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Abstract
Instruction tuning has empowered large lan-
guage models (LLMs) to achieve remarkable
performance, yet its success heavily depends
on the availability of large-scale, high-quality
instruction-response pairs. To meet this de-
mand, various methods have been developed
to synthesize data at scale. However, current
methods for scaling up data generation often
overlook a crucial aspect: the alignment be-
tween instructions and responses. We hypoth-
esize that the quality of instruction-response
pairs is determined not by the individual quality
of each component, but by the degree of mu-
tual alignment. To address this, we propose a
Mutual Alignment Framework (MAIN) which
enforces coherence between instructions and re-
sponses through mutual constraints. We demon-
strate that MAIN generalizes well across model
architectures and sizes, achieving state-of-the-
art performance on LLaMA, Mistral, and Qwen
models across diverse benchmarks. This work
underscores the critical role of instruction-
response alignment in enabling generalizable
and high-quality instruction tuning for LLMs.
All code is available from our repository.

1 Introduction

Large Language Models have demonstrated un-
precedented capabilities in comprehending human
intent and performing cross-task generalization
through contextual learning(Brown et al., 2020).
A key breakthrough in aligning model behaviors
with human expectations is primarily attributed to
instruction tuning, a supervised learning paradigm
that bridges the gap between pre-trained models’
latent knowledge and explicit task requirements
(Ouyang et al., 2022). Through multi-task training
on (instruction, response) pairs, this approach en-
ables systematic knowledge elicitation while main-
taining task-agnostic generalization (Chung et al.,

*Work done during internship at Microsoft.
†Corresponding Author.

Figure 1: This figure illustrates a common interaction
where a person and a dog adjust their behaviors to align
instruction with response, evolving through repeated
interactions to achieve mutual understanding.

2024). The effectiveness of this process is signifi-
cantly influenced by the availability of high-quality
instruction-response pairs at scale. In essence, the
quality of data used in instruction tuning is crit-
ical to determining the performance and overall
effectiveness of the model.

Instruction-tuning methods currently follow two
primary approaches. The first involves engaging
domain experts (Köpf et al., 2024; Conover et al.,
2023; Bach et al., 2022) to manually create instruc-
tions for specific tasks, ensuring high precision but
facing challenges related to scalability and cost.
The second approach (Wang et al., 2022a; Peng
et al., 2023) leverages LLMs to generate responses
based on given prompts. Although this approach is
more scalable, it risks introducing inaccuracies or
hallucinations (Zhang et al., 2023).

Recent research has explored an alternative:
leveraging human-written documents as typical
responses and using LLMs to infer user instruc-
tions (Köksal et al., 2023; Li et al., 2023a; Chen
et al., 2024; Nguyen et al., 2024), a process known
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as instruction back-translation. These approaches
primarily focused on making the generated data
resemble human data, without considering the in-
herent relationship between the instruction and the
response. We contend that the alignment between
the instruction and the response is also essential.

As shown in Figure 1, the interaction between a
person and a dog illustrates the bidirectional nature
of training. Both the person and the dog adjust
their behaviors to achieve mutual alignment. Sim-
ilar to how a good command to a dog is one that
elicits a proper response, generating an instruction-
response pair must be aligned for optimal effective-
ness. The quality of the instruction is validated by
the response it triggers, and the same logic applies
in reverse. Generating a high-quality pair requires
careful alignment through mutual interaction. The
instruction must clearly guide the response, while
the response should accurately reflect the instruc-
tion, ensuring that both are mutually reinforcing.

The interdependence between instructions and
responses introduces a dual-variable optimization
problem, where enhancing one component ne-
cessitates adjusting the other simultaneously, as
neither can be optimized in isolation. Draw-
ing inspiration from the alternating update strat-
egy used in Expectation-Maximization (EM) al-
gorithms (Moon, 1996), we propose MAIN, a
framework for synthesizing high-quality data. This
framework iteratively optimizes both instructions
and responses, progressively reinforcing their mu-
tual alignment. Through this co-adaptive process,
the alignment between instruction-response pairs
improves substantially, which we believe will sig-
nificantly boost the model’s performance. Further-
more, we propose a straightforward but effective
filtering strategy, mutual filter, which selects pairs
with superior alignment, ultimately boosting the
quality of the fine-tuning dataset.

To validate the effectiveness of our proposed
MAIN framework, we conducted extensive eval-
uations by fine-tuning models with instruction-
response pairs generated by MAIN across mul-
tiple benchmarks. Experimental results demon-
strate substantial improvements in output prefer-
ence, instruction-following capability, and reason-
ing ability. Specifically, for the LLaMA-2-7B
model, our framework achieves a 5.85% increase
in output preference compared to Dog Instruct
(Chen et al., 2024), and a 3.60% improvement
in instruction-following ability over Better Align-
ment (Nguyen et al., 2024). Furthermore, addi-

tional analyses, including experiments on filtering
strategies and GPT-4-based pairwise evaluations of
instruction alignment, confirm that MAIN’s mutual
alignment enhances the coherence and quality of
instruction-response pairs. Our primary contribu-
tions are as follows:

• We emphasize the critical importance of
mutual alignment between instructions
and responses in synthesizing high-quality
instruction-tuning data.

• We propose MAIN, a mutual alignment frame-
work that reinforces the inner connection be-
tween instructions and responses, and develop
a straightforward but efficient data filtering
method.

• We conduct extensive evaluations across di-
verse model families and parameter scales,
showing that MAIN outperforms existing
methods in enhancing instruction tuning ef-
fectiveness.

2 Methodology

In this section, we present our proposed Mutual
Alignment Framework, designed to enhance in-
struction tuning performance by establishing and
strengthening the intrinsic alignment between in-
structions and responses.

2.1 Preliminary
Data The framework utilizes two primary
datasets: a limited set of high-quality, human-
annotated instruction-response pairs seed data
Dseed = {(I,R)} and a larger collection of unla-
beled responses Dunlabeled = {Ru}, extracted from
web corpus.

Models The forward model Mf := p(R|I) is de-
signed to follow instructions, generating responses
given instructions, while the reverse model Mr :=
p(I|R) learns to generate instructions given re-
sponses.

2.2 Data Synthesis Framework: MAIN
We present our data synthesis framework, MAIN,
illustrated in Figure 2. Given a base language
model, a small set of high-quality seed pairs, and
a large collection of unlabeled responses, MAIN
constructs a high-quality training dataset through
three tightly coupled stages: Mutual Alignment,
Data Augmentation, and Data Curation.
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Figure 2: An overview of the data synthesis process, including mutual alignment, data augmentation, and data
curation, aimed at creating high-quality, well-aligned instruction-response pairs from both seed and unlabeled data.

• Mutual Alignment: This step is to obtain a
reverse model Mr := p(I|R) from the seed
data Dseed based on the base model Mbase.
This step would align the internal relationship
between instruction and response.

• Data Augmentation: With the reverse model
Mr trained in the previous step, we apply it
to the unlabeled response data Dunlabeled to
generate corresponding pseudo-instructions.
This yields a set of candidate pairs Daug =

{(Ru, Î
′)}, expanding the data space beyond

the original seed data.

• Data Curation: Not all augmented pairs are
equally reliable. To select high-quality exam-
ples, we apply our mutual filter, which uses
both the forward and reverse models to as-
sess alignment consistency. Only examples
that meet mutual alignment criteria are re-
tained. These filtered pairs, combined with the
original seed data, form the final fine-tuning
dataset: Dfilter = filter(Daug) ∪ Dseed.

2.3 Mutual Alignment

Achieving strong alignment between instructions
and responses is critical for effective instruction
tuning. However, establishing a robust relationship
between these two components presents a challeng-
ing dual-variable problem, as neither direction can
be optimized in isolation. Inspired by the itera-
tive principles of the Expectation-Maximization
algorithm, we propose mutual alignment that treats
instruction-to-response and response-to-instruction
generation as complementary tasks, modeled as

a forward generation process and a reverse gen-
eration process, respectively. By alternately opti-
mizing one direction while regulating the other,
our method iteratively minimizes discrepancies
until convergence is reached, ultimately yield-
ing a model that produces highly aligned instruc-
tion–response pairs.

An overview of our approach is provided in Fig-
ure 3, and Algorithm 1 details the iterative opti-
mization process.

Algorithm 1 Mutual Alignment

Input: Seed data Dseed = {(I,R)}, Unlabeled
data Dunlabeled = {Ru}, Base model Mbase,
Number of iterations N

Output: Reverse model MN
r , forward model MN

f

1: Initialize M0
f ←Mbase, M0

r ←Mbase
2: for k = 0 to N − 1 do
3: Generate Î from R in Dseed using Mk

r

4: Build training set Df = {(Î , R)} ∪ Dseed
5: Update Mk

f on Df by minimizing loss Lf
(Equation (2)) to obtain Mk+1

f

6: Generate pseudo-responses R̂ from I in
Dseed using Mk+1

f

7: Build training set Dr = {(R̂, I)} ∪ Dseed
8: Update Mk

r on Dr by minimizing loss Lr
(Equation (4)) to obtain Mk+1

r

9: end for
10: Return MN

r and MN
f

Forward Model Alignment. To capture the
alignment from responses to instructions, we let
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Figure 3: An overview of our method for iteratively aligning instructions and responses through mutual optimization.

the forward model learn the distribution that the
reverse model simulates. Specifically, at each it-
eration k, the reverse model generates synthetic
instructions Î for the responses, forming a target
distribution that reflects how instructions should
ideally relate to responses. The forward model is
then trained to approximate this distribution.

Î = Mk
r (R), ∀R ∈ Dseed. (1)

These synthetic pairs (Î , R) are merged with the
original seed data (I,R) to form the training set.
The forward model is then updated to Mk+1

f by
optimizing a weighted loss function:

Lf = α · L(Î , R) + (1− α) · L(I,R). (2)

The first loss term L(Î , R) aligns the forward
model with the synthetic instructions generated by
the reverse model, ensuring that the forward model
learns how responses correspond to instructions as
modeled by the reverse model. The second loss
term L(I,R) maintains consistency with the origi-
nal human-annotated instructions, thereby prevent-
ing the forward model from overfitting to synthetic
data. The parameter α controls the balance be-
tween synthetic and human-annotated instructions,
with its dynamic adjustment described in Dynamic
Weighting. This process encourages the forward
model to adapt to the instruction distribution in-
duced by the reverse model.

Reverse Model Alignment. Similarly, the re-
verse model is trained to capture the alignment
from instruction to response as guided by the for-
ward model. The reverse model now is updated

based on the latest forward model Mk+1
f that gen-

erates synthetic responses R̂ conditioned on the
seed instructions:

R̂ = Mk+1
f (I), ∀I ∈ Dseed. (3)

And it is optimized using similar weighted loss
function:

Lr = α · L(R̂, I) + (1− α) · L(R, I). (4)

Dynamic Weighting To balance the influence
of synthetic and seed data, we adopt a dynamic
weighting strategy that adaptively adjusts their con-
tributions during training. The weighting coef-
ficient α ∈ [0, 1] controls this balance, where
static settings may lead to suboptimal outcomes:
over-reliance on synthetic data can introduce noise,
while overemphasis on seed data may hinder gener-
alization. To address this, we update α at each step
based on the relative loss of the two data sources.
For forward model training, the update rule is:

α =
L(Î , R)

L(Î , R) + L(I,R)
. (5)

This formulation ensures that the contribution of
synthetic data is modulated according to its train-
ing loss, enabling the model to incorporate novel
patterns from synthetic pairs while preserving the
stability offered by seed data.

2.4 Data Augmentation

Following mutual alignment optimization, we ex-
pand the training corpus by generating synthetic
instructions for unlabeled responses. Specifically,
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for each unlabeled response Ru ∈ Dunlabeled, the
reverse model generates a corresponding synthetic
instruction Î ′, forming a set of candidate instruc-
tion–response pairs {(Ru, Î

′)}. These pairs ap-
proximate how users might naturally formulate in-
structions for the given responses. However, as
the quality of generated pairs may vary, a subse-
quent curation step is required to ensure alignment
consistency and data reliability.

2.5 Data Curation
To further improve data alignment, we introduce
an effective filtering mechanism. We assume that
high-quality instruction-response pairs should be
well-aligned, where the predicted instruction gen-
erated by the reverse model can be decoded by
the forward model to recover the response, which
should closely resemble the original. This process
is akin to the interaction between an encoder and
a decoder (Cho et al., 2014). Thus, we select the
most well-aligned pairs. Using the candidate pairs
{Ru, Î

′} from the Augmentation stage, we then
employ the forward model to generate synthetic
responses R̂′ based on Î ′:

R̂′ = MN
f (Î ′). (6)

We compute the Cross-Entropy between the syn-
thetic responses R̂′ and the original unlabeled re-
sponses Ru:

LCE(R̂
′, Ru) = −

∑

i

log p(R̂′ | Î ′, Ru). (7)

Candidate pairs are sorted in ascending order by
their values, and only those with the smallest val-
ues—indicating the highest degree of mutual align-
ment are retained.:

Dfilter =
[
filter(Daug),Dseed

]
(8)

This straightforward mechanism, relying solely on
our mutual alignment model, effectively curates a
high-quality subset of data for fine-tuning.

3 Experiment

3.1 Experimental Setup
Data. The seed data consists of 3,200 human-
annotated (instruction, response) examples from
the Open Assistant dataset (Köpf et al., 2024), serv-
ing as a reliable baseline for fine-tuning. The un-
labeled data is Falcon RefinedWeb (Penedo et al.,
2023) that is a massive English web dataset con-
taining raw responses without paired instructions.
We sampled 502k segments.

Mutual Alignment Framework. For mutual
alignment experiments, we adopt LLaMA-2-7B as
the base model, and additionally evaluate the gen-
eralization of our approach on Mistral and Qwen
models. In each iteration, both the forward and
reverse models are trained for one epoch. We use a
learning rate of 1×10−5 with a linear decay sched-
ule. The adaptation weight α is dynamically up-
dated according to Equation 5. The batch size is set
to 32. For data curation, we select the top 16,800
instruction-response pairs from the unlabeled set
based on cross-entropy scores and combine them
with the seed data to form the final fine-tuning
dataset.

Base model & fine-tuning. We use the pre-
trained LLaMA, Mistral and Qwen as the base
models respectively. Detailed hyperparameter con-
figurations are provided in Appendix A.

3.2 Benchmarks

To evaluate our framework, we conduct experi-
ments across three benchmarks that assess different
aspects of model performance.

AlpacaEval. We assess output preference using
805 instructions from the AlpacaEval dataset (Li
et al., 2023b). Model outputs are compared against
text-davinci-003 in a pairwise setting, with GPT-4-
based judgments determining win rates.

IFEval. Instruction-following ability is evaluated
with IFEval (Zhou et al., 2023), which reports accu-
racy across four metrics: Prompt-level Strict (P-S),
Instruction-level Strict (I-S), Prompt-level Loose
(P-L), Instruction-level Loose (I-L) ensuring a com-
prehensive assessment of instruction adherence.

OpenLLM. Reasoning ability is measured via
the Open LLM Leaderboard (Beeching et al.,
2023) using the Language Model Evaluation
Harness (Gao et al., 2023). We evaluate on
ARC (Clark et al., 2018), HellaSwag (Zellers
et al., 2019), Winogrande (Sakaguchi et al., 2021),
MMLU (Hendrycks et al., 2020), and Truth-
fulQA (Lin et al., 2021).

3.3 Baselines

We compare our framework to several baseline ap-
proaches, fine-tuned on 3.2k seed data and 16.8k
generated data from Falcon-RefinedWeb dataset.
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Longform. This method (Köksal et al., 2023)
prompts a large language model to generate in-
structions for human-written texts.

Humpback. This method (Li et al., 2023a) is a
two-stage curation process that filters and selects
high-quality pairs before fine-tuning.

Dog Instruct. This method (Chen et al., 2024)
involves a post-processing step that refines the re-
sponses to align with standard AI-generated output.

Better Alignment. This method (Nguyen et al.,
2024) generates instructions via back-translation,
then filters pairs to obtain high-quality response.

4 Experimental Results

This section presents the experimental results, in-
cluding quantitative results, an ablation study, data
alignment analysis and a case study, to assess the
effectiveness of our approach.

4.1 Quantitative Results
We conduct experiments across three benchmarks,
each assessing a different aspect of the MAIN: Al-
pacaEval evaluates output preference, IFEval mea-
sures instruction-following ability, and OpenLLM
tests reasoning capability, with additional experi-
ments detailed in Appendix B. For completeness,
we also provide additional results on multilingual
generalization in Appendix D.

Output Preference. As shown in Table 1, our
method achieves the highest win rate in AlpacaEval
dataset, surpassing the leading baseline. Specifi-
cally, on Llama-2-7B, our method achieves a win
rate of 58.20%, representing a 5.85% improvement
over the best baseline Dog Instruct (Chen et al.,
2024). On Mistral-7B, our method outperforms
Better alignment (Nguyen et al., 2024) by 3.15%,
reaching a win rate of 48.94% compared to 45.79%.
On Qwen2.5-14B, MAIN achieves the highest win
rate of 71.30%. These results confirm that our
MAIN method enhances instruction-response align-
ment more effectively than previous approaches,
leading to outputs that better align with human ex-
pectations.

Instruction Following. Table 1 illustrates the re-
sults of our method in IFEval dataset where MAIN
achieves state-of-the-art performance across all
three model backbones. Compared to the best-
performing baseline, our approach achieves con-
sistent improvements across all evaluation metrics.

Specifically, on Llama-2-7B, we see an increase of
2.59% in P-S and 3.42% in I-S. For Mistral-7B, we
observe a 5.12% improvement in P-S and a 4.84%
improvement in I-S over Better alignment (Nguyen
et al., 2024). For Qwen2.5-14B, MAIN also leads
with a +2.07% and +2.99% gain in P-S and I-S re-
spectively. These results highlight the crucial role
of enhanced data alignment in fine-tuning, which
allows our model to better interpret and respond
to user instructions, thereby driving its superior
performance in instruction-following tasks.

Reasoning Ability. As shown in Table 1, our
method demonstrates strong improvements in rea-
soning and factual accuracy across multiple down-
stream tasks. On Llama-2-7B, our approach shows
a 2.02% improvement over the best baseline, Bet-
ter Alignment, on ARC-Challenge and a 1.63%
improvement on TruthfulQA. In particular, ARC-
Challenge benefits from our method’s ability to
better capture common-sense reasoning patterns,
which likely leads to more accurate responses. On
Mistral-7B, the most significant improvements are
observed in TruthfulQA, where our method outper-
forms Better Alignment by 5.03%, and in MMLU,
with a 2.65% increase. We further include eval-
uation on Qwen2.5-14B, which follows a similar
trend. These benchmarks that require accurate fac-
tual recall and complex reasoning, show how our
method strengthens the model’s ability to provide
correct and contextually appropriate answers.

4.2 Ablation Study
We conduct additional ablation study to analyze the
impact of our filtering strategy. Further ablation
experiments are provided in Appendix C.

Filtering Stragety. Effective filtering is critical
for improving alignment quality by removing noisy
or misaligned instruction–response pairs. Table 2
compares models trained with no filtering, score-
based filtering, and our proposed mutual-filter
method. Among these, our mutual-filter achieves
the highest win rate and delivers the most consis-
tent gains in instruction-following accuracy.

In contrast, score-based filtering provides little
benefit and even underperforms compared to unfil-
tered data. This is due to the score-based approach,
used in Humpback (Li et al., 2023a) and Better
Alignment (Nguyen et al., 2024), relying on a rank-
ing model fine-tuned on seed data rather than a
dedicated scoring model. Without a clear optimiza-
tion objective for instruction-response alignment,
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Base Model Method Output preference Instruction following Reasoning ability

AlpacaEval
IFEval

ARC_C MMLU HellaSwag Winogrande TruthfulQA
P-S I-S P-L I-L

Llama-2-7B

Humpback (Li et al., 2023a) 41.02 15.46 26.42 18.39 29.91 55.90 44.91 79.42 73.32 44.48
Longform (Köksal et al., 2023) 35.64 15.23 26.10 17.56 29.29 55.72 45.02 78.98 73.21 45.07
Dog Instruct(Chen et al., 2024) 52.35 15.52 28.17 19.40 32.01 56.06 45.62 79.89 74.13 45.77

Better Alignment (Nguyen et al., 2024) 50.37 16.82 27.70 19.69 31.52 55.92 45.84 80.33 74.12 45.30
MAIN 58.20 20.22 31.17 23.36 35.37 57.08 45.47 81.22 74.51 47.40

∆ over Best Result +5.85 +3.40 +3.00 +3.67 +3.36 +1.02 -0.37 +0.89 +0.38 +1.63

Mistral-7B

Humpback (Li et al., 2023a) 40.48 17.19 28.05 20.88 32.37 54.01 49.26 79.12 73.24 45.48
Longform (Köksal et al., 2023) 37.62 16.98 27.89 20.75 32.10 53.98 48.12 78.25 71.60 44.88
Dog Instruct(Chen et al., 2024) 45.34 18.23 28.48 21.32 33.47 53.15 49.10 79.07 73.21 45.98

Better Alignment(Nguyen et al., 2024) 45.79 18.35 29.45 21.49 34.10 54.20 50.28 78.37 71.48 44.73
MAIN 48.94 23.47 34.29 26.60 38.84 55.12 52.93 79.38 72.38 49.76

∆ over Best Result +3.15 +5.12 +4.84 +5.11 +4.74 +0.92 +2.65 +0.31 -0.86 +3.78

Qwen2.5-14B

Humpback (Li et al., 2023a) 49.83 69.45 79.92 74.28 82.25 65.25 77.04 83.81 78.91 57.63
Longform (Köksal et al., 2023) 45.42 69.12 79.37 74.05 82.46 65.12 76.92 83.04 76.55 55.72
Dog Instruct (Chen et al., 2024) 50.27 72.83 81.89 76.64 84.72 64.71 78.33 84.19 79.12 56.34

Better Alignment (Nguyen et al., 2024) 53.93 71.37 81.55 76.32 84.14 65.36 78.01 84.25 79.63 55.91
MAIN 61.30 74.90 84.03 79.93 87.61 66.93 80.26 84.07 80.72 59.49

∆ over Best Result +7.37 +2.07 +2.14 +2.29 +2.89 +1.57 +1.93 -0.18 +1.09 +3.15

Table 1: Benchmarking results of different methods on Llama-2-7B, Mistral-7B and Qwen2.5-14B using Falcon
RefinedWeb dataset given same data quantity (20k samples). ∆ over Best Result quantify improvements relative to
the strongest baseline method across evaluation categories.

it struggles to identify high-quality pairs, leading
to suboptimal fine-tuning.

Our mutual filter, by leveraging mutual-
alignment models, directly favors instruction-
response pairs with strong coherence. By elimi-
nating misaligned samples without requiring ad-
ditional supervision, it ensures a more effective
training dataset, resulting in improved instruction-
following and generalization capabilities.

Filtering Method Win Rate P-S I-S P-L I-L

Ours w/o filtering 56.40 19.41 23.11 29.74 34.17
Ours w/ score-based filtering 55.26 17.63 20.21 29.11 33.72
Ours w/ mutual filter 58.20 20.22 23.36 31.17 35.37

Table 2: Performance evaluation of LLaMA-2-7B fine-
tuned on the Falcon-RefinedWeb dataset (20K samples)
under three filtering conditions. All conditions operate
on instruction-response pairs generated by the same
reverse model.

4.3 Data Alignment Analysis

We assessed the alignment quality of instructions
generated by our MAIN method compared to base-
lines using blind pairwise evaluations conducted by
GPT-4. Specifically, we randomly selected 1000
responses from the Falcon RefinedWeb dataset. For
each response, GPT-4 evaluated two candidate in-
structions—one from MAIN and one from a base-
line—in random order to avoid positional bias. We
then calculated Win, Tie, and Loss rates based on
GPT-4’s judgments: Win indicates GPT-4 preferred
MAIN, Tie indicates no clear preference, and Loss

indicates GPT-4 preferred the baseline. Using the
Qwen2.5-14B as the base model, MAIN consis-
tently outperformed all baselines, with win rates
ranging from 61.7% to 81.6%, demonstrating supe-
rior instruction alignment capability (see Table 3).
The evaluation prompt used by GPT-4 is detailed
in Appendix H.

Baseline Win Rate Tie Rate Loss Rate ∆

Humpback 69.3% 18.6% 12.1% +56.2%
Longform 81.6% 8.6% 8.8% +72.8%
Dog Instruct 61.7% 15.1% 23.2% +38.5%
Better Alignment 64.7% 12.4% 22.9% +41.8%

Table 3: GPT-4 pairwise evaluation comparing MAIN
with four baseline methods on instruction alignment
quality. Each comparison is based on 1000 examples
sampled from the Falcon RefinedWeb dataset. ∆ de-
notes the win rate margin of MAIN over each baseline.

4.4 Case Study
As shown in Figure 4, the two examples, both ex-
tracted from unlabeled data, illustrate the effective-
ness of our approach. In the first case, the MAIN
instruction explicitly requests specific details about
the victim, the shooter, and the events surrounding
the shooting, providing clear guidance for the re-
sponse. In contrast, the baseline instruction is more
general, asking for a brief article about the shooting
without specifying key details. In the second case,
the MAIN instruction emphasizes a critical event:
a wave of car burglaries in the suburbs, while the
baseline instruction remains vague, simply request-
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Figure 4: Method Comparison for Instruction Generation: A Case Study on the Effectiveness of Reverse Model
Approaches in Aligning Instructions with Responses

ing a summary of events in suburban areas.
In both cases, MAIN Instructions are more fo-

cused and specific, resulting in responses that are
better aligned with the intended context. In con-
trast, the baseline instructions are more general.
These examples demonstrate that our method gen-
erates instructions that are more closely aligned
with the responses.

5 Related Work

5.1 Instruction Tuning

Instruction tuning fine-tunes pre-trained LLMs
on instruction-response pairs, enabling models to
generalize across tasks without task-specific fine-
tuning (Wei et al., 2021; Mishra et al., 2021; Wang
et al., 2022b). Subsequent work (Mishra et al.,
2021; Sanh et al., 2021) focused on cross-task gen-
eralization through diverse inputs.

5.2 Data Generation

Effective instruction tuning relies on large-scale,
high-quality datasets, typically generated in two
ways: human-crafted or model-generated.

Human-Crafted Data Datasets curated by do-
main experts, like OpenAssistant Conversations
(Köpf et al., 2024) and Databricks Dolly-15k
(Conover et al., 2023), are high quality but costly.
Crowd-sourced platforms like ShareGPT (Chiang
et al., 2023) also contribute valuable data, espe-
cially user-uploaded conversations.

Model-Generated Data To reduce manual anno-
tation costs, methods like Self-Instruct (Wang et al.,
2022a) and Alpaca-GPT4 (Peng et al., 2023) gener-
ate instruction-response pairs automatically. How-
ever, issues like hallucinations (Zhang et al., 2023)
persist. New approaches, such as Better Align-
ment (Nguyen et al., 2024) and Dog-Instruct(Chen
et al., 2024), pair human responses with inferred
instructions to reduce hallucinations and improve
scalability. Our proposed MAIN builds on this by
iteratively optimizing instruction-response align-
ment to ensure high-quality data.

6 Conclusion

In this paper, we highlight the critical role of
instruction-response alignment in instruction tun-
ing for LLMs. We introduce the Mutual Align-
ment Framework, which iteratively optimizes both
instructions and responses to improve their coher-
ence, along with a mutual filtering strategy to se-
lect high-quality pairs. Experiments across multi-
ple benchmarks show that our framework enables
state-of-the-art performance. These findings high-
light the importance of mutual alignment in instruc-
tion tuning and offer a new perspective for refining
instruction-response pairs, paving the way for more
effective and principled instruction tuning in future
LLM development.
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Limitations

Our experiments cover a broad range of model
families and parameter scales, demonstrating the
robustness of the proposed framework across ar-
chitectures and sizes. However, we have not yet
evaluated MAIN on very large models due to re-
source limit, which may exhibit qualitatively differ-
ent behaviors. This limits our ability to fully assess
the potential of mutual alignment at extreme scales.
Investigating its effectiveness in such settings re-
mains an important direction for future work.
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A Training Details

Hyperparameter Assignment
Computing Infrastructure 8 A100-80GB GPUs
Number of epochs 2
Batch size per GPU 64
Maximum sequence length 1024
Maximum learning rate 2e-5
Optimizer Adam
Adam epsilon 1e-8
Adam beta weights 0.9, 0.999
Learning rate scheduler warmup linear
Weight decay 0.1
Warmup steps 100
Learning rate decay linear

Table 4: Hyperparameters used in the experiments.

Training is conducted with hyperparameters
aligned to established supervised fine-tuning (SFT)
practices (Zhou et al., 2024; Touvron et al., 2023).
The learning rate is set to 2× 10−5, with a weight
decay of 0.1, a batch size of 64, and a dropout rate
of 0.1. Additionally, each iterative phase of train-
ing is limited to one epoch. For text generation,
we apply nucleus sampling (Holtzman et al., 2019)
with a temperature (T ) of 0.7 and a top-p value of
0.9. These settings balance diversity and relevance
in the generated outputs. More hyperparameters
listed in Table 4

B Generalization Results

Table 5 presents extended results that demonstrate
both the scalability across varying model sizes
across diverse architectures of our MAIN method.
These capabilities are evidenced by MAIN’s en-
hanced performance compared to the baseline
(Nguyen et al., 2024) on the IFEval benchmark
when evaluated on models such as Qwen2.5-3B
and LLaMA-2-13B.

Model Method P-S (%) I-S (%) P-L (%) I-L (%)

Qwen2.5-3B
Baseline 32.13 35.98 44.02 47.10
MAIN 35.78 39.12 47.42 51.21

LLaMA-2-13B
Baseline 16.12 18.72 28.54 30.20
MAIN 18.98 22.63 30.87 34.85

Table 5: Comparative instruction-following perfor-
mance of MAIN and Baseline on the IFEval dataset
across diverse models.

Further evaluations in Table 6 demonstrate that
our MAIN framework consistently outperforms

Baseline (Nguyen et al., 2024) across diverse NLP
benchmarks (BLEU, ROUGE-L, SQuADv2).

Base Model Method BLEU ROUGE-L SQuADv2 (EM / F1)

Llama-2-7B
Baseline 43.94 43.82 10.82 / 19.62
MAIN 47.37 46.39 12.99 / 21.30

Mistral-7B
Baseline 40.75 39.41 14.53 / 21.72
MAIN 43.15 44.70 17.11 / 23.49

Table 6: Comparative performance of MAIN and Base-
line on diverse NLP benchmarks.

C Ablations

Training iterations. To analyze the impact of it-
eration count N , we vary N from 1 to 20 and eval-
uate its effect on AlpacaEval and IFEval dataset.
As shown in Table 7, increasing N initially im-
proves performance, as iterative refinement enables
the forward and reverse models to progressively
align their outputs, enhancing instruction-response
consistency.

However, beyond a certain point, performance
begins to decline. Excessive iterations reinforce
suboptimal patterns leading to overfitting. This un-
derscores the necessity of selecting an optimal N
that balances refinement and generalization. Our re-
sults emphasize the importance of properly tuning
N to maximize the benefits of mutual alignment.

Iterations N Win Rate

N = 1 50.11
N = 2 55.72
N = 3 58.20
N = 4 55.89
N = 5 55.60
N = 10 54.41
N = 15 54.29
N = 20 54.52

Table 7: Ablation study on the effect of iteration count
N . We analyze the influence of varying the number
of training iterations (N = 1, 2, 3, 4, 5, 10, 15, 20) on
Llama-2-7B fine-tuned on Falcon-RefinedWeb.

Dynamic Weighting. Balancing the contribution
of aligned instruction-response pairs is crucial for
achieving both strong alignment and robust gen-
eralization. The weighting parameter α controls
this balance during training by adjusting the rel-
ative influence of synthetic and seed data. To
evaluate its effectiveness, we compare fixed val-
ues (α = 0.3, 0.5, 0.7, 0.8, 1.0) with our adaptive
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approach (α = Dynamic), which continuously up-
dates α throughout training.

As shown in Figure 5, increasing α generally im-
proves instruction-following ability and output pref-
erence by emphasizing well-aligned pairs. How-
ever, excessively high α makes the model overly re-
liant on generated instruction-response pairs, lead-
ing to unstable training and degraded performance.

To mitigate this, our dynamic weighting strategy
adaptively balances aligned and seed data, prevent-
ing instability while maintaining strong alignment.
The results show that this approach significantly im-
proves output preference and instruction-following.

Figure 5: Evaluation of dynamic weighting strategies on
LLaMA-2-7B training, comparing fixed and adaptive
α values using the Falcon-RefinedWeb dataset, with
performance assessed on AlpacaEval and IFEval.

D Multilingual Generalization

To evaluate multilingual robustness of MAIN,
we perform experiments on diverse multilingual
datasets.

Setup. The backbone model is Qwen-2.5-14B-
Base. Seed data contains 3.2k instruction–response
pairs from the multilingual portion of OpenAssis-
tant, evenly sampled across French (fr), Japanese
(ja), Spanish (es), Arabic (ar), and Chinese (zh).
Additionally, 500k responses are drawn from the
multilingual mC4 corpus, a naturally web collec-
tion. After applying mutual alignment and filtering,
we obtain a balanced set of 20k pairs for super-
vised fine-tuning. Baselines use identical data and
training settings to ensure comparability.

Benchmarks. Models are evaluated on multilin-
gual reasoning and instruction-following bench-

marks:

• JMMLU (ja), AMMLU (ar), CMMLU (zh):
5-shot reasoning dataset.

• mIFEval (fr/ja/es): multilingual instruction-
following dataset.

Results. Table 8 summarizes multilingual evalua-
tion on instruction-following and reasoning bench-
marks . MAIN attains the best performance on
these benchmarks, with the largest gains on mIFE-
val (fr/ja/es) and notable improvements on JMMLU
and CMMLU; performance on AMMLU is on par
with the strongest baseline. These results demon-
strate that our framework exhibits strong general-
ization ability across diverse multilingual settings.

Method mIFEval Reasoning
fr ja es JMMLU AMMLU CMMLU

Humpback 63.3 46.0 42.0 60.5 57.3 81.9
Better Align 65.3 50.1 43.2 62.7 59.8 80.6
MAIN 69.7 51.8 47.1 64.9 59.6 83.5

Table 8: Evaluation of multilingual instruction-
following and reasoning dataset.

E Detailed Benchmark Settings

Dataset Metric Number of Shots

ARC_C Acc_norm 25
TruthfulQA Mc2 Zero-shot
Winogrande Acc 5
HellaSwag Acc 10
MMLU Acc_norm 5
AlpacaEval Win_rate Zero-shot
IFEval P-S, etc. Zero-shot

Table 9: Evaluation settings and key metrics for bench-
mark datasets under few-shot and zero-shot conditions.

We have evaluated our method under both few-
shot and zero-shot conditions. Specifically, tasks
such as ARC_C, HellaSwag, Winogrande, and
MMLU were tested with a few-shot setup, whereas
AlpacaEval, TruthfulQA, and IFEval benchmarks
were evaluated under zero-shot conditions. De-
tailed settings and results are provided in Table 9

F Mutual Filtering on MMLU

We compare LLAMA-2-7B trained with mutual
alignment only (No-filter) and with mutual align-
ment plus mutual filtering (Filtered); all other set-
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tings are identical. Table 10 reports accuracy (%)
by MMLU super-category.

MMLU Super-Category No-filter Filtered ∆

STEM 42.7 45.5 +2.8
Humanities 45.1 46.3 +1.2
Social Sciences 46.7 47.2 +0.5
Other Professions 41.9 42.6 +0.7

Overall 44.1 45.4 +1.3

Table 10: MMLU accuracy (%) by super-category for
LLAMA-2-7B. Both settings include mutual align-
ment; Filtered additionally applies mutual filtering when
selecting pseudo-labeled pairs.

The largest gains arise in STEM, where instruc-
tions and responses tend to be tightly coupled and
logically recoverable; such pairs pass bidirectional
consistency checks at higher rates, yielding larger
improvements. In more open-ended areas (e.g.,
Humanities, Social Sciences), valid responses are
more diverse, so exact reconstruction is harder and
gains are accordingly smaller. Overall, these deltas
indicate that mutual filtering is most beneficial for
categories with higher instruction–response deter-
minism, while still providing modest positive ef-
fects elsewhere.

G Computational Cost Analysis

This section details the computational demands
of our proposed method MAIN. While MAIN in-
volves an iterative training process, the overall com-
pute cost is carefully managed to remain modest.
In each iteration, only one model is trained for
a single epoch on the seed data, while the other
performs inference—a lightweight operation. Typ-
ically, three iterations suffice for convergence, re-
sulting in six training epochs across the forward
and reverse models. In comparison, baseline meth-
ods (Li et al., 2023a; Nguyen et al., 2024) also train
a reverse model and a ranking model for a similar
number of epochs. We summarize estimated GPU
hours in Table 11.

Method Models Trained Inference Needed GPU Hours

Baseline Ranking model +
Reverse model

No 5.0

MAIN (Ours) Forward model +
Reverse model

Yes 5.3

Table 11: Estimated computational cost comparison for
MAIN against baselines.

H GPT-4 Evaluation Prompt

The following table presents the exact prompt used
to instruct GPT-4 during blind pairwise compar-
isons:

GPT-4 Pairwise Evaluation Prompt

Please act as an expert evaluator of instruction-
response alignment. You are given a Response
and two candidate instructions: Instruction A
and Instruction B. Your task is to decide which
instruction is better aligned with the response.
Evaluate based on the following aspects:
- Alignment between instruction and response
- logical consistency
- natural language fluency
Response:
{response}

Instruction A:
{instruction_A}

Instruction B:
{instruction_B}

Please output only one of the following:
A win — if Instruction A is clearly better aligned
with the response.
B win — if Instruction B is clearly better aligned
with the response.
Tie — if both instructions are equally good or
equally poor.

Table 12: Prompt template used in GPT-4 pairwise eval-
uation of instruction-response alignment.
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