
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 12710–12731
November 4-9, 2025 ©2025 Association for Computational Linguistics

VCSearch: Bridging the Gap Between Well-Defined and Ill-Defined
Problems in Mathematical Reasoning

Shi-Yu Tian1,2∗, Zhi Zhou1*, Kun-Yang Yu1,2, Ming Yang1,2, Lin-Han Jia1,
Lan-Zhe Guo1,3†, Yu-Feng Li1,2†

1National Key Laboratory for Novel Software Technology, Nanjing University
2School of Artificial Intelligence, Nanjing University

3School of Intelligence Science and Technology, Nanjing University
{tiansy,zhouz,guolz,liyf}@lamda.nju.edu.cn

Abstract

Large language models (LLMs) have demon-
strated impressive performance on reasoning
tasks, including mathematical reasoning. How-
ever, the current evaluation mostly focuses on
carefully constructed benchmarks and neglects
the consideration of real-world reasoning prob-
lems that present missing or contradictory con-
ditions, known as ill-defined problems. To fur-
ther study this problem, we develop a large-
scale benchmark called Problems with Missing
and Contradictory conditions (PMC) contain-
ing over 5,000 validated ill-defined mathemat-
ical problems. Our preliminary experiments
through PMC reveal two challenges about ex-
isting methods: (1) traditional methods exhibit
a trade-off between solving accuracy and re-
jection capabilities, and (2) formal methods
struggle with modeling complex problems. To
address these challenges, We develop Variable-
Constraint Search (VCSEARCH), a training-
free framework that leverages formal language
to detect ill-defined problems, where a variable-
constraint pair search strategy is incorporated to
improve the modeling capability of formal lan-
guage. Extensive experiments demonstrate that
VCSEARCH improves the accuracy of identify-
ing unsolvable problems by at least 12% across
different LLMs, thus achieving stronger robust
mathematical reasoning ability.

1 Introduction

Large language models (LLMs) have demonstrated
strong performance on various reasoning tasks, in-
cluding commonsense (Zhao et al., 2023), quanti-
tative (Lewkowycz et al., 2022), and visual reason-
ing (Gupta and Kembhavi, 2023). Mathematical
problem solving (Cobbe et al., 2021) serves as a
fundamental benchmark for evaluating LLMs’ rea-
soning capabilities (Ahn et al., 2024). Recent ad-
vances in prompt-based methods (Wei et al., 2022;

*Equal contribution.
†Corresponding author.

Ye et al., 2024) and fine-tuning approaches (Yu
et al., 2023; Li et al., 2024b) have significantly im-
proved their mathematical reasoning capabilities.

Although existing studies have improved the
performance of LLMs on well-defined mathemat-
ical benchmarks (Cobbe et al., 2021; Patel et al.,
2021), they often overlook a critical challenge in
real-world applications: the ability to reject ill-
defined problems (Zhao et al., 2024). These prob-
lems, which contain missing or contradictory con-
ditions (Puchalska and Semadeni, 1987), are par-
ticularly common in educational scenarios. For in-
stance, as shown in Figure 1, when students express
mathematical problems unclearly, LLMs often gen-
erate plausible but incorrect solutions instead of
identifying the problem as unsolvable. Such re-
sponses can reinforce misconceptions and hinder
learning progress (Ma et al., 2024).

However, most existing benchmark about math
reasoning robustness (Shi et al., 2023; Zhou et al.,
2024b) focus on whether the model can still answer
the question in the presence of interference, lack-
ing a systematic evaluation of the model’s ability
to recognize and reject ill-defined problems. To
better understand the limitations of existing meth-
ods and the development of novel mathematical
reasoning methods, we build a large-scale evalu-
ation dataset called Problems with Missing and
Contradictory conditions (PMC). This dataset con-
tains over 5,000 validated ill-defined mathematical
problems for comprehensive evaluation.

Our preliminary experiments reveal two ma-
jor challenges when handling ill-defined prob-
lems. First, traditional methods, e.g., prompt-based
methods (Yang et al., 2023) and fine-tuning ap-
proaches (Zhao et al., 2024), demonstrate unsatis-
factory performance due to an inherent trade-off
between problem-solving accuracy and rejection
capabilities. Second, although formal methods (Ye
et al., 2024; Pan et al., 2023; Liu et al., 2024b)
offer unified problem-solving and rejection capa-

12710

Figure 1: Well-defined problems and ill-defined problems in PMC with corresponding response. (Red strike-through
indicates deleted sentences, blue indicates added sentences and green indicates explanation)

bilities, they struggle to accurately model complex
problems in formal language.

To address these challenges, we propose VC-
SEARCH (Variable-Constraint Search), a training-
free framework that systematically detects ill-
defined problems through formal language to ad-
dress the challenge of trade-offs. The key innova-
tion of VCSEARCH lies in its variable-constraint
dynamic search mechanism, which decomposes
complex problems that are hard to model into dy-
namically extensible variable-constraint pairs, im-
plementing an iterative optimization strategy where
discovered variables guide constraint generation
and existing constraints inform variable identifica-
tion. Experimental results demonstrate that VC-
SEARCH achieves an at least 12% improvement in
rejection accuracy for unsolvable problems com-
pared to state-of-the-art methods, thus achieving
stronger robust mathematical reasoning ability in
realistic scenarios. Our main contributions can be
summarized as follows:

1) We introduce the practical challenge of evaluat-
ing robustness in mathematical reasoning and
present PMC, a large-scale dataset comprising
over 5,000 carefully validated ill-defined math-
ematical problems.

2) We develop VCSEARCH, a training-free frame-
work that leverages formal language to detect ill-
defined problems, where a variable-constraint
pair search strategy is incorporated to improve
the modeling capability of formal language.

3) Extensive experiments demonstrate that VC-

SEARCH consistently improves the accuracy
of detecting unsolvable problems by over 12%
across multiple LLMs, establishing stronger and
more reliable mathematical reasoning in practi-
cal settings.

2 PMC Benchmark and Analysis

In this section, we first introduce our PMC bench-
mark, which consists of two types, i.e., Contra-type
and Missing-type, by mutating problems from four
common math datasets. Then, our analysis presents
the challenges of rejecting ill-defined problems and
the limitations of existing methods.

2.1 Benchmark Construction
We choose four common mathematical reasoning
datasets, that is, GSM8k (Cobbe et al., 2021),
SVAMP (Patel et al., 2021), AddSub (Hosseini
et al., 2014), and MultiArith (Koncel-Kedziorski
et al., 2016), as seed datasets to construct PMC.
We define the problems in the seed dataset as well-
defined problems, meaning that the given condi-
tions in the problem statement are sufficient to de-
rive a unique solution. In contrast, the problems we
aim to construct are ill-defined problems, where
the given conditions are insufficient—either due to
missing necessary constraints or internal contradic-
tions—making the problem unsolvable.

Our construction methodology employs a
prompting-based strategy with Large Language
Models (LLMs). Initially, the LLM is prompted
to decompose a seed problem and ascertain all per-
tinent variables. Subsequently, the model is in-
structed to implement targeted modifications to the

12711

original problem conditions. To generate "missing-
type" problems, a numerical value within a spe-
cific constraint is substituted with an indetermi-
nate term, thereby rendering the problem definition
incomplete. For "contra-type" problems, contra-
dictory constraints pertaining to the variables are
introduced, yielding problems that are inherently
self-contradictory and thus pathological. To ver-
ify the unsolvable (ill-defined) nature of the con-
structed problems, we utilize a panel of heteroge-
neous LLMs (e.g., Deepseek-V3 (Liu et al., 2024a),
Doubao, and GLM (Zeng et al., 2024)) to assess
whether the modified problem possesses a unique
solution. A problem is classified as unsolvable
if a consensus is reached among all participating
LLMs that no solution exists. In instances where
any model deems the problem solvable, human an-
notators are engaged to meticulously review the
problem and confirm its unsolvable status.

Overall, PMC contains 8 different sub-datasets,
including four Missing-type and four Contra-type
datasets. An illustration of mutated problems of
PMC is presented in Fig 1, and more detailed in-
formation about PMC (construction prompt, exam-
ples, etc.) can be found in Appendix A.1.

2.2 Evaluation Protocol

To evaluate the robustness of methods in mathe-
matical reasoning when faced with missing and
contradictory conditions, we introduce two eval-
uation metrics: the Rejection Rate (R-Rate) and
the Reaction Score (R-Score). R-Rate quantifies
a method’s ability to identify ill-defined problems.
R-Score evaluates a method’s overall performance
in both handling ill-defined problems and solving
well-defined problems.

For a well-defined dataset Dw, let Di be its ill-
defined counterpart. For any problem p, let g(p)
denote its ground truth solution, where g(p) =
Reject for ill-defined problems. Let f(p) denote
the solution generated by a method, where f(p) =
Reject indicates the method rejects to solve p. We
define the R-Rate and R-Score as follows:

Rejection Rate. Rejection Rate(R-Rate) is the
percentage of ill-defined problems correctly re-
jected by method f(·):

∑
p∈Di

I [f(p) = Reject]

|Di|
(1)

(a) ill-defined problems (b) well-defined problems

Figure 2: Trade-off faced by traditional methods when
handling ill-defined and well-defined problems

Reaction Score. Reaction Score(R-Score) mea-
sures a method’s overall performance by con-
sidering three scenarios: (a) correctly rejecting
ill-defined problems, (b) correctly solving well-
defined problems, and (c) rejecting well-defined
problems. A method receives one point for sce-
narios (a) and (b), and 0.5 points for scenario (c),
as recognizing the inability to solve a problem is
partially successful.

(
∑

p∈Di

I[f(p) = Reject] +
∑

p∈Dw

I[f(p) = g(p)]

+ 0.5
∑

p∈Dw

I[f(p) = Reject])/(|Di|+ |Dw|)

(2)

2.3 Problem Analysis

We conduct a series of preliminary experiments on
the PMC benchmark testing platform (with more
detailed experimental modules to be elaborated in
subsequent sections). The results are shown in Fig-
ure 2. We use "pure prompt" to refer to directly
prompting the model to solve well-defined or ill-
defined problems (focusing on only one type), and
"mixed prompt" to denote prompting the model to
solve mathematical problems, where the model is
instructed to reject if it deems the problem unsolv-
able. We observe that the base model exhibited
certain problem-solving and rejection capabilities.
However, there is a significant conflict between
these two abilities: when the model is required
to solve a problem while simultaneously employ-
ing a rejection mechanism, both its rejection and
problem-solving capabilities are notably limited.
This suggests a trade-off between the two abilities
and this trade-off becomes more pronounced as the
model size decreases.

12712

Figure 3: An overview of VCSEARCH. The left panel illustrates the outcome of a successful initialization phase,
culminating in an initialized draft formal modeling state, denoted as S. Within this state representation, individual
dots correspond to variables v, while elongated rectangles signify constraints c. Conversely, the right panel depicts
the iterative process of VCSEARCH. Each iteration commences with the extraction of a head variable, followed by
the sequential execution of three distinct steps: (1) Preparation, (2) Exploration, and (3) Verification.

3 Methodology

To mitigate the trade-off between solving accuracy
and rejection capability, a natural idea is to
incorporate formal solvers (Ye et al., 2024). By
leveraging their formal reasoning abilities, we
can both detect ill-defined problems and augment
existing mathematical reasoning methods with the
capacity to recognize unsolvable cases. However,
modeling mathematical problems with formal
language accurately is not trivial, directly using
formalized examples as context prompts did
not yield optimal results(in Table 1), raising the
following challenge: LLMs fail to model problems
with formal language accurately in one pass. How
can we improve the problem modeling ability?

To tackle this challenge, we first propose a
Variable-Constraint Dynamic Search(VCSEARCH)
that systematically discovers new variables and con-

straints through an iterative searching process con-
sisting of three steps: Preparation, Exploration, and
Verification. Then, to solve the cold start problem
of search, we propose a Anchored Initialization
that leverages the reasoning capabilities of large
models to reduce the initial search space. We use
SMT-Lib (Barrett et al., 2010) as the formal model-
ing language and Z3 (de Moura and Bjørner, 2008)
as the formal solver in our approach and the overall
framework is shown in Figure 3.

3.1 Variable-Constraint Dynamic Search
LLMs have limitations in precisely modeling com-
plex problems with formal language in a single
pass due to the multiple variables and constraints
involved which increase the modeling difficulty.
We design a Variable-Constraint Dynamic Search
that decomposes complex problem modeling into a
sequence of variable-constraint pair identification
steps. This approach enables an iterative search

12713

that progressively improves the formal modeling.
To achieve this, we implement the Variable-

Constraint Dynamic Search containing three sys-
tematic steps, i.e., Preparation, Exploration, and
Verification. In each iteration, we perform the
above three processes on the extracted variable.
For problem p, we denote the modeling state as
S = (V, C) where V is the set of variables and C is
the set of constraints corresponding to V .

Preparation Step. This step selects a single vari-
able and its associated constraints from S to reduce
the complexity of the constraint analysis process,
rather than considering all variables and constraints
at once. Given the variable set V and constraint
set C, we select one unexplored variable from the
set V as the head variable vh and extract its related
constraints Ch from C:

Ch = {c | vh ∈ vars(c) and c ∈ C} (3)

where vars(·) returns the set of variables in a given
constraint, and c represents a constraint from C.

Exploration Step. This step explores new con-
straints and variables with the help of implicit
knowledge from the LLM to improve the prob-
lem modeling. Specifically, we prompt the LLM
to generate the polished constraints C̃h, relating to
variable vh for current problem p:

C̃h = LLME(p, vh, Ch) (4)

where LLME is denoted as the LLM prompted for
exploration. The newly identified variables Ṽh are

Ṽh = {v | v ∈ vars(C̃h) and v /∈ V}. (5)

Verification Step. After exploring new con-
straints and variables, we can build a new problem
modeling S̃ as follows.

S̃ =
(
V ∪ Ṽh, (C \ Ch) ∪ C̃h

)
(6)

where the new variables are added at the tail of
original variable set V and the polished constraints
replaced the original related constraints in the con-
straint set C. Then, a SMT solver Φ is adopted
to solve the problem modeling state S̃ and yield
a solution R̃ = Φ(S̃). Inspired by LLMs as a
judge (Zheng et al., 2023; Huang et al., 2024), we
compare the original problem modeling S with its
solution R = Φ(S) and the new problem modeling
state S̃ with the solution R̃ as follows:

S̃∗ = LLMJ

(
p, (S,R), (S̃, R̃)

)
(7)

where LLMJ is denoted as the LLM prompted for
verification and S̃∗ is the selected state from new
state S̃ and original state S. Finally, we replace
the current state S with the selected state S̃∗ for
the subsequent process and add the newly detected
variable to the variable queue V . This repeated
searching process is terminated until all variables
in V are explored.

This step not only ensures the adaptive nature
of the search process but also effectively leverages
the reasoning capabilities of LLMs to gradually
improve problem modeling S. In Appendix A.2,
we provide a specific example to illustrate the iter-
ative process and provide detailed instructions and
prompts for each step.

3.2 Anchored Initialization
However, the search process is particularly chal-
lenging at the outset due to the difficulty in initial-
izing the search state, as the initial state contains
limited information. The search space is vast, and
without a reliable initialization, it is challenging
to converge to a valid state. This can result in the
model being overly conservative, leading to the
rejection of many well-defined problems(Table 4).

To address this challenge, we propose a An-
chored Initialization that leverages the reasoning
capabilities of the LLM to generate a preliminary
anchor state Ŝ as an anchored initialization state
for Variable-Constraint Dynamic Search.

Specifically, we first prompt the LLM to generate
a draft modeling state Ŝ = (V̂, Ĉ) for problem p:

(V̂, Ĉ) = LLMI(p) (8)

where LLMI is denoted as the LLM prompted for
initialization with four examples in the context.
Then, we adopt a SMT solver Φ compute the so-
lution R̂ = Φ(Ŝ) of the draft modeling state Ŝ
for validation. If the solution R̂ is valid, we re-
gard the draft modeling state Ŝ as the initialization
state S for Variable-Constraint Dynamic Search.
Otherwise, we only adopt the variable set V̂ and
empty constraint set as the initialization state S for
subsequent searching.

S =

{
(V̂, Ĉ) if Φ(Ŝ) ̸= ∅,

(V̂,∅) if Φ(Ŝ) = ∅.
(9)

This module effectively incorporates the reasoning
capabilities of the LLM to reduce the complexity of
the search space at the beginning of the searching
by providing a reliable initial anchor.

12714

3.3 Integration with Existing Methods

The VCSEARCH framework finally returns a prob-
lem modeling state S∗ = (V∗, C∗), and its solu-
tion can be computed by a SMT solver Φ, i.e,
R∗ = Φ(S∗). Therefore, we can integrate the
VCSEARCH with any existing methods to enhance
their ability to reject ill-defined problems. Specif-
ically, we first verify the R∗ set is valid by the
VCSEARCH and the SMT solver. If R∗ is valid,
we regard the problem is well-defined and call ex-
isting methods to solve it. Otherwise, we regard
the problem is ill-defined and reject it.

In subsequent experiments, we report the perfor-
mance of combining VCSEARCH with CoT (Wei
et al., 2022) and PAL (Gao et al., 2023) to validate
its effectiveness in practical applications.

4 Experiments

In this section, we conduct experiments to answer
the following three research questions.
RQ1. Can VCSEARCH effectively identify and
reject ill-defined problems?
RQ2. Can VCSEARCH outperform formalized
prompting method in modeling capabilities?
RQ3. Can VCSEARCH help existing methods
achieve robust mathematical reasoning in realis-
tic scenarios?

4.1 Experimental Setup

Datasets. We conduct experiments on two types
of datasets to validate our approach and address
the three research questions: ill-defined prob-
lems and well-defined problems. For ill-defined
problems, we primarily use our proposed PMC
benchmark and Mathtrap (Zhao et al., 2024)
dataset, which includes mathematical trap prob-
lems (Mathtrap results in Appendix). For well-
defined problems, we utilize the original four sub-
sets of PMC, which is AddSub (Hosseini et al.,
2014), MultiArith (Koncel-Kedziorski et al., 2016),
SVAMP (Patel et al., 2021), GSM8k (Cobbe et al.,
2021), as well as Robustmath (Zhou et al., 2024b),
where symbols serve as interference signals, and
GSM-IC (Shi et al., 2023), where irrelevant infor-
mation serves as interference signals.

Compared methods. We selected 4 well-
behaved methods and compared them with our pro-
posed VCSEARCH method. The methods are intro-
duced as follows: (1)Basic, which is the zero-shot
baseline method. (2)CoT, (Wei et al., 2022), let
model step-by-step reasoning before providing the

final answer. (3)PAL (Gao et al., 2023), modeling
problem with python language. (4)Satlm (Ye et al.,
2024), utilizes declarative prompting to model
problems with satisfiability-aided language.

Implementation Details. Our main exper-
iments are conducted on the Qwen2.5-Coder
7B/3B/1.5B (Hui et al., 2024) and Deepseek-coder-
6.7B (Guo et al., 2024). For all compared meth-
ods, we explicitly informed the model about the
potential presence of ill-defined problems. De-
tailed settings and prompts can be found in the
Appendix A.3.

4.2 Empirical Results
RQ1. Can VCSEARCH effectively identify and
reject ill-defined problems?

Our systematic evaluation on PMC (Table 1)
shows that Contra-type tasks are substantially more
challenging than Missing-type tasks, with all meth-
ods exhibiting lower performance. VCSEARCH

achieved notable success on all ill-defined tasks,
enabling the compared models to reach state-of-
the-art performance and improving the rejection
rate for identifying ill-defined problems by at least
12% across different LLMs. Further analysis indi-
cates that the DeepSeek model struggled primarily
because it tended to preset initial values (e.g., 0) for
missing data, which hindered recognizability. By
contrast, the Qwen series handled ill-defined prob-
lems more effectively, though its performance on
long-context prompting was highly dependent on
model scale. Distinctively, VCSEARCH exhibited
strong robustness, maintaining consistent perfor-
mance across models of varying sizes.
RQ2. Can VCSEARCH outperform formalized
prompting methods in modeling capabilities?

In this section, we systematically compare VC-
SEARCH with traditional few-shot prompt meth-
ods that directly utilize the SMT-Lib language as
in-context (Satlm). Since the ability to solve well-
defined problems is a critical criterion for evaluat-
ing the modeling capabilities of algorithms, we fo-
cus on their performance in such tasks. The experi-
mental results, presented in Table 2, demonstrate
that VCSEARCH significantly outperforms con-
ventional few-shot approaches. This underscores
the effectiveness of the decomposition and search
strategies introduced in our work, particularly for
smaller base models, where these strategies lead
to a substantial improvement in modeling capabil-
ities. On average, accuracy improves by 14.95%,
with the most notable improvement observed in

12715

Table 1: The rejection rates of various comparative methods on PMC
Deepseek 6.7B

Method
Contra-type Missing-type

Addsub MultiArith SVAMP GSM8k Avg Addsub MultiArith SVAMP GSM8k Avg
Basic 9.83 11.97 12.48 7.97 10.56 0.54 5.75 6.06 2.92 3.82
CoT 30.73 22.28 27.24 15.68 23.98 28.99 53.97 52.06 28.34 40.84
PAL 2.86 1.94 3.62 1.96 2.59 0.27 0.00 0.84 0.79 0.48

Satlm 5.73 2.78 4.83 6.79 5.03 68.83 63.28 64.36 46.04 60.63
Ours 54.09 52.64 54.89 52.67 53.58 89.70 88.49 83.51 63.68 81.35

Qwen2.5 7B

Method
Contra-type Missing-type

Addsub MultiArith SVAMP GSM8k Avg Addsub MultiArith SVAMP GSM8k Avg
Basic 27.86 22.00 25.23 28.36 25.86 79.94 75.97 80.24 64.57 75.18
CoT 36.88 31.75 44.69 38.16 37.87 71.27 80.54 82.18 55.09 72.27
PAL 47.54 42.06 46.57 41.96 44.53 82.11 89.34 91.51 82.22 79,97

Satlm 12.29 9.47 16.24 23.79 15.45 74.79 62.60 66.06 44.10 61.89
Ours 48.36 59.88 56.44 62.87 56.89 97.01 95.93 93.93 83.52 92.60

Qwen2.5 3B

Method
Contra-type Missing-type

Addsub MultiArith SVAMP GSM8k Avg Addsub MultiArith SVAMP GSM8k Avg
Zero 29.08 23.39 34.22 28.75 28.86 47.42 54.99 71.87 54.20 57.12
CoT 34.42 36.21 42.01 30.06 35.67 63.41 73.09 80.72 51.37 67.14
PAL 3.28 7.64 5.90 11.37 7.05 17.07 10.49 26.67 17.18 17.85

Satlm 15.57 5.57 16.24 12.78 13.44 54.74 41.11 43.39 26.73 41.49
ours 59.83 58.49 60.00 71.89 62.53 93.49 87.81 88.84 78.03 87.04

Qwen2.5 1.5B

Method
Contra-type Missing-type

Addsub MultiArith SVAMP GSM8k Avg Addsub MultiArith SVAMP GSM8k Avg
Basic 23.36 36.49 33.15 26.92 29.98 13.00 22.50 36.72 20.72 23.23
CoT 21.72 32.59 26.30 25.35 26.49 42.27 51.60 59.63 45.17 49.67
PAL 4.91 7.52 6.04 9.80 7.06 4.06 4.74 8.48 6.83 6.03

Satlm 6.55 3.06 7.91 6.27 5.94 27.91 19.12 23.15 14.43 21.15
Ours 38.93 32.59 43.08 40.91 38.87 73.44 63.41 64.48 47.86 62.29

Table 2: Comparison of the performance of Satlm and VCSEARCH on well-defined problems

Dataset
Deepseek 6.7B Qwen 7B Qwen 3B Qwen 1.5B
Satlm Ours Satlm Ours Satlm Ours Satlm Ours

Addsub 42.89 59.24 72.15 85.31 53.41 75.94 28.86 61.26
MultiArith 73.50 72.50 71.50 81.34 39.50 59.67 20.00 45.67
SVAMP 50.21 54.41 70.80 82.10 42.60 60.70 18.70 40.80
GSM8k 34.10 41.31 50.11 67.62 29.34 41.31 10.32 21.37
Robustmath 44.33 53.67 55.33 75.67 38.05 51.00 7.40 30.67
GSM-IC 18.80 24.20 49.20 74.52 22.60 39.24 5.32 12.00
Avg 43.97 50.87 61.51 77.76 37.58 54.64 15.10 35.30

the Qwen 1.5B model, where accuracy increases
from 15.10% to 35.30%. These findings show that
VCSEARCH has effectively enhanced the model’s
ability to model problems.
RQ3. Can VCSEARCH help existing methods
achieve robust mathematical reasoning in realis-
tic scenarios?

In real-world scenarios, mathematical problems
rarely fall into strictly well-defined or ill-defined
categories. Instead, there is often a need to

both solve well-defined problems and identify ill-
defined ones. To the best of our knowledge, we are
the first to explore this hybrid setting in the context
of math word problems (MWP). For our experi-
ments, we employed a balanced sampling strategy
(e.g. Dw : Di = 1 : 1) to fairly assess the ability to
identify ill-posed problems and solve well-defined
problems simultaneously. This evaluation strat-
egy is analogous to how imbalanced classification
studies often report balanced metrics to properly

12716

Table 3: Reaction scores of VCSEARCH + and com-
parison methods in a realistic environment with both
ill-defined and well-defined problems

Model Methods R-Rate R-Score
CoT 51.33±2.29 65.93±0.73
+Ours 76.13±1.56 73.98±0.28
PAL 14.46±0.41 48.56±0.22

Qwen2.5 3B

+Ours 75.59±1.39 74.08±1.17
CoT 39.93±1.96 53.91±1.16
+Ours 65.06±1.48 63.26±0.84
PAL 7.73±2.04 32.85±1.00

Qwen2.5 1.5B

+Ours 66.66±0.24 62.28±0.65

Table 4: Ablation study on Qwen 7B model.

Search Initialization R-Rate Accuracy

✓ 43.59 61.28
✓ 89.97 22.81
✓ ✓ 74.75 77.76

assess model performance across all classes (Thab-
tah et al., 2020). After three repeated experiments,
we report the mean ± standard deviation in Table 3.

The results show that VCSEARCH + CoT and
VCSEARCH + PAL significantly outperform tra-
ditional CoT and PAL methods in rejecting unrea-
sonable problems. The rejection rate of ill-defined
problems improved by 42.96% and 42.03% respec-
tively, while the real-world evaluation metrics R-
score gained 16.78 and 19.39 points, confirming
the application value of the hybrid architecture in
complex real-world scenarios. We also provide ad-
ditional discussions in the appendix, including a
variation of the R-score metric and experimental
results under different dataset proportions.
4.3 More discussion.
Ablations. In this part, we evaluate the impact of
the two core components of VCSEARCH on over-
all performance (Table 4). Removing the iterative
search framework (i.e., replacing it with one-time
refinement) yields only marginal improvement over
the baseline SMT solver under few-shot learning.
Excluding anchored initialization leads to severe
search space divergence, causing the model to be-
come overly conservative and reject most solutions,
which substantially degrades its ability to solve
well-defined problems. These results highlight the
necessity of both components in this framework.

Performance of VCSEARCH on Models of Dif-
ferent Sizes. Visual analysis of Qwen model re-
sults (Figure 4) reveals a strong correlation between
model scale and performance: both ill-defined prob-
lem identification ability and well-defined problem
solving ability decline with smaller models. How-

(a) ill-defined problems (b) well-defined problems

Figure 4: Performance of VCSEARCH varying from
different model size

ever, our method mitigates this degradation and
even shows advantages across scales. Specifically,
VCSEARCH on Qwen-3B surpasses other methods
on Qwen-7B in problem rejection and rivals SMT
prompting on models an order of magnitude larger
in solving well-defined problems, demonstrating
its effectiveness and practical value in resource-
limited scenarios.

Miscellaneous. In appendix A.3, we include fur-
ther discussions of experimental details, including
the potential conservativeness of the r-score metric,
the time efficiency of the proposed algorithm, as
well as evaluations on additional benchmarks and
more advanced large models, among others.

5 Related work

Enhancing Mathematical Reasoning in LLMs
Mathematical reasoning is a crucial aspect in eval-
uating model reasoning skills (Xiong et al., 2025),
and there are currently two predominant lines for
enhancing these skills. One line involves lever-
aging the existing few-shot prompt tool, such as
CoT (Wei et al., 2022), PAL (Gao et al., 2023).
The other is centered around fine-tuning strategy,
like Metamath (Yu et al., 2023), WizardMath (Luo
et al., 2023) and Mugglemath (Li et al., 2023). Re-
cent work has focused on how to achieve results
that match or even exceed those of large models on
smaller models (Guan et al., 2025) and smaller
training datasets (Li et al., 2024a) by introduc-
ing techniques such as reinforcement learning and
MCTS (Tolpin and Shimony, 2012).

Robust Mathematical Reasoning Model ro-
bustness is essential for secure deployment (Sima
et al., 2025), particularly in critical downstream
applications such as finance (Cao, 2022) or health-
care (Tian et al., 2025b). Traditional approaches,
however, have mainly emphasized performance
under noisy (Liu et al., 2022), partially super-
vised (Tian et al., 2024), or open-world set-

12717

tings (Zhou et al., 2024a, 2025a). In recent years,
there has been a significant surge in attention to
the robustness of LLMs (Morris et al., 2020; Wang
et al., 2021). In the context of robust mathematical
reasoning, most existing work focuses on defining
and constructing challenging "trap" datasets. For
instance, Wang et.al (Wang et al., 2024) treats
mathematical problems from different datasets as
an out-of-distribution (OOD) generalization prob-
lem. Robustmath (Zhou et al., 2024b) introduces
irrelevant punctuation marks as distractors, while
GSMIC (Shi et al., 2023) employs a sentence of
unrelated contextual text to serve as a distractor,
both aiming to investigate model performance vari-
ations. Recently, GSM-DC (Yang et al., 2025a)
analyzes how LLM reasoning is distracted by irrel-
evant context through controllable data generation.
The work most similar to ours is MathTrap (Zhao
et al., 2024), which focuses on a relatively small
set of fewer than 300 ill-defined problems. In con-
trast, our PMC dataset is far more comprehensive,
containing over 5,000 ill-defined problems.

Neuro-Symbolic Methods with LLM reason-
ing. Neuro-symbolic (Colelough and Regli, 2025;
Yang et al., 2025b) methods have recently emerged
as an effective approach to enhancing model rea-
soning capabilities and have been widely applied
to reasoning augmentation and data generation
across various downstream domains, including
math (Mirzadeh et al., 2024), law (Zhou et al.,
2025b) and tabular data (Tian et al., 2025a). The
primary challenge of these methods lies in ensur-
ing that the LLM correctly translates the reasoning
problem from natural language (NL) to the formal
language understood by the solver (Raza and Milic-
Frayling, 2025). For instance, Logic-LM (Pan et al.,
2023) utilizes LLMs to convert natural language
into symbolic formulas. SatLM (Ye et al., 2024)
enables LLMs to generate task specifications that
assist in translating natural language into logical
predicates. LOT (Liu et al., 2024b), similar to
CoT, generates progressive logical paths. How-
ever, many of these methods struggle to extend
successfully to smaller models, due to their limited
contextual learning capabilities and lack of formal
reasoning knowledge.

6 Conclusion

This paper addresses mathematical reasoning with
missing and contradictory conditions by introduc-
ing PMC, a large-scale benchmark for evaluating

LLM robustness. Our observations reveal a trade-
off dilemma between reasoning for well-defined
problems and recognizing ill-defined problems.
To solve this trade-off, we propose VCSEARCH,
a training-free framework that uses formal lan-
guage to detect ill-defined problems, enhanced by a
variable-constraint pair search strategy to improve
formal modeling. Extensive experiments show VC-
SEARCH achieves superior robust reasoning across
diverse model architectures and sizes.

Limitations

Our work has two main limitations:
Time Consumption. Due to the use of variable-
wise refinement and a search-based architecture
during the reasoning process, our method in-
evitably incurs higher computational overhead com-
pared to baseline approaches. While this addi-
tional cost is the price for improved robustness
and broader applicability, it may limit scalability
when applied to very large datasets or real-time sce-
narios. Future work may investigate techniques for
reducing this overhead, such as pruning strategies
or parallelization.
Limitations of Formal Tools. Our method’s abil-
ity to identify ill-defined problems heavily relies
on formal tools, such as SMT solvers. By design,
the system will directly reject tasks that cannot be
adequately modeled with logical constraints. Al-
though this ensures rigor in handling pathological
cases, it may also lead to overly conservative be-
havior, including the incorrect rejection of certain
well-defined problems. Extending the framework
with more flexible or hybrid reasoning mechanisms
could help alleviate this limitation.

Acknowledgements

This research was supported by the Jiangsu Sci-
ence Foundation (BG2024036, BK20243012),
National Natural Science Foundation of China
(624B2068,62576162,62576174), and the Funda-
mental Research Funds for the Central Universities
(022114380023).

References
Janice Ahn, Rishu Verma, Renze Lou, Di Liu, Rui

Zhang, and Wenpeng Yin. 2024. Large language
models for mathematical reasoning: Progresses and
challenges. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics, pages 225–237.

12718

Clark Barrett, Aaron Stump, Cesare Tinelli, et al. 2010.
The smt-lib standard: Version 2.0. In Proceedings
of the 8th international workshop on satisfiability
modulo theories, volume 13, page 14.

Longbing Cao. 2022. Ai in finance: challenges, tech-
niques, and opportunities. ACM Computing Surveys
(CSUR), 55(3):1–38.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, et al. 2021. Training verifiers to solve math
word problems. arXiv preprint arXiv:2110.14168.

Brandon C Colelough and William Regli. 2025. Neuro-
symbolic ai in 2024: A systematic review. arXiv
preprint arXiv:2501.05435.

Leonardo Mendonça de Moura and Nikolaj S. Bjørner.
2008. Z3: an efficient SMT solver. In Procddings of
the 14th Tools and Algorithms for the Construction
and Analysis of Systems International Conference,
volume 4963 of Lecture Notes in Computer Science,
pages 337–340.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In Proceedings of the 40th International
Conference on Machine Learning, pages 10764–
10799.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
2025. rstar-math: Small llms can master math reason-
ing with self-evolved deep thinking. arXiv preprint
arXiv:2501.04519.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Yu Wu, YK Li, et al. 2024. Deepseek-coder:
When the large language model meets programming–
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Tanmay Gupta and Aniruddha Kembhavi. 2023. Vi-
sual programming: Compositional visual reasoning
without training. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-
nition, pages 14953–14962.

Mohammad Javad Hosseini, Hannaneh Hajishirzi, Oren
Etzioni, and Nate Kushman. 2014. Learning to solve
arithmetic word problems with verb categorization.
In Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pages 523–
533.

Hui Huang, Yingqi Qu, Jing Liu, Muyun Yang, and
Tiejun Zhao. 2024. An empirical study of llm-
as-a-judge for llm evaluation: Fine-tuned judge
models are task-specific classifiers. arXiv preprint
arXiv:2403.02839.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Keming Lu, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Rik Koncel-Kedziorski, Subhro Roy, Aida Amini, Nate
Kushman, and Hannaneh Hajishirzi. 2016. Mawps:
A math word problem repository. In Proceedings of
the 2016 conference of the north american chapter of
the association for computational linguistics, pages
1152–1157.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Ramasesh,
Ambrose Slone, Cem Anil, Imanol Schlag, Theo
Gutman-Solo, Yuhuai Wu, Behnam Neyshabur, Guy
Gur-Ari, and Vedant Misra. 2022. Solving quantita-
tive reasoning problems with language models. In
Advances in Neural Information Processing Systems,
pages 3843–3857.

Chengpeng Li, Zheng Yuan, Guanting Dong, Keming
Lu, Jiancan Wu, Chuanqi Tan, Xiang Wang, and
Chang Zhou. 2023. Query and response augmenta-
tion cannot help out-of-domain math reasoning gen-
eralization. arXiv preprint arXiv:2310.05506.

Zenan Li, Zhi Zhou, Yuan Yao, Yu-Feng Li, Chun Cao,
Fan Yang, Xian Zhang, and Xiaoxing Ma. 2024a.
Neuro-symbolic data generation for math reasoning.
arXiv preprint arXiv:2412.04857.

Zenan Li, Zhi Zhou, Yuan Yao, Xian Zhang, Yu-Feng
Li, Chun Cao, Fan Yang, and Xiaoxing Ma. 2024b.
Neuro-symbolic data generation for math reasoning.
In Advances in Neural Information Processing Sys-
tems.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi
Deng, Chenyu Zhang, Chong Ruan, et al. 2024a.
Deepseek-v3 technical report. arXiv preprint
arXiv:2412.19437.

Sheng Liu, Zhihui Zhu, Qing Qu, and Chong You.
2022. Robust training under label noise by over-
parameterization. In International Conference on
Machine Learning, pages 14153–14172. PMLR.

Tongxuan Liu, Wenjiang Xu, Weizhe Huang, Xingyu
Wang, Jiaxing Wang, Hailong Yang, and Jing Li.
2024b. Logic-of-thought: Injecting logic into con-
texts for full reasoning in large language models.
arXiv preprint arXiv:2409.17539.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jian-
guang Lou, Chongyang Tao, Xiubo Geng, Qingwei
Lin, Shifeng Chen, and Dongmei Zhang. 2023. Wiz-
ardmath: Empowering mathematical reasoning for
large language models via reinforced evol-instruct.
arXiv preprint arXiv:2308.09583.

Jingyuan Ma, Damai Dai, Lei Sha, and Zhifang Sui.
2024. Large language models are unconscious of
unreasonability in math problems. arXiv preprint
arXiv:2403.19346.

12719

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi,
Oncel Tuzel, Samy Bengio, and Mehrdad Farajtabar.
2024. Gsm-symbolic: Understanding the limitations
of mathematical reasoning in large language models.
arXiv preprint arXiv:2410.05229.

John X Morris, Eli Lifland, Jin Yong Yoo, Jake Grigsby,
Di Jin, and Yanjun Qi. 2020. Textattack: A frame-
work for adversarial attacks, data augmentation,
and adversarial training in nlp. arXiv preprint
arXiv:2005.05909.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023. Logic-lm: Empower-
ing large language models with symbolic solvers
for faithful logical reasoning. arXiv preprint
arXiv:2305.12295.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are nlp models really able to solve
simple math word problems? arXiv preprint
arXiv:2103.07191.

Ewa Puchalska and Zbigniew Semadeni. 1987. Chil-
dren’s reactions to verbal arithmetical problems with
missing, surplus or contradictory data. For the learn-
ing of mathematics, 7(3):9–16.

Mohammad Raza and Natasa Milic-Frayling. 2025.
Instantiation-based formalization of logical reason-
ing tasks using language models and logical solvers.
arXiv preprint arXiv:2501.16961.

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed Chi, Nathanael Schärli, and
Denny Zhou. 2023. Large language models can be
easily distracted by irrelevant context. arXiv preprint
arXiv:2302.00093.

Bingrui Sima, Linhua Cong, Wenxuan Wang, and Kun
He. 2025. Viscra: A visual chain reasoning attack
for jailbreaking multimodal large language models.
arXiv preprint arXiv:2505.19684.

Fadi Thabtah, Suhel Hammoud, Firuz Kamalov, and
Amanda Gonsalves. 2020. Data imbalance in classi-
fication: Experimental evaluation. Information Sci-
ences, 513:429–441.

Shi-Yu Tian, Zhi Zhou, Wei Dong, Ming Yang, Kun-
Yang Yu, Zi-Jian Cheng, Lan-Zhe Guo, and Yu-Feng
Li. 2025a. Automated text-to-table for reasoning-
intensive table qa: Pipeline design and benchmarking
insights. arXiv preprint arXiv:2505.19563.

Shi-Yu Tian, Zhi Zhou, Xin Su, and Yu-Feng Li. 2025b.
Rethinking evaluation for multi-label drug-drug in-
teraction prediction. Frontiers of Computer Science,
19(9).

Shiyu Tian, Hongxin Wei, Yiqun Wang, and Lei Feng.
2024. Crosel: Cross selection of confident pseudo
labels for partial-label learning. In Proceedings of
the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 19479–19488.

David Tolpin and Solomon Shimony. 2012. Mcts based
on simple regret. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 26, pages
570–576.

Boxin Wang, Chejian Xu, Shuohang Wang, Zhe Gan,
Yu Cheng, Jianfeng Gao, Ahmed Hassan Awadal-
lah, and Bo Li. 2021. Adversarial glue: A multi-
task benchmark for robustness evaluation of language
models. arXiv preprint arXiv:2111.02840.

Yiming Wang, Pei Zhang, Baosong Yang, Derek Wong,
Zhuosheng Zhang, and Rui Wang. 2024. Embedding
trajectory for out-of-distribution detection in mathe-
matical reasoning. Advances in Neural Information
Processing Systems, 37:42965–42999.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed Chi, Quoc V Le,
and Denny Zhou. 2022. Chain-of-thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems,
pages 24824–24837.

Feng Xiong, Hongling Xu, Yifei Wang, Runxi Cheng,
Yong Wang, and Xiangxiang Chu. 2025. Hs-star:
Hierarchical sampling for self-taught reasoners via
difficulty estimation and budget reallocation. arXiv
preprint arXiv:2505.19866.

Minglai Yang, Ethan Huang, Liang Zhang, Mihai Sur-
deanu, William Wang, and Liangming Pan. 2025a.
How is llm reasoning distracted by irrelevant context?
an analysis using a controlled benchmark. arXiv
preprint arXiv:2505.18761.

Xiao-Wen Yang, Jie-Jing Shao, Lan-Zhe Guo, Bo-
Wen Zhang, Zhi Zhou, Lin-Han Jia, Wang-Zhou
Dai, and Yu-Feng Li. 2025b. Neuro-symbolic artifi-
cial intelligence: Towards improving the reasoning
abilities of large language models. arXiv preprint
arXiv:2508.13678.

Yuqing Yang, Ethan Chern, Xipeng Qiu, Graham Neu-
big, and Pengfei Liu. 2023. Alignment for honesty.
arXiv preprint arXiv:2312.07000.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett.
2024. Satlm: Satisfiability-aided language models
using declarative prompting. Advances in Neural
Information Processing Systems, 36.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2023.
Metamath: Bootstrap your own mathematical ques-
tions for large language models. arXiv preprint
arXiv:2309.12284.

Aohan Zeng, Bin Xu, Bowen Wang, Chenhui Zhang,
Da Yin, Dan Zhang, Diego Rojas, Guanyu Feng,
Hanlin Zhao, et al. 2024. Chatglm: A family of large
language models from glm-130b to glm-4 all tools.
arXiv preprint arXiv:2406.12793.

12720

Jun Zhao, Jingqi Tong, Yurong Mou, Ming Zhang,
Qi Zhang, and Xuan-Jing Huang. 2024. Exploring
the compositional deficiency of large language mod-
els in mathematical reasoning through trap problems.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
16361–16376.

Zirui Zhao, Wee Sun Lee, and David Hsu. 2023. Large
language models as commonsense knowledge for
large-scale task planning. In Advances in Neural In-
formation Processing Systems, pages 31967–31987.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023.
Judging llm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595–46623.

Zhi Zhou, Ming Yang, Jiang-Xin Shi, Lan-Zhe Guo, and
Yu-Feng Li. 2024a. Decoop: robust prompt tuning
with out-of-distribution detection. arXiv preprint
arXiv:2406.00345.

Zhi Zhou, Kun-Yang Yu, Lan-Zhe Guo, and Yu-Feng
Li. 2025a. Fully test-time adaptation for tabular data.
In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 39, pages 23027–23035.

Zhi Zhou, Kun-Yang Yu, Shi-Yu Tian, Xiao-Wen Yang,
Jiang-Xin Shi, Pengxiao Song, Yi-Xuan Jin, Lan-Zhe
Guo, and Yu-Feng Li. 2025b. Lawgpt: Knowledge-
guided data generation and its application to legal
llm. arXiv preprint arXiv:2502.06572.

Zihao Zhou, Qiufeng Wang, Mingyu Jin, Jie Yao, Jianan
Ye, Wei Liu, Wei Wang, Xiaowei Huang, and Kaizhu
Huang. 2024b. Mathattack: Attacking large language
models towards math solving ability. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19750–19758.

12721

A Appendix

The appendix is organized as follows: Section A.1 provides additional details of our proposed dataset
PMC; Section A.2 describes the operation process of our algorithm VCSEARCH; and Section A.3 presents
further experiments and discussions.

A.1 Details of benchmark PMC
We give more details of our constructed benchmark PMC here.

A.1.1 Composition and examples of PMC
We show the number of specific subsets of PMC in Table 5, and show more representative problems to
help understand our dataset.

Table 5: The specific number of rewritten datasets

Type AddSub MultiArith SVAMP GSM8k Sum
M-type 369 591 825 1129 2914
C-type 244 359 745 765 2113

Example 1: Example 1 of PMC

Statement: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in
$50,000 in repairs. This increased the value of the house by 150%. How much profit did he make?
Excepted Answer: 70,000

M Version: Josh decides to try flipping a house. He buys a house for $80,000 and then puts
$50,000 some cost in repairs. This increased the value of the house by 150%. How much profit
did he make?

C Version: Josh decides to try flipping a house. He buys a house for $80,000 and then puts
in$50,000 in repairs. This increased the value of the house by 150%, but the market value of the
house after repairs is only $100,000. How much profit did he make? (# market value Contrary to
the expected)

A.1.2 Constrction prompt
The construction prompt we used is shown in the example 3,4,5.

A.1.3 Human annotators
When the LLM used for verification outputs inconsistent responses, we will enable human annotators to
verify. Our annotators come from within the lab, no more than 5 master’s and doctoral students.

12722

Example 2: Example 2 of PMC

Statement: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’
market? # Excepted Answer: 14

M Version: Janet’s ducks lay 16 eggs per day. She eats three some for breakfast every morning
and bakes muffins for her friends every day with four. She sells the remainder at the farmers’
market daily for $2 per fresh duck egg. How much in dollars does she make every day at the
farmers’ market?

C Version: Janet’s ducks lay 16 eggs per day. She eats three for breakfast every morning and
bakes muffins for her friends every day with four. She sells the remainder at the farmers’ market
daily for $2 per fresh duck egg. How much in dollars does she make every day at the farmers’
marketif she give 10 eggs away to her neighbor? (# She only left 9 eggs, can not give away 10
eggs)

Example 3: Constrction prompt for missing type

Given the following math problem, identify all the variables and constraints involved. Then,
modify the problem by replacing a key numerical value in one of the constraints with an indefinite
placeholder (e.g., “some number”, “a certain value”, etc.), such that the resulting problem lacks
sufficient information to determine a unique solution.
You can answer with following step:
Step 1: Variable and Constraint Identification.
Step 2: Decide the mutated Variable or constraint and explain the reason.
Step 3: Answer with final mutated problem.
Original Problem: {Problem}
Modified Problem: [Your answer]

Example 4: Constrction prompt for contra type

Given the following math problem, identify all the variables and constraints involved. Then, modify
the problem by introducing an additional constraint that directly conflicts with an existing one.
The resulting problem should contain contradictory information that makes it logically unsolvable.
You can answer with following step:
Step 1: Variable and Constraint Identification.
Step 2: Decide the mutated Variable or constraint and explain the reason.
Step 3: Answer with final mutated problem.
Original Problem: {Problem}
Modified Problem: [Your answer]

A.2 Details of algorithm VCSEARCH

In this part, we will introduce the details of our algorithm VCSEARCH.

A.2.1 Prompts in VCSEARCH

We show the prompts we use in VCSEARCH with examples 6 and 7.

12723

Example 5: Validation prompt

Given the following math problem, determine whether it is solvable. If not, identify why the
problem is ill-defined. Specifically, analyze whether the conditions provided are insufficient or
self-contradictory, making it impossible to derive a unique solution.
You can answer with the following steps:
Step 1: Variable and Constraint Identification.
Step 2: Analyze whether the problem is solvable under the given constraints. If it is unsolvable,
explain whether it is due to missing information or contradictory conditions, and identify the
responsible part(s).
Step 3: Give the final feedback if the question is unsolvable
Problem: {Problem}
Answer: [Your answer]

A.2.2 Formal tools
The SMT-LIB(Satisfiability Modulo Theories Library) (Barrett et al., 2010) is a tool for working with
satisfiability problems. It provides a standard notation compatible input language for representing logical
formulas. And powful SMT solvers, such as Z3 (de Moura and Bjørner, 2008), extend the classical
boolean satisfiability problem (SAT problem) to enable verification of numerical arithmetic problems,
among others. The SMT solver will initially determine whether the modeled problem is satisfiable
(SAT/UNSAT). If it is satisfiable, the solver will then provide a feasible solution within the feasible
domain of the problem. Specifically, we use z3 as a formal tool in the paper.

A.2.3 Double-check solving strategy with SMT solver
We use a double-check strategy when checking with the SMT solver. Specifically, we verify both the
satisfiability of the formal expression and the uniqueness of the solution. To be specific, to check the
satisfiability of the formal expression, we utilize the Z3 solver. This strategy regards the problem as ill-
defined and rejects the answer if the formal expression is unsatisfiable(UNSAT). To assess the uniqueness
of the solution, We develop this check through a two-stage process. First, we utilize the Z3 solver to
determine one solution and subsequently incorporate this candidate solution as a constraint into the
formal expression. If the formal expression remains satisfiable, then it implies that the formal expression
encompasses multiple solutions, leading the strategy to reject the answer as it violates the uniqueness of
the answer.

To be precise, in the solution phase, our strategy let the SMT solver return four possible different values:

• Error: Indicates that the modeling cannot be successfully completed. Similar to a compilation error,
we do not consider it as a valid state.

• UNSAT: Indicates that the modeling state cannot be satisfied, there are contradictory conditions, and
the answer is rejected.

• Multi: We believe that the question is ambiguous, resulting in multiple solutions, and the answer is
rejected.

• Ans: Returns a normal real number, representing the answer to the question.

A.2.4 An example for VCSEARCH

Our approach to determining variable-constraint relationships is as follows:

• Preparation Phase (Variables → Constraints): For a given variable, directly retrieve all constraints
containing that variable from the constraint pool.

12724

Example 6: prompts used in VCSEARCH-1

Refine module prompt
I have previously asked you to write Z3 constraints for a problem. However, the current set of constraints for the variable
may have omissions or errors. I would like you to review it from the following two aspects and make appropriate
modifications if necessary:
1. Based on the problem description, consider whether the current constraints accurately capture the problem.
2. Add constraints based on real-world knowledge, considering whether there are any missing modeling statements,
such as the quantity of items should be >= 0, or the relationships between the sides of a triangle.
Please note that you only need to add constraints to the CURRENT HEAD VARIABLE; in other words, the new
constraints MUST include the head variable!
You can first provide your thought process, and then write the new constraints that include the head variable after the
identifier <SOS>

You can follow the example:

Question: Josh decides to try flipping a house. He buys a house for $80,000 and then puts in $50,000 in repairs. This

increased the value of the house by 150%, but the market value of the house after repairs is only $100,000. How much

profit did he make?

Existing Constraints:

solver.add(initial-cost == 80000)

solver.add(total-investment == initial-cost + repair-cost)

solver.add(repair-cost == 50000)

solver.add(increased-value-percentage == 0.5) # 150% increase

solver.add(expected-value == initial-cost * (100 + increased-value-percentage))

solver.add(market-value-after-repairs == 100000)

solver.add(total-investment >= 0)

solver.add(profit == market-value-after-repairs - total-investment)

solver.add(profit >= 0)

solver.add(expected-value >= 0)

Now head variable: expected-value

Now existing constraints with head variable:

solver.add(expected-value == initial-cost * (100 + increased-value-percentage))

solver.add(expected-value >= 0)

Answer:

1. For the constraint expected-value == initial-cost * (100 + increased-value-percentage), the equation for expected-value

in the problem should be initial-cost * (1 + increased-value-percentage). Therefore, this constraint should be modified

to solver.add(expected-value == initial-cost * (1 + increased-value-percentage)).

2. For the constraint solver.add(expected-value >= 0) aligns with real-world requirements. Additionally, since expected-

value is an unknown variable, it is appropriate to add real-world constraints, so this should be retained.

3. Furthermore, expected-value and market-value-after-repairs refer to the same entity in the problem, so a constraint

should be added: market-value-after-repairs == expected-value.

<SOS>

So, new Constraints with head variable is

solver.add(expected-value == initial-cost * (1 + increased-value-percentage))

solver.add(expected-value >= 0)

solver.add(expected-value == market-value-after-repairs)

Question:{question}

Existing Constraints:{constraint}

Now head variable:{head}

Now existing constraints with head variable:{constrain-head}

Answer:

12725

Example 7: prompts used in VCSEARCH-2

Verification module prompt
Please judge which set of constraints is better for the given problem, including all constraints of
variable "X".
Problem: {question}
variable:{head}
Constrains set1:{cons1}
Constrains set1 ans:{cans1}
Constrains set2:{cons2}
Constrains set2 ans:{cans1}
Please write down your thinking process first, and finally output, "I think Constrains set1 is better",
or "I think Constrains set2 is better".

• Update Phase (Constraints → Variables): For a given constraint, we identify all new associated
variables in it.

To further illustrate this method, we present a concrete example using a contra-type problem in PMC
(example 8) to demonstrate the search process:

12726

Example 8: Example in VCSEARCH

"Josh decides to try flipping a house. He buys a house for 80,000 and then puts in 50,000 in
repairs. This increased the value of the house by 150%, but the market value of the house is only
$100,000. How much profit did he make?"
After the initialization step, we obtain an initial constraint system, represented in Python Z3 code.
This system consists of a variable queue and a constraint pool.
Variables:

"initial-cost", "repair-cost", "increased-value-percentage",
"expected-value", "market-value-after-repairs", "profit",
"total-investment"

Constraints:

initial-cost == 80000
repair-cost == 50000
market-value-after-repairs == 100000
increased-value-percentage == 0.5
total-investment == initial-cost + repair-cost
expected-value == initial-cost * (100 + increased-value-percentage)
profit == market-value-after-repairs - total-investment

After the Initialization, assume that the first element in the variable queue is "expected-value",
we will demonstrate a single iteration of the search process.
Preparation
Identify constraints involving this variable "expected-value":

expected-value == initial-cost * (100 + increased-value-percentage)

Exploration
Utilize LLM knowledge to refine the constraints by generating a constraints set with the head
variable "expected-value":

expected-value == initial-cost * (basic_multiplier + increased-value-percentage)
basic_multiplier == 1

Verification
Compare the original constraint system with the refined one and select the better version.
(In this case, the newly generated constraint set is selected).
Update
Replace the outdated constraint with the refined one.
Identify any newly introduced variables (e.g., "basic_multiplier") and append them to the tail
of the variable queue for subsequent iterations.

12727

A.3 Details of Experiment
In this section, we provide additional experimental details and discussions. However, due to time and
computational constraints, some of the analyses were conducted on a subset of the dataset.

A.3.1 Setup
Compared methods. We selected three representative few-shot prompting methods, along with the zero-
shot method that utilizes the intrinsic capabilities of the model, and compared them with our proposed
VCSEARCH method. The methods are introduced as follows: (1)Basic, which is the zero-shot baseline
method, directly feeds the problem and instructions to the LLMs without any example problem in the
context. (2)CoT, (Wei et al., 2022), requires the model to explicitly output intermediate step-by-step
reasoning through natural language before providing the final answer. (3)PAL (Gao et al., 2023), converts
each step of problem-solving into a programming language format and subsequently utilizes an external
programming language interpreter for execution, thereby obtaining the results. (4)Satlm (Ye et al., 2024),
utilizes SMT-LIB to model the problems, then uses an external SMT solver to check for a feasible solution
to the problem as well as obtain the ground-truth answer.

Prompts. For the few-shot prompting methods, we prepared four contextual examples (4-shot) for each
method, consisting of two well-defined problems and two ill-defined problems. In the system prompt, we
explicitly informed the model about the potential presence of ill-defined problems. If the model determines
that a problem is unsolvable, it is instructed to output a statement containing the term "unsolvable." This
allows us to evaluate whether the model successfully identifies ill-defined problems.

Set up details for Sec4.3. At this part, we employed a balanced sampling strategy to fairly assess
the ability to identify ill-posed problems and solve well-defined problems simultaneously. (with a
solvable/unsolvable problem ratio of α = 1 : 1), selecting 500 samples from the ill-defined problem
set (Table 1) and the well-defined problem set (Table 2) to construct a 1000-sample test set. After three
repeated experiments, we report the mean ± standard deviation in Table 3.

A.3.2 Prompts used in Preliminary experiments
We show the prompts we use in preliminary experiments to reflect the trade-off dilemma with examples 9.

Example 9: prompts used in Preliminary experiments

Pure prompt for ill-defined problem
Now we have some math problems that may be ill-defined. Please judge whether they are indeed
ill-defined (no unique real number solution can be determined). If there is indeed no solution,
answer true, otherwise answer false. Explain the reason first and then answer.

Pure prompt for well-behaved problem
You’re an experienced elementary school teacher, and I’m now expecting you to solve some math
problems.

Mixed prompts
You’re an experienced elementary school teacher, and I’m now expecting you to solve some math
problems. If you find these problems unsolvable, please output “this is unsolvable”. Or please
solve this answer, and give the final answer with format "The answer is X"

A.3.3 More experiment results on other benchmark
Here, we also tested our method on several other benchmarks that involve refusal to answer. Our method
also demonstrated superior performance on MathTrap. However, MathTrap’s mathematical problems
involve a significant amount of geometry and algebra, which are not well-suited for formal tool modeling.
This is also not suitable for methods such as PAL. So we only compare ours with the zero-shot method. In

12728

Table 6: R-Rate on MathTrap

Model Deepcoder Qwen7b Qwen3b Qwen1.5b
Zero 22.95 15.57 15.57 13.72
Ours 65.57 86.06 88.89 74.59

such scenarios, our method adopts a relatively conservative approach, rejecting any problem it cannot
confidently solve in order to maintain the safety of the reasoning system.

A.3.4 More ablation about VCSEARCH

We further conduct ablation of the algorithm from the following aspects:
Variable Ordering. By default, we refine variables in the order they appear in the problem statement.

This approach often approximates the topological order of problem-solving steps, especially when the
number of solution steps is limited. We also experimented with an alternative order: refining variables
based on their frequency of occurrence in the constraints (from highest to lowest).

As shown in the table below, using the frequency-based iteration order improved performance on
"contra" type problems while degrading it on "missing" type problems, with "well-defined" problems
remaining stable. Our analysis suggests this is because "contra" problems often have contradictions
embedded in hidden variables at constraint intersections (with high occurrences), which are more readily
identified and optimized with frequency-based ordering. Conversely, in "missing" type problems, the
missing variables frequently appear earlier in the data, making sequential iteration more effective.

Iteration Strategy. We experimented with the number of variable iterations as a hyperparameter T.
While additional iterations bring slight performance improvements, they also introduce significant in-
creases in computational and time costs. After weighing performance gains against resource consumption,
we adopted a single-iteration setting as the most cost-effective choice. Detailed results are presented in
the table below. (Due to time and computational limitations, we report results using the Qwen-7B model,
based on 300 randomly sampled instances per dataset.)

Table 7: Performance under different configurations

Default (T=1, appear-order) T=2 T=3 frequency-order

Contra 56.89 57.67 56.33 61.00
Missing 92.60 93.00 91.67 87.67
Well-type 79.09 77.00 79.67 79.00

A.3.5 Discussion about reasoning in realistic scenarios
Discussion of dataset ratios

In our paper, we adopted a balanced setting(i.e.,Dw : Di = 1 : 1) to measure the reaction score. This
balanced approach allows us to evaluate the capability of methods to both answer well-defined problems
and reject ill-defined problems with equal importance. This evaluation strategy is analogous to how
imbalanced classification studies often report balanced metrics to properly assess model performance
across all classes (Thabtah et al., 2020). By maintaining this balanced setting, we provide a more
comprehensive and fair assessment of each method’s capabilities of answering and rejecting. Additionally,
we compared the R-score performance across different dataset ratios (defined as α = Dw : Di) on the
Qwen1.5B model, and our method consistently demonstrated superior results.

More convincing metrics
To prevent excessive score inflation through question rejection (where rejecting all questions would

yield only 50% of the total score), we introduce the R*-score metric as below
∑

p∈Di
I[f(p) = Reject] +

∑
p∈Dw

I[f(p) = g(p)]

|Di|+ |Dw|
12729

Table 8: Performance among different data ratios

α 0.2 0.5 1 2 5

CoT 44.61± 1.02 49.58± 2.00 53.91± 1.16 58.96± 0.78 62.83± 1.55
CoT + Ours 64.40± 0.43 64.05± 0.60 63.26± 0.84 64.33± 0.89 62.91± 0.79
PAL 16.01± 0.66 24.03± 1.12 32.85± 1.00 41.15± 0.49 49.53± 2.89
PAL + Ours 65.26± 1.54 62.46± 0.22 62.28± 0.65 58.55± 1.13 58.84± 0.56

We evaluate our method under balanced settings and present the results in the following table. Our
approach maintains superior performance in most scenarios(R*-score), demonstrating that our performance
gains do not stem from simply rejecting most questions.

Table 9: Perfomance among R-score and R*-score

Qwen 1.5B Qwen 3B

Method R-score R*-score R-score R*-score

CoT 53.91± 1.16 51.10± 2.08 65.93± 0.73 65.10± 1.04
CoT + Ours 63.26± 0.84 53.10± 0.06 73.98± 0.28 66.93± 0.28
PAL 32.85± 1.00 30.63± 0.18 48.56± 0.22 47.66± 0.49
PAL + Ours 62.28± 0.65 51.90± 1.15 74.08± 1.17 65.73± 1.30

A.3.6 Performance on Larger LLM

We’ve extended our experimental results to include GPT-4-0613 and GLM-4-Plus. These findings
indeed demonstrate that larger language models exhibit a stronger ability to identify ill-defined problems.
However, it’s crucial to highlight that even with these powerful models, our proposed method can further
enhance their capability to recognize and handle such issues, significantly improving their robustness,
particularly in "contra" type problems.

Model Dataset Basic Ours
gpt4-0613 Contra 35.00 71.00

Missing 82.00 85.00
GLM-4-Plus Contra 44.67 64.00

Missing 73.67 86.00

Table 10: Performance comparison between baseline and our method.

Even though the ability of large LLMs to handle robust mathematical reasoning has improved, this
doesn’t diminish the importance of addressing ill-defined problems. In reality, not all application sce-
narios possess the resources or infrastructure to deploy ultra-large models. For instance, mid-sized
models (around 7 billion parameters) are widely adopted in practical applications due to their excellent
deployability and cost-effectiveness. In these contexts, robust reasoning capabilities remain a critical
focus.

Furthermore, we contend that symbolic methods offer a unique advantage in this scenario, rather than
being overly complex. Specifically, a symbolic solver can be effectively utilized as a tool to assess the
completeness of problem descriptions, while the language model focuses on modeling the constraint
system. This division of labor frees the model from the trade-off between identifying pathological
problems and solving well-defined ones. And even with advanced larger LLMs, experiments show they
can’t fully escape this trade-off, yet our symbolic approach still proves effective.

12730

A.3.7 Computational cost discussion
Our framework employs a sequential iterative structure. In terms of memory and computational costs, it’s
comparable to standard LLM inference, as most resource consumption doesn’t significantly increase. The
primary overhead lies in runtime. We use the Z3 SMT solver, which has a relatively low CPU footprint.
For example, when running Qwen-7B on our proposed PMC dataset with an RTX 4090, GPU and CPU
memory consumption are approximately 15 GB and 1.6 GB, respectively.

While our method does have a higher runtime than zero-shot/few-shot inference, this is a common
characteristic of test-time scaling approaches. Our proposed method achieves linear time complexity with
respect to the number of variables, rather than exponential growth. Our empirical runtime measurements
confirm this linear scaling behavior, significantly outperforming methods that build constraint systems
using tree search. The table below shows the average time required for the Qwen-7B model to solve a
single problem using different methods.

Method Basic SMT Ours Tree Search
Time 6.6s 12s 79.8s 156s

Table 11: Time consumption comparison of different methods.

A.3.8 LLM verification in VCSearch
We acknowledge the current limitations of Large Language Models (LLMs) in modeling symbolic systems.
However, it’s important to clarify that our LLM-Judge relies not solely on the model’s output. To enhance
the reliability of its judgments, we also provide the problem’s text description and the SMT solver’s
execution results (Equation 7) as additional inputs.

Given that incorporating human evaluation into every LLM-Judge process would demand substantial
annotation resources and time, it’s impractical for real-world application. Therefore, we propose an
alternative metric: Judge-Error-Rate (JER). Among samples where the final output was incorrect, any
correct answer that was found during the search process but not ultimately selected as the final output
is counted as a judge error. We calculate JER as the proportion of these judge errors among all judging
instances. This metric serves as an effective measure of LLM-Judge’s reliability. We’ve calculated the
JER for our method across various models and datasets, and the results demonstrate the high effectiveness
of our LLM-Judge approach.

Table 12: JER on different datasets

Model Contra Missing Well-defined

Qwen7b 8.80 1.11 1.69
Qwen3b 11.64 2.60 1.68
Qwen1.5b 1.40 9.26 2.44

12731

