al., 2023) ² as the vision and language encoder in CLIPScore. LLM-generated layout captions and groundtruth diagrams are selected as text reference and image reference for CLIPScore, respectively. Following DiagrammerGPT (Zala et al., 2023), we use model-generated captions for computing CLIPScore because original captions may not cover enough details of the groundtruth diagram.

Notably, VPEval (Cho et al., 2023) is not suitable for evaluating paper diagrams. First, the object detection in VPEval needs text to explicitly provide the objects. However, in paper diagrams, there are often dozens of objects while few of them

are explicitly described by paper context. Hence, we cannot use VPEval to evaluate paper diagrams. Second, VPEval only counts direct connections between objects. However, generated diagrams tend to skip some connections in the reference diagrams, for example, a-c compared to the original a-b-c. This is normal in most cases when b is not very important compared to the correct connection between a and c, for example, b is a linear layer between two backbone models. However, VPEval cannot capture such indirect connections, thus losing discrimination.

Dataset To avoid knowledge leakage, we collect papers accepted by CVPR2025 as the source of our evaluation dataset, because they are released after the data cutoff date of three LLMs. We use an automated pipeline to select diagrams with abundant text annotation and collect them with captions and corresponding paper context. A total number of 361 items are included in our dataset. Data consensus and licenses are omitted to Appendix A.1.

5.2 Quantitative Result

Table 1 shows our quantitative result. Three models have similar performance in diagram generation over our metrics and CLIPScore, proving our basic soundness. All metrics agree that Claude generates diagrams that best align with the groundtruth diagrams, for it performs the best over 4 out of our 6

¹<https://github.com/aszala/DiagrammerGPT>

²<https://huggingface.co/google/siglip-so400m-patch14-384>

PDFs of Vision-Based Similarity Metrics - Group: Overall

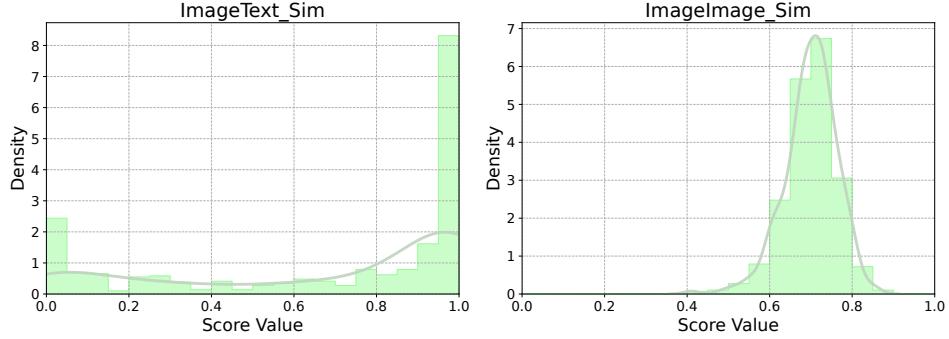


Figure 3: Probability Density Functions (PDFs) of two CLIPScore metrics (Hessel et al., 2021).

metrics and CLIPScore (Image).

One interesting observation is that Claude suffers from poor node alignment precision while having the outstanding node recall. One potential explanation is that its generated diagrams tend to include extraneous nodes compared to groundtruth diagrams. To validate this assumption, we count the average number of nodes in generated diagrams by three LLMs. The result fits our assumption that Claude produces diagrams with 31.67 nodes on average, much more than 21.42 nodes of Gemini and 10.68 nodes of Llama. This may also explain the poor performance of Claude over CLIPScore (Text): While CLIPScore (Image) puts weights on the layout and visual elements, CLIPScore (Text) is more sensitive to unexpected text. Hence, irrelevant text elements greatly affect Claude’s performance over CLIPScore (Text).

This observation highlights how our metrics provide interpretable insights into diagram generation performance, complementing coarse-grained metrics with fine-grained, structure-aware evaluation.

5.3 Statistics

We compute the probability density functions of our 6 novel metrics and 2 CLIPScore metrics (Hessel et al., 2021), whose result is given in Figure 2 and 3. We also analyze their correlation and demonstrate the result in Figure 4.

Node Alignment metrics showed a notable positive correlation with CLIPScore metrics, likely due to their common focus on text element consistency. However, Node Alignment exhibited healthier score distributions. This improvement stems from isolating node-level textual alignment from factors like spatial layouts, colors, and styles, which significantly affect CLIPScore despite being irrelevant to textual content accuracy. Simply

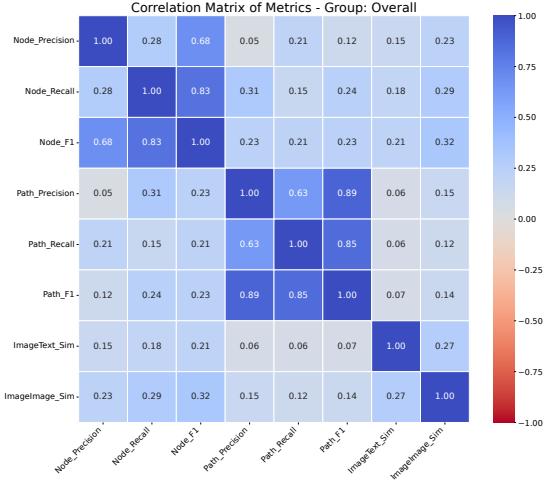


Figure 4: Correlation map of our 6 novel metrics and 2 CLIPScore metrics. Metrics of Node Alignment show considerable positive correlation with 2 CLIPScore metrics. Metrics of Path Alignment appear to be indifferent with 2 CLIPScore metrics.

changing the layout from vertical to horizontal can partially offset the drop in CLIPScore caused by removing all connections in the diagram. Additionally, CLIPScore’s sensitivity to superficial image elements also inherently limits scoring extremes, constraining its effectiveness in diagram evaluations. Given the fact that novel methods often report only 0.01 improvements on CLIPScore (Zala et al., 2023; Mondal et al., 2024), **Node Alignment is a good complement and a potential alternate to CLIPScore**.

Conversely, Path Alignment metrics displayed minimal correlation with CLIPScore. The case study in the next section will show that this is because many diagrams generated by three LLMs, even they are state-of-the-art ones, perform poorly in expressing relationship. This finding is corroborated by existing research on whether LLM can

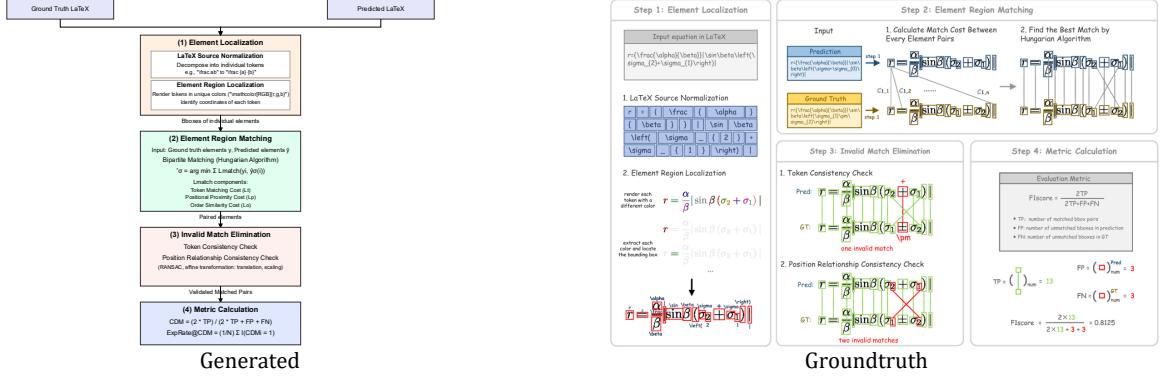


Figure 5: Case: Low CLIPScore (Text) and high Path F1. **CLIPScore (Text):** 0.2558. **Path F1:** 1.

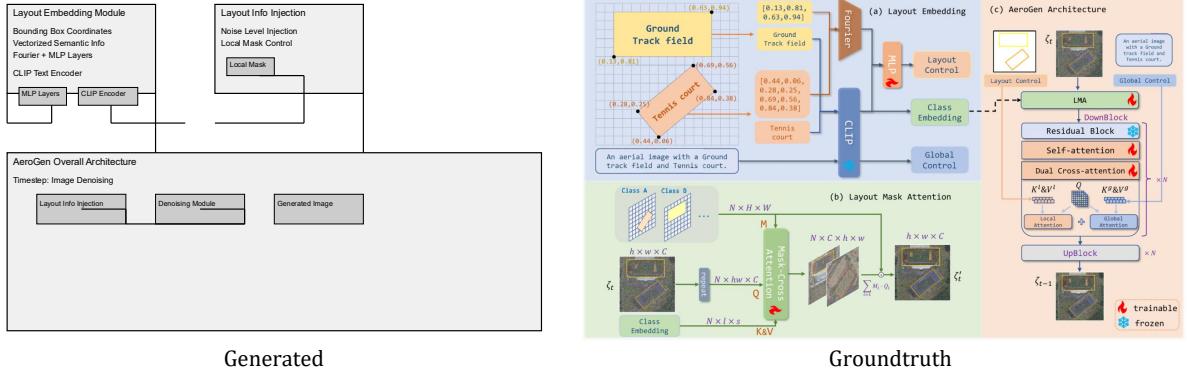


Figure 6: Case: High CLIPScore (Text) and low Path F1. **CLIPScore (Text):** 1. **Path F1:** 0.

understand graph structures within text (Wang et al., 2023). However, this shortcoming has never been explicitly revealed by any existing metrics. **Path Alignment** provides fine-grained, interpretable insights into missing or incorrect connections, **being a novel perspective of evaluation not offered by existing metrics.**

5.4 Human Evaluation

Accuracy of Node Extraction: Our node extraction simply transfers one single text element in the SVG format into one node. This is accurate because phrases are naturally placed in one text element in both reference and generated diagrams. 2) Edge extraction: We conduct new experiments to examine the accuracy of edge extraction. We randomly pick 1 edge for every diagram and let two machine learning researchers judge whether this edge exists in the diagram.

The result shows that 85.87% of the nodes in reference diagrams and 90% in generated diagrams are extracted accurately, where 361/361 of reference diagrams and 300/361 of generated diagrams are evaluated (no edge cannot be extracted from the rest 61 generated diagrams because of the low qual-

ity). While it is hard to know how many edges are there in the diagram, these precision scores make sure that extracted edges are highly possible to exist in the diagram. This validates the accuracy of our edge extraction process. We will add this result to our new draft to complement the paper.

Correlation with human evaluation: We follow the human evaluation of Cho et al. (2023) and select a subset of 50 reference diagrams (the first 50 by the name order) and corresponding generated diagrams by Gemini-2.5-Pro. Two senior machine learning researchers then evaluate the semantic similarity between reference and generated diagrams by answering the question: do two diagrams express the same logic? Our interface offers three options for the human evaluators: good (1.0), fair (0.5), and bad (0). The average similarity score is 0.3298, with nearly half of the results being 0. The following Table 2 shows the correlation between the human-evaluated similarity score and metrics in our papers:

Our new metrics show better alignment with human evaluation. We observe that CLIPScore-Image may give a generated diagram a relatively good score even if its element-wise logic is definitely dif-

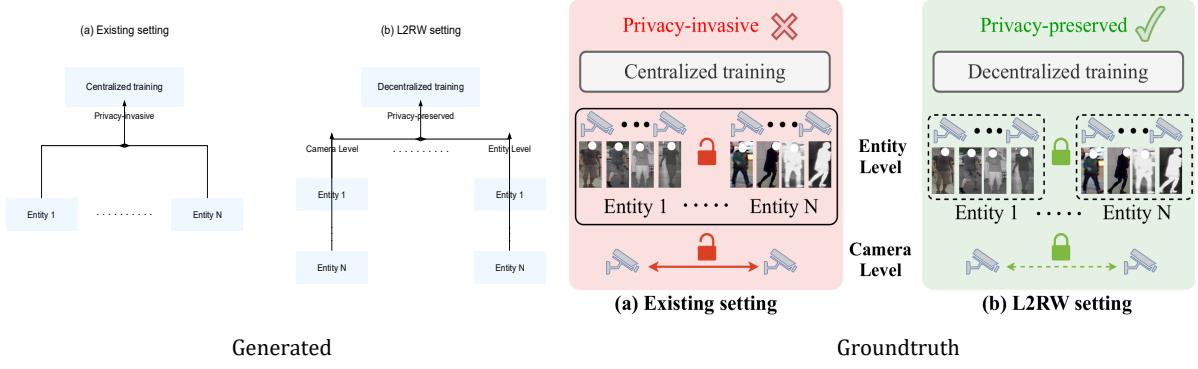


Figure 7: Case: Low CLIPScore (Image) and high Node F1. **CLIPScore (Image):** 0.6007. **Node F1:** 0.8696

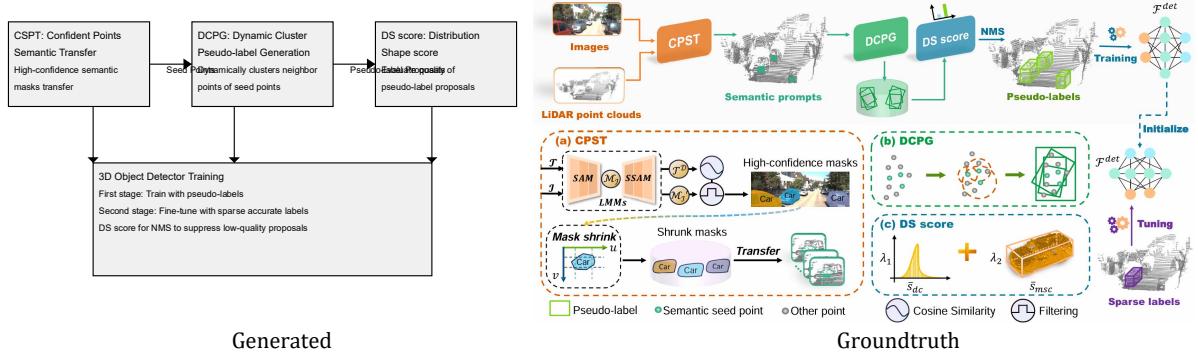


Figure 8: Case: High CLIPScore (Image) and low Node F1. **CLIPScore (Image):** 0.8094. **Node F1:** 0.16

Metric	Correlation
Node F1	0.4316
Path F1	0.4052
CLIPScore-Text	0.1065
CLIPScore-Image	0.0831

Table 2: Correlation values for different metrics

ferent from the reference, while CLIPScore-Text is too sensitive to the text description. While our metrics are more aligned to human judgment compared to CLIPScore, the most widely-used metric in the field, we believe they are trustworthy enough to provide another perspective of evaluation to generated diagrams.

5.5 Case Study: When and how our metrics and CLIPScore differ

The metric statistics show that our new metrics does not fully consistent with CLIPScore, the classical evaluation metric. This raises a research question: What happen when our metrics and CLIPScore differ? In this section, we select four cases with distinct scores by our metrics and CLIPScore and explain why the difference takes place.

Figure 5 shows a case with low CLIPScore (Text) and high Path F1. We can see an explicit data flow in the generated diagram, with good alignment with the semantic of groundtruth diagram as well as the original paper (Wang et al., 2024a). This is well captured by our Path F1. However, the spatial layout and icons in the generated diagram are very different from those in the groundtruth. While layout captions used in CLIPScore (Text) include detailed description to these visual elements, the generated diagram performs poorly over CLIPScore (Text). This case consolidates the point that the sensitivity to visual elements of CLIPScore hinder its recognition of good diagrams. More robust to the interference of layouts and icons, our metrics complement this disadvantage.

Figure 6 shows a case with high CLIPScore (Text) and low Path F1. In contrast to the above case, there is no clear data flow. Hence, our Path F1 assigns 0 to this diagram. However, the generated diagram includes all text mentioned in the layout caption. For this reason, it has perfect alignment with the layout caption under CLIPScore (Text). This exposes an inherent problem of depending evaluation on models: the generator may hack the

metric. Only by placing all text elements mentioned in the layout caption (rather than those existing in the original diagram), the generated diagram yields perfect score in the model-based comparison with the layout caption. Our metrics ease this problem by obtaining intermediates from models.

Figure 7 shows a case with low CLIPScore (Image) and high Node F1. Similar to the case in Figure 5, the evaluation of CLIPScore is interfered by the difference in spatial layout and non-textual icons. By contrast, our Node F1 focuses only on the existence of text elements, thus giving a more objective result. Figure 8 suffers similar problems, where CLIPScore (Image) ignores detailed logic and evaluates the diagram unreasonably.

To conclude, our metrics overcome two shortcomings of CLIPScore: **visual element interference** and **metric hacking** in these four cases. This proves that our metrics constitute good complements to CLIPScore.

6 Conclusion

This paper introduces DiagramEval, a novel set of metrics for evaluating large language model (LLM)-generated scientific diagrams. Unlike existing evaluation methods, DiagramEval represents diagrams as graphs and performs automated extraction of graph structures from diagrams. Evaluation metrics are then computed through fine-grained comparisons between the nodes and paths in the generated and reference graphs. DiagramEval addresses the current lack of fine-grained, interpretable, and structure-aware metrics in the assessment of automated diagram generation.

Limitations

Our proposed metrics have limitations primarily due to uncertainties in LLM performance. Specifically, the LLM may not reliably identify all edges in the reference graph, potentially causing inaccurate or underestimated evaluations. Despite this, our metrics reduce dependency on complex models and offer more interpretable outcomes compared to existing methods. Addressing these limitations is an important direction for future work.

As our work focuses on evaluating diagram generation, it does not raise new potential risks other than those general ones by using LLMs to generate contents.

Acknowledgments

We sincerely appreciate the support from Amazon grant funding project #120359, "GRAG: Enhance RAG Applications with Graph-structured Knowledge", and Meta gift funding project "PERM: Toward Parameter Efficient Foundation Models for Recommenders".

References

Anthropic. 2025. Claude 3.7 sonnet system card.

Jonas Belouadi, Anne Lauscher, and Steffen Eger. 2023. Automatikz: Text-guided synthesis of scientific vector graphics with tikz. *arXiv preprint arXiv:2310.00367*.

Jonas Belouadi, Simone Ponzetto, and Steffen Eger. 2024. Detikzify: Synthesizing graphics programs for scientific figures and sketches with tikz. *Advances in Neural Information Processing Systems*, 37:85074–85108.

Lukas Blecher, Guillem Cucurull, Thomas Scialom, and Robert Stojnic. 2023. Nougat: Neural optical understanding for academic documents. *arXiv preprint arXiv:2308.13418*.

Jaemin Cho, Abhay Zala, and Mohit Bansal. 2023. Visual programming for step-by-step text-to-image generation and evaluation. *Advances in Neural Information Processing Systems*, 36:6048–6069.

Zhiqing Cui, Jiahao Yuan, Hanqing Wang, Yanshu Li, Chenxu Du, and Zhenglong Ding. 2025. Draw with thought: Unleashing multimodal reasoning for scientific diagram generation. *arXiv preprint arXiv:2504.09479*.

Steffen Eger, Yong Cao, Jennifer D’Souza, Andreas Geiger, Christian Greisinger, Stephanie Gross, Yufang Hou, Brigitte Krenn, Anne Lauscher, Yizhi Li, and 1 others. 2025. Transforming science with large language models: A survey on ai-assisted scientific discovery, experimentation, content generation, and evaluation. *arXiv preprint arXiv:2502.05151*.

Stephanie Fu, Netanel Tamir, Shobhita Sundaram, Lucy Chai, Richard Zhang, Tali Dekel, and Phillip Isola. 2023. Dreamsim: Learning new dimensions of human visual similarity using synthetic data. *arXiv preprint arXiv:2306.09344*.

Google DeepMind. 2025. Gemini 2.5: Our most intelligent ai model.

Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Hanwang Zhang. 2023. Chartllama: A multimodal llm for chart understanding and generation. *arXiv preprint arXiv:2311.16483*.

Jack Hessel, Ari Holtzman, Maxwell Forbes, Ronan Le Bras, and Yejin Choi. 2021. Clipscore: A reference-free evaluation metric for image captioning. *arXiv preprint arXiv:2104.08718*.

Anwen Hu, Yaya Shi, Haiyang Xu, Jiabo Ye, Qinghao Ye, Ming Yan, Chenliang Li, Qi Qian, Ji Zhang, and Fei Huang. 2024. mplug-paperowl: Scientific diagram analysis with the multimodal large language model. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 6929–6938.

Fuxiao Liu, Xiaoyang Wang, Wenlin Yao, Jianshu Chen, Kaiqiang Song, Sangwoo Cho, Yaser Yacoob, and Dong Yu. 2023. Mmc: Advancing multimodal chart understanding with large-scale instruction tuning. *arXiv preprint arXiv:2311.10774*.

Paula Maddigan and Teo Susnjak. 2023. Chat2vis: Generating data visualizations via natural language using chatgpt, codex and gpt-3 large language models. *Ieee Access*, 11:45181–45193.

Ishani Mondal, Zongxia Li, Yufang Hou, Anandhavelu Natarajan, Aparna Garimella, and Jordan Boyd-Graber. 2024. Scidoc2diagrammer-maf: Towards generation of scientific diagrams from documents guided by multi-aspect feedback refinement. *arXiv preprint arXiv:2409.19242*.

Juan A Rodriguez, David Vazquez, Issam Laradji, Marco Pedersoli, and Pau Rodriguez. 2023. Ocr-vqgan: Taming text-within-image generation. In *Proceedings of the IEEE/CVF winter conference on applications of computer vision*, pages 3689–3698.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you need. *Advances in neural information processing systems*, 30.

Bin Wang, Fan Wu, Linke Ouyang, Zhuangcheng Gu, Rui Zhang, Renqiu Xia, Bo Zhang, and Conghui He. 2024a. Cdm: A reliable metric for fair and accurate formula recognition evaluation. *arXiv preprint arXiv:2409.03643*.

Heng Wang, Shangbin Feng, Tianxing He, Zhaoxuan Tan, Xiaochuang Han, and Yulia Tsvetkov. 2023. Can language models solve graph problems in natural language? *Advances in Neural Information Processing Systems*, 36:30840–30861.

Zirui Wang, Mengzhou Xia, Luxi He, Howard Chen, Yitao Liu, Richard Zhu, Kaiqu Liang, Xindi Wu, Haotian Liu, Sadhika Malladi, and 1 others. 2024b. Charxiv: Charting gaps in realistic chart understanding in multimodal llms. *Advances in Neural Information Processing Systems*, 37:113569–113697.

Cheng Yang, Chufan Shi, Yixin Liu, Bo Shui, Junjie Wang, Mohan Jing, Linran Xu, Xinyu Zhu, Siheng Li, Yuxiang Zhang, and 1 others. 2024. Chart-mimic: Evaluating lmm’s cross-modal reasoning capability via chart-to-code generation. *arXiv preprint arXiv:2406.09961*.

Junhan Yang, Zheng Liu, Shitao Xiao, Chaozhuo Li, Defu Lian, Sanjay Agrawal, Amit Singh, Guangzhong Sun, and Xing Xie. 2021. Graphformers: Gnn-nested transformers for representation learning on textual graph. *Advances in Neural Information Processing Systems*, 34:28798–28810.

Abhay Zala, Han Lin, Jaemin Cho, and Mohit Bansal. 2023. Diagrammergpt: generating open-domain, open-platform diagrams via llm planning. *arXiv preprint arXiv:2310.12128*.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. 2023. Sigmoid loss for language image pre-training. In *Proceedings of the IEEE/CVF international conference on computer vision*, pages 11975–11986.

Leixin Zhang, Steffen Eger, Yinjie Cheng, Weihe Zhai, Jonas Belouadi, Christoph Leiter, Simone Paolo Ponzetto, Fahimeh Moafian, and Zhixue Zhao. 2024. Scimage: How good are multimodal large language models at scientific text-to-image generation? *arXiv preprint arXiv:2412.02368*.

Tianyi Zhang, Varsha Kishore, Felix Wu, Kilian Q Weinberger, and Yoav Artzi. 2019. Bertscore: Evaluating text generation with bert. *arXiv preprint arXiv:1904.09675*.

A Appendix

A.1 Data License and Consensus

In this study, we utilize a collection of research papers from arXiv as our primary data source. To ensure ethical and legal reuse, we include only papers published under open-access licenses that permit redistribution, including Creative Commons Attribution (CC BY 4.0), Attribution-ShareAlike (CC BY-SA 4.0), and Attribution-NonCommercial-ShareAlike (CC BY-NC-SA 4.0). While the ShareAlike and NonCommercial terms impose certain restrictions—such as requiring derivative works to be shared under the same license or prohibiting commercial use—we fully comply with these conditions, using the materials only for academic, non-commercial research with appropriate attribution. Due to the fact that we only conduct text mining on the papers and that the number of papers is huge, we do not cite these papers.

A.2 Usage of AI Assistant

We use ChatGPT to polish the text of our paper.

A.3 Prompts

Following are four prompts we use in our experiment for 1) layout caption generation, 2) diagram generation, 3) node extraction refinement, and 4) edge extraction, respectively.

```

prompt_parts = [
    "Describe the spatial layout
    of the components in
    this document, focusing
    on their relative
    positions and
    connections.",
    "For example: 'Component A
    is above Component B, and
    an arrow connects B
    to C which is to the
    right of A'.",
    "Do not interpret the
    meaning of the diagram,
    only its visual
    structure and element
    arrangement. Be concise.
    ",
    pdf_blob_part
]

```

Listing 1: Prompt: Layout Caption Generation

```

prompt = f"""
<INSTRUCTION>

Generate an SVG diagram based on the
following information.

**Rules:**
1. Create clean, well-structured SVG
code. Keep the diagram width="1000"
height="700".
2. Use main concepts and expressions
given in the original paper context
for element text (very important).
3. Ensure elements (shapes, text) do
not overlap.
4. Do **not** include any legends.
5. Arrows must start and end precisely
on the border of the elements they
connect. Arrows should avoid
crossing other elements by using
vertical and horizontal corner
arrows. Do not use any sloping
arrows.
6. Represent the core mechanisms
described in the context. Avoid
using a single large block for a
complex mechanism that should be
broken down. But also keep the
mechanism representation intuitive
and easy-to-understand enough.
7. **Never** use any characters leading
to SVG rendering issues, for
example, & (Ampersand).
8. Keep proper layout tightness. Don't
leave a lot meaningless blank space
between elements.
9. Add font-size independently to every
single text element.
10. Avoid generating problematic svg
code, for example, svg code with
invalid xml characters or duplicate
attributes.
{'11. Adhere strictly to the spatial
layout in the layout and element
text.' if spatial_layout_prompt else
''}

```

```

Please output *only* the SVG code block,
starting with '<svg' and ending
with '</svg>'.

<END OF INSTRUCTION>

**Paper Context:**  

{paper_context}

**Diagram Caption/Focus:**  

{diagram_caption}  

{layout_section}

Now, output the SVG code block:
"""

```

Listing 2: Prompt: Diagram Generation

```

prompt_parts = [
    "You are an expert diagram
    analysis assistant
    specializing in text
    element coherence.",
    f"The following image is an
    '{diagram_type_name}'. I
    have already performed
    an initial text
    extraction from its
    source, resulting in the
    list of text elements
    below.",
    "\n**Image of the diagram:**",
    "pil_image",
    "\n\n**Currently Extracted_
    Textual Elements (-_
    Element_[ID]:_[TEXT
    ]\"):**",
    element_list_str,
    "\n\n**Your Task:**",
    "Analyze the image and the
    provided list of
    elements. Your goal is
    to improve the element
    list by identifying
    necessary merges,
    additions, or removals."
    ,
    "\n1. **Merges:** Identify
    if any listed elements
    are parts of a single,
    continuous text block in
    the image and should be
    merged.",
    "For example, if 'Element
    _ID_A: Hello' and '
    Element_ID_B: World'
    visually form 'Hello
    World', they should be
    merged.",
    "\n2. **Additions:**_
    Identify two specific
    types of missing nodes:
    ,
    "a) Duplicate nodes:
    Nodes that have the same
    text as existing nodes
    but represent different
    instances in the diagram

```

```

        .",
"-----For example, if there
are two 'mask' nodes in
the diagram but only
one is in the current
list.",
"---b) Non-text nodes: Nodes
that use icons or
images instead of text
to represent concepts.",
"-----For example, an
OpenAI logo representing
LLMs, or a neural
network icon
representing a model.",
"-----For these nodes, generate
appropriate
text descriptions based
on their visual
representation.",
"\n3. **Removals:** Identify
nodes that should be
removed based on the
following strict
policies:",
"---a) Non-English/Non-Math
Text: Remove nodes that
contain **ONLY** non-
English and non-
mathematical characters.
",
"-----For example, if a
node contains **only** Chinese
characters, it
should be removed.",
"-----However, if the node
contains a mix of
English and non-English
text, keep it.",
"---b) Numbers Only: Remove
nodes that contain **ONLY** numbers
(including decimal points
and basic math symbols)
",
"-----For example, '123',
'3.14', or '1+2' should
be removed.",
"---c) Non-conceptual
elements: Remove nodes
not representing
concepts in the diagram,
such as text
explanation, description
, or examples."
"\n**Important Notes:**
"- Do not consider general
diagram elements (like
arrows, lines, or
decorative elements) as
nodes to be added.",
"- For duplicate nodes,
ensure they are truly
separate instances in
the diagram.",
"- For non-text nodes,
generate clear and
concise descriptions
that capture their
meaning.",
"-----For removals, strictly
follow the three
policies above. **Do not
remove nodes for any
other reasons.**",
"\n**Output Format:**",
"First, provide your
analysis in an 'Thinking
Phase' section, explaining
your observations and
reasoning.",
"Then, after the signal
FINAL_ANSWER:, provide
your findings as a JSON
object with three
optional keys: 'merges',
'adds', and 'removes'." ,
"---'merges': A list of
objects, where each
object has a 'keep_id' (the
ID of the element to
retain and append to)
and 'remove_id' (the ID
of the element whose
text will be appended
and then the element
removed).",
"---'adds': A list of objects
, where each object has
a 'text' key for the
newly identified text
string.",
"---'removes': A list of
objects, where each
object has a 'id' key
for the element ID to be
removed.",
"Example_JSON_output: \"
merges\":[{\\"keep_id\\": \"
G_1\", \\"remove_id\\": \"
G_2\"}], \\"adds\":[
{\\"text\\": \"LLM_Model
(OpenAI)\"}, {\\"text\\": \"
Input_Image\"}], \\""
removes\":[{\\"id\\": \"
G_3\"}, {\\"id\\": \"
G_4\"}].",
"If no operations are needed
, provide an empty JSON
object {} or omit keys."
,
"Only include IDs from the
provided list for
merging and removing.
Ensure 'keep_id' and
'remove_id' are different
.",
"\n**Response Structure:**",
"1. Start with 'THINKING_
PHASE:' and provide your
detailed analysis",
"2. After your analysis, "
"write 'FINAL_ANSWER:' on
a new line",
"3. Then provide the JSON
output"
]

```

Listing 3: Prompt: Node Extraction Refinement

```
prompt_parts = [
    "You are an expert diagram analysis assistant.",
    f"The following image is a diagram ({diagram_type})
    I have already extracted the text elements from it.",
    "\n\n**Identified Textual Elements in the {diagram_type} Diagram (- Element [ID]: "[TEXT ]"):**",
    element_list_str,
    "\n\n**Task:**",
    f"Analyze **all** connections (e.g., arrows, lines indicating flow) in the {diagram_type} Diagram image.",
    "Identify **all** DIRECTED one-to-one connections BETWEEN the provided element IDs.",
    "Every element should involve in at least one connection."
    "All straight or corner arrows indicate connections",
    "First, think step-by-step about the connections. Then, on a new line, provide the final list of connections.",
    "Output your findings as a JSON list of lists, where each inner list is a pair of element IDs representing a directed connection from the first ID to the second ID.",
    "For example: [[["ID1", "ID2"], ["ID1", "ID3"], ["ID4", "ID2"]], ...",
    "Only include **IDs** (not the text) from the list provided above. Ensure the source and target IDs are correct based on the diagram's flow.",
    "If there are no connections, return an empty list []",
    "Start your final JSON output with the signal 'Final Answer JSON: '",
    "\n\n**{diagram_type} Diagram Image:**",
    pil_image,
    "\n\n**Thinking Process and JSON Output of Connections:**"
```

Listing 4: Prompt: Edge Extraction

]