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Abstract

Symbolic regression is a powerful technique
for discovering mathematical expressions that
best fit observed data. While neural symbolic
regression methods based on large-scale pre-
trained models perform well on simple tasks,
the reliance on fixed parametric knowledge
typically limits their generalization to com-
plex and diverse data distributions. To ad-
dress this challenge, we propose a syntax-aware
retrieval-augmented mechanism that leverages
the syntactic structure of symbolic expressions
to perform context-aware retrieval from a pre-
constructed token datastore during inference.
This mechanism enables the model to incor-
porate highly relevant non-parametric prior in-
formation to assist in expression generation.
Additionally, we design an entropy-based con-
fidence network that dynamically adjusts the fu-
sion strength between neural and retrieved com-
ponents by estimating predictive uncertainty.
Extensive experiments on multiple symbolic
regression benchmarks demonstrate that the
proposed method significantly outperforms rep-
resentative baselines, validating the effective-
ness of retrieval augmentation in enhancing the
generalization performance of neural symbolic
regression models.

1 Introduction

Symbolic regression is a fundamental subfield of
interpretable machine learning that aims to dis-
cover explicit analytical expressions from data,
thereby revealing the underlying physical prin-
ciples or functional relationships. (Makke and
Chawla, 2024). By capturing latent structures
and intrinsic dependencies within the data, it has
demonstrated significant potential in fields such as
scientific discovery (Kim et al., 2021) and engineer-
ing modeling (Rogers et al., 2024).

Conventional symbolic regression techniques
predominantly rely on genetic programming
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Figure 1: An illustration of two distinct damped oscilla-
tion functions exhibiting analogous oscillatory dynam-
ics with differing damping coefficients. The structural
similarity in their exponential decay profiles and phase-
space trajectories enables cross-prediction of dynamical
parameters through prior knowledge transfer.

(Zhong et al., 2020; Burlacu et al., 2023), employ-
ing evolutionary strategies to explore the combi-
natorial solution space of symbolic expressions.
While these approaches preserve interpretability by
enabling intuitive refinement of expressions, their
exhaustive search nature incurs substantial compu-
tational overhead. More recently, rapid advance-
ments in deep learning have driven the develop-
ment of numerous neural approaches to symbolic
regression. Among these, a particularly promis-
ing paradigm employs pretrained language mod-
els, such as Transformers, to formulate the task
of generating symbolic expressions from data as a
sequence-to-sequence translation task (Kamienny
et al., 2022; Valipour et al., 2021; Biggio et al.,
2021; Li et al., 2025). This neural paradigm enables
the end-to-end generation of symbolic expressions
within a few inference steps, thereby significantly
improving the efficiency of symbolic regression.

Overall, most advances in neural symbolic re-
gression have focused on improving model archi-
tectures and training paradigms to improve the map-
ping from data to symbolic expressions. Neverthe-
less, these approaches typically rely solely on the
parametric knowledge encoded within the model
parameters after training, neglecting the effective

13137



utilization of the rich information embedded in ex-
isting instances of similar symbolic expressions.
Concretely, symbolic expressions frequently ex-
hibit similar mathematical or physical properties
due to recurring patterns of operators or structurally
analogous formulations. For example, as illustrated
in Fig. 1, two distinct damped oscillation functions
display comparable structural characteristics and
exhibit analogous oscillatory behavior. In such
cases, one expression can serve as a valuable ref-
erence when inferring the other. This observation
highlights the potential of leveraging structurally or
functionally similar prior expressions to inform the
generation of new ones, thus offering a promising
direction for improving the performance of neural
symbolic regression models.

To this end, we propose a syntax-aware retrieval
augmentation mechanism (SRASR) to facilitate
the effective utilization of knowledge embedded in
structurally similar symbolic expression instances
during expression generation. Specifically, we for-
mulate symbolic regression as an autoregressive
task, wherein prefix traversal sequences of expres-
sion trees are generated token by token. Within this
framework, a pretrained symbolic regression model
encodes partially generated prefix sequences into
latent representations, which are utilized to perform
K-nearest neighbor (KNN) (Kramer and Kramer,
2013) retrieval in a syntax-conditioned latent space.
The symbolic tokens associated with the retrieved
neighbors are subsequently aggregated to form a
non-parametric probability distribution, serving as
an auxiliary prior to guide the prediction of sub-
sequent tokens. Moreover, to address the poten-
tial reliability gap between the neural predictive
distribution and the KNN-derived prior, we intro-
duce an entropy-based adaptive interpolation strat-
egy that dynamically balances their contributions
based on predictive uncertainty, thereby facilitating
a more context-sensitive integration of parametric
and non-parametric knowledge. We validate the
effectiveness of the proposed method through ex-
tensive experiments on multiple classical symbolic
regression benchmarks. The results consistently
demonstrate that SRASR significantly outperforms
existing baselines in generating symbolic expres-
sions with superior fitting accuracy.

2 Related Work

Symbolic Regression Existing symbolic regres-
sion methods can be broadly categorized into two

paradigms: search-based and supervised learning-
based approaches. Genetic programming-based
symbolic regression (GPSR) exemplifies the for-
mer, employing evolutionary algorithms to itera-
tively optimize expression structure and parame-
ters for optimal data fitting (Burlacu et al., 2023).
However, due to the NP-hard nature of symbolic
regression (Virgolin and Pissis, 2022), such meth-
ods typically suffer from combinatorial explosion
and high complexity (Petersen et al., 2021). To
address these challenges, recent studies (Petersen
et al., 2021; Liu et al., 2023a) have integrated re-
inforcement learning (RL) to improve search effi-
ciency. For example, DSR (Petersen et al., 2021)
employs a recurrent neural network trained with a
risk-seeking policy gradient to model probabilistic
distributions over expression skeletons. Despite
such advancements, search-based approaches typi-
cally require task-specific optimization or retrain-
ing, which hinders their ability to generalize across
tasks and reuse learned knowledge.

To address the limitations of search-based
methods, recent works have increasingly adopted
supervised learning approaches that leverage deep
neural networks to directly model the complex
mapping from data to symbolic expressions using
large-scale datasets, thereby eliminating the need
for exhaustive task-specific search. Representative
models such as SymbolicGPT (Valipour et al.,
2021), NeSymReS (Biggio et al., 2021), End2End
(Kamienny et al., 2022), and MMSR (Li et al.,
2025) adopt Transformer-based architectures with
varying design and training strategies. Symbol-
icGPT utilizes a modified T-Net for enhanced
feature extraction, while NeSymReS employs a
Set-Transformer to ensure permutation invariance
in encoding unordered data points. End2End
applies a standard Transformer encoder-decoder
for end-to-end expression generation, and MMSR
incorporates multimodal learning to exploit the
intrinsic multimodal nature of symbolic regression.
While these models advance architecture and
training, they typically do not exploit prior
symbolic expressions as guidance, limiting their
capacity to incorporate valuable prior knowledge
into prediction.

Nearest Neighbor Retrieval Methods in
NLP Nearest neighbor retrieval methods have
achieved significant success in various natural
language processing (NLP) tasks, including
machine translation (Liu et al., 2023b; Nishida
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et al., 2024) and language modeling (Shi et al.,
2022; Trotta et al., 2022). These methods typically
construct a datastore by associating decoder
output vectors from a pretrained language model
with their corresponding target tokens. During
inference, kNN retrieval is performed to identify
contextually relevant entries from the constructed
datastore to form a reference distribution, which
is then integrated with the model’s predictions to
enhance accuracy.

However, prior studies have indicated that di-
rect application of kNN retrieval tends to introduce
noise into prediction (Jiang et al., 2022; Yuan et al.,
2024; Lv et al., 2024). This issue is especially crit-
ical in symbolic regression, which involves sym-
bolic expressions that are highly sensitive to syn-
tactic correctness. To address this, we propose con-
structing separate kNN datastores based on token
categories within symbolic expressions, thereby
preventing the disruption of syntactic structures
caused by indiscriminate retrieval. Additionally,
we introduce an entropy-based confidence adjust-
ment mechanism to mitigate noise in the kNN-
derived distributions, enhancing the robustness of
retrieval-augmented predictions.

3 Retrieval-Augmented Symbolic
Regression

In this section, we introduce the proposed SRASR,
which is designed to integrate syntax-constrained
nearest neighbor retrieval into the expression gen-
eration process of pretrained models, thereby en-
abling effective utilization of prior knowledge em-
bedded in existing expression instances to enhance
prediction accuracy. As depicted in Fig. 2, the
framework consists of two essential components:
syntax-aware datastore construction and retrieval-
augmented prediction, which are detailed respec-
tively in the subsequent subsections.

3.1 Syntax-Aware Datastore Construction

In mathematical expressions, operator tokens typi-
cally occur with higher frequency, while constant
tokens appear exclusively at the leaf nodes of ex-
pression trees, resulting in relatively lower frequen-
cies, as intuitively illustrated by the expression tree
in Fig. 2. However, the vocabulary space of con-
stant tokens is substantially larger and sparser than
that of operators, a disparity also reflected in the
statistics reported in Table 1. Consequently, stor-
ing both types of tokens within a unified retrieval

datastore can lead to several issues: on one hand,
constant tokens are less likely to retrieve semanti-
cally relevant neighbors effectively; on the other
hand, the sparsity of constant tokens may intro-
duce noise during the retrieval of operator tokens,
thereby causing retrieval biases that compromise
the syntactic validity of the generated expressions.

Token Type Vocabulary Size Datastore Samples

Operator 55 9,089,028
Constant 10,200 5,055,706

Table 1: Statistics of vocabulary size and datastore sam-
ples for operator and constant tokens.

Therefore, motivated by the distinct syntactic
roles of tokens within symbolic expressions, we
propose constructing separate retrieval datastores
for operator and constant tokens. Operator tokens
delineate the structural skeleton of the expression
tree, whereas constant tokens govern its numerical
evaluation. This syntactic separation in datastore
design mitigates cross-category interference in the
retrieval space, thereby improving the semantic
relevance of retrieved neighbors and preserving the
structural validity of generated expressions.

Specifically, for each data point-expression pair
(p, s) from the training set (P,S), where p =
{(xl, yl)}nl=1 represents a set of numerical obser-
vations and s = {s1, s2, ..., sm} denotes the prefix
traversal sequence of the corresponding symbolic
expression tree, the input p is initially encoded
by a pretrained symbolic regression model fθ(·)
to obtain a contextual representation for condi-
tional generation. During the autoregressive de-
coding process, the decoder hidden state vector
hi = fθ(p, s<i) and the associated target token
si are recorded at each step i. Subsequently, each
pair (hi, si) is stored in the appropriate datastore,
based on the syntactic category of si, to facilitate
syntax-aware neighbor retrieval during inference.
The construction of the operator datastore Doptor
and the constant datastore Dconst can be mathemat-
ically formulated as follows:

Doptor =
⋃

(p,s)∈(P,S)
{(hi, si) | ∀si ∈ (s ∩ o)}

(1)
Dconst =

⋃

(p,s)∈(P,S)
{(hi, si) | ∀si ∈ (s ∩ c)}

(2)
where o and c denote the sets of operator tokens
and constant tokens, respectively. Given that vari-
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Figure 2: Workflow of the proposed syntax-aware retrieval-augmented symbolic regression method, including
syntax-aware datastore construction and retrieval-augmented prediction processes.

ables (e.g., ‘x1’, ‘x2’, . . . ) and the sign tokens of
constants (i.e., ‘+’ and ‘−’) possess a limited type
space and play a structural role similar to opera-
tors in symbolic expressions, they are categorized
as operator-type tokens and stored in the operator-
specific datastore accordingly.

3.2 Retrieval-Augmented Prediction

As illustrated in Fig. 2, the retrieval-augmented
prediction mechanism enhances the autoregres-
sive decoding process of the pretrained symbolic
regression model by retrieving contextually rele-
vant neighbors from syntax-aware datastores con-
structed in subsection 3.1.

Specifically, at the i-th decoding step during in-
ference with the pretrained model, the type of the
target token is inferred based on the previously
generated prefix of the expression. If the preced-
ing token ŝi−1 is sign ‘+’ or ‘−’, the subsequent
token is assumed to be a constant, and the constant-
specific datastore Dconst is selected for retrieval.
Otherwise, the operator-specific datastore Doptor is
chosen. Subsequently, k nearest neighbors are re-
trieved from the selected datastore based on the Eu-
clidean distance between the current decoder out-
put representation hi and the stored keys, yielding
a set of distance-token pairs N = {(dj , vj)}kj=1,
where each dj denotes the Euclidean distance be-
tween the query hi and the retrieved key hj . The
resulting token distribution over the vocabulary is

computed as follows:

PKNNk
(si|p, ŝ<i) ∝

∑

(dj ,vj)∈N
1si=vj exp(

−dj
τ

)

(3)
where ŝ denotes the predicted prefix sequence of
the expression tree, τ is the temperature parameter
for scaling the distance values.

The choice of the hyperparameter k critically
affects the constructed KNN probability distribu-
tion: an excessively large k may introduce noise
from irrelevant neighbors, thereby impairing the
model’s prediction, while an overly small k risks
overlooking semantically important tokens. This
trade-off is particularly pronounced in the operator
datastore due to its inherently limited vocabulary
space (fewer than 90 tokens), which makes the se-
lection of an appropriate k especially crucial. To
address this, inspired by prior work on learnable
retrieval configuration, we employ a meta-k net-
work (Zheng et al., 2021) to adaptively select the
optimal k based on the current decoding context.
This dynamic strategy effectively balances retrieval
robustness with prediction accuracy, yielding an
adaptive KNN distribution PKNN.

Furthermore, to effectively leverage the retrieved
results for refining the original distribution PNN

produced by the pretrained model, we perform an
interpolation between PNN and the KNN-based
distribution PKNN to obtain the final predictive dis-
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tribution P , formulated as:

P = λPNN + (1− λ)PKNN (4)

In this process, dynamically adjusting the interpo-
lation weight λ is crucial for achieving an appro-
priate balance between the contributions of both
distributions to the final prediction. To this end,
we introduce an entropy-based confidence network
that quantifies the uncertainty of each distribution
through its entropy and leverages these entropy
features to adaptively determine the fusion weight.

The following provides a detailed description
of the meta-k network and the entropy-based
confidence network.

Meta-k Network Given an upper bound K
for nearest neighbor retrieval, the meta-k network
adaptively infers the optimal retrieval size by
leveraging context-aware features to assess the
relative importance of candidate neighbor subsets.
Specifically, for the top-K retrieved neighbors, two
feature sequences are constructed to characterize
the retrieval context. The distance sequence
d = {d1, d2, ..., dK} captures the local density
of neighbors by measuring their distances to the
query representation. The diversity sequence
c = {c1, c2, ..., cK} reflects semantic variation,
with each cj representing the number of distinct
tokens among the top-j neighbors. These two se-
quences are concatenated and fed into a lightweight
two-layer perceptron fmeta(·), which yields a
confidence distribution over a predefined candidate
set of retrieval sizes S = {0, 1, 2, 4, . . . , 2⌊log2K⌋},
i.e., p(k) = softmax(fmeta([d; c])). Subse-
quently, the final KNN predictive distribution is
computed as a weighted sum over the candidate
subset-specific distributions:

PKNN(si|p, ŝ<i) ∝
∑

kr∈S
p(kr) · PKNNkr

(si|p, ŝ<i)

(5)
This mechanism enables context-dependent
selection of the most effective neighbor subset size,
balancing local density and semantic diversity to
optimize retrieval utility.

Entropy-based Confidence Network In symbolic
regression, prediction targets are governed by strict
syntactic rules and exhibit strong inter-symbol
dependencies. Therefore, ensuring consistency
and coordination between the model-generated
distribution and the retrieval-augmented distribu-
tion is critical for robust inference. To this end,

we design an entropy-based confidence network
that adaptively estimates the interpolation weight
λ based on both contextual information and
distributional uncertainty.

Specifically, the confidence network takes as in-
put a concatenation of context-aware retrieval fea-
tures and entropy-based signals derived from the
predictive distributions. The interpolation weight
λ is computed as:

λ = sigmoid(fconf ([d; c; e])) (6)

where d and c represent the distance and diversity
feature sequences of the retrieved neighbors, re-
spectively, as defined in the meta-k network. e is
an entropy-aware feature defined by:

e = funcertainty(JS(PNN, PKNN),H(PKNN))
(7)

where JS(PNN, PKNN) denotes the Jensen-
Shannon divergence between the neural predictive
distribution PNN and the KNN-derived distribution
PKNN, quantifying their semantic discrepancy;
H(PKNN) represents the entropy of the KNN dis-
tribution, measuring its inherent uncertainty. The
two uncertainty metrics are fed into funcertainty
to produce a unified entropy representation e,
which is concatenated with contextual features
and mapped through fconf , followed by a sigmoid
activation to yield the final interpolation weight
λ. Both funcertainty and fconf are lightweight
two-layer feed-forward networks.

The proposed entropy-based network dynami-
cally modulates the interpolation between neural
generation and retrieval augmentation by leverag-
ing both contextual information and distributional
uncertainties, thereby enhancing the robustness of
the final predictions.

4 Experiment

In this section, we conduct experiments on pub-
licly available datasets and compare the proposed
SRASR against various competitive baselines to
evaluate its effectiveness in symbolic regression.
Our source code is released at https://github.
com/marasimc/SRASR.

4.1 Experimental Settings

Benchmarks. We conduct comparative analyses
on several widely used symbolic regression
datasets, including Nguyen (Uy et al., 2011),
Keijzer (Keijzer, 2003), Livermore (Mundhenk

13141

https://github.com/marasimc/SRASR
https://github.com/marasimc/SRASR


et al., 2021), R (Krawiec and Pawlak, 2013), Jin
(Jin et al., 2019), Neat (Trujillo et al., 2016), and
Strogatz. In particular, the Strogatz dataset is
derived from SRBench (La Cava et al., 2021),
a comprehensive benchmark suite for symbolic
regression that encompasses diverse data distribu-
tions and a wide range of equation types.

Evaluation Metrics. We assess the perfor-
mance of various symbolic regression models
based on the fitting accuracy of the generated
symbolic expressions. To this end, we employ
the coefficient of determination (R2) (Cava et al.,
2021) as the evaluation metric, which is widely
adopted in the symbolic regression literature and is
defined as:

R2 = 1−
∑Ntest

i (yi − ŷi)
2

∑Ntest
i (yi − ȳ)2

where Ntest denotes the number of test samples,
yi and ŷi represent the ground truth and predicted
values of the i-th test sample, respectively, and ȳ is
the mean of the ground truth values over the test set.

Baselines. To evaluate the effectiveness of
the proposed method, we conduct comparisons
against several state-of-the-art baselines. These
include NeSymReS (Biggio et al., 2021) and
End2End (Kamienny et al., 2022), two representa-
tive Transformer-based neural symbolic regression
models; DySymNet (Li et al., 2024), a recent
approach leveraging dynamic symbolic networks;
and GPlearn (Stephens, 2022), a classical genetic
programming-based symbolic regression method.
Additionally, we consider DSR (Petersen et al.,
2021), a search-based approach that integrates
recurrent neural networks with reinforcement
learning strategies; uDSR (Landajuela et al.,
2022), which unifies five symbolic regression
strategies into a cohesive architecture to enhance
overall performance; and RSRM (Xu et al., 2024),
a reinforcement-learning-based approach that
combines genetic programming and modulated
subtree discovery to extract complex mathematical
expressions from limited data. All baseline
methods are publicly available, and we adopt their
default hyperparameter configurations to ensure
consistency and fairness in comparison.

Implementation Details. In our retrieval-
augmented framework, we adopt End2End
(Kamienny et al., 2022) as the pretrained backbone

and construct the datastore following the dataset
generation strategy of its original implementation.
To enable efficient retrieval from the constructed
datastore, we utilize Faiss (Johnson et al., 2021)
for nearest-neighbor search. During retrieval-
augmented inference, the maximum number of
nearest neighbors is set to 4 for the operator datas-
tore and 64 for the constant datastore. A detailed
sensitivity analysis of these two hyperparameters is
presented in Section 4.3. Both the meta-k network
and the confidence network are implemented
with a hidden layer size of 32. Model training
is performed using the Adam optimizer with a
learning rate of 10−5 and a batch size of 64.

4.2 Main Results

As shown in Table 2, we perform a compre-
hensive evaluation of the proposed SRASR on
several widely used symbolic regression bench-
mark datasets. The results indicate that SRASR
consistently outperforms both classical search-
based symbolic regression approaches (includ-
ing GPlearn, DSR, uDSR, and RSRM) and re-
cent neural symbolic regression models (i.e.,
NeSymReS, End2End, and DySymNet) across
all datasets. In particular, compared to the pre-
trained End2End model employed as our back-
bone, SRASR achieves robust and consistent per-
formance improvements, yielding an average gain
of 3.53% in the R2 score (increasing from 0.9511
to 0.9847). This notable performance gain under-
scores the efficacy of the proposed syntax-aware
retrieval augmentation mechanism in improving
the accuracy of symbolic expression generation.

4
2

0
2

4
x 3

2
1

0
1

2
3

y

30

20

10

0

10

Data Points
Fitted Expression

4

2

0

2

4

(a) Fitting result generated
by SRASR

4
2

0
2

4
x 3

2
1

0
1

2
3

y

30

20

10

0

10

Data Points
Fitted Expression

20

15

10

5

0

5

10

(b) Fitting result generated
by End2End

Figure 3: Comparison of fitting results obtained by
SRASR and End2End on the strogatz_shearflow1
dataset. The underlying dynamics are described by the
differential equation x′ = cot(y) · cos(x), representing
one state of a two-dimensional shear flow system. In
both visualizations, red dots represent the sampled data
points from the dataset, while the surface illustrates the
symbolic expression inferred by the corresponding sym-
bolic regression model.
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Benchmark SRASR (ours) End2End NeSymReS DySymReS GPlearn DSR uDSR RSRM

Nguyen 0.9992±0.0000 0.9988±0.0000 0.9804±0.0000 0.9059±0.0074 0.9106±0.0000 0.9732±0.0018 0.9906±0.0000 0.9972±0.0009

Keijzer 0.9937±0.0000 0.9736±0.0000 0.9384±0.0000 0.9569±0.0501 0.6986±0.0520 0.8204±0.0020 0.9523±0.0000 0.9725±0.0040

Livermore 0.9879±0.0000 0.9875±0.0000 0.9642±0.0000 0.8990±0.0113 0.7515±0.0256 0.8006±0.0105 0.8993±0.0000 0.9821±0.0004

R 0.9999±0.0000 0.9998±0.0000 0.9765±0.0000 0.8654±0.1335 0.6113±0.0099 0.9139±0.0044 0.9811±0.0000 0.9976±0.0023

Jin 0.9999±0.0000 0.9625±0.0000 0.9396±0.0000 0.9508±0.0308 0.8578±0.0291 0.8002±0.0000 0.9276±0.0000 0.9550±0.0035

Neat 0.9674±0.0000 0.9163±0.0000 0.9121±0.0000 0.9419±0.0397 0.7637±0.0897 0.8162±0.0022 0.8755±0.0000 0.9205±0.0007

Strogatz 0.9449±0.0000 0.8192±0.0000 0.8069±0.0000 0.8642±0.0568 0.4768±0.0000 0.6704±0.0070 0.8780±0.0000 0.9191±0.0001

Average 0.9847 0.9511 0.9312 0.9120 0.7243 0.8278 0.9292 0.9634

Table 2: Comparison of performance between SRASR and baseline methods in terms of the coefficient of determi-
nation (R2) (↑). For each method, the reported R2 values represent the mean over ten independent runs, with 95%
confidence intervals provided.

Notably, SRASR demonstrates a substantial per-
formance improvement over End2End on the Stro-
gatz benchmark, with an increase of 0.1257 in
the R2 metric. We attribute this improvement to
SRASR’s enhanced capability in modeling nonlin-
ear dynamics and chaotic behavior. Specifically,
the Strogatz dataset comprises a collection of chal-
lenging tasks involving complex nonlinear dynamic
behaviors and chaotic regimes, which are character-
ized by intricate symbolic dependencies and highly
uncertain functional landscapes. As a representa-
tive example, we examine a two-dimensional shear
flow system governed by the differential equation
x′ = cot(y) · cos(x). Fig. 3 presents a compar-
ison of the fitting surfaces generated by SRASR
and End2End on this specific task. The visualiza-
tion clearly reveals that SRASR generates sym-
bolic expressions that closely fit the observed data,
whereas the expression produced by End2End ex-
hibits noticeable deviations. This observation sup-
ports our claim that the proposed syntax-aware
retrieval mechanism enables SRASR to more ef-
fectively capture complex symbolic dependencies,
thereby yielding superior performance in modeling
tasks characterized by structural complexity and
dynamical uncertainty.

4.3 Hyperparameter Analysis
In this experiment, we investigate the effect of
key retrieval hyperparameters on the performance
of SRASR, specifically the maximum number of
neighbors for the operator and constant datastores,
denoted as k1 and k2, respectively. As shown in
Table 3, given the relatively small number of op-
erator token types, we consider smaller values of
k1, whereas, due to the larger number of constant
token types, we evaluate larger values of k2.

We observe that increasing k1 from 4 to 8 leads
to improved performance on certain datasets when
k2 is set to 16 or 32; however, the same increase

Benchmark
k1=4 k1=8

k2=16 k2=32 k2=64 k2=16 k2=32 k2=64

Nguyen 0.9984 0.9989 0.9992 0.9989 0.9987 0.9991
Keijzer 0.9917 0.9805 0.9937 0.9897 0.9897 0.9902
Livermore 0.9761 0.9886 0.9879 0.9921 0.9869 0.9816
R 0.9996 0.9997 0.9999 0.9999 0.9998 0.9993
Jin 0.9626 0.9999 0.9999 0.9979 0.9913 0.9670
Neat 0.9572 0.9487 0.9674 0.9236 0.9540 0.9478
Strogatz 0.8293 0.8623 0.9449 0.8524 0.8949 0.8640

Average 0.9593 0.9684 0.9847 0.9649 0.9736 0.9641

Table 3: Results of the retrieval hyperparameter study.
The best and second-best results are highlighted in bold
and underlined, respectively.

in k1 results in a performance decline when k2 is
set to 64. Overall, the best performance is achieved
with k1 = 4 and k2 = 64, which is consistent
with our expectations. Theoretically, each datas-
tore has an optimal retrieval threshold: values set
too low may omit informative tokens, whereas val-
ues set too high may introduce excessive noise.
In practice, however, since operator and constant
symbols jointly determine both the structural and
numerical aspects of the generated expressions,
their thresholds are inherently interdependent. Con-
sequently, an imbalanced threshold in one datas-
tore can not only degrade its own retrieval qual-
ity but also weaken the contribution of the other.
This interdependence underscores the importance
of carefully tuning both thresholds in conjunction
to achieve stable performance.

Our empirical results indicate that the configura-
tion k1 = 4, k2 = 64 achieves a favorable balance
between recall and noise, yielding superior perfor-
mance in complex modeling tasks. This setting is
also consistent with the token distribution, as op-
erator tokens are relatively sparse and thus benefit
from a smaller threshold, whereas constant tokens
are more abundant and require a larger threshold to
ensure sufficient coverage. Accordingly, we adopt
k1 = 4, k2 = 64 as the default hyperparameter
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setting in our experiments.

4.4 Ablation Study
In this section, we perform ablation experiments
to assess the effect of several core components
of SRASR, including the syntax-aware retrieval
module, the meta-k network, and the entropy-
based confidence network. Considering the
significant performance differences observed
between SRASR and End2End on the Jin, Neat,
and Strogatz datasets in the previous experiment,
we select them for subsequent ablation studies.

Effect of the syntax-aware retrieval mech-
anism. To evaluate the impact of the syntax-aware
retrieval mechanism in SRASR, we compare two
retrieval-augmented strategies under identical
model settings. In the syntax-aware setting,
separate datastores are maintained for operators
and constants, from which 4 and 64 nearest
neighbors are retrieved respectively, consistent
with the main experimental setup. In contrast,
the syntax-agnostic variant employs a unified
datastore that merges operator and constant tokens,
retrieving 34 neighbors to match the average total
used in the syntax-aware setting. In both cases, the
interpolation weight λ between neural and retrieval
probabilities is fixed at 0.5.

As illustrated in Fig. 4(a), both retrieval strate-
gies improve the performance of the pretrained
symbolic regression model (End2End) across
multiple benchmarks, demonstrating the overall
effectiveness of retrieval-based augmentation. No-
tably, the syntax-aware retrieval approach achieves
consistently superior improvements compared to
its syntax-agnostic counterpart. This performance
gap underscores the advantage of incorporating
syntactic structure during retrieval, which enables
the model to retrieve more semantically relevant
and structurally consistent neighbors. By aligning
retrieved examples with the grammatical roles of
target tokens (e.g., operators vs. constants), the
syntax-aware strategy provides more contextually
appropriate guidance during expression generation.

Effect of the meta-k network. As described
in section 3.2, the meta-k network adaptively
selects the optimal number of neighbors based
on task-specific semantic features, with the goal
of improving the flexibility and accuracy of
retrieval-augmented generation. To evaluate its
effectiveness, we compare two SRASR variants

without the confidence network and under a fixed
interpolation weight of 0.5: one without the meta-k
network and the other with it. The comparison
results are shown in Fig. 4(b).

The results indicate that incorporating the meta-
k network leads to modest but consistent improve-
ments on the Neat and Strogatz benchmarks. Per-
formance on the Jin dataset shows minimal im-
provement, as the fixed retrieval configuration al-
ready provides strong performance. These results
demonstrate that the meta-k network plays a ben-
eficial role in adaptively adjusting the retrieval
strength, offering stable performance gains across
tasks. While the improvements are not dramatic,
they highlight the value of incorporating retrieval
adaptivity in symbolic expression generation.

Benchmark End2End w/o JS&H w/ H w/ JS w/ JS&H
Nguyen 0.9988 0.9981 0.9989 0.9989 0.9992
Keijzer 0.9736 0.9932 0.9918 0.9957 0.9937
Livermore 0.9875 0.9872 0.9826 0.9828 0.9879
R 0.9998 0.9996 0.9998 0.9998 0.9999
Jin 0.9625 0.9984 0.9919 0.9919 0.9999
Neat 0.9163 0.9247 0.9654 0.9656 0.9674
Strogatz 0.8192 0.8652 0.8891 0.8890 0.9449

Average 0.9511 0.9666 0.9742 0.9748 0.9847

Table 4: Ablation study on the effect of different
entropy-based features on SRASR performance.

Effect of the entropy-based confidence network.
To assess the effect of the confidence network,
particularly the contribution of entropy-based fea-
tures within SRASR, we compare three variants:
(1) SRASR without the confidence network, em-
ploying a fixed interpolation weight λ = 0.5;
(2) SRASR with a confidence network utilizing
only contextual features to learn the interpolation
weight; and (3) SRASR with the full entropy-based
confidence network. The comparative results are
presented in Fig. 4(c).

On the Strogatz dataset, the confidence network
relying solely on contextual features achieves a
modest improvement over the fixed-weight base-
line. However, on the Neat dataset, this approach
leads to performance degradation, indicating that
context-only confidence estimation lacks robust-
ness across different tasks. In contrast, the inte-
gration of entropy-based features consistently im-
proves performance across all evaluated datasets,
demonstrating their stabilizing effect. These find-
ings highlight the critical role of the entropy fea-
tures in confidence estimation, as they effectively
enhance the network’s capacity for accurate confi-
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Figure 4: Ablation study of SRASR on Jin, Neat, and Strogatz benchmarks.

dence assessment, thereby enabling more effective
control over retrieval fusion and ultimately improv-
ing the robustness of symbolic expression genera-
tion. Overall, the experiment confirms the value of
the entropy-based confidence network in improving
the reliability and performance of SRASR.

Furthermore, we investigate the influence of two
distinct entropy-based features on the performance
of SRASR. Specifically, the feature JS denotes the
Jensen-Shannon divergence between the neural pre-
diction distribution PNN and the k-nearest neighbor
distribution PKNN, whereas the feature H corre-
sponds to the entropy of the distribution PKNN. As
shown in Table 4, each feature individually con-
tributes to improving model performance, while
their combination yields further gains. This indi-
cates that the two features capture complementary
aspects of predictive uncertainty, with the JS di-
vergence reflecting distributional discrepancies be-
tween neural and retrieved predictions, and the en-
tropy characterizing the inherent uncertainty within
the retrieved neighborhood. Their integration thus
enables a more robust and fine-grained estimation
of model confidence.

5 Conclusion

In this work, we propose a syntax-aware retrieval-
augmented mechanism for symbolic regression.
Our approach leverages the syntactic structure of
symbolic expressions to enable adaptive retrieval
of pre-stored tokens, thereby incorporating non-
parametric prior knowledge from retrieval results
to enhance the expression generation process of
neural networks. Moreover, we design an entropy-
based confidence network that dynamically adjusts
the retrieval interpolation weight during inference,
enhancing uncertainty estimation and model ro-
bustness. Extensive experiments demonstrate that
SRASR significantly outperforms existing state-of-
the-art methods across multiple challenging bench-

marks, particularly excelling at modeling highly
nonlinear and chaotic dynamic systems. These re-
sults highlight the superiority of our approach in
enhancing neural symbolic regression performance
on complex tasks. Future work will focus on de-
veloping more efficient data storage and retrieval
architectures to improve computational efficiency.
Additionally, we plan to extend our framework to
large-scale scientific data modeling, further broad-
ening the applicability of symbolic regression to
complex real-world problems.

Limitations

Despite the demonstrated effectiveness of SRASR
in enhancing symbolic regression via syntax-aware
retrieval, the retrieval process inevitably introduces
additional computational overhead during infer-
ence, resulting in a modest increase in decoding
time compared to standard pretrained models. De-
tailed experimental results on solving time are pro-
vided in Appendix A. One potential approach to
mitigate this limitation is to develop more efficient
data storage and retrieval structures to reduce re-
trieval latency.
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A Analysis of Solving Time

To quantify the additional inference overhead in-
troduced by SRASR relative to its pretrained back-
bone, we conduct a runtime analysis, including
RSRM as a reference due to its highest accuracy
among baselines.

Benchmark SRASR (R2/runtime) End2End (R2/runtime) RSRM (R2/runtime)

Nguyen 0.9992 / 101.91 0.9998 / 35.27 0.9966 / 1017.44
Keijzer 0.9937 / 102.37 0.9736 / 33.58 0.9747 / 1035.19
Livermore 0.9879 / 131.20 0.9875 / 50.71 0.9822 / 1114.74
R 0.9999 / 14.51 0.9998 / 7.65 0.9985 / 1200.20
Jin 0.9999 / 98.17 0.9625 / 49.63 0.9566 / 1106.39
Neat 0.9674 / 92.17 0.9163 / 30.50 0.9205 / 1001.91
Strogatz 0.9449 / 71.07 0.8192 / 25.05 0.9191 / 1143.19

Average 0.9847 / 87.34 0.9511 / 33.20 0.9640 / 1088.44

Table 5: Comparison of SRASR with its underlying
pretrained model (End2End) and the strongest baseline
(RSRM) in terms of fitting accuracy and solving time
(in seconds). All results are reported as the average over
three independent runs for each method.

As shown in Table 5, SRASR incurs a modest
runtime increase due to the retrieval process, but
this overhead is limited. Notably, it consistently
outperforms RSRM in accuracy while maintaining
substantially faster inference, demonstrating that
the additional computational cost is a reasonable
trade-off for the achieved performance gains.
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