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Abstract

Personalizing large language models (LLMs)
is important for aligning outputs with diverse
user preferences, yet existing methods struggle
with flexibility and generalization. We propose
CoPL (Collaborative Preference Learning), a
graph-based collaborative filtering framework
that models user-response relationships to en-
hance preference estimation, particularly in
sparse annotation settings. By integrating a
mixture of LoRA experts, CoPL efficiently
fine-tunes LLMs while dynamically balancing
shared and user-specific preferences. Addi-
tionally, an optimization-free adaptation strat-
egy enables generalization to unseen users
without fine-tuning. Experiments on TL;DR,
UltraFeedback-P, and PersonalLLM datasets
demonstrate that CoPL outperforms existing
personalized reward models, effectively cap-
turing both common and controversial prefer-
ences, making it a scalable solution for person-
alized LLM alignment. The code is available
at https://github.com/ml-postech/CoPL.

1 Introduction

Large language models (LLMs) have rapidly ex-
panded across diverse applications, from customer
service and tutoring to creative content genera-
tion (Shi et al., 2024; Molina et al., 2024; Venka-
traman et al., 2024). As increasing numbers of
users with varied backgrounds interact with LLMs,
accounting for diverse preferences has become es-
sential. Most reward models rely on the Bradley-
Terry-Luce (BTL) framework (Bradley and Terry,
1952), which learns preferences from pairwise com-
parisons provided by human annotators. However,
earlier studies largely assumed a single, uniform
preference and neglected the diversity of user pref-
erences (Siththaranjan et al., 2024; Li et al., 2024,
2025). This limitation has led to growing interest in
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Figure 1: T-SNE visualization of seen user embeddings
in UF-P-4 (AVG) with gemma-2b-it. Points are colored
by their preference group. Our method clusters users in
the same group more effectively. T-SNE visualizations
of other baselines are provided in Fig. A1.

personalized reward models (Sorensen et al., 2024;
Liu et al., 2025; Guan et al., 2025).

There are two different approaches to utilizing
the BTL framework for personalized reward mod-
els. The first approach has explored combining
multiple reward models, each trained for a spe-
cific preference and later aggregated (Jang et al.,
2023; Oh et al., 2024). However, this approach
relies on pre-trained models for different prefer-
ence types, reducing flexibility. Another line of
work introduces user-specific latent variables into
a single BTL framework, learning personalized
representations from user annotations (Chen et al.,
2024a; Poddar et al., 2024; Li et al., 2024; Barreto
et al., 2025). While this method captures individ-
ual preferences, the latent variable model does not
explicitly account for relationships between users
sharing similar responses. As a result, it struggles
to generalize in sparse annotation settings.

To address these limitations, we propose Collab-
orative Preference Learning (CoPL), which con-
structs a user-response bipartite preference graph
from pairwise annotations and uses a graph-based
collaborative filtering (GCF) framework for person-
alized reward modeling. Unlike approaches that
model each user separately, GCF on the graph struc-
ture allows preference signals to propagate across
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users, enabling to exploit multi-hop relationships
among users and responses (Wang et al., 2019; He
et al., 2020). CoPL can capture diverse preferences
of users even in sparse annotation settings.

When annotations are sparse, latent-variable
methods face significant challenges, as the scarcity
of supervisory signals makes it difficult for ran-
domly initialized user representation encoders to
converge toward semantically meaningful represen-
tations. As a result, users with similar underlying
preferences can sometimes be mapped to distant
points in the latent space if their annotated response
pair sets do not overlap. In such cases, sparse super-
vision may cause semantically similar users to ap-
pear unrelated in the learned embedding space. For
instance, consider three users: user 1 annotates the
pairs (a, b), (c, d), user 2 annotates (c, d), (e, f),
and user 3 annotates (e, f), (g, h) with the same
preference. Although user 1 and user 3 exhibit simi-
lar preferences, the lack of overlapping annotations
provides no direct signal for aligning their represen-
tations. CoPL addresses this issue by constructing a
user–response bipartite graph and propagating pref-
erence signals through multi-hop message passing.
This mechanism enables the alignment of users
with disjoint annotation sets, such as user 1 and
user 3, thereby providing better data efficiency and
generalization. Fig. 1 illustrates that, under sparse
annotation, CoPL produces embedding spaces in
which users with identical preferences are more
coherently aligned.

Based on the user embedding, we develop an
LLM-based reward model that can predict the
preference score of a user given input text. We
adopt the mixture of LoRA experts (MoLE) (Chen
et al., 2023, 2024c; Liu et al., 2024) that al-
lows parameter-efficient fine-tuning while rout-
ing different users to different paths based on the
learned embedding. Specifically, we develop a user
preference-aware gating function that dynamically
selects the experts in the forward pass, making the
LLM predict a personalized preference.

While the reward model can predict preferences
for users included in the training set, the model can-
not handle newly participated unseen users whose
embeddings are unknown. To estimate the prefer-
ences of unseen users, we propose an optimization-
free adaptation method. Given a few annotations
from an unseen user, we exploit the existing graph
to find users with similar preferences and aggregate
their embeddings to represent the unseen user.

Experimental results demonstrate that CoPL con-

sistently outperforms existing personalized reward
models in both seen and unseen users. Especially,
CoPL generalizes to unseen users, maintaining
high accuracy with only a few provided annota-
tions. Embedding visualizations show that CoPL
clusters users with similar preferences more closely
than competing baselines. Further ablation stud-
ies confirm that both GCF and MoLE contribute
significantly to performance.

2 Related Work

Alignment has emerged as a crucial strategy for
mitigating undesirable outcomes (Dai et al., 2023;
Yang et al., 2024a). Previous research has of-
ten focused on the average preference of annota-
tors (Achiam et al., 2023), ignoring the diverse
preferences. To address preference diversity, re-
cent works (Jang et al., 2023; Oh et al., 2024; Yang
et al., 2024b) view this problem as a soft cluster-
ing problem, where user-specific preferences are
treated as mixtures of predefined preference types.
Although this approach effectively handles diverse
preferences, it relies on specifying several prefer-
ence types in advance.

Another line of work introduces a user latent
variable in the BTL framework (Poddar et al., 2024;
Li et al., 2024; Chen et al., 2024a). The main chal-
lenge lies in obtaining user representations. One
approach is to treat each user embedding as learn-
able parameters (Li et al., 2024; Chen et al., 2024a),
and the other strategy is to train an encoder that
infers embeddings from the set of annotated pairs
provided by each user (Poddar et al., 2024).

We also discuss preference learning with sparse
interactions, closely related to our approach, in
Appendix C.

3 Problem Formulation

We aim to develop a reward model that can cap-
ture diverse user preferences from a limited set of
preference annotations. Instead of directly defining
a user’s preference, we collect pairwise compar-
isons indicating which item a user prefers. Let
U = {1, · · · , U} be a set of users and X be
a space of LLM’s responses. To estimate the
preferences of users, we first curate a survey set
S = {(qi, ai, bi)}Ri=1 consisting of predefined ques-
tions qi and two different responses ai, bi ∈ X
from LLMs. For each user u, we first randomly
sampleNu number of survey items and then collect
the preferences over the response pairs, resulting
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in preference dataset Du. We use (a ≻ b) ∈ Du

to denote that user u prefers response a over the
response b. Given these pairwise preferences, we
aim to learn a numerical reward function

f(u, r) : U × X → R, (1)

where f(u, r) represents a scalar preference score
of response r for user u. The model is trained to
satisfy

f(u, a) > f(u, b)

for all u and preference pairs a ≻ b observed in the
data.

Following previous works (Li et al., 2024; Pod-
dar et al., 2024), we consider the Bradly-Terry-
Luce (BTL) choice model (Bradley and Terry,
1952) with maximum likelihood estimation to train
the reward function. The likelihood of user u
prefers item a over b can be defined using the BTL
model as

p(a ≻ b | u) = exp
(
f(u, a)

)

exp
(
f(u, a)

)
+ exp

(
f(u, b)

) .

Conversely, if b was chosen over a, i.e., a ≺ b, the
likelihood is

p(b ≻ a | u) = 1− p(a ≻ b | u).

Through the maximum likelihood estimation with
preference data for all users, one can learn the
reward function f to make the reward function
align with user preference. In the case of the
universal preference model, user u is ignored in
Eq. (1) (Chen et al., 2024b; Achiam et al., 2023;
Dai et al., 2023; Bai et al., 2022). In practice, the
user u is replaced by a user embedding (Poddar
et al., 2024; Li et al., 2024; Chen et al., 2024a).

4 Method

In this section, we describe our Collaborative Pref-
erence Learning (CoPL). Our approach consists
of three steps: learning user representations given
preference data, construction of personalized re-
ward models, and adaptation to unseen (new) users
at test time. Figure 2 illustrates the first two steps,
and Figure 3 the last step.

4.1 User Representation Learning

Users who share similar preferences are likely to
respond to similar responses. When the number of
annotated responses is very small, it is unlikely to

annotate the same responses between users. How-
ever, if we exploit multi-hop relations between
users and responses, we may estimate user pref-
erence accurately. In fact, the exploitation of the
relationship between users and items is the key idea
behind graph-based collaborative filtering (GCF).

The preference dataset for all users can be natu-
rally converted into a bipartite graph, where each
user and response is represented as a node, and an
edge between a user and a response represents the
user’s preference over the response, as illustrated in
Fig. 2. The edge can have two different types: pos-
itive or negative, indicating whether a user prefers
the response or not.

Given a bipartite graph, we design a message-
passing algorithm to update user and response rep-
resentations. Let eu ∈ Rd be an embedding vector
of user u, and er ∈ Rd be an embedding vector
of response r. Since there are two different edge
types, we use different parameterizations for each
type. Let N+

u be a set of positive edges and N−
u be

a set of negative edges from user u. Similary, we
can define N+

r and N−
r for response r. Given user

and response embeddings at layer ℓ, the message
passing computes a message from neighborhood
responses to the user as

m+
u =

∑

r∈N+
u

αu,r

(
W

(ℓ)
1 e(ℓ)r +W

(ℓ)
2 (e(ℓ)r ⊙ e(ℓ)u )

)
,

m−
u =

∑

r∈N−
u

βu,r

(
W

(ℓ)
3 e(ℓ)r +W

(ℓ)
4 (e(ℓ)r ⊙ e(ℓ)u )

)
,

m(ℓ)
u =W

(ℓ)
self e

(ℓ)
u + m+

u + m−
u , (2)

where W (ℓ)
1 ,W

(ℓ)
2 ,W

(ℓ)
3 ,W

(ℓ)
4 ,W

(ℓ)
self ∈ Rd×d are

parameter matrices, ⊙ is element-wise multipli-
cation, and αu,r and βu,r are normalization fac-
tors, set to 1√

|N+
u ||N+

r |
and 1√

|N−
u ||N−

r |
, respec-

tively. Then, the user embedding is updated with
the aggregated message m(ℓ)

u :

e(ℓ+1)
u = ψ

(
m(ℓ)

u

)
, (3)

where ψ(·) is a non-linear activation. The response
embedding e(ℓ)r is updated with analogous process.
We randomly initialize the user and response em-
beddings at the first layer and then fine-tune the
embeddings through training. The update steps
for the response embeddings are provided in Ap-
pendix A.
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Figure 2: An overview of CoPL. To learn user representations, the GCF model is trained on a user-response bipartite
graph. To build a personalized reward model, CoPL uses the learned representations to select a user-specific expert
from MoLE, enabling effective modeling of diverse preferences.

After L propagation steps, user and response
embeddings accumulate information from their lo-
cal neighborhood. Given the final user embedding
e
(L)
u and response embedding e(L)r , we use the in-

ner product between the embeddings as a predicted
preference :

su,r =
(
e(L)u

)⊤(
e(L)r

)
. (4)

With the score function, the GNN is trained on
preference data Du for all users by minimizing the
following loss function:

LGCF(θ) := (5)
∑

u∈U

∑

(a≻b)∈Du

− log σ (su,a − su,b) + λ∥θ∥22,

where σ(·) denotes a sigmoid function, λ is a reg-
ularization hyper-parameter and θ represents all
trainable parameters, including weights of the prop-
agation layers and initial embeddings of the users
e
(0)
u and responses e(0)r .

4.2 Personalized Reward Model with User
Representations

Based on the learned user embeddings e(L)u , we
build a reward model that can accommodate the
preferences of diverse users. We use an LLM-based
reward function:

fϕ(eu, r) : Rd ×X → R (6)

where f is an LLM parameterized by ϕ taking user
embedding eu and the response r as inputs and
predicts preference score. Unlike the response, the
user embedding is not used as an input token. In-
stead, it is used in the gating mechanism described
below. To learn the reward model, we can employ

the BTL model, resulting in the maximum likeli-
hood objective:

LRM(ϕ) =
∑

u

∑

(a≻b)∈Du

log pϕ(a ≻ b | eu) (7)

However, naively optimizing this objective starting
from a pretrained LLM requires fine-tuning billions
of parameters. Moreover, different preferences of
users result in conflicting descent directions of the
model parameters, resembling a multi-task learning
scenario.

Mixture of LoRA experts for personalized re-
ward function. For an efficient parameter update
while minimizing the negative effect of diverse
preferences, we adopt the mixture of LoRA experts
(MoLE) (Hu et al., 2021; Liu et al., 2024) into our
framework. MoLE is proposed to maximize the
benefit of the mixture of experts (MoE) while main-
taining efficient parameter updates. With MoLE,
the model parameter matrix W is decomposed into
pretrained and frozen W0 and trainable ∆W , i.e.,
W =W0 +∆W . ∆W is further decomposed into
a shared LoRA expert As ∈ Rdout×n, Bs ∈ Rn×din ,
which is used across all users, and M individual
LoRA experts {Ai, Bi}Mi=1 with the same dimen-
sionality of the shared expert. Formally, this can
be written as

∆Wu = AsBs +

M∑

i=1

wiAiBi, (8)

where wi ∈ [0, 1] denotes the importance of expert
i.

To adopt the different preferences of users,
we define a user-dependent gating mechanism to
model the importance parameter wi. For each user
u, a gating function g : Rd → RM maps e(L)u to
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𝑢∗ annotation: 𝑎 ≻ 𝑏 , 𝑒 ≻ 𝑓
Alignment logit 𝜸𝒖,𝒖∗ (Eq.11)

𝛾𝑢1,𝑢∗ = log 0.8 + log 0.7

𝛾𝑢2,𝑢∗ = (log 0.7 + log 0.7)
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Figure 3: Illustration of unseen user adaptation. Blue
nodes are users who have similar preferences to u∗, and
red nodes are users who have dissimilar preferences.

expert-selection logits:

z = g
(
e(L)u

)
. (9)

We convert these logits z into gating weight wi by
selecting the top one expert from the logits:

wi =





exp(zi/τ)∑M
j=1 exp(zj/τ)

if i = argmaxi zi

0 otherwise,
(10)

where τ is a temperature parameter. In practice,
one can use top-k experts, but we could not find a
significant difference in our experiments. For com-
putational efficiency, we keep the top one expert.

4.3 Optimization-free User Adaptation

While we can predict a preference score of un-
seen responses for a known user, the reward model
trained in Section 4.2 cannot be used to predict the
preference of users who have not been observed
during training. To estimate the embeddings of un-
seen users, we propose an optimization-free adap-
tation approach.

Let u∗ be an unseen user who annotates a small
set of response pairs. Under the assumption that
users who have similar responses have similar pref-
erences, we can estimate the embedding of an un-
seen user by taking an embedding of users with
similar tastes. For example, if both user u∗ and u
share positive preference over the same response r,
then we can use the embedding of u to approximate
that of u∗. Based on this intuition, we propose the
following optimization-free adaptation strategy for
unseen user embedding:

e
(L)
u∗ =

∑

u∈N+
u∗ (k)

wu,u∗e(L)u , (11)

Dataset TL;DR UF-P-2 UF-P-4 PersonalLLM

Size of survey set 19,824 25,993 25,993 14,435
# of preference groups 2 2 4 ∞
# of annotations per user 8 8 16 16
# of users per group 5,000 5,000 2,500 -

Table 1: Statistics of the datasets. We report the average
number of annotations per user. All users have different
preferences in PersonalLLM.

where N+
u∗(k) is a set of k-hop neighborhood1

of user u∗ connected by only positive edges, and
wu,u∗ is a normalized alignment score between u
and u∗. The normalized alignment score wu,u∗ is
defined as

wu,u∗ =
exp(γu,u∗/κ)∑

ũ∈N+
u∗ (k)

exp(γũ,u∗/κ)
,

where

γu,u∗ =
∑

(a≻b)∈Du∗

log σ(su,a − su,b),

where su,i is an inner product between user and
response embeddings, κ is a temperature parame-
ter, and γu,u∗ is an alignment score between user
u and u∗. Intuitively, γu,u∗ measures how well the
predicted preference of user u aligns with the anno-
tated preference provided by user u∗. If the prefer-
ences of both users align well, γu,u∗ is large. Con-
sequently, their embeddings become similar to each
other. By collecting embeddings of well-aligned
neighborhood users, we can obtain embeddings of
user u∗ without having further optimization.

5 Experiments

In this section, we empirically verify the perfor-
mance of CoPL across various scenarios.

5.1 Experimental Settings
Datasets. We employ three datasets, including
TL;DR (Stiennon et al., 2020; Chen et al., 2024a),
UltraFeedback-P (UF-P) (Poddar et al., 2024), and
PersonalLLM (Zollo et al., 2024), that explicitly
capture diverse user preferences rather than assum-
ing a single dominant preference. We briefly de-
scribe the key characteristics of these datasets be-
low.

Following prior work (Chen et al., 2024a; Li
et al., 2024), we define two user groups in the
TL;DR dataset: one group prefers short summaries,

1k must be an even number to aggregate only the user
embeddings.

12879



and the other favors long summaries. We create
two environments with the UF-P dataset: UF-P-2,
dividing users into two groups based on their pref-
erence, and UF-P-4, dividing users into four groups.
In PersonalLLM (Zollo et al., 2024), user prefer-
ences are modeled as a mixture of four preference
dimensions where weight vectors are drawn from
a Dirichlet distribution with α = 0.1. Additional
details on their construction and properties can be
found in Appendix D.1.

We divide 10, 000 users evenly into the prede-
fined number of preference groups. For all datasets,
we curate two different versions, denoted as ALL
and AVG, representing two different annotation
sampling strategies. For TL;DR/UF-P-2 (ALL),
each user provides exactly 8 annotations, while
for TL;DR/UF-P-2 (AVG), each user’s annotation
count is uniformly sampled from 1 to 15, aver-
aging to 8. Similarly, in UF-P-4/PersonalLLM
(ALL), each user provides exactly 16 annotations,
and in UF-P-4/PersonalLLM (AVG), the count is
uniformly sampled from 1 to 31, averaging to 16.
Table 1 summarizes the key statistics.

Baselines. We evaluate six baselines to bench-
mark. First, we use a uniform preference model
(Uniform) trained on all annotations via BTL. Ad-
ditionally, we consider four personalized reward
models: I2E, I2Eproxy (Li et al., 2024), VPL (Pod-
dar et al., 2024), and PAL (Chen et al., 2024a). Fi-
nally, we include a group-wise Oracle (G-Oracle),
which has access to user group information and
all annotations in the survey set, and trains a sepa-
rate reward function in Eq. (1) for each preference
group. Note that we do not have the G-Oracle for
PersonalLLM since the users are not categorized
into a fixed number of preference groups. The de-
tails of each model are provided in Appendix B.

Training and evaluation details. For reward
function training, we utilize two LLM back-
bones: gemma-2b-it and gemma-7b-it (Team
et al., 2024a). Our model uses one shared LoRA,
eight LoRA experts, each with a rank of eight, and
a two-layer MLP for the gating function. The other
baselines, e.g., Uniform, I2E, VPL, PAL, and G-
Oracle, use a LoRA rank of 64. Other training
details, such as hyper-parameters and model archi-
tecture, are provided in Appendix D.2. All experi-
ments, including additional analysis, are repeated
three times with different seeds.

We report reward model accuracy on unseen test
pairs that are not in the survey set. We evaluate

performance for both seen and unseen users. For
seen user experiments, each user is assigned 10 test
pairs, and accuracy is calculated over all seen users.
We fix the number of unseen users at 100, evenly
distributed across preference groups. To adapt the
reward model for each unseen user, we provide 8
annotations in TL;DR/UF-P-2 (ALL/AVG) and 16
annotations in UF-P-4/PersonalLLM (ALL/AVG),
followed by evaluation on 50 test pairs per unseen
user. CoPL uses 2-hop neighbors for unseen user
adaptation.

5.2 Results
Table 2 presents accuracy for both seen and unseen
users. CoPL consistently outperforms other base-
lines, except for G-Oracle, in both seen user and
unseen user experiments. Notably, CoPL surpasses
the performance of G-Oracle on TL;DR and UF-P-
4, demonstrating the advantage of multi-task learn-
ing. In the PersonalLLM, CoPL remains robust
across the ALL and AVG, whereas VPL suffers
from performance degradation in a more realistic
AVG setting. These findings are consistent with
Ju et al. (2024), which theoretically shows that
message-passing can help users with limited inter-
actions in collaborative filtering. In unseen user
experiments, CoPL achieves accuracy comparable
to the seen user setting, indicating the effectiveness
of our unseen user adaptation.

Fig. 1 illustrates the learned user embeddings for
UF-P-4 (AVG), selected as the most challenging en-
vironment among those with distinct groups. The
figure shows that GNN-based representation learn-
ing successfully captures preference similarities,
despite the limited annotations per user.

5.3 Analysis
Analysis of performance in UF-P-2. In Table 2,
all models appear capable of representing diverse
preferences, surprisingly including the uniform
models in UF-P-2 (ALL/AVG). To investigate fur-
ther, we divide the test pairs of UF-P-2 into com-
mon and controversial categories, where common
pairs have identical annotations from both prefer-
ence groups, and controversial pairs differ. Focus-
ing on the seen user results in UF-P-2 (ALL) with
gemma-2b-it from Table 2, we break down the
accuracy in Table 3. The results indicate that base-
lines, except G-Oracle, struggle with controversial
pairs, suggesting a tendency to capture only the
common preference across all users. By contrast,
our method achieves comparable performance to
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TL;DR UF-P-2 UF-P-4 PersonalLLM

ALL AVG ALL AVG ALL AVG ALL AVG

Se
en

G-Oracle 73.06±0.23 73.06±0.23 64.53±0.14 64.53±0.14 61.52±0.13 61.52±0.13 N/A N/A

Uniform 49.62±0.09 49.62±0.09 61.82±0.16 61.82±0.16 56.15±0.22 56.15±0.22 62.91±0.07 62.91±0.07

I2E 49.93±0.23 49.74±0.06 61.48±0.18 61.49±0.70 57.21±0.37 57.44±0.37 65.74±0.04 65.77±0.05

I2Eproxy 49.80±0.16 49.54±0.13 61.43±0.56 61.33±0.61 56.78±0.14 57.14±0.31 65.66±0.11 65.77±0.05

VPL 49.52±0.14 49.44±0.21 61.11±0.16 61.86±0.84 56.04±1.71 56.77±0.38 70.84±0.18 67.95±0.21

PAL 50.12±0.13 50.15±0.15 59.95±0.04 61.53±0.22 56.95±0.13 57.37±0.14 66.25±0.35 66.29±0.06

CoPL 96.58±0.09 96.19±0.02 63.81±0.16 63.45±0.38 62.57±0.38 62.08±0.27 74.85±0.17 74.37±0.03

U
ns

ee
n

G-Oracle 72.55±1.79 72.55±1.79 64.66±1.10 64.66±1.10 61.33±0.35 61.33±0.35 N/A N/A

Uniform 50.11±0.36 50.11±0.36 62.82±0.59 62.82±0.59 55.65±0.61 55.65±0.61 62.97±0.07 62.97±0.07

I2E 49.85±0.38 49.16±0.82 61.67±0.82 59.52±0.51 56.42±0.41 56.75±0.68 65.79±0.18 66.11±0.24

I2Eproxy 49.75±0.94 49.12±0.57 62.30±0.54 61.70±0.63 56.00±1.15 56.50±0.34 65.49±0.10 65.79±0.04

VPL 49.40±0.88 49.31±0.57 60.83±0.40 62.62±0.49 54.03±1.54 56.13±0.57 71.31±0.58 68.55±0.47

PAL 49.48±0.86 49.64±0.55 59.83±0.69 61.71±0.31 57.07±0.22 57.13±0.33 65.94±0.11 66.40±0.03

CoPL 96.71±0.25 96.21±0.14 63.92±0.54 63.26±0.51 61.62±0.10 61.97±0.35 75.69±0.22 75.49±0.03

Table 2: Accuracy of reward models on unseen annotated pairs. The results report performance on Seen users
encountered during training and on Unseen users. Bold represents the best result, except for G-Oracle. These results
are based on gemma-2b-it. Additional results using gemma-7b-it and gemma2-27b-it are represented in Table A1
and Table A3, respectively.

G-Oracle Uniform I2E I2Eproxy VPL PAL CoPL

Common 71.86±0.14 74.52±0.45 73.94±0.21 74.15±1.53 72.73±1.00 70.82±0.17 71.23±1.63

Controversial 57.68±0.27 49.86±0.30 49.61±0.05 49.86±0.06 50.26±0.44 49.79±0.12 56.89±1.56

Total 64.53±0.14 61.82±0.16 61.48.±0.18 61.59±0.79 61.11±0.32 59.95±0.04 63.81±0.15

Table 3: Accuracy of reward models on UF-P-2 (ALL) with gemma-2b-it, broken down by pair type. Common
refers to pairs for which the two preference groups provide the same preference label, Controversial refers to pairs
labeled differently by the two groups, and Total encompasses all pairs. These categories reflect how diverse user
preferences affect the performance of reward models. Bold represents the best result, except with G-Oracle.

G-Oracle on controversial pairs while preserving
high accuracy on common pairs.

Performance under imbalanced group distribu-
tions. We vary the group proportion from 1:9
to 9:1 on the TL;DR (AVG) and UF-P-2 (AVG)
datasets. As shown in Fig. 4, CoPL consistently
captures both majority and minority preferences,
maintaining stable accuracy for the short- and long-
summary groups on TL;DR. On UF-P-2, CoPL still
reflects diverse preferences, but the gap relative to
the balanced 5:5 setting widens as the ratio be-
comes more skewed. Majority accuracy rises while
minority accuracy falls, showing majority bias un-
der imbalance. The lower absolute accuracy for
the honesty group reflects the inherent difficulty of
that preference, which remains consistent with the
G-oracle results. The difference between TL;DR
and UF-P-2 is also explained by UF-P-2 containing
common pairs on which both groups agree, which
reduces the distinct signal from the minority.
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Figure 4: Group-wise accuracy of reward models with
Gemma-2b-it in TL;DR (AVG) and UF-P-2 (AVG),
varying the ratio of group size (A:B) from 1:9 to 9:1
with the total number of users fixed at 10,000.

Figs. A4 and A5 show the learned user embed-
dings for TL;DR and UF-P-2. CoPL preserves
well-separated clusters aligned with group identi-
ties even under extreme imbalance. Thus, while mi-
nority group accuracy may drop, the representation
space remains robust to group structure. To miti-
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Figure 5: Accuracy of unseen user adaptation as the
number of provided annotation sets increases, evaluated
on UF-P-2/4 (AVG) with gemma-2b-it. 2-hop and 4-
hop indicates 2-hop and 4-hop adaptation, respectively.
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Figure 6: Expert allocation at layers 2 and 3 in UF-
P-4 (ALL) with gemma-2b-it. Colors indicate prefer-
ence groups. Users with similar preference groups are
mapped to the same expert.

gate majority bias, we can apply loss reweighting,
such as focal loss (Lin et al., 2017; Subramanian
et al., 2021), to emphasize underrepresented groups
in the reward model training.

In the four-group setting, additional UF-P-4
(AVG) results exhibit the same trend, as reported
in Appendix E.

Effect of the number of annotations in unseen
user adaptation. Fig. 5 shows accuracy as the
number of provided annotations increases in UF-P-
2 (AVG) and UF-P-4 (AVG). We observe that addi-
tional annotations lead to more accurate preference
predictions for unseen users in general. However,
in practice, even eight annotations are sufficient, en-
abling accurate inference of each user’s preference.
We also compare two-hop and four-hop adaptations,
but there is no significant difference.

Ablation study of CoPL. Table 4 presents an
ablation study of CoPL, focusing on GNN-derived
user embeddings and the MoLE architecture. When
GNN embeddings are removed, user representa-
tions become learnable parameters. Without MoLE,
user embeddings are projected into the token space
and passed as an additional token to the reward
model. The results indicate that components of

UF-P-2 (ALL) UF-P-4 (ALL)

CoPL 63.81±0.16 62.57±0.38

w/o GNN embedding 62.09±0.38 56.75±0.30

w/o MoLE (n = 64) 62.69±0.86 62.28±0.33

w/o MoLE (n = 16) 62.43±0.69 62.13±0.12

Table 4: Ablation study of CoPL in UF-P-2/4 (ALL)
with gemma-2b-it. w/o GNN embedding replaces user
embeddings from GNN with learnable user embeddings.
w/o MoLE removes the MoLE and projects user embed-
dings into the token space. The symbol n denotes the
LoRA rank.

UF-P-4 (ALL) UF-P-4 (AVG)

CoPL 61.62±0.10 61.97±0.35

Naive Avg. 59.91±0.59 59.39±0.50

User Opt. 59.24±0.71 59.45±0.72

Table 5: Accuracy of unseen-user adaptation in UF-P-4
(ALL/AVG) with gemma-2b-it. Naive Avg. computes
the unseen user’s embedding as the unweighted average
of 2-hop neighbors, while CoPL applies a weighted
average. User Opt. represents an optimization-based
approach that learns a parameterized user embedding
by maximizing the likelihood of the given annotations.

CoPL are effective. Specifically, GNN-based em-
beddings are a crucial component of CoPL, and the
MoLE architecture further enhances accuracy. No-
tably, CoPL uses fewer activated parameters than
w/o MoLE (n = 64).

Fig. 6 depicts expert allocation across layers two
and three, where the user-conditioned gating mech-
anism partitions users differently at each layer. We
can observe that users with the same preferences
tend to be routed to the same expert.

We provide the ablation study of the number of
experts in Appendix E.

Ablation study of unseen user adaptation. We
conduct an ablation study to evaluate the effective-
ness of the unseen user adaptation strategy, com-
paring it to two baselines, Naive Avg and User Opt.
Naive Avg assigns each unseen user embedding as
the unweighted average of 2-hop seen user embed-
dings. User Opt replaces e(L)u with a parameterized
embedding learned by minimizing Equation (5) on
the provided annotations. Table 5 reports results
in UF-P-4-ALL/AVG with gemma-2b-it, show-
ing that CoPL outperforms both alternatives while
achieving better computational efficiency than the
optimization-based User Opt.

Fig. A2 illustrates that naive averaging places
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Figure 7: Accuracy of reward models on UF-P-2 and
UF-P-4 (ALL) with gemma-2b-it with varying number
of seen users. The number of annotations per user re-
mains constant except in the case with “×2,” where we
double the per-user annotations only for 5, 000 users,
making the total number of annotations 10, 000.

unseen users away from identical preference group
users, whereas our method clusters them more
closely with users who share the same preferences.

Ablation study of the number of users. We con-
duct an ablation study of CoPL by varying the num-
ber of users and report the performance in Fig. 7.
The performance of the model is consistent except
for the case where there are only 5, 000 users in
the training set. The performance with 5,000 users
becomes comparable when we double the number
of annotations (2×), indicating the need for a suf-
ficient amount of annotations to capture diverse
preferences.

Training reward models with GNN. Table 6
reports GNN accuracy on seen users and responses
for test pairs excluded from the training dataset.
The results demonstrate that GNN can accurately
predict labels for unannotated pairs with sparse
annotations. We provide the additional ablation
study of message-passing in Appendix E.

Table 7 examines the impact of training with
GNN-based pseudo labels, allowing the model to
leverage additional preference data. Although the
pseudo-labeled pairs increase the dataset size, per-
formance is slightly worse than using only user-
provided annotations, suggesting that noise de-
grades model accuracy.

To investigate the effect of noise further, a user-
specific reward model is trained on pseudo labels
for a random sample of 10 users per group. The
results are considerably worse than the G-Oracle,
indicating that noisy labels introduce training in-
stability. This observation aligns with Wang et al.
(2024a), which notes that noisy preference labels
can lead to training instability and performance
degradation.

UF-P-2 UF-P-4

ALL AVG ALL AVG

84.84±0.83 84.32±0.09 90.01±0.35 87.74±0.19

Table 6: Test accuracy of the GNN. We evaluate the
model using the same users from training but with an-
notation pairs that are not reflected in the graph.

UF-P-2 (ALL) UF-P-4 (ALL)

CoPL 63.81±0.16 62.57±0.38

Pseudo label 62.77±0.70 62.26±0.27

G-Oracle 64.53±0.14 61.52±0.13

User-specific 58.09±1.73 55.30±3.30

Table 7: Accuracy of reward model trained by using a
pre-trained GNN in UF-P-2/4 (ALL) with gemma-2b-it.
The "pseudo-label" trains a reward model on all seen
user–response pairs, with annotations provided by GNN-
predicted labels. The "user-specific" refers to a BTL
model trained with pseudo-labels for each user. Only 10
users per group are sampled due to computational cost.

6 Conclusion

In this work, we introduced CoPL, a novel ap-
proach for personalizing LLMs through graph-
based collaborative filtering and MoLE. Unlike ex-
isting methods that treat user preferences indepen-
dently or require predefined clusters, our approach
leverages multi-hop user-response relationships to
improve preference estimation, even in sparse anno-
tation settings. By integrating user-specific embed-
dings into the reward modeling process with MoLE,
CoPL effectively predicts an individual preference.

Limitations

This work demonstrates how GCF-based user em-
beddings enable personalization in sparse settings,
but we do not extensively explore other GNN archi-
tectures that could further reduce sample complex-
ity. Additionally, although CoPL employs a gating
mechanism for user-specific expert allocation, we
did not apply load-balancing loss, which induces
more even activation among experts. As a result,
some experts remain inactive in Fig. 6. Future work
may investigate different GNN designs and incor-
porate load-balancing techniques to fully leverage
the potential of GNN and MoLE, respectively.

The group-wise oracle model may appear un-
derwhelming, likely because our smaller backbone
LLM struggles to capture subtle stylistic differ-
ences between responses. Larger-scale models
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(over 30B parameters) could better handle these
nuances; however, constraints in our current setup
prevent such experiments, and we defer them to
future work.

Although CoPL is robust in sparse regimes com-
pared to prior methods, it still depends on hav-
ing sufficient annotation overlap to train the graph-
based collaborative filtering model. In cases where
the overlap is exceedingly limited, this reliance
may constrain the model’s flexibility. While exist-
ing preference datasets often contain such overlap
(Wang et al., 2024b; Stiennon et al., 2020; Zhang
et al., 2024; Bai et al., 2022), relaxing this require-
ment is an important next step. A promising ap-
proach is to construct user–response graphs from
semantic similarity computed with sentence embed-
dings or other textual similarity measures, which
would extend CoPL to settings without explicit
overlap.

The effectiveness of our adaptation procedure
depends on the informativeness of a new user’s
annotations. When annotated pairs from a user
mostly involve common pairs, they contain little
information about that user’s preferences, thereby
degrading adaptation performance. Integrating ac-
tive learning to select informative pairs for anno-
tation could mitigate this issue and reduce sample
complexity.

Finally, Fig. 4 and Table A2 show that CoPL
can favor majority groups under severe imbalance,
even though it captures diverse preferences overall.
Exploring loss reweighting is a promising direction.
Methods such as focal loss (Lin et al., 2017; Sub-
ramanian et al., 2021), which increase the weight
on high-error or underrepresented examples, may
reduce majority bias and improve robustness.
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Appendix

A Message Passing for Response
Embeddings

Given user and response embeddings at layer ℓ, a
message from neighborhood users to the response
as

m+
r =

∑

u∈N+
r

αu,r

(
Ŵ

(ℓ)
1 e(ℓ)u + Ŵ

(ℓ)
2 (e(ℓ)u ⊙ e(ℓ)r )

)
,

m−
r =

∑

u∈N−
r

βu,r

(
Ŵ

(ℓ)
3 e(ℓ)u + Ŵ

(ℓ)
4 (e(ℓ)u ⊙ e(ℓ)r )

)
,

m(ℓ)
r = Ŵ

(ℓ)
self e

(ℓ)
r + m+

r + m−
r , (12)

where Ŵ (ℓ)
1 , Ŵ

(ℓ)
2 , Ŵ

(ℓ)
3 , Ŵ

(ℓ)
4 , Ŵ

(ℓ)
self ∈ Rd×d are

parameter matrices, ⊙ is element-wise multiplica-
tion, and αu,r and βu,r are normalization factors,
set to 1√

|N+
u |·|N+

r |
and 1√

|N−
u |·|N−

r |
, respectively.

Then, the response embedding is updated with
the aggregated message m(ℓ)

r :

e(ℓ+1)
r = ψ

(
m(ℓ)

r

)
, (13)

where ψ(·) is a non-linear activation.

B Method Baselines

Uniform. The uniform model is a standard ap-
proach for pairwise preference comparisons. We
train the uniform model with all annotation pairs,
which will capture the common preference.

Oracle. For an oracle model of our setting, we
train the model with the true group membership
of all users. A separate uniform model is trained
for each group by aggregating annotations from the
users in that group.

I2E (Li et al., 2024). I2E is a framework that
uses DPO to personalize LLM. However, it can be
easily extended to reward modeling. I2E trains a
model that maps the user index into a learnable
embedding. It appends each user embedding as
an additional input token to the LLM, providing
user-specific signals for reward prediction.

I2Eproxy (Li et al., 2024). A variant of I2E that
introduces N proxy embeddings. A weighted com-
bination of these proxies forms the final user em-
bedding, which is passed to the LLM for reward
prediction. In our experiments, we use N = 10.

VPL (Poddar et al., 2024). Variational Prefer-
ence Learning (VPL) encodes user-specific annota-
tions into user embeddings. The user embeddings
are then combined with sentence representations
via an MLP to predict reward scores. To capture
the user preferences effectively, VPL uses a varia-
tional approach that maps the user annotations into
a prior distribution.

PAL (Chen et al., 2024a). Pluralistic Alignment
(PAL) applies an ideal-point model, where the dis-
tance between the user and the response determines
the reward. The ideal point of the user is repre-
sented by N proxies, set to N = 10 in this work.
Among variants of PAL, we use PAL-A with logis-
tic loss.

C Related Works

Personalized alignment. With the growth of gen-
erative models, alignment has emerged as a crucial
strategy for mitigating undesirable outcomes, such
as biased or harmful outputs, and ensuring that the
model works with human preference (Dai et al.,
2023; Yang et al., 2024a). Alignment methods of-
ten rely on reward models. They typically build
on the BTL framework, which relies on pairwise
comparisons from various annotators. However,
previous research has often focused on the aver-
age preference of annotators (Achiam et al., 2023),
ignoring the diverse preferences.

To address preference diversity, recent
works (Jang et al., 2023; Oh et al., 2024; Yang
et al., 2024b) view this problem as a soft clustering
problem, where user-specific preferences are
treated as mixtures of predefined preference
types. Although this approach effectively handles
diverse preferences, it relies on specifying several
preference types in advance.

Another line of work introduces user latent vari-
able in the BTL framework (Poddar et al., 2024;
Li et al., 2024; Chen et al., 2024a). Although ex-
tending the BTL framework with latent user vari-
ables can address diverse preferences, the main
challenge lies in obtaining user representations.
One approach is to treat each user embedding as
learnable parameters, (Li et al., 2024; Chen et al.,
2024a), and the other strategy is to train an encoder
that infers embeddings from the small set of an-
notated pairs provided by each user (Poddar et al.,
2024).
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Preference learning with sparse interactions.
Preference learning with sparse interactions is a
well-studied challenge in recommendation systems,
where each user typically interacts with only a
small fraction of the available items. Despite these
limited interactions, the system should infer the
preference of each user and recommend additional
items accordingly (He and Chua, 2017; Chen et al.,
2020; Li et al., 2022; Lin et al., 2022). Collabo-
rative filtering (CF) is a widely adopted solution
that assumes users with similar interaction histories
will exhibit similar preferences.

Graph-based CF (GCF) (Wang et al., 2019; He
et al., 2020) has been considered one of the most
advanced algorithms for a recommendation system.
GCF leverages graph neural networks (GNNs) to
capture preference through the connectivity among
users and items. Many GCFs are developed based
on an implicit feedback assumption (Rendle et al.,
2012), where an edge between a user and an item
reveals a preferable relation. Whereas in our set-
ting, users provide explicit feedback given a pair
of responses, making direct application of GCF
unsuitable.

D Experimental Details

In this section, we provide a detailed explanation
of dataset construction and hyper-parameters.

D.1 Datasets

TL;DR. The TL;DR dataset (Stiennon et al.,
2020) contains Reddit posts alongside concise sum-
maries and annotator IDs. Prior works (Li et al.,
2022; Chen et al., 2024a) employ a modified ver-
sion of this dataset by defining two simulated pref-
erence groups: one group favors shorter summaries,
while the other prefers longer ones. The two groups
provide different annotations for each summary
pair. To focus on the most active annotators, they
retain only the ten users with the highest number
of annotations. We adopt the resulting set of an-
notation pairs from these ten users as our survey
set.

Ultrafeedback-P. Poddar et al. (2024) proposes
the Ultrafeedback-P (UF-P) benchmark for person-
alized reward modeling, based on the Ultrafeed-
back (UF) dataset (Cui et al., 2023), which provides
response pairs rated on four attributes: helpfulness,
honesty, instruction following, and truthfulness. In
UF-P, each attribute corresponds to a distinct pref-
erence. For instance, a user belonging to the help-

fulness group annotates pairs, solely considering
the helpfulness score.

UF-P-2 employs only two attributes and re-
moves pairs that both user groups label identically,
focusing on controversial cases where preferences
differ. In UF-P-4, all four attributes are retained
as preference dimensions, which allows for par-
tial agreement among groups and hence increases
complexity. Although Poddar et al. (2024) also
excludes pairs fully agreed upon by all users, the
remaining set is larger and exhibits more variety
than UF-P-2.

In Poddar et al. (2024), each user is given a small
context sample from a limited set of unannotated
pairs to infer the user’s preference. In contrast, we
leverage every available pair in the dataset to infer
each user’s preferences. For our dataset construc-
tion, we use UF-P-4 dataset.

PersonalLLM. PersonalLLM (Zollo et al., 2024)
is built with 10,402 open-ended prompts that were
sampled from a larger pool of 37,919 conversa-
tional questions drawn from public RLHF and
preference benchmarks such as Anthropic HH-
RLHF (Bai et al., 2022), NVIDIA HelpSteer (Wang
et al., 2023), and RewardBench (Lambert et al.,
2024). For each prompt, they used eight frontier
chat models to generate a diverse response set that
minimizes obvious quality gaps while covering la-
tent preference dimensions. The resulting (prompt,
response1, response2, ..., response8) tuples are split
into 9,402 training and 1,000 test items.

Each response is evaluated by ten strong open-
source reward models with heterogeneous align-
ment objectives. These reward models assign scalar
scores capturing distinct value dimensions for every
response. Storing the full 10×8 matrix of scores per
prompt provides a dense, model-agnostic prefer-
ence signal that later steps can recombine to reflect
arbitrary preferences. To simulate a large user base,
they treat the preference of a user as a weighted en-
semble over the ten reward models. The weight is
sampled from a Dirichlet distribution, where vary-
ing the concentration parameter controls preference
diversity.

We use α = 0.1 for Dirichlet distribution.
Due to computational constraints, we simplify the
dataset by selecting three responses per prompt
and considering only four reward dimensions. Fol-
lowing Poddar et al. (2024), we remove non-
controversial response pairs—those in which one
response is strictly ranked below the other across
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all preference dimensions—to ensure the hetero-
geneity.

D.2 Hyper-parameters

We describe the training details of GNN, a reward
model, and unseen user adaptation, such as model
architecture and hyper-parameters.

GNN. The model consists of four message-
passing layers, each with user and response embed-
dings of dimension 512. We use Leaky ReLU as
a non-linear activation function to update user and
response embeddings. Training proceeds for 300
epochs using the AdamW optimizer (Loshchilov,
2017) with a learning rate of 1× 10−4 and a cosine
scheduler with warmup ratio 0.1. The batch size
is 1024, and all experiments are conducted on an
RTX 4090 GPU.

Reward models. CoPL comprises an LLM back-
bone and a MoLE adapter. We use gemma-2b-it
or gemma-7b-it as the LLM backbone. MoLE in-
cludes one shared expert and eight LoRA experts
with a rank of eight. A two-layer MLP with a hid-
den dimension of 256 and ReLU activation serves
as the gating mechanism, with a temperature set to
1.

We train the reward models using the AdamW
optimizer with a learning rate of 5 × 10−5 and a
cosine scheduler with warmup ratio 0.03. Four
GPUs, such as RTX6000ADA, L40S, and A100-
PCIE-40GB, are employed with a batch size of
32 per GPU for gemma-2b-it and 16 per GPU for
gemma-7b-it.

Baseline models use LoRA with rank 64. They
also trained with an AdamW optimizer and a cosine
scheduler with a warmup ratio 0.03. We search the
learning rate from [1×10−4, 5×10−5, 1×10−5, 5×
10−6].

User adaptation. We use a two-hop seen user
and 0.07 as temperature for unseen user adapta-
tion of CoPL. For I2E, each learnable user repre-
sentation is mapped into each user. For I2Eproxy
and PAL, user representations are determined by
N = 10 proxies. Adapting to an unseen user re-
quires parameter optimization for unseen users, typ-
ically through several gradient steps. To optimize
the parameters for unseen users, 50 gradient steps
are applied during adaptation.

E Additional Experimental Results

Performance under the imbalanced group dis-
tribution with UF-P-4 (AVG). Table A2 reports
group-wise accuracies for the four group UF-P-4
(AVG) setting under selected imbalance configura-
tions. The results exhibit the same trend seen in the
two-group setting. CoPL continues to capture di-
verse user preferences across all groups. As the dis-
tribution departs from the balanced 1:1:1:1 setting,
the gap from the balanced baseline widens. The
lower absolute accuracy of some groups is largely
due to the intrinsic difficulty of their preferences
rather than the imbalance itself. This interpreta-
tion is supported by the G-Oracle. Fig. A6 visual-
izes the learned user embeddings. The embeddings
form well-separated clusters aligned with group
identities even under strong imbalance, which sug-
gests that the representation remains stable, al-
though predictive performance on minority groups
drops.

Ablation study of the number of users. Fig. A3
shows that CoPL performs robustly across differ-
ent expert counts. This indicates that a moderate
number of experts is generally sufficient to capture
diverse user preferences.

Performance with large-scale LLM. To assess
scalability, we instantiate CoPL with gemma-2-
27B-it (Team et al., 2024b) and evaluate on UF-P-
4 (ALL) and PersonalLLM (ALL). We use a sin-
gle seed due to hardware limits and compare with
VPL, the strongest baseline. As shown in Table A3,
CoPL surpasses VPL on both datasets, indicating
that the gains carry over to larger model scales.
These results support the scalability of CoPL be-
yond the settings used in the main experiments.

Ablation study of message-passing. Inspired by
the previous work (He et al., 2020) in recommenda-
tion systems, we first omit the non-linear activation
and feature transformation matrix used in Eq. (2),
and also investigate the effectiveness of negative
edges. As shown in Table A4, incorporating nega-
tive edges consistently improves accuracy. Notably,
our proposed message-passing achieves the highest
accuracy, highlighting both the effectiveness of our
message-passing operation and the advantage of
modeling negative edges.
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TL;DR UF-P-2 UF-P-4 PersonalLLM

ALL AVG ALL AVG ALL AVG ALL AVG

Se
en

G-Oracle 77.21±0.28 77.21±0.28 66.80±0.17 66.80±0.17 62.17±0.09 62.17±0.09 N/A N/A

Uniform 49.39±0.52 49.39±0.52 61.96±0.07 61.96±0.07 56.80±0.12 56.80±0.12 63.64±0.30 63.64±0.30

I2E 49.40±0.77 49.66±0.31 62.10±0.28 61.43±0.23 57.90±0.21 58.50±0.09 66.40±0.38 65.86±0.12

I2Eproxy 49.50±0.73 49.95±0.34 62.03±0.30 62.27±0.09 57.54±0.16 58.12±0.14 66.58±0.35 65.70±0.02

VPL 49.14±0.72 49.17±0.67 62.39±0.10 62.59±0.24 58.87±0.25 57.55±1.00 70.55±0.16 66.18±0.01

PAL 49.57±0.09 49.75±0.27 62.59±0.06 62.47±0.13 57.17±0.22 56.27±0.13 66.46±0.49 65.43±0.43

CoPL 97.85±0.07 97.88±0.01 63.90±0.07 63.48±0.13 62.90±0.05 61.93±0.02 74.87±0.19 74.76±0.01

U
ns

ee
n

G-Oracle 77.54±0.49 77.54±0.49 67.43±0.65 67.43±0.65 62.01±0.04 62.01±0.04 N/A N/A

Uniform 49.03±0.76 49.03±0.76 62.23±0.06 62.23±0.06 57.02±0.27 57.02±0.27 63.30±0.08 63.30±0.08

I2E 49.64±0.98 49.56±0.49 62.62±0.95 61.88±0.21 57.62±0.92 58.12±0.98 65.75±0.38 65.74±0.37

I2Eproxy 49.68±1.35 49.19±1.06 61.99±0.33 62.84±0.40 57.69±0.70 57.73±0.32 66.47±0.08 66.13±0.33

VPL 49.07±0.65 48.92±0.72 62.69±0.99 63.67±0.12 58.49±1.22 56.85±0.84 69.93±0.33 65.72±0.42

PAL 49.71±0.44 49.68±0.34 63.08±0.73 62.52±0.58 57.15±0.48 56.44±0.67 66.57±0.08 65.92±0.25

CoPL 97.95±0.15 98.19±0.06 64.08±0.71 64.38±1.00 62.77±1.32 62.08±0.64 74.84±0.18 75.64±0.05

Table A1: Accuracy of reward models on unseen annotated pairs. The results report performance on Seen users
encountered during training and on Unseen users, which consist of 100 new users evenly distributed across
preference groups. Unseen users provide 8 annotations under TL;DR/UF-P-2 (ALL/AVG) and 16 annotations under
UF-P-4/PersonalLLM (ALL/AVG). Bold represents the best result, except for G-Oracle. N/A indicates that training
reward models for each group is infeasible for PersonalLLM, as this dataset does not clearly partition users into
discrete groups. All experiments run on three seeds. These results are based on gemma-7b-it.

(a) I2E (b) I2Eproxy (c) VPL (d) PAL (e) CoPL

Figure A1: T-SNE visualization of seen user embeddings in UF-P-4 (AVG) with gemma-2b-it. Points are colored
by their preference group. Our method clusters users in the same group more effectively, whereas other baselines
fail to cluster users by their preference groups in the user embedding space.

(a) Naive Avg. (b) User Opt. (c) CoPL

Figure A2: T-SNE visualization of seen and unseen user embeddings in UF-P-4-AVG. Naive Avg. computes unseen
user embeddings as the unweighted mean of 2-hop neighbor embeddings. User Opt. represents an optimization-
based approach that learns a parameterized user embedding by maximizing the likelihood of the given annotations.
Colors indicate preference groups, and points with black edges represent unseen users. Unseen users adapted by our
method align with their respective preference groups.
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Figure A3: Ablation study on the number of experts in
UF-P-2 and UF-P-4 (ALL) with gemma-2b-it.

Helpfulness Honesty I.F. Truthfulness

G-Oracle 67.99±0.52 58.38±0.38 61.00±0.16 58.73±0.40

1:2:3:4 64.20±1.15 57.56±0.03 62.28±1.01 58.40±0.04

1:1:1:1 71.56±0.67 57.46±0.28 61.55±0.17 57.17±0.25

4:3:2:1 71.25±0.25 56.58±0.57 61.08±0.29 52.55±0.36

Table A2: Group-wise accuracy of reward models with
Gemma-2b-it in UF-P-4 (AVG), varying the ratio of
group size with the total number of users fixed at 10,000.
I.F. means Instruction Following.

UF-P-4 (ALL) PersonalLLM (ALL)

VPL 58.96 70.92
CoPL 63.17 74.30

Table A3: Accuracy of reward models with Gemma-2-
27b-it in UF-P-4 (ALL) and PersonalLLM (ALL).

CoPL 84.84±0.83

w/o N.E. 72.94±0.61

w/o Act. & Trans. 80.61±0.32

w/o Act. & Trans. & N.E. 72.15±1.02

Table A4: Test accuracy of GNN in UF-P-2-ALL. “N.E.”
denotes the negative edges. “Act.” denotes the non-
linear activation. “Trans.” denotes the feature transfor-
mation matrix.

12891



(a) 1:9 (b) 2:8 (c) 3:7

(d) 4:6 (e) 5:5 (f) 6:4

(g) 7:3 (h) 8:2 (i) 9:1

Figure A4: T-SNE visualization of user embeddings on TL;DR (AVG) across group ratios from 1:9 to 9:1. Points
are colored by preference group.
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(a) 1:9 (b) 2:8 (c) 3:7

(d) 4:6 (e) 5:5 (f) 6:4

(g) 7:3 (h) 8:2 (i) 9:1

Figure A5: T-SNE visualization of user embeddings on UF-P-2 (AVG) across group ratios from 1:9 to 9:1. Points
are colored by preference group.

(a) 1:2:3:4 (b) 1:1:1:1 (c) 4:3:2:1

Figure A6: T-SNE visualization of user embeddings on UF-P-4 (AVG) under group ratios 1:2:3:4, 1:1:1:1, 4:3:2:1.
Points are colored by preference group.
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