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Abstract

Recent advances in Multimodal Large Lan-
guage Models (MLLMs) have enhanced their
versatility as they integrate a growing number
of modalities. Considering the heavy cost of
training MLLMs, it is efficient to reuse the ex-
isting ones and extend them to more modali-
ties through Modality-incremental Continual
Learning (MCL). The exploration of MCL is
in its early stages. In this work, we dive
into the causes of performance degradation
in MCL. We uncover that it suffers not only
from forgetting as in traditional continual learn-
ing, but also from misalignment between the
modality-agnostic and modality-specific com-
ponents. To this end, we propose an elegantly
simple MCL paradigm called "MErge then
ReAlign" (MERA) to address both forgetting
and misalignment. MERA avoids introducing
heavy model budgets or modifying model ar-
chitectures, hence is easy to deploy and highly
reusable in the MLLM community. Extensive
experiments demonstrate the impressive perfor-
mance of MERA, holding an average of 99.84%
Backward Relative Gain when extending to
four modalities, achieving nearly lossless MCL
performance. Our findings underscore the mis-
alignment issue in MCL. More broadly, our
work showcases how to adjust different compo-
nents of MLLMs during continual learning.

1 Introduction

With the recent trend of developing general-
purpose any-modality Multimodal Large Language
Models (MLLMs) (Panagopoulou et al., 2023;
Chen et al., 2023a; Wu et al., 2024; Han et al., 2024;
Zhan et al., 2024; Shuhan et al., 2023), MLLMs
are evolving towards integrating more modalities.
The typical MLLM architecture includes modality-
specific encoders, modality-specific connectors,
and a shared Large Language Model (LLM). A
standard process of training MLLMs involves

*Corresponding author.

aligning modality-specific components with LLM
through modality-text paired data and then fine-
tuning on modality-text instruction data (Rao et al.,
2024). Such architecture and training strategy have
been successfully applied to a wide range of modal-
ities, i.e., image (Liu et al., 2024b,a; Rao et al.,
2023), video (Lin et al., 2024a; Maaz et al., 2024),
audio (Li et al., 2024; Wu et al., 2024), point cloud
(Chen et al., 2024), etc, equipping MLLMs with the
ability to understand a growing number of modali-
ties. Existing methods (Wu et al., 2024; Zhan et al.,
2024; Panagopoulou et al., 2023; Fu et al., 2024)
typically employ a joint training strategy, where
the MLLM is jointly trained on datasets of all pre-
defined modalities (Xin et al., 2024). However,
it is challenging to extend an existing MLLM to
new modalities as it requires another round of joint
training on the previous modalities and the new
modalities.

To reuse the existing models and adapt them to
new data, Continual Learning (CL) is proposed to
learn from a stream of data. During continual learn-
ing, performance degradation in previously learned
tasks often occurs. The degradation is generally at-
tributed to catastrophic forgetting (McCloskey and
Cohen, 1989; Goodfellow et al., 2014; Rao et al.,
2025), i.e., the model forgets the previously learned
knowledge. To this end, many CL methods (Kirk-
patrick et al., 2017; Yu et al., 2024b; Scialom et al.,
2022; Wang et al., 2024b) have been proposed to
alleviate catastrophic forgetting.

In addition to traditional CL, Modality-
incremental Continual Learning (MCL) (Yu et al.,
2024a) focuses on the particular scenario of in-
crementally extending MLLMs to new modali-
ties. The exploration of MCL is in its early stages.
In this work, we first analyze the causes of per-
formance degradation in MCL. Unlike traditional
CL, the performance degradation encountered in
MCL comes not only from forgetting but also from
the misalignment between modality-agnostic and
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modality-specific components.
To address both forgetting and misalignment,

we propose a simple yet effective two-stage MCL
paradigm called "MErge then ReAlign" (MERA).

The first stage of MERA aims at addressing
the forgetting problem. To this end, we introduce
model merging to our MCL framework. We focus
on the simplest model merging method, i.e., weight
averaging, and revise it into an MCL form. We
achieve this by associating its merging coefficients
with the progress of CL stages and only merging
the modality-agnostic components.

The second stage of MERA aims at addressing
the misalignment problem. We leverage a small
subset of data from each learned modality to realign
the modality encoders with the LLM backbone. In
this stage, modality encoders and LLM backbone
are both frozen, only the lightweight connectors are
updated to enable an efficient realignment between
them. Further experiments show that the realigning
stage can significantly narrow the gap between the
incrementally learned MLLM and the individually
trained expert MLLMs on each modality.

In summary, the contributions of this paper are
threefold:

• We analyze the causes of degradation in
Modality-incremental Continual Learning
(MCL). We uncover that it suffers not only
from forgetting as in traditional continual
learning, but also from misalignment.

• We propose "MErge then ReAlign" (MERA),
an elegantly simple and effective two-stage
MCL paradigm, to address both forgetting
and misalignment.

• Extensive experiments show that our MERA
significantly outperforms other representative
continual learning methods including the state-
of-the-art MCL method, and even achieves
nearly lossless MCL performance.

2 Related Work

2.1 Multimodal Large Language Models
Recent advances (Panagopoulou et al., 2023; Chen
et al., 2023a; Wu et al., 2024; Han et al., 2024;
Zhan et al., 2024) in MLLM have extended LLMs
to perceive multimodal inputs such as image, video,
audio, point cloud, etc. Among all the MLLMs, the
most influential one is LLaVA (Liu et al., 2024b,a),
which utilizes a simple MLP connector to project

visual information encoded by the pre-trained vi-
sion encoder into the language embedding space.
Due to its simplicity and effectiveness, LLaVA-
like architecture is widely adopted by a wide range
of subsequent MLLMs (Lin et al., 2024b,a; Maaz
et al., 2024; Wu et al., 2024; Chen et al., 2024)
and accounts for the majority of current MLLMs.
In this paper, we assume that the MLLM has a
LLaVA-like architecture that includes modality-
specific encoders and connectors, and a shared
modality-agnostic LLM backbone.

The rapid development of MLLMs demands
high efficiency in their training process. It is ef-
ficient to reuse the existing MLLMs and extend
them to more modalities. However, directly fine-
tuning MLLMs on new modalities often results in
significant performance degradation in previously
learned modalities. In this work, we leverage the
continual learning technique to tackle this problem.

2.2 Traditional Continual Learning
Continual Learning (CL) (Van de Ven and Tolias,
2019; Wang et al., 2024a) aims to continually ac-
quire new knowledge with minor forgetting of pre-
viously learned knowledge. Existing CL meth-
ods mainly fall into the following four categories:
Regularization-based methods (Kirkpatrick et al.,
2017; Huszár, 2017; Schwarz et al., 2018) seek to
protect the parameters that store important knowl-
edge. However, storing an importance matrix dur-
ing training requires extra memory with the same
scale as the trainable parameters. Architecture-
based methods (Yu et al., 2024a,b; Zadouri et al.,
2024; Srinivasan et al., 2023) add task-specific pa-
rameters to the base model for each new task. This
category requires modifications to the model archi-
tecture, harming its reusability. For many meth-
ods in this category, the model scale grows lin-
early as tasks increase, introducing extra memory
overhead. Replay-based methods (Rolnick et al.,
2019; Scialom et al., 2022; Wang et al., 2024b)
leverage a small subset of historical data and replay
it when learning on new data. This category re-
quires access to partial data from previous tasks or
distributions. However, this drawback is relatively
minor in real applications since the replay data is
often accessible. Merging-based methods (Worts-
man et al., 2022; Marczak et al., 2024; Xiao et al.,
2024; Zhu et al., 2024) edit models in parameter
space to integrate the previously learned knowl-
edge into the fine-tuned models by model merging
(Yadav et al., 2024a; Yu et al., 2024c; Yang et al.,
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Extra-Train-Memory-Free Arch-Modification-Free Replay-Data-Free
Regularization-Based ✘ ✔ ✔

Architecture-Based • ✘ ✔

Replay-Based ✔ ✔ ✘

Merging-Based ✔ ✔ ✔

MERA (Ours) ✔ ✔ ✘

Table 1: Characteristics of different CL categories and our proposed MERA. Extra-train-memory-free: does not
introduce extra GPU memory overhead at training time. Arch-modification-free: does not modify the architecture of
the model or add auxiliary components. Replay-data-free: does not require access to partial data from the previous
tasks or distributions. • denotes that some methods of this category don’t satisfy the property. ✘ denotes that this
drawback is relatively minor in real applications.

2024b,a).
Although many traditional CL methods have

been proposed, they are not specifically de-
signed for Modality-incremental Continual Learn-
ing (MCL). In this work, we propose a simple MCL
paradigm tailored for MLLMs. Table 1 summarizes
the characteristics of different CL categories and
our proposed method.

2.3 Continual Learning for MLLMs

Aside from traditional continual learning, there are
methods tailored for MLLMs (Srivastava et al.,
2024; Zeng et al., 2024; Maharana et al., 2024;
Gao et al., 2024; Cao et al., 2024; Yu et al., 2024a).
However, most of these works are specific to vision-
language-only MLLMs, and incompatible with
MCL where MLLMs can extend to arbitrarily more
modalities. To the best of our knowledge, Path-
Weave (Yu et al., 2024a) is the most relevant work
to MCL, and is so far the only work on MCL for
MLLMs. It is an architecture-based method that
uses an adapter-in-adapter mechanism to alleviate
forgetting in previous modalities.

In this work, we dive into the causes of degra-
dation in MCL, uncovering that it suffers not only
from forgetting but also from misalignment. To
this end, we propose our two-stage MCL paradigm
to address both forgetting and misalignment.

3 Dual Causes of Degradation in MCL

3.1 Preliminary

We define the Modality-incremental Continual
Learning (MCL) problem as follows. Given a se-
quence of m modalities {M1,M2, . . . ,Mm} and
their corresponding datasets {D1, D2, . . . , Dm},
MCL sequentially learns on each modality Mi to
obtain the model θi. We denote the MLLM as θ =
{θEnc, θConn, θLLM}, where θEnc, θConn, θLLM

denote the modality encoders, the connectors, the
LLM backbone, respectively. Notably, the θEnc

and θConn are modality-specific components and
the θLLM is a modality-agnostic component. Fur-
ther, we denote the feature distribution of the out-
puts of each modality connector θConn

i as ϕi.

3.2 Forgetting and Misalignment in MCL

MCL is a special scenario of CL, where models
incrementally learn on new modalities. However,
MCL faces a more severe problem. During con-
tinual learning, models would suffer from perfor-
mance degradation in previously learned domains,
tasks, or modalities. In traditional CL, degradation
comes from the forgetting of previously learned
knowledge. However, in MCL, it comes from two
significant aspects: forgetting and misalignment.

Forgetting: the modality-agnostic θLLM for-
gets the knowledge of old modalities. It is associ-
ated with various factors, including representation
drift (Caccia et al.), gradient interference (Wang
et al., 2023), learning dynamics (Ren and Suther-
land, 2024), distribution shift, etc.

Misalignment: the modality-agnostic θLLM is
misaligned with the modality-specific θEnc. When
incrementally learning on a new modality Mi,
the θLLM is updated along with the modality
connector of Mi, while other old connectors are
kept frozen. Therefore, θLLM adapts to the new
feature distribution ϕi and drifts away from the
original multimodal distribution ϕ1 ∪ ϕ2 ∪ · · · ∪
ϕi−1

1. Hence, there exists a misalignment in fea-
ture mapping between the old modality encoders
and the θLLM , leading to the breakdown of the
"encoder-connector-LLM" collaboration chains for
old modalities. The illustration of misalignment is

1For our proposed method, the θLLM also drifts away
from ϕi due to the use of model merging.
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(a) Last stage (b) Ideal MCL (d) Realigning(c) Misalignment

Figure 1: Illustration of misalignment and the mechanism of our proposed realigning. ϕi is the feature distribution
of the i-th modality. Regions in yellow represent the LLM’s expected distribution of the connector’s output. (a) and
(b) are the states of the last learning stage and the ideal MCL after learning on a new modality. (c) shows the actual
misalignment after learning on a new modality. (d) demonstrates the mechanism of our proposed realigning.

sketched in Figure 1. Experiments in Section 6.1
also provide empirical evidence of the existence of
misalignment.

Above, we analyzed the dual causes of perfor-
mance degradation in MCL. Due to the existence
of misalignment, MCL problem requires special
treatments in contrast to traditional CL problems.

4 Method

To tackle the dual causes of performance degra-
dation in MCL, we propose a two-stage MCL
paradigm called "MErge then ReAlign" (MERA).
In each stage of MCL, MERA executes the follow-
ing two stages: merging and realigning, to address
forgetting and misalignment respectively.

4.1 Stage 1: Merging

Model merging is efficient in integrating the previ-
ously learned knowledge into the fine-tuned mod-
els. Moreover, Yadav et al. (2024b) finds that
model merging is more effective with larger models.
Therefore, applying model merging to large-scale
models such as MLLMs is inherently beneficial.
Inspired by these, we introduce model merging to
our MCL framework to mitigate forgetting.

The first step before model merging is to perform
the standard MLLM training, which often encom-
passes a pre-training and a fine-tuning phase. After
the standard training step, we get the vanilla model
θi,vanilla that inevitably suffers from forgetting the
knowledge of previous modalities.

The second step is to perform model merging to
mitigate forgetting. In this work, we only focus on
the simplest model merging method, i.e., weight av-
eraging, aiming only to provide a basic framework.
To adapt weight averaging to MCL, we associate
its merging coefficients with the progress of MCL
stages. At the i-th training stage, the merged model

is calculated by:

θi,merged =
i− 1

i
θi−1 +

1

i
θi,vanilla

Notably, we only merge the modality-agnostic com-
ponent θLLM and ensemble the modality-specific
components θEnc and θConn. After merging, we
obtain the θi,merged, whose knowledge of previous
modalities is enhanced.

4.2 Stage 2: Realigning
To address the misalignment issue, we propose a
lightweight realigning stage to update the multi-
modal distribution ϕ1 ∪ ϕ2 ∪ · · · ∪ ϕi to realign
the "encoder-connector-LLM" chains for all the
modalities.

The realigning stage simply leverages a small
replay dataset2 Ri ← sample r% data from
{D1, D2, . . . , Di} to further fine-tune all the con-
nectors of θi,merged. This realigning process is
formulated as:

min
θConn
i,merged

Ex∼RiL(θi,merged, x)

where the L is the auto-regressive loss, unchanged
from the original MLLM training loss. By fine-
tuning the lightweight θConn with only a small
replay dataset, it efficiently realigns the θEnc with
θLLM . After realigning, we can obtain the final
model θi.

Differences between realigning and replay-
based CL methods. The realigning stage resem-
bles replay-based CL methods (Scialom et al.,
2022; Wang et al., 2024b) in form as they both
leverage replay data, however, they are essentially
different. First, replay methods train on the joint

2It is different from replay data in replay-based con-
tinual learning methods, where their Ri is sampled from
{D1, D2, . . . , Di−1}.
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Stage1: Merging

Standard MLLM training Model merging

Stage2: Realigning

Next

MCL stage
LLM

backbone

Connector

Encoder

Forgetting

Training on replay data

Aligned Misaligned RealignedMisalignedAligned

Figure 2: Pipeline of the proposed MERA. The procedures in gray boxes involve training. and represent the
frozen and trainable modules, respectively.

dataset of Di and Ri, while our realigning stage
trains solely on Ri. Second, replay methods update
both the θLLM and θConn, while the realigning
stage only efficiently updates the θConn to prevent
the knowledge inside θLLM from being overwritten
again.

4.3 Overall Pipeline

The overall pipeline of MERA is illustrated in Fig-
ure 2. In each stage of MCL, MERA goes through
two stages. The first stage is merging, where we
fine-tune θi−1 on the incoming modality and merge
the fine-tuned model θi−1,vanilla with the historical
model θi−1 in order to alleviate forgetting. The sec-
ond stage is realigning, where we leverage a small
set of replay data Ri to efficiently fine-tune the
lightweight modality connectors θConn to realign
the θEnc with θLLM .

5 Experiments

5.1 Experimental Setup

We build our MCL experiments on four modalities:
image, video, audio, and point cloud, with two
different training orders. Based on the prevalence
of different modalities, we determine the two orders
as follows. Sequential Order: image→ video→
audio→ point cloud. Reverse Order: point cloud
→ audio → video → image. On top of this, the
adopted datasets, metrics, models, and baselines
are detailed as follows.

Datasets. For each modality Mj , we leverage a
dataset of Captioning (Cap) task and a dataset of
Question Answering (QA) task to form the joint
dataset Dj = {Dj,Cap, Dj,QA}. The Cap and
QA datasets for each modality are listed respec-
tively. For image modality, we use MSCOCO-
2014 (Lin et al., 2014) and OK-VQA (Marino
et al., 2019). For video modality, we use MSVD
(Chen and Dolan, 2011) and MSVD-QA (Xu et al.,
2017). For audio modality, we use AudioCaps

(Kim et al., 2019) and Clotho-AQA (Lipping et al.,
2022). For point cloud modality, we use a subset of
Cap3D (Luo et al., 2024) and a subset of Cap3D-
QA (Panagopoulou et al., 2023). More details of
these datasets are in Appendix B.

Evaluation Metrics. First, we leverage Relative
Gain (Scialom et al., 2022; Wang et al., 2024b)
as a normalized metric across different tasks. We
naively train (without using any continual learn-
ing methods) expert MLLMs individually on each
single modality Mj and test with their respective
holdout data, taking their scores on the k-th dataset
Dj,k as upper bound Ssup

j,k . In the incremental stage
i, the Relative Gain of modality Mi with its dataset
Dj = {Dj,k}Kk=1 is calculated by:

Relative Gainij =
1

K

K∑

k=1

Si
j,k

Ssup
j,k

where Si
j,k is the score on the test set of Dj,k in the

stage i. Here, we utilize CIDEr score (Vedantam
et al., 2015) and prediction accuracy (Acc) for Cap
and QA tasks respectively to calculate Ssup

j,k and
Si
j,k. To evaluate the performance degradation of

the previously learned modalities, we calculate the
Backward Relative Gain in the stage i as:

Bw Relative Gaini =
1

i− 1

i−1∑

j=1

Relative Gainij

To measure the plasticity, i.e., the ability to adapt to
new knowledge, we calculate the Forward Relative
Gain in the stage i as:

Fw Relative Gaini = Relative Gainii

Model and Training Details. We leverage the
mainstream MLLM architecture, i.e., LLaVA-like
architecture with the Llama-3-8B-Instruct (Dubey
et al., 2024) as its LLM backbone. The selections
of modality encoders and connectors are detailed
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Figure 3: Progressive Backward Relative Gain in modality-incremental continual learning. For each stage i, we plot
the average score of the corresponding Backward Relative Gain with two different training orders. We set Backward
Relative Gain to 100% for the 1st stage, denoting the initial performance without degradation. Exceptionally, the
initial Backward Relative Gain of EProj is not 100% since it only tunes the modality-specific components, causing
an initial performance degradation.

in Appendix C.1. Trainings that involve updating
the LLM backbone utilize LoRA (Hu et al., 2022)
for parameter-efficient fine-tuning. The training
process in our merging stage is the same as the
standard MLLM training, i.e., in the first step, only
the connector is updated with Cap datasets, then in
the second step, the connector and the LLM back-
bone are updated with all the task-related datasets
(the combination of Cap and QA datasets in our
case). In our realigning stage, the replay datasets
are randomly sampled from the joint datasets of
Cap and QA tasks. For each training process, the
hyperparameters are listed in Appendix C.1.

Baselines. In our experiments, we compare our
MERA with non-CL fine-tuning, as well as the rep-
resentative CL and MCL methods: Fine-Tuning:
directly train MLLMs sequentially on each modal-
ity without applying any CL method. Replay: the
vanilla replay-based CL method. During training
on a new task, the model is updated with both sam-
ples from the current task and a set of randomly
sampled replay data from previous tasks. EWC
(Kirkpatrick et al., 2017): the most representative
regularization-based CL method. EWC mitigates
forgetting by restricting the updates of important
weights during training on new tasks. It uses the
Fisher information matrix to measure the impor-
tance of each weight. EProj (He et al., 2023):
tuning only the modality-specific components to
prevent forgetting. PathWeave (Yu et al., 2024a):
an architecture-based CL method, also the state-
of-the-art MCL method for MLLMs. PathWeave

uses an adapter-in-adapter mechanism to memorize
and extract knowledge from historical modalities
to enhance the learning of the current modality.
PathWeave is originally built on X-InstructBLIP
(Panagopoulou et al., 2023). For a fair comparison,
we implement PathWeave for our adopted MLLM
architecture. Implementation details of each base-
line method are in Appendix C.3.

5.2 Main Results

We conduct experiments under our MCL setting
with both sequential and reverse orders. For Replay
and our MERA, results using r%, r = {1, 10}
replay data are reported, denoted by Replay (r%)
and MERA (r%) respectively.

Evaluating Degradation. The progressive
Backward Relative Gains averaged from different
training orders are plotted in Figure 3. It is ob-
served that our MERA demonstrates an impres-
sive capability of mitigating performance degra-
dation with consistent and promising Backward
Relative Gains. When extending to all four modali-
ties, MERA (10%) holds up to a 99.84% Backward
Relative Gain, indicating that MERA can achieve
nearly lossless MCL performance, with at least
12.09% absolute improvements of Backward Rela-
tive Gain compared with other baselines. Notably,
when only leveraging 1% replay data, MERA (1%)
can still achieve at least 7.66% absolute improve-
ments over other baselines. Further, we calculated
the mean and standard deviation of Backward Rel-
ative Gains in all training stages for each method,
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Figure 4: Progressive Forward Relative Gain in modality-incremental continual learning. For each stage i, we plot
the average score of the corresponding Forward Relative Gain with two different training orders. We set Forward
Relative Gain to 100% for the 1st stage, denoting the initial lossless plasticity. Exceptionally, the initial Forward
Relative Gain of EProj is not 100% since it only tunes the modality-specific components, causing an initial loss of
plasticity.

Method Sequential Reverse
Mean Std Mean Std

Fine-Tuning 59.76 27.23 48.96 35.70
Replay (1%) 66.09 25.86 43.95 39.03
Replay (10%) 77.52 16.32 51.90 36.34
EWC 74.93 17.14 68.01 21.54
EProj 89.61 2.63 70.07 11.86
PathWeave 86.85 12.17 80.09 13.31

MERA (1%) 97.90 6.02 84.42 12.93
MERA (10%) 101.00 3.90 93.42 6.25

Table 2: The mean and standard deviation of Backward
Relative Gains in all the training stages. Results are
reported on different training orders. The best results
are in bold, while the second-best are underlined.

in different training orders. Table 2 shows that our
MERA (10%) achieves the highest mean in both
training orders, indicating its superior performance.
It also achieves the lowest and second-lowest stan-
dard deviation in sequential and reverse orders re-
spectively, indicating its high stability. Notably,
in sequential order, MERA (10%) performs even
better than lossless MCL, with an over 100% aver-
age Backward Relative Gain, also at least 11.39%
absolute improvements of average Backward Rel-
ative Gain over other baselines. In reverse order,
MERA (10%) also achieves at least 13.33% ab-
solute improvements. When with only 1% replay
data, MERA (1%) still achieves at least 8.29% and
4.33% absolute improvements in sequential and
reverse orders respectively.

Method Sequential Reverse

Fine-Tuning 38.50 36.14
Replay (1%) 30.61 33.02
Replay (10%) 56.68 32.50
EWC 25.79 24.94
EProj 55.61 55.61
PathWeave 36.32 46.39

MERA (1%) 72.13 61.22
MERA (10%) 72.70 54.04

Table 3: Accuracies on MCUB-4 benchmark. Results
are reported on different training orders and are mea-
sured after continually learning on all four modalities.

Evaluating Degradation on Complex Multi-
modal Tasks. To evaluate MERA’s performance
in more complex multimodal tasks that involve
multiple modalities at a time, we further conduct
experiments on the MCUB-4 (Chen et al., 2024)
benchmark that requires the model to simultane-
ously infer on all four modalities, i.e., image, video,
audio, and pointcloud. Table 3 shows the accura-
cies of each method on MCUB-4 benchmark. It
is observed that our proposed MERA also signif-
icantly excels in more complex multimodal tasks
that involve multiple modalities at a time.

Evaluating Plasticity. Aside from alleviating
performance degradation, the capability to adapt to
new knowledge, i.e., plasticity, is also an important
aspect. We use the Forward Relative Gain as the
metric. The progressive Forward Relative Gains
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Method Sequential Reverse

Mean Std Mean Std

Fine-Tuning 59.76 27.23 48.96 35.70

+Merging 90.29 7.42 70.00 30.87
+Realigning 87.92 12.41 71.90 24.52

MERA 101.00 3.90 93.42 6.25

Table 4: Ablation study of different components in
MERA. The realigning stage uses 10% replay data.

averaged from different training orders are plotted
in Figure 4. It is observed that the most elastic
CL methods are EWC and PathWeave, while our
MERA (10%) demonstrates comparable plasticity.

5.3 Ablation Study

We conduct ablation studies to investigate the ef-
fectiveness of each stage of MERA. Results are
shown in Table 4. Firstly, from Table 4 and Ta-
ble 2, it is observed that the realigning stage that
addresses the misalignment issue can already beat
many other baselines designed to tackle the for-
getting issue, achieving the second-best average
Backward Relative Gain among baselines in both
sequential and reverse orders. Secondly, combining
both merging and realigning stages, MERA further
narrows the gap between the incrementally learned
models and the individually trained experts on each
modality, even, surpassing the individually trained
experts in sequential training order with over 100%
Backward Relative Gain.

6 Discussions

6.1 Is Misalignment Common in MCL?

Since the realigning stage achieves great success
on top of our proposed merging stage, we further
ask another question: does realigning benefit other
CL methods, or in other words, is misalignment a
common phenomenon in MCL? To examine this,
we perform the realigning stage at the end of every
training stage for different CL or non-CL meth-
ods to observe whether there are performance im-
provements3. Table 5 shows that the additional
realigning stage brings substantial performance im-
provements and increased stability for different CL
or non-CL methods. Based on this observation,
we can conclude that misalignment is a common

3We do not examine this for EProj. EProj is self-evidently
misalignment-free, since it freezes the LLM backbone.

Method Sequential Reverse

Mean Std Mean Std

Fine-Tuning 59.76 27.23 48.96 35.70
+Realigning +28.16 -14.83 +22.93 -11.17

Replay (1%) 66.09 25.86 43.95 39.03
+Realigning +20.64 -9.75 +24.35 -8.36

Replay (10%) 77.52 16.32 51.90 36.34
+Realigning +14.21 -6.67 +23.71 -11.07

EWC 74.93 17.14 68.01 21.54
+Realigning +19.54 -6.87 +23.02 -13.25

PathWeave 86.85 12.17 80.09 13.31
+Realigning +6.22 -0.28 +2.40 -1.53

Merging 90.29 7.42 70.00 30.87
+Realigning +10.71 -3.52 +23.42 -24.63

Table 5: Applying realigning to different CL methods
can further improve their Backward Relative Gain and
stability. The realigning stage uses 10% replay data.
Improvements are colored in green.

phenomenon in MCL, and can be alleviated by
our proposed realigning stage.

6.2 Positive Backward Transfer and Positive
Forward Transfer

From Figure 3 and its raw data shown in Ap-
pendix D, we observe a faint phenomenon of Posi-
tive Backward Transfer (Lin et al., 2022) that learn-
ing new knowledge improves the performance on
previously learned tasks. For most methods, the
Backward Relative Gain comes to a low level when
incrementally learning the second modality, but
starts to stabilize and even increase when incremen-
tally learning more modalities.

From Figure 4, we observe a strong phenomenon
of Positive Forward Transfer (Ke et al., 2021) that
the knowledge acquired from earlier tasks improves
the learning efficiency of new tasks. The Positive
Forward Transfer exists before the 4-th incremen-
tal stage, when employing EWC, PathWeave, and
MERA. This phenomenon is also reported in other
MCL literature (Yu et al., 2024a). In contrast to
Positive Forward Transfer, there is a gradual loss of
plasticity (Dohare et al., 2024, 2023) as the model
attempts to retain more knowledge. This explains
the decreases in Forward Relative Gain across dif-
ferent CL methods in the 4-th stage, as the loss of
plasticity comes to a dominant position.
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7 Future Work

This work is one of the early attempts of MCL for
MLLMs, focusing on the dual causes of its degra-
dation. In addition to this, observation of Positive
Backward Transfer and Positive Forward Trans-
fer in Section 6.2 may imply the complex cross-
modal interaction in multimodal learning, urging
for future research on the mechanisms of modality
interaction in the context of MCL.

8 Conclusion

In this paper, we first revisit MCL and uncover the
dual causes of its degradation, i.e., forgetting and
misalignment. Next, to address both forgetting and
misalignment, we propose MERA, a simple yet
effective MCL paradigm. Extensive experiments
demonstrate that MERA significantly outperforms
the state-of-the-art methods and even achieves
nearly lossless MCL performance. Our findings
underscore the misalignment issue in MCL. More
broadly, our work showcases how to adjust dif-
ferent components of MLLMs during continual
learning. Further, we observe signs of complex
cross-modal interaction in MCL, providing a direc-
tion for future work.

9 Limitations

This work is restricted in the following aspects.
First, our experiments are limited to four commonly
used modalities due to the lack of resources for
other less-studied modalities. Second, we limit this
work to LLaVA-like architecture as it covers the
majority of MLLMs. Third, this work is limited
to any-to-text MLLMs while there is now a trend
of exploring any-to-any MLLMs. However, the
main idea of MERA is generic to them. Fourth, our
work only explores the simplest model merging
method in the context of MCL, aiming to provide a
universal framework, leaving other model merging
methods for MCL for future work.
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Appendix

A Further Analysis and Discussions

A.1 Deeper Discussions on the Distinction
Between Forgetting and Misalignment

Theoretically, forgetting is associated with various
factors such as representation drift (Caccia et al.),
gradient interference (Wang et al., 2023), learn-
ing dynamics (Ren and Sutherland, 2024), distribu-
tion shift (which causes misalignment), making it a
comprehensive issue. For example, Schwettmann
et al. (2023) finds that there exist multimodal neu-
rons in the LLM backbone, each corresponds to
certain domain concepts, and when breaking some
of these neurons, the model’s prediction is largely
affected. However, addressing the misalignment
issue by our proposed realigning will possibly not
recover the model’s performance since the con-
nectors do not encode domain-specific concepts
(Verma et al., 2024). This example showcases
that the forgetting issue is not limited to misalign-
ment. Empirically, our experiments in Table 5
have shown that, a) addressing only the misalign-
ment issue, i.e., fine-tuning with realigning, does
not outperform some methods that address the over-
all forgetting, e.g., PathWeave/merging without re-
aligning, b) methods that address the overall forget-
ting significantly complement the realigning alone
(fine-tuning with realigning). In terms of methodol-
ogy, forgetting is a comprehensive issue that can be
tackled mainly by heuristic methods such as EWC
or replay, while misalignment is caused solely by
distribution shift that can be directly addressed by
realigning the LLM and modality-specific compo-
nents. In terms of methodology, forgetting is a
comprehensive issue that can be tackled mainly by
heuristic methods such as EWC or replay, while
misalignment is caused solely by distribution shift
that can be directly addressed by realigning the
LLM and modality-specific components.

A.2 Misalignment Also Exists In
Replay-Based Methods

Theoretically, a potential exception to misalign-
ment is when replay-based methods are applied,
since the θLLM is trained on the joint distribution
of all {M1,M2, . . . ,Mi} modalities. However, Ta-
ble 5 suggests that replay-based methods still suffer
from misalignment and can be compensated for by
our proposed realigning stage. We conjecture that it
is due to the imbalanced distribution of its training

data. Replay-based methods train the model on the
joint dataset of its replay data and Di, where the
scale of replay data from each previous modality is
insignificant to the scale of Di. Therefore, it still
suffers from a certain degree of distribution shift
during its training process.

A.3 Easily Adapt MERA to Other MLLM
Architectures

Although we limit our work to LLaVA-like archi-
tecture, our method can be easily adapted to other
MLLM architectures. We present several naive
ways to adapt MERA to some other MLLM archi-
tectures.

• For connector-free MLLMs, the last few lay-
ers of their encoders can be treated as con-
nectors so that our method can be directly
applied.

• For MLLMs that use a uni-connector for all
modalities, we can treat them as the connector-
free MLLMs.

• For encoder-free MLLMs, we can realign the
raw multimodal input distributions instead
of multimodal feature distributions with the
LLM backbone by fine-tuning the embedding
layers.

A.4 Efficiency Comparisons
We compare the efficiency of different baselines
and our MERA, as shown in Table 6. It is observed
that our MERA can achieve optimal results ex-
cept that MERA (1%) and MERA (10%) introduce
2% and 15% extra training time-consuming respec-
tively. However, we believe its trade-off between
training time-consuming and performance is worth-
while, considering the impressive performance of
MERA. In our experiments, EWC and PathWeave
introduce marginal extra training memory over-
head, as we employ parameter-efficient fine-tuning.
However, for larger LoRA ranks or even full model
fine-tuning, their extra training memory consump-
tions would be substantial, as they necessitate stor-
ing additional parameters whose sizes increase lin-
early with the trainable parameters.

A.5 Robustness to the Quality of Replay Data
Since the realigning stage of MERA relies on a
small replay dataset, it is beneficial to understand
how robust MERA is to the quality of replay data.
To evaluate its robustness, we manually corrupt
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Method Training Inference

Peak Memory Time-Consuming Peak Memory Lantency per Token

Fine-Tuning 37.43 GB 53 h 17.71 GB 34 ms

Replay (1%) 37.43 GB 54 h 17.71 GB 34 ms
Replay (10%) 37.43 GB 59 h 17.71 GB 34 ms
EWC 38.73 GB 54 h 17.71 GB 34 ms
PathWeave 40.08 GB 81 h 20.32 GB 111 ms

MERA (1%) 37.43 GB 54 h 17.71 GB 34 ms
MERA (10%) 37.43 GB 61 h 17.71 GB 34 ms

Table 6: Training and inference overheads of different methods. The peak memories during training and inference
are measured with batch sizes of 4 and 1 respectively. The time-consuming refers to the total GPU hours for
continually learning the four modalities. All metrics are measured on a single NVIDIA RTX A6000 48G. The
non-optimal results are colored in red.

Method Sequential Reverse

Mean Std Mean Std

MERA 97.90 6.02 84.42 12.93

MERA
w/ 10% noise

96.87 4.97 83.56 13.48

MERA
w/ 50% noise

94.10 5.67 79.79 15.54

Table 7: Evaluations of MERA’s robustness to noisy
replay data. The realigning stage uses 10% replay data.

p% samples in the replay dataset by mispairing
their text-modality pair, and test MERA’s perfor-
mance. Results in Table 7 suggest that 10% noisy
samples does not significantly corrupt MERA’s per-
formance, and it still shows decent performance
even under the extreme condition of 50% noisy
samples. This suggests that our MERA is robust to
low-quality replay data.

A.6 Why is the Performance Degradation
More Severe in Reverse Training Order

In Table 2, it is observed that the performance
degradation is more severe in reverse training order
than in sequential training order. This phenomenon
occurs across different methods. We conjecture that
training in sequential order is a sort of curriculum
learning, while the reverse order corresponds to re-
versed curriculum learning. In our experiments, the
sequential order is determined based on the preva-
lence of different modalities, and more prevalent
modalities might be easier to learn. For example,
the image modality is easier to understand than

#Training Set #Test Set License

MSCOCO-2014* 82K 1K CC-BY 4.0
OK-VQA 26K 1K CC-BY 4.0

MSVD 48K 670 -
MSVD-QA 30K 1K -
AudioCaps 44K 1K -

Clotho-AQA* 15K 1K MIT License
Cap3D* 50K 1K ODC-BY 1.0

Cap3D-QA* 30K 1K -

Table 8: Statistics of the datasets. Datasets marked with
* are filtered from their original ones.

video, and the point cloud might be the most dif-
ficult modality to learn. Wang et al. (2024b) also
observed that the performance degradation is less
severe when continually learning in a curriculum
learning order than in a reversed curriculum learn-
ing order. We conjecture that learning easy knowl-
edge leads to the forgetting of harder ones, but
learning hard knowledge might even consolidate
the easier ones.

B Dataset Details

Table 8 details the statistics of each dataset. Some
datasets are filtered from their original ones:

• MSCOCO-2014 (Lin et al., 2014): Each im-
age has multiple captions, we only use its first
caption to form the training set.

• Clotho-AQA (Lipping et al., 2022): Each sam-
ple is annotated with a confidence level, we
only use the samples whose confidence levels
are "yes" to form the training set and test set.

• Cap3D (Luo et al., 2024): Since the original
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Hyperparameters Pre-Training Fine-Tuning Realigning

Trainable Components Connectors LLM and Connectors Connectors
Batch Size 128 16 16

Learning Rate of Connectors 1e-3 2e-5 2e-5
Learning Rate of LLM - 2e-4 -
Learning Rate Schedule Cosine Decay

Warmup Ratio 0.03
Epoch 1

Table 9: Hyperparameters for each training process. Pre-Training and Fine-Tuning refer to the two stages of the
standard MLLM training process.

dataset is huge in scale, we filter out the sam-
ples whose caption is longer than 100 letters.
Then, we randomly sample a 50K subset as
the training set.

• Cap3D-QA (Panagopoulou et al., 2023):
Since the original dataset is huge in scale, we
randomly sample a 30K subset as the training
set.

For each dataset, we use a randomly sampled 1K
subset of its holdout test set as the final test set,
except for the MSVD (Chen and Dolan, 2011),
since the size of its original test set is less than 1K.

C Experimental Details

C.1 Implementation Details
We build our experimental codebase on top of
LLaVA (Liu et al., 2024b,a) and NExT-GPT (Wu
et al., 2024). We detail the modality-specific com-
ponents of each modality as follows:

• Image: We use CLIP-ViT-L-336px (Openai,
2021) as the pre-trained image encoder, a ran-
domly initialized MLP as the connector.

• Video: We use CLIP-ViT-L-336px (Openai,
2021) as the pre-trained video encoder, a ran-
domly initialized MLP as the connector. We
uniformly sample 4 frames from a video as in-
put frames. Then each frame is encoded by the
video encoder separately. The output feature
frames are downsampled by 2x using bilinear
pooling before sending into the connector to
improve efficiency.

• Audio: We use BEATsiter3+(AS2M) (Chen
et al., 2023b) as the pre-trained audio encoder,
a Q-Former (Li et al., 2023) initialized from
the pre-trained bert-base-uncased (Kenton and

Toutanova, 2019) as the connector. The num-
ber of query tokens is set to 32.

• Point Cloud: We use Point-BERT-v1.2 (Xu
et al., 2024) as the pre-trained point cloud
encoder, a randomly initialized MLP as the
connector.

We set the hyperparameters mainly following previ-
ous works (Liu et al., 2024b,a), as listed in Table 9.
For training that involves updating the LLM back-
bone, we utilize parameter-efficient fine-tuning
with LoRA (Hu et al., 2022) applied across all
linear modules within the LLM, setting the LoRA
rank to 128 and the alpha parameter to 128. All
the experiments are conducted on a single NVIDIA
RTX A6000 48G with FP16.

C.2 Evaluation Details

For the calculation of CIDEr scores (Vedantam
et al., 2015), we utilized an open-sourced library
CaptionMetrics (wangleihitcs, 2019). For the cal-
culation of prediction accuracy, we leverage a GPT-
based open-ended QA evaluation with GPT-4o mini
as the judge model. The GPT is prompted to
judge whether the generated prediction semanti-
cally matches the ground truth answer. The prompt
template is shown in Table 10. All the reported
experimental results are from single runs.

C.3 Implementation of Baselines

The implementation details of each CL baseline are
listed as follows:

• Replay leverage a small replay dataset
Ri ← randomly sample r% data from
{D1, D2, . . . , Di−1}. When training on a new
modality Mi, it trains on the joint dataset of
Ri and Di.
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System Prompt:
You are an intelligent chatbot designed for evaluat-
ing the correctness of generative outputs for question-
answer pairs. Your task is to compare the predicted
answer with the correct answer and determine if they
match meaningfully. Here’s how you can accomplish
the task:
##INSTRUCTIONS:
- Focus on the meaningful match between the predicted
answer and the correct answer.
- Consider synonyms or paraphrases as valid matches.
- Evaluate the correctness of the prediction compared
to the answer.
User Prompt:
Please evaluate the following question-answer pair:

Question: <question>
Correct Answer: <answer>
Predicted Answer: <prediction>

Provide your evaluation only as a yes/no and score
where the score is an integer value between 0 and 5,
with 5 indicating the highest meaningful match. Please
generate the response in the form of a Python dictio-
nary string with keys ’pred’ and ’score’, where value
of ’pred’ is a string of ’yes’ or ’no’ and value of ’score’
is in INTEGER, not STRING.DO NOT PROVIDE
ANY OTHER OUTPUT TEXT OR EXPLANATION.
Only provide the Python dictionary string. For exam-
ple, your response should look like this: {’pred’: ’yes’,
’score’: 4.8}.

Table 10: Prompts to query the GPT for open-ended QA
evaluation. The placeholders in red boxes are filled
according to each evaluated sample.

• EWC firstly estimates the Fisher information
matrix Fi−1 of the last training stage i− 1 as:

Fi−1 =

Ex∼Di−1∇θi−1
L(θi−1, x) · ∇θi−1

L(θi−1, x)
T

where L(θi−1, x) denotes the auto-regressive
loss of model θi−1 on data x ∼ Di−1, which
is sampled from a 1% size random subset of
Di−1. Then the loss function L∗(θi, x) of
stage i is:

L∗(θi, x) = L(θi, x) +
i−1∑

j=0

λ

2
Fj(θi − θi−1)

2

where the hyperparameter λ is set to 1 as
default. This implementation of L∗(θi, x)
is known as Online EWC (Huszár, 2017;
Schwarz et al., 2018).

• PathWeave leverages Adapter-in-Adapter
(AnA) modules. In our implementation, the
AnA modules are injected into the LLM rather
than the connector for a fair comparison. The
rank of AnA is consistent with the LoRA
rank of other baselines, which is 128. In
their original settings, PathWeave removes the
newly added modules when testing the former
modalities. However, this results in the inabil-
ity to perform cross-modality tasks, which are
common in real applications. Therefore, we
do not remove them for a fair comparison.

For each baseline, all the common parameters
about training MLLM itself are the same and set as
default in Table 9.

D Complete Raw Data

Table 11 and Table 12 show the raw data of Figure 3
and Figure 4.
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Method
Image Video Audio Point Cloud

MSCOCO OK-VQA MSVD MSVD-QA AudioCaps Clotho-AQA Cap3D Cap3D-QA
Individually Trained Experts 100.76 0.358 138.39 0.460 60.14 0.658 99.93 0.568

Fine-Tuning

Stage 1 100.76 0.358 - - - - - -
Stage 2 54.52 0.172 130.22 0.555 - - - -
Stage 3 34.87 0.303 12.78 0.292 43.17 0.590 - -
Stage 4 58.63 0.201 29.55 0.350 8.28 0.094 84.40 0.524

Replay (1%)

Stage 1 100.76 0.358 - - - - - -
Stage 2 41.45 0.125 137.07 0.569 - - - -
Stage 3 65.79 0.276 30.74 0.312 55.21 0.675 - -
Stage 4 59.94 0.225 102.16 0.469 22.17 0.490 81.43 0.508

Replay (10%)

Stage 1 100.76 0.358 - - - - - -
Stage 2 50.65 0.266 137.67 0.584 - - - -
Stage 3 83.32 0.318 33.87 0.381 44.82 0.651 - -
Stage 4 67.42 0.259 133.43 0.520 24.13 0.525 73.19 0.515

EWC

Stage 1 100.76 0.358 - - - - - -
Stage 2 64.84 0.208 155.09 0.595 - - - -
Stage 3 44.22 0.211 73.14 0.569 59.86 0.690 - -
Stage 4 56.54 0.227 36.72 0.564 26.64 0.651 96.40 0.551

EProj

Stage 1 92.16 0.298 - - - - - -
Stage 2 92.16 0.298 123.04 0.470 - - - -
Stage 3 92.16 0.298 123.04 0.470 54.85 0.637 - -
Stage 4 92.16 0.298 123.04 0.470 54.85 0.637 58.59 0.349

PathWeave

Stage 1 100.76 0.358 - - - - - -
Stage 2 78.06 0.234 158.51 0.606 - - - -
Stage 3 79.07 0.251 138.63 0.547 59.47 0.682 - -
Stage 4 66.92 0.255 123.39 0.536 38.53 0.639 97.32 0.554

MERA (1%)

Stage 1 100.76 0.358 - - - - - -
Stage 2 93.70 0.304 153.73 0.573 - - - -
Stage 3 90.42 0.316 147.42 0.567 57.09 0.678 - -
Stage 4 95.18 0.334 142.67 0.562 53.04 0.678 79.32 0.454

MERA (10%)

Stage 1 100.76 0.358 - - - - - -
Stage 2 98.30 0.340 152.20 0.579 - - - -
Stage 3 96.46 0.346 147.89 0.566 61.49 0.684 - -
Stage 4 98.05 0.338 141.25 0.560 56.79 0.678 87.59 0.468

Table 11: Raw data of sequential order training. Results that are better than the last stage are colored in green,
indicating a Positive Backward Transfer.

Method
Point Cloud Audio Video Image

Cap3D Cap3D-QA AudioCaps Clotho-AQA MSVD MSVD-QA MSCOCO OK-VQA
Individually Trained Experts 99.93 0.568 60.14 0.658 138.39 0.460 100.76 0.358

Fine-Tuning

Stage 1 99.93 0.568 - - - - - -
Stage 2 2.74 0.178 39.25 0.519 - - - -
Stage 3 37.26 0.280 21.34 0.158 121.29 0.550 - -
Stage 4 26.69 0.199 23.11 0.519 23.40 0.266 86.12 0.342

Replay (1%)

Stage 1 99.93 0.568 - - - - - -
Stage 2 0.98 0.101 48.48 0.640 - - - -
Stage 3 35.18 0.337 8.30 0.138 124.89 0.546 - -
Stage 4 9.39 0.192 17.67 0.498 1.06 0.255 83.38 0.347

Replay (10%)

Stage 1 99.93 0.568 - - - - - -
Stage 2 0.63 0.171 47.38 0.641 - - - -
Stage 3 68.26 0.470 12.83 0.372 134.07 0.575 - -
Stage 4 3.42 0.241 18.33 0.540 2.81 0.228 87.31 0.342

EWC

Stage 1 99.93 0.568 - - - - - -
Stage 2 29.97 0.442 59.31 0.672 - - - -
Stage 3 19.91 0.375 29.25 0.611 148.26 0.578 - -
Stage 4 45.25 0.327 23.39 0.511 47.53 0.524 98.91 0.320

EProj

Stage 1 58.59 0.349 - - - - - -
Stage 2 58.59 0.349 54.85 0.637 - - - -
Stage 3 58.59 0.349 54.85 0.637 123.04 0.470 - -
Stage 4 58.59 0.349 54.85 0.637 123.04 0.470 92.16 0.298

PathWeave

Stage 1 99.93 0.568 - - - - - -
Stage 2 71.79 0.420 55.07 0.648 - - - -
Stage 3 63.75 0.380 38.73 0.628 148.61 0.577 - -
Stage 4 55.23 0.370 37.23 0.603 85.67 0.521 87.04 0.361

MERA (1%)

Stage 1 99.93 0.568 - - - - - -
Stage 2 64.79 0.470 58.77 0.684 - - - -
Stage 3 66.76 0.377 43.00 0.595 147.99 0.547 - -
Stage 4 70.40 0.387 51.02 0.651 140.20 0.538 93.33 0.362

MERA (10%)

Stage 1 99.93 0.568 - - - - - -
Stage 2 87.10 0.505 58.99 0.695 - - - -
Stage 3 79.24 0.437 58.65 0.650 145.56 0.552 - -
Stage 4 81.05 0.425 60.28 0.653 146.72 0.569 97.62 0.367

Table 12: Raw data of reverse order training. Results that are better than the last stage are colored in green, indicating
a Positive Backward Transfer.
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