
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 13512–13553
November 4-9, 2025 ©2025 Association for Computational Linguistics

START: Self-taught Reasoner with Tools

Chengpeng Li1,2*, Mingfeng Xue2∗ , Zhenru Zhang2, Jiaxi Yang2∗ , Beichen Zhang2∗ ,
Bowen Yu2, Binyuan Hui2, Junyang Lin2, Xiang Wang1†, Dayiheng Liu2†

1University of Science and Technology of China
2Qwen Team, Alibaba Inc

{lichengpeng.lcp,liudayiheng.ldyh}@alibaba-inc.com

Abstract
Large Reasoning Models (LRMs) have demon-
strated remarkable capabilities in complex rea-
soning through long chain-of-thought, yet they
struggle with precise computations and algo-
rithmic operations. Integrating computational
tools with LRMs remains challenging, particu-
larly in activating and enhancing models’ tool-
use capabilities without compromising their
reasoning strengths. We address these chal-
lenges through START (Self-taught Reasoner
with Tools), introducing two key innovations:
(1) Hint-infer, a training-free approach that
activates LRMs’ latent tool-use capabilities
through artificial hints, enabling test-time per-
formance scaling; (2) Hint-RFT, a self-training
framework that enables models to learn ef-
fective tool utilization through diverse hint
patterns and rejection-based data synthesis.
Experiments show that START significantly
improves state-of-the-art LRMs across chal-
lenging benchmarks, including competition-
level mathematics (AMC23: 95.0%, AIME24:
75.6%) and graduate-level science questions
(GPQA: 64.6%). Our analysis reveals that
START not only enhances accuracy but also
improves reasoning efficiency through strategic
tool utilization, demonstrating broad applica-
bility in complex reasoning scenarios.

1 Introduction

Large Reasoning Models (LRMs) have achieved
breakthrough progress in complex reasoning tasks,
demonstrating human-like thinking paradigm in-
cluding iterative reflection, task decomposition,
and dynamic strategy shifting in long chain-
of-thought (Wei et al., 2022; OpenAI, 2024b;
DeepSeek-AI, 2025). However, despite these
achievements, current LRMs face fundamental lim-
itations when confronted with tasks requiring pre-
cise numerical computations, symbolic manipula-
tion, or complex program execution. (Gou et al.,

*Work done during internships at Qwen Team.
†Corresponding author

2024). Computational tools, such as code inter-
preters (CI), provide LRMs with a paradigm be-
yond text reasoning, enabling enumeration, precise
computation, and algorithm execution through tool
interaction (Gou et al., 2024; OpenAI, 2025). By
leveraging these capabilities, LRMs can expand
their reasoning search space and reduce hallucina-
tions caused by complex calculations.

Integrating computational tools into LRMs re-
mains an open scientific challenge that raises fun-
damental questions about model capabilities and
training strategies. Specifically, we investigate: (1)
whether LRMs trained solely on text reasoning data
retain the potential for code interpreter utilization;
(2) how to synthesize high-quality bootstrapping
data for training models with robust tool-use abil-
ities. These questions are crucial for understand-
ing the relationship between language reasoning
and computational tool use, as well as develop-
ing efficient training paradigms for tool-integrated
LRMs. While we only consider Python interpreter
as our tool, we conceptualize it not as a single
tool but as a versatile gateway to a vast ecosystem
of specialized libraries—a standard paradigm in
the Tool-Integrated Reasoning (TIR) subfield(Gou
et al., 2024; Yang et al., 2024) and more details are
in Appendix J.1.

To address these questions, we present START
(Self-taught Reasoner with Tools). Our initial
investigation reveals that state-of-the-art LRMs
like QwQ-32B-Preview (Qwen Team, 2024) and
DeepSeek-R1-Distill-Qwen-32B (DeepSeek-AI,
2025) struggle to follow instructions for incorpo-
rating code interpreter during reasoning. A possi-
ble reason is that LRMs typically focus solely on
problem-solving during training for complex rea-
soning tasks, resulting in a loss of generalization
in instruction following. To tackle this challenge,
we propose a training-free framework named Hint-
infer that activates models’ latent tool-use capabil-
ities. Specifically, by injecting artificial hints such

13512

as "Wait, I can use Python to check if my approach
is correct and refine it, if necessary.“‘python" at the
end of the thinking process, models spontaneously
generate Python code to interact with code inter-
preters for further verification and computation.

While Hint-infer provides a way to synthesize
data with CI calls in long CoT reasoning, it is lim-
ited in terms of both the positioning and function-
ality of tool usage. To enhance the diversity of CI
utilization in synthetic data, we propose Hint-RFT
(rejection fine-tuning (Yuan et al., 2023; Dong et al.,
2023)). Specifically, we summarize six types of
hints based on long CoT reasoning patterns (Mar-
janović et al., 2025) and the role of CI in mathe-
matical reasoning (Gou et al., 2024). Beyond the
end of thinking process, we identify "Wait" and
"Alternatively" as two high-frequency discourse
markers that signal cognitive shifts like (Li et al.,
2025a), serving as additional insertion points for
hints. To ensure the effectiveness of hint insertion,
we employ rejection sampling to retain only the
data where hints lead to a significant improvement
in reasoning accuracy. Furthermore, by scaling up
the training data through another round of RFT, we
achieve additional performance gains.

On five challenging mathematical benchmarks,
both QwQ-32B-Preview and DeepSeek-R1-Distill-
Qwen-32B demonstrate significant performance
improvements with Hint-infer, showing test-time
scaling capabilities as the number of hint inser-
tions increases. Hint-RFT further enhances model
performance through training, achieving average
accuracy improvements of 8.6% and 4.4% respec-
tively across these benchmarks. Notably, our meth-
ods generalize well to out-of-domain tasks, as evi-
denced by performance gains on benchmarks like
GPQA. When extending to coding tasks, QwQ-
32B-Preview shows a 5.9% improvement on Live-
CodeBench, demonstrating the broad applicability
of our approach.

In summary, our contributions are threefold:

1. We propose a training-free approach called
Hint-infer that activates LRMs’ latent tool-use
capabilities through artificial hints, enabling
test-time performance scaling through multi-
ple hint insertions.

2. We introduce Hint-RFT, a self-training frame-
work that enables LRMs to teach themselves
effective tool utilization through diverse hint
patterns and rejection-based data synthesis.

3. We demonstrate the effectiveness and gener-
alizability of our methods through extensive
experiments across mathematical, scientific,
and coding tasks, achieving competitive per-
formance with state-of-the-art models.

2 Methodology

Our method consists of three key components: (1)
Hint-infer, a training-free approach that enables
and scales tool usage through artificial hints during
inference; (2) Hint-RFT, a data synthesis frame-
work that combines diverse hint patterns with rejec-
tion sampling for model fine-tuning; and (3) RFT,
a further refinement stage that scales up training
data for additional performance gains. We detail
each component in the following subsections, with
a primary focus on Hint-infer and Hint-RFT as our
main technical contributions.

2.1 Hint-infer
We observe that models like QwQ-32B-Preview
and DeepSeek-R1-Distill-Qwen-32B struggle to
activate their CI capabilities through direct prompt-
ing. Instead, we explore intervening in their rea-
soning process. Our initial investigation focuses on
whether CI can provide performance gains while
preserving models’ complete thinking process.

Specifically, we intercept the model’s output at
either the thinking termination point or the last
occurrence of "wait" if no explicit termination ex-
ists. We then append a hint, such as "Wait, I can
use Python to check if my approach is correct and
refine it, if necessary.“‘python" (more details in Ap-
pendix D). This process can be repeated N times
after each reasoning completion, enabling multiple
rounds of tool-assisted verification and refinement.
The difference of our method and S1 (Muennighoff
et al., 2025a) can be seen in Appendix J.

2.2 Hint-RFT
Construct Hint We summarize six types of hints
based on long CoT reasoning patterns (Marjanović
et al., 2025) and the role of CI in mathematical rea-
soning (Gou et al., 2024): (1) complex calculations
hint for direct computations, (2) self-reflection hint
for verification, (3) check logic hint for deduction
validation, (4) alternative method hint for explor-
ing different approaches, (5) general hint for basic
tool usage, and (6) deeper think hint for thorough
analysis. Since mathematical reasoning with tools
can be quite complex, these diverse hints enable

13513

Math & Code Problems START-0

input

c) RFT

infer

𝑫𝐒𝐓𝐀𝐑𝐓

START

SFT

𝑫𝐒𝐓𝐀𝐑𝐓

score filter modify

a) Hint-infer

𝑫𝐬𝐞𝐞𝐝Hint-infer

score

filter

START-0
QwQ-32B-Preview

𝑫𝐬𝐞𝐞𝐝

SFT

b) Data Selection and SFT

Figure 1: Training framework for START. Our framework consists of three components: (a) Hint-infer: a
training-free approach that injects context-aware hints to activate tool usage during inference, illustrated with
QwQ-32B-Preview; (b) Hint-RFT: processes Hint-infer outputs to create seed dataset Dseed for initial fine-tuning,
producing START-0; (c) RFT: uses START-0 to generate expanded dataset DSTART for final model training. See
cases in Appendix G and Appendix I.

the model to adopt different strategies based on
the specific situation it encounters. For each hint
type, we generate multiple alternative expressions
using Qwen-2.5-72B (Yang et al., 2025) to increase
linguistic diversity. Some typical hints are list in
Figure 2.

Data Curation For mathematical reasoning data
curation, we first identify two strategic insertion
points for hints: (1) at the end of thinking pro-
cess, and (2) during the thinking process. To main-
tain reasoning coherence, we specifically target
insertions after conjunctions like Alternatively and
Wait, as these tokens naturally indicate potential
shifts in reasoning or consideration of alternative
approaches, similar to (Li et al., 2025a).

To ensure the effectiveness of hint insertion, in-
spired by (Lightman et al., 2024), we adopt an ac-
tive learning idea. Specifically, we only retain data
samples where the inserted hints lead to successful
problem-solving for previously incorrect cases, en-
suring that each hint insertion makes meaningful
contributions to the reasoning process. We verify
this robustness through multiple sampling itera-
tions for each hint. Additionally, we filter out re-
sponses containing repetitive patterns or incorrect
code execution.

RFT To efficiently scale up our training data, we
first annotate our training set to obtain a startup
dataset Dseed containing 10K mathematical reason-
ing samples. To reduce computational cost, we fine-
tune QwQ-32B-Preview on Dseed to obtain START-
0, which serves as an intermediate model for fur-
ther data generation. We then employ START-0
to perform rejection fine-tuning (RFT), resulting
in a larger dataset DSTART with 40k mathemati-
cal reasoning samples. Finally, we fine-tune the
base model on DSTART to obtain our final model,
START.

3 Experiment

3.1 Training data
Our training data consists of math problems
sourced from previous AIME problems 1(before
2024), MATH (Hendrycks et al., 2021), and
Numina-MATH (LI et al., 2024). We apply the de-
contamination method as described in (Yang et al.,
2024) to the training set in order to minimize po-
tential test data leakage risks. There are a total
of 40K math problems, and the specific quantity
distribution can be referred to in Appendix A.

1https://huggingface.co/datasets/gneubig/
aime-1983-2024

13514

https://huggingface.co/datasets/gneubig/aime-1983-2024
https://huggingface.co/datasets/gneubig/aime-1983-2024

Figure 2: Some typical hints. Code generation tasks: Debug hint guides test case review and local code validation.
The code template is in D. Math reasoning: Domain-specific hints (e.g., Complex Calculations, Self-Reflection,
Logic Check, Alternative Methods) steer code-aided reasoning behaviors.

3.2 Benchmarks
We evaluate our method on both in-domain and
out-of-domain benchmarks that require complex
reasoning with computational tools.

In-domain Mathematical Benchmarks We se-
lect competition-level mathematics datasets in-
cluding AMC23 2, AIME24 3, AIME25 4, and
MATH500 (Lightman et al., 2024). These bench-
marks cover various mathematical topics like al-
gebra, calculus, number theory, probability, and
geometry.

Out-of-domain Scientific Benchmark We use
GPQA (Rein et al., 2023), which contains 448
graduate-level multiple-choice questions in biology,
physics, and chemistry. This benchmark is particu-
larly challenging, with domain experts achieving
less than 75% accuracy (OpenAI, 2024b).

3.3 Baselines
We compare START with state-of-the-art lan-
guage models including general-purpose LLMs

2https://huggingface.co/datasets/AI-MO/
aimo-validation-amc

3https://huggingface.co/datasets/AI-MO/
aimo-validation-aime

4https://huggingface.co/datasets/TIGER-Lab/
AIME25

(GPT-4o (OpenAI, 2024a), Llama3.3-70B (Dubey
et al., 2024), DeepSeek-V3-671B (DeepSeek-AI
et al., 2024)) and specialized reasoning models
(o1 (OpenAI, 2024b) DeepSeek-R1 (DeepSeek-AI,
2025), QwQ-32B-Preview (Qwen Team, 2024)),
DeepSeek-R1-Distill-Qwen-32B (DeepSeek-AI,
2025),s1 (Muennighoff et al., 2025a),Qwen-2.5-
MATH-72B-TIR (Yang et al., 2024), rStar-Math-
7B (Guan et al., 2025).

3.4 Implementation
We select QwQ-32B-Preview and DeepSeek-R1-
Distill-Qwen-32B as our base models, produc-
ing START-Preview and START-R1 respectively
through START frame work in Figure 1. For de-
tailed training hyperparameters, please refer to H.
During inference, we use a maximum sequence
length of 32,768, limit tool usage to 6 times, and
set topp=0.95 and temperature=0.6 for decoding.

3.5 Main Results
Table 2 presents the comprehensive evaluation re-
sults of START against various baseline models.
Our key findings are as follows:

In-domain Performance START demonstrates
consistent improvements across all mathematical
benchmarks. Specifically, START-32B-Preview

13515

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/TIGER-Lab/AIME25
https://huggingface.co/datasets/TIGER-Lab/AIME25

Table 1: Scores on GPQA in various subjects.

Model Physics Chemistry Biology

QwQ-32B-Preview 73.8 41.9 68.4
Search-o1 77.9 47.3 78.9
START 80.0 47.3 68.4

achieves significant gains over its base model
QwQ-32B-Preview, with improvements of +14.8%,
+7.1%, +14.0%, and +3.8% on AIME24, AIME25,
AMC23, and MATH500 respectively. Similarly,
START-32B-R1 enhances the performance of
DeepSeek-R1-32B, achieving state-of-the-art re-
sults on AMC23 (95.0%) and competitive perfor-
mance on other benchmarks.

Out-of-domain Generalization On GPQA,
START-32B-Preview shows a significant improve-
ment of 5.5% over its base model, matching the
performance of search-o1-32B. As detailed in
Table 1, START achieves the highest score in
Physics (80.0%), while search-o1-32B(based on
START-32B-Preview) excels in Biology. This
pattern aligns with the nature of different disci-
plines: Physics problems often require extensive
computational reasoning where Python-based
tools excel, while Biology questions rely more
on knowledge-based reasoning where search
capabilities prove more beneficial. Beyond our
main experiments, we further evaluate START’s
generalization capabilities on diverse reasoning
tasks (detailed results in Appendix F).

3.6 Generalization

Framework Generalization To explore the gen-
eralization capability of our START framework, we
extend our approach to programming tasks using
QwQ-32B-Preview as the base model. We design
specialized code hints (detailed in Appendix E) that
promote self-debugging capabilities, encouraging
models to verify solutions against test cases and
make necessary adjustments.

The model is trained on programming datasets
from Codeforces 5, code contests 6 and Live-
CodeBench (before July 2024) (Jain et al., 2024).
We evaluate on 112 problems from LiveCodeBench
(August-November 2024). As shown in Table 3,
START-Preview maintains the strong performance

5https://codeforces.com/problemset
6https://github.com/google-deepmind/code_

contests

on easy problems (92.3%) while achieving substan-
tial improvements on medium-difficulty problems
(+38.6%). The improvement on hard problems
is modest (+2.0%), suggesting that while our ap-
proach effectively enhances code debugging capa-
bilities, solving complex programs remains chal-
lenging.

Tool Generalization Our framework demon-
strates strong generalization capabilities in tool
learning. Specifically, the model learns a gener-
alizable principle of when and how to seek exter-
nal help, allowing it to autonomously invoke tools
it was not exposed to during training. Our train-
ing data synthesis already involves a diverse set of
libraries such as sympy, numpy, and scipy. The
most compelling evidence of tool generalization
is the model’s emergent behavior on OOD tasks.
For instance, when evaluated on the GPQA science
benchmark, the model spontaneously invoked the
rdkit cheminformatics library over 250 times to
solve problems related to chemical molecule ma-
nipulation, despite this tool being entirely absent
from the training data. The spontaneous and cor-
rect use of a novel tool, as detailed in Table 4, is
strong evidence that START is not merely memo-
rizing Python library calls but is learning a more
abstract, generalizable tool-use capability.

3.7 Analysis of Hint-infer

We analyze the effectiveness of Hint-infer through
two perspectives: its direct impact on base models
and its test-time scaling capabilities.

Hint-infer vs. Fine-tuned Models Our exper-
iments reveal that while base models like QwQ-
32B-Preview possess latent tool-use capabilities,
these abilities are difficult to activate through stan-
dard prompting. Figure 3 (left) shows that Hint-
infer significantly improves QwQ-32B-Preview’s
performance across all benchmarks, with notable
gains on AMC23 (+12.5%), AIME24 (+10.0%),
and AIME25 (+13.3%). Notably, both base mod-
els achieve these improvements while requiring
fewer average tokens, demonstrating that tool us-
age enhances not only accuracy but also reasoning
efficiency. However, these improvements are mod-
erate compared to the fine-tuned START-Preview,
suggesting that while Hint-infer can effectively ac-
tivate tool usage, fine-tuning through Hint-RFT
better unlocks the model’s full potential.

13516

https://codeforces.com/problemset
https://github.com/google-deepmind/code_contests
https://github.com/google-deepmind/code_contests

Table 2: Performance comparison. Pass@1 results are reported for all benchmarks, with AIME24, AIME25, and
AMC23 averaged over 16 samples, and MATH500 over 1 sample. * indicates results from official releases. For
unofficial results, we evaluate models locally using the same inference settings as START.

Model Tool-Use In-domain Out-of-domain

AIME24 AIME25 AMC23 MATH500 GPQA Avg

Baselines

GPT-4o* ✗ 9.3 - - 60.3 50.6 -
DeepSeek-V3-671B* ✗ 39.2 - - 90.2 59.1 -
Llama3.3-70B ✗ 36.7 - 47.5 70.8 43.4 -
Qwen-2.5-MATH-72B-TIR* ✓ 40.0 - 70.0 88.1 - -
rStar-Math-7B ✓ 26.7 - 47.5 78.4 - -
search-o1-32B* ✓ 56.7 - 85.0 86.4 63.6 -
DeepSeek-R1-671B* ✗ 79.8 70.0 - 97.3 71.5 -
s1-32B* ✗ 50.0 33.3 - 93.0 59.6 -

Improvement

QwQ-32B-Preview ✗ 50.0 40.0 80.0 90.6 58.1 63.7
START-32B-Preview ✓ 64.8 (+14.8) 47.1 (+7.1) 94.0 (+14.0) 94.4 (+3.8) 63.6 (+5.5) 72.3 (+8.6)
DeepSeek-R1-32B ✗ 72.3 54.2 88.9 94.3 61.6 74.3
START-32B-R1 ✓ 75.6 (+3.3) 63.3 (+9.1) 95.0 (+6.1) 95.1 (+0.8) 64.6 (+3.0) 78.7 (+4.4)

3k 5k 7k 9k
Average Thinking Time (tokens)

75

80

85

90

95

Ac
cu

ra
cy

 (
%

)

AMC23

9k 11k 13k 15k
Average Thinking Time (tokens)

45

50

55

60

65

70

75

80
AIME24

7k 9k 11k 13k 15k
Average Thinking Time (tokens)

35

40

45

50

55

60

65

70
AIME25

QwQ-32B-Preview
START-Preview

DeepSeek-R1-Distill-Qwen-32B
START-R1

Figure 3: Test time scaling for QwQ-32B-Preview,START-Preview, DeepSeek-R1-Distill-Qwen-32B and START-R1
on challenge math bench marks via Hint-infer.

Table 3: Scores on questions of different difficulty levels
on LiveCodeBench.

Model Easy Medium Hard

QwQ-32B-Preview 92.3 46.0 10.2
START-Preview 92.3 84.6 12.2

Test-time Scaling Analysis A key advantage of
our Hint-infer method is its ability to enable test-
time performance scaling. As illustrated in Fig-
ure 3, the data points for each model-dataset pair
represent the model’s accuracy after 0, 1, 2, or
3 rounds of hint intervention are sequentially ap-
plied at test time. Each additional hint provides
the model with another opportunity to use tools for

refinement, leading to consistent performance im-
provements with a corresponding increase in think-
ing time. Unlike previous approaches that simply
extend reasoning through generic tokens (Muen-
nighoff et al., 2025a), our method actively pro-
motes targeted tool utilization at each refinement
step.

Interestingly, we observe that this scaling ef-
fect is more pronounced in the base models
than in our fine-tuned START models. For in-
stance, the base QwQ-32B-Preview model shows
steady accuracy improvements with increased
thinking time across all benchmarks, whereas the
fine-tuned START-Preview model’s performance
quickly plateaus. This suggests that the fine-tuned

13517

Table 4: Frequency of Python Libraries Used by the
START model on the GPQA Benchmark. The model
spontaneously and correctly used rdkit, a tool not
present in its training data.

Library Count Brief Description

rdkit 252 Chemical molecule manip-
ulation (Not in training)

sympy 224 Symbolic mathematics
numpy 192 Numerical arrays and com-

putation
math 144 Basic mathematical func-

tions
scipy 112 Scientific and engineering

computation

models have already internalized the reflective,
tool-using behaviors during training, thus reduc-
ing the marginal benefit of additional hints during
inference.

Validating the Data Synthesis Strategy A key
assumption of our Hint-RFT framework is that hint-
driven interventions are a constructive method for
generating high-quality training data. To validate
this, we analyzed the impact of applying hints to
existing reasoning trajectories during our data gen-
eration process. Our findings, summarized in Ta-
ble 5, show that this intervention is overwhelmingly
beneficial.

The analysis reveals that a hint is over three
times more likely to correct an erroneous rea-
soning trace (a 33.0% success rate in fixing errors)
than it is to introduce an error into a correct one
(a 10.4% failure rate). This strong positive net ef-
fect confirms that our approach is robust and effec-
tively leverages hint-driven tool use to synthesize
high-quality, corrective reasoning trajectories. This
result provides a quantitative justification for our
rejection-based fine-tuning strategy.

Analysis of Efficiency While the integration of
external tools inherently introduces computational
overhead, our analysis reveals that the START frame-
work achieves a favorable trade-off, leading to
a final model that is significantly more efficient
in terms of token generation. By strategically
replacing verbose, step-by-step textual reasoning
with concise and precise tool calls, START models
produce shorter and more direct solutions. This
consistently leads to a higher accuracy ceiling
while consuming fewer total tokens than the base-

line. For instance, on the AMC23 benchmark, our
START-Preview model achieves 94.0% accuracy
using an average of only 3,534 tokens. In stark
contrast, the baseline QwQ-32B-Preview model re-
quires over 5,487 tokens to reach a much lower
accuracy of 80.0%. Since token generation is a
primary driver of latency, this significant reduction
in token count represents a substantial efficiency
gain. More results can be seen at the starting points
of each model in Figure 3.

3.8 Ablation Study

Ablation on Hints To investigate the effective-
ness of different hint types, we conduct ablation
studies using QwQ-32B-Preview as the base model.
We randomly sample 5000 math training examples
for each hint type while ensuring consistent data
volume across experiments. Table 6 shows the per-
formance of different hint variants.

Results demonstrate that all hint types contribute
positively to model performance, with average im-
provements ranging from +1.8% to +6.1%. Among
single hint types, self-reflection hints achieve the
best average performance (71.3%), showing partic-
ularly strong improvements on AIME25 (+8.2%)
and AMC23 (+9.6%). Deeper thinking hints and
alternative method hints also demonstrate strong
performance, especially on complex problems like
AIME24. The mixed approach, which combines all
hint types, achieves the best overall performance
(72.4%), suggesting that diverse hint patterns help
cover different aspects of mathematical reasoning.

Notably, even when trained with only self-
reflection hints, the model exhibits diverse tool
usage behaviors in testing. This suggests that hint-
infer does not overfit to a single behavior pattern.
While this work demonstrates the effectiveness of
simple handcrafted hints with random insertion,
developing more sophisticated hint design and in-
sertion strategies remains a promising direction for
future research.

Ablation on Active Learning We investigate
the effectiveness of active learning in Hint-RFT
by comparing two data collection strategies (with
same data amount): (1) recalling all samples
with correct final answers, and (2) only retaining
samples where hint insertion leads to successful
problem-solving for previously incorrect cases. Us-
ing QwQ-32B-Preview as the base model, we con-
duct experiments on mathematical benchmarks, as
shown in Table 7.

13518

Table 5: Analysis of Hint Intervention Outcomes During Rejection Sampling. Hints are significantly more likely to
correct an error than to introduce one.

Initial CoT State Outcome After Hint Intervention Rate

Correct Becomes Wrong (Error introduced) 10.4%
Correct Stays Correct 89.6%

Wrong Becomes Correct (Error fixed) 33.0%
Wrong Stays Wrong 67.0%

Table 6: Ablation study on different hint types. Results show the performance of QwQ-32B-Preview with
different hint variants on mathematical benchmarks. Mixed approach combines all hint types while maintaining the
same total data volume.

Method MATH500 AIME24 AIME25 AMC23 Avg

QwQ-32B-Preview 90.6 50.0 40.0 80.0 65.2

Complex calculation hint 91.5 52.3 41.2 83.2 67.0
Self-reflection hint 92.8 54.6 48.2 89.6 71.3
Check logic hint 92.4 53.3 43.7 86.9 69.1
Alternative method hint 93.1 55.5 45.6 87.5 70.4
General hint 91.8 51.6 42.6 83.2 67.3
Deeper thinking hint 93.1 58.4 44.4 85.5 70.3
Mixed 93.4 56.8 47.8 91.5 72.4

Results show that while both strategies improve
over the baseline, the active learning approach
leads to better performance across all benchmarks.
START-0-Preview with active learning achieves an
average improvement of +3.8% over the baseline,
compared to +2.4% without active learning, demon-
strating the importance of selective data curation in
tool-augmented reasoning.

Ablation on Data Format To isolate the im-
pact of tool usage from data quantity, we con-
duct an ablation study comparing pure reasoning
and tool-augmented reasoning approaches. Using
the same training data , we fine-tune QwQ-32B-
Preview through standard text-based RFT (QwQ-
32B-Preview-RFT) and our tool-augmented ap-
proach (START-Preview). As shown in Table 8,
QwQ-32B-Preview-RFT achieves similar perfor-
mance to the base model (65.2% vs. 65.2% average
accuracy), while START-Preview shows substantial
improvements (+9.9% average accuracy). These re-
sults suggest that the performance gains of START
primarily stem from its tool-use capabilities rather
than the expanded training data, highlighting the
importance of integrating computational tools in
complex reasoning tasks.

4 Related Work

Large Reasoning Models Large Language Mod-
els have demonstrated remarkable capabilities
in complex reasoning through Chain-of-Thought
(CoT) prompting (Wei et al., 2022). This has been
further enhanced by Long Chain-of-Thought (Ope-
nAI, 2024b; DeepSeek-AI, 2025; Team et al., 2025;
Qwen Team, 2024), where models exhibit ad-
vanced cognitive behaviors such as reflection, veri-
fication, and multi-path exploration. Recent works
have successfully scaled these capabilities through
various approaches: QwQ-32B-Preview (Qwen
Team, 2024), DeepSeek-R1 (DeepSeek-AI, 2025),
and InternThinker (Cai et al., 2024) leverage fine-
tuning and reinforcement learning to enhance
reasoning abilities, while Open-R1 (Hugging-
face, 2025), S1 (Muennighoff et al., 2025b), and
LIMO (Ye et al., 2025) demonstrate the effective-
ness of distillation for smaller models. However,
these text-based reasoning approaches often strug-
gle with precise numerical computations and com-
plex algorithmic operations, leading to potential
hallucinations and accuracy issues in mathemati-
cal and scientific reasoning tasks. This limitation
highlights the need for integrating computational
tools with language models while preserving their

13519

Table 7: Ablation study on active learning strategy. Results compare QwQ-32B-Preview with START-0-Preview
trained with and without active learning (ac). Active learning retains only samples where hint insertion improves
model performance.

Method MATH500 AIME24 AIME25 AMC23 Avg

QwQ-32B-Preview 90.6 50.0 40.0 80.0 65.2
START-0-Preview w/o ac 91.3 52.3 41.2 85.5 67.6
START-0-Preview 92.3 53.1 42.7 87.8 69.0

Table 8: Ablation study on data format. Comparison between pure reasoning (RFT) and tool-augmented reasoning
(START) using the same training data, demonstrating the importance of tool usage rather than data quantity.

Method MATH500 AIME24 AIME25 AMC23 Avg.

QwQ-32B-Preview 90.6 50.0 40.0 80.0 65.2
QwQ-32B-Preview-RFT 91.8 53.3 33.3 82.5 65.2
START-Preview 94.4 64.8 47.1 94.0 75.1

sophisticated reasoning capabilities.

Tool-integrated Reasoning To address compu-
tational inaccuracies in LLMs, recent works have
explored integrating external tools into the reason-
ing process. Studies have demonstrated the benefits
of code-based pre-training (Shao et al., 2024) and
post-training (Chen et al., 2023; Gou et al., 2024;
Liao et al., 2024; Li et al., 2024). Formal verifi-
cation tools like Lean have also shown promise in
mathematical proof verification (Xin et al., 2024;
Wu et al., 2024).

Additionally, while rStar (Guan et al., 2025) fo-
cuses on concatenating short CoTs into long CoTs
and integrating tool usage through process rewards
model and MCTS, START builds upon o1-style
long CoT to internalize complex human reasoning
processes within the CoT framework itself. These
approaches are relatively orthogonal and could po-
tentially be complementary in future research.

Concurrent Work Concurrent with our work,
several studies have explored related directions in
tool-augmented reasoning. Works like ToRL (Li
et al., 2025b), AutoCode4Math (Wang et al., 2025),
and ZTRL (Mai et al., 2025) investigate zero-shot
reinforcement learning approaches for tool utiliza-
tion. While these studies demonstrate promising
results, they differ fundamentally from START in
that they train from base models rather than enhanc-
ing existing LRMs, potentially missing out on the
sophisticated reasoning capabilities already present
in state-of-the-art reasoning models.

Recent works like Retool (Feng et al., 2025) and
STILL3 (Chen et al., 2025) focus on addressing

cold-start challenges in generating code-integrated
reasoning data. While these approaches make valu-
able contributions to data generation strategies,
START’s hint-based approach offers a unique per-
spective by directly activating and improving latent
tool-use capabilities in existing models.

5 Conclusion

We present START, a framework that effectively
activates and enhances the tool-use capabilities of
LLMs through two key components: Hint-infer
and Hint-RFT. Our approach demonstrates that
large reasoning models possess latent tool-use abil-
ities that can be activated without training through
strategically placed hints, and these capabilities
can be further enhanced via targeted fine-tuning
with rejection sampling. Through extensive experi-
ments, START achieves substantial improvements
across various benchmarks, surpassing state-of-the-
art models on several mathematical and scientific
reasoning tasks.

Our analysis reveals that the framework’s effec-
tiveness stems primarily from enhanced tool utiliza-
tion, which in turn leads to more efficient reason-
ing with reduced token consumption. Furthermore,
we show that this hint-based activation enables
test-time performance scaling, allowing models to
achieve better results through multiple rounds of
tool interaction without additional training. These
insights validate our approach and highlight the
potential of strategic interventions to unlock and
refine the latent abilities of LLMs.

13520

6 Limitations

While START demonstrates strong performance
across various reasoning tasks, we acknowledge
several limitations of our current work. First, the
computational overhead of tool usage, while offset
by improved reasoning efficiency, may need to be
considered in resource-constrained scenarios. Our
current implementation requires additional compu-
tation for code execution, though this is typically
balanced by the reduced number of reasoning steps
and improved accuracy. Additionally, while our
hint insertion methodology proves effective, there
might be room for more systematic approaches to
optimize insertion points and frequencies. For in-
stance, developing adaptive strategies for determin-
ing optimal hint insertion timing based on problem
complexity and reasoning progress could poten-
tially further improve efficiency. Future work could
explore these directions while maintaining the core
benefits of our framework, potentially leading to
even more efficient tool-augmented reasoning sys-
tems.

7 Acknowledgement

We thank all anonymous reviewers for their help-
ful comments and suggestions. This research is
supported by the National Science and Technology
Major Project (2023ZD0121102).

References
Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,

Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,
Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan,
Qi Fan, Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya
Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo,
Conghui He, Yingfan Hu, Ting Huang, Tao Jiang,
Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li,
Jingwen Li, Linyang Li, Shuaibin Li, Wei Li, Yin-
ing Li, Hongwei Liu, Jiangning Liu, Jiawei Hong,
Kaiwen Liu, Kuikun Liu, Xiaoran Liu, Chengqi Lv,
Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma,
Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan
Qu, Fukai Shang, Yunfan Shao, Demin Song, Zi-
fan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze
Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Ji-
ayu Wang, Rui Wang, Yudong Wang, Ziyi Wang,
Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong
Xiong, Chao Xu, Ruiliang Xu, Hang Yan, Yirong
Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang,
Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo Zhang,
Songyang Zhang, Wenjian Zhang, Wenwei Zhang,
Xingcheng Zhang, Xinyue Zhang, Hui Zhao, Qian
Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou,

Jingming Zhuo, Yicheng Zou, Xipeng Qiu, Yu Qiao,
and Dahua Lin. 2024. Internlm2 technical report.
Preprint, arXiv:2403.17297.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and
William W. Cohen. 2023. Program of thoughts
prompting: Disentangling computation from reason-
ing for numerical reasoning tasks. Trans. Mach.
Learn. Res., 2023.

Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen,
Jinhao Jiang, Daixuan Cheng, Wayne Xin Zhao,
Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan
Wang, and Ji-Rong Wen. 2025. An empirical study
on eliciting and improving r1-like reasoning models.
Preprint, arXiv:2503.04548.

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea-
soning capability in llms via reinforcement learning.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx-
uan Wang, Bochao Wu, Chengda Lu, Chenggang
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Daya Guo, Dejian Yang, Deli Chen,
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai,
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng
Wang, Haowei Zhang, Honghui Ding, Huajian Xin,
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang,
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang,
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu,
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao,
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang,
Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang,
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge,
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu,
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou,
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun,
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An,
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu,
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang,
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen,
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen,
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu,
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan-
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu,
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong,
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix-
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo,
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi-
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z.
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu,

13521

https://arxiv.org/abs/2403.17297
https://arxiv.org/abs/2503.04548
https://arxiv.org/abs/2503.04548
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf

Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi-
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu,
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi
Gao, and Zizheng Pan. 2024. Deepseek-v3 technical
report. Preprint, arXiv:2412.19437.

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan
Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng
Zhang, Kashun Shum, and Tong Zhang. 2023. RAFT:
reward ranked finetuning for generative foundation
model alignment. Trans. Mach. Learn. Res.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,
Archi Mitra, Archie Sravankumar, Artem Korenev,
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien
Rodriguez, Austen Gregerson, Ava Spataru, Bap-
tiste Rozière, Bethany Biron, Binh Tang, Bobbie
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe
Bi, Chris Marra, Chris McConnell, Christian Keller,
Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
Emily Dinan, Eric Michael Smith, Filip Radenovic,
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
Jeet Shah, Jelmer van der Linde, Jennifer Billock,
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and
et al. 2024. The Llama 3 herd of models. CoRR,
abs/2407.21783.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang,
Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin
Chi, and Wanjun Zhong. 2025. Retool: Reinforce-
ment learning for strategic tool use in llms. Preprint,
arXiv:2504.11536.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu
Chen. 2024. Tora: A tool-integrated reasoning agent
for mathematical problem solving. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024.

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.
2025. rstar-math: Small llms can master math rea-

soning with self-evolved deep thinking. Preprint,
arXiv:2501.04519.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the MATH dataset. In NeurIPS
Datasets and Benchmarks.

Huggingface. 2025. Open r1.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
CodeBench: Holistic and contamination free eval-
uation of large language models for code. CoRR,
abs/2403.07974.

Chengpeng Li, Guanting Dong, Mingfeng Xue,
Ru Peng, Xiang Wang, and Dayiheng Liu. 2024.
Dotamath: Decomposition of thought with code assis-
tance and self-correction for mathematical reasoning.
CoRR, abs/2407.04078.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin,
Roman Soletskyi, Shengyi Costa Huang, Kashif
Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan
Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume
Lample, and Stanislas Polu. 2024. Numina-
math. [https://github.com/project-numina/
aimo-progress-prize](https://github.com/
project-numina/aimo-progress-prize/blob/
main/report/numina_dataset.pdf).

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang,
Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng
Dou. 2025a. Search-o1: Agentic search-enhanced
large reasoning models. Preprint, arXiv:2501.05366.

Xuefeng Li, Haoyang Zou, and Pengfei Liu. 2025b.
Torl: Scaling tool-integrated rl. Preprint,
arXiv:2503.23383.

Minpeng Liao, Chengxi Li, Wei Luo, Jing Wu, and Kai
Fan. 2024. MARIO: math reasoning with code in-
terpreter output - A reproducible pipeline. In ACL
(Findings), pages 905–924. Association for Compu-
tational Linguistics.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2024. Let’s verify step by step. In The Twelfth In-
ternational Conference on Learning Representations,
ICLR 2024, Vienna, Austria, May 7-11, 2024.

Xinji Mai, Haotian Xu, Xing W, Weinong Wang, Yingy-
ing Zhang, and Wenqiang Zhang. 2025. Agent rl
scaling law: Agent rl with spontaneous code exe-
cution for mathematical problem solving. Preprint,
arXiv:2505.07773.

Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha,
Milad Aghajohari, Parishad BehnamGhader, Mehar
Bhatia, Aditi Khandelwal, Austin Kraft, Benno Kro-
jer, Xing Han Lù, Nicholas Meade, Dongchan Shin,

13522

https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.04519
https://github.com/huggingface/open-r1
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2503.23383
https://arxiv.org/abs/2505.07773
https://arxiv.org/abs/2505.07773
https://arxiv.org/abs/2505.07773

Amirhossein Kazemnejad, Gaurav Kamath, Marius
Mosbach, Karolina Stańczak, and Siva Reddy. 2025.
Deepseek-r1 thoughtology: Let’s think about llm rea-
soning. Preprint, arXiv:2504.07128.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025a. s1: Simple test-time
scaling.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025b. s1: Simple test-time
scaling. Preprint, arXiv:2501.19393.

OpenAI. 2024a. Hello GPT-4o.

OpenAI. 2024b. Learning to reason with LLMs.

OpenAI. 2025. Openai o3-mini.

Qwen Team. 2024. QwQ: Reflect deeply on the bound-
aries of the unknown.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,
and Yuxiong He. 2020. Zero: Memory optimizations
toward training trillion parameter models.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R. Bowman. 2023. GPQA:
A graduate-level Google-proof Q&A benchmark.
CoRR, abs/2311.12022.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. CoRR, abs/2402.03300.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, Chuning
Tang, Congcong Wang, Dehao Zhang, Enming Yuan,
Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda
Wei, Guokun Lai, Haiqing Guo, Han Zhu, Hao
Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao,
Haotian Zhao, Haoyu Lu, Haoze Li, Haozhen Yu,
Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia
Chen, Jianhang Guo, Jianlin Su, Jianzhou Wang,
Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Jun-
yan Wu, Lidong Shi, Ling Ye, Longhui Yu, Meng-
nan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan,
Qucheng Gong, Shaowei Liu, Shengling Ma, Shu-
peng Wei, Sihan Cao, Siying Huang, Tao Jiang,
Weihao Gao, Weimin Xiong, Weiran He, Weixiao
Huang, Wenhao Wu, Wenyang He, Xianghui Wei,
Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing
Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li,
Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie
Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang,
Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida
Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng

Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zi-
hao Huang, Ziyao Xu, and Zonghan Yang. 2025.
Kimi k1.5: Scaling reinforcement learning with llms.
Preprint, arXiv:2501.12599.

Haozhe Wang, Long Li, Chao Qu, Fengming Zhu, Weidi
Xu, Wei Chu, and Fangzhen Lin. 2025. Learning au-
tonomous code integration for math language models.
Preprint, arXiv:2502.00691.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824–24837.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan
Ying, Jiayu Wang, Dahua Lin, and Kai Chen. 2024.
Internlm2.5-stepprover: Advancing automated theo-
rem proving via expert iteration on large-scale LEAN
problems. CoRR, abs/2410.15700.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren,
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
Xiaodan Liang. 2024. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic
data. CoRR, abs/2405.14333.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui,
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian-
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian-
hao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren,
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zihan Qiu. 2025. Qwen2.5 technical report. Preprint,
arXiv:2412.15115.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian-
hong Tu, Jingren Zhou, Junyang Lin, et al. 2024.
Qwen2.5-Math technical report: Toward mathemat-
ical expert model via self-improvement. CoRR,
abs/2409.12122.

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie
Xia, and Pengfei Liu. 2025. Limo: Less is more for
reasoning. Preprint, arXiv:2502.03387.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and
Jingren Zhou. 2023. Scaling relationship on learning
mathematical reasoning with large language models.
Preprint, arXiv:2308.01825.

13523

https://arxiv.org/abs/2504.07128
https://arxiv.org/abs/2504.07128
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/openai-o3-mini/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2502.00691
https://arxiv.org/abs/2502.00691
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825

A Training set of START

Table 9 presents the composition of our train-
ing dataset. For mathematical reasoning, we col-
lect problems from three main sources: AIME
problems before 2024 (890 samples), MATH
dataset (Hendrycks et al., 2021) (7,500 samples),
and Numina-MATH (LI et al., 2024) (28,505 sam-
ples). This combination provides a diverse range of
mathematical problems spanning various difficulty
levels and topic areas.

For programming tasks, we incorporate data
from Codeforces (7,505 problems), code contests
(2,011 problems), and LiveCodeBench before July
2024 (Jain et al., 2024) (558 problems). These
sources offer a comprehensive coverage of coding
challenges with different complexity levels. In to-
tal, our training set consists of 49,969 problems,
with approximately 74% focusing on mathematical
reasoning and 26% on programming tasks.

B More results about Hint-infer

Building upon the observed trends, the detailed re-
sults in Table B further underscore the efficacy of
the QwQ-Hint-infer and START-Hint-infer meth-
ods across diverse challenging reasoning tasks.
Specifically, for datasets such as aime24, aime25,
gpqa, amc23, MATH500, and LiveCodeBench,
QwQ-32B-Preview consistently demonstrates per-
formance enhancements with each subsequent
round of hint insertion. For instance, aime24
improves from 50.0% in Round 0 to 60.0% in
Round 3, and MATH500 shows a marginal yet
steady increase from 90.6% to 92.4% over the same
rounds. This consistent upward trend highlights the
method’s ability to incrementally refine the model’s
reasoning capabilities through iterative hint integra-
tion.

In contrast, the START-Hint-infer approach ex-
hibits a more varied performance across different
datasets. While there are improvements in some
areas, such as AIME25, where the Pass@1 metric
reaches 60.0% by Round 3 and LiveCodeBench
sees an increase from 47.3% to 50.0%, other
datasets like GPQA and LiveCodeBench show rel-
atively modest gains and even no gains. This dis-
parity suggests that the effectiveness of Hint-infer
may be contingent on the inherent characteristics
of the dataset and the nature of the reasoning tasks
involved.

C Prompting Methods for Data
annotation

In our initial exploration for data annotation, we
investigated several conventional prompting meth-
ods to trigger Large Reasoning Models (LRMs) to
generate long Chain-of-Thought (CoT) solutions
integrated with Python tool calls. We evaluated
three primary strategies:

1. Direct Prompting, which uses a simple in-
struction like, “Please integrate programs to
solve the problem above”.

2. Well-designed Prompting, which provides
detailed instructions on tool use, adapted from
search-o1 (Li et al., 2025a).

3. In-context Prompting, which provides few-
shot demonstrations to guide the model’s out-
put format.

However, our experiments revealed that these
preemptive prompting methods were overwhelm-
ingly ineffective at reliably activating tool use in
long-reasoning contexts. As shown in Table 11,
both direct and sophisticated prompts almost com-
pletely failed to elicit tool invocation, with success
rates falling below 4%. In stark contrast, our post-
hoc Hint-infer method demonstrated a 100%
success rate in triggering the models to produce
Python code. This provides strong quantitative ev-
idence that the specific strategy of intervention is
critical. A post-hoc, reflective hint is a significantly
more effective trigger for activating latent tool-
use capabilities than standard, instruction-based
prompts.

D Hint-infer for test time scaling

The three rounds hints of GPQA and MATH for
Hint-infer are: Wait, I can use Python to check
if my approach is correct and refine it, if neces-
sary.“‘python, Wait, I need to utilize Python code
again to meticulously check to make sure I un-
derstand the question correctly as well as rea-
soning correctly.“‘python and Wait, I can think
more deeply about this problem through python
tools.“‘python.

E Code Task Hints

For code problem with starter code, the code tem-
plate is

13524

Table 9: Sources of Dataset D

Source Quantity

AIME problems (before 2024) 890
MATH (Hendrycks et al., 2021) 7500
Numina-MATH (LI et al., 2024) 28505

Code Data

Codeforces 7505
Code contests 2011
LiveCodeBench (before July 2024) (Jain et al., 2024) 558

Total 49969

Table 10: Comparison of QWQ-Hint-infer and START-Hint-infer on challenging reasoning tasks, including PhD-
level science QA, math, and code benchmarks. We report Pass@1 metric for all tasks.

Dataset QwQ-32B-Preview START
Round
0

Round
1

Round
2

Round
3

Round
0

Round
1

Round
2

Round
3

aime24 50.0% 53.3% 56.7% 60.0% 66.7% 66.7% 66.7% 70.0%
aime25 40.0% 47.1% 47.1% 53.3% 47.1% 47.1% 60.0% 60.0%
gpqa 58.5% 58.6% 59.6% 59.6% 63.6% 61.6% 60.6% 61.6%
amc23 80.0% 85.0% 90.0% 92.5% 95.0% 92.5% 95.0% 95.0%
MATH500 90.6% 92.0% 92.0% 92.4% 94.4% 95.0% 95.6% 95.2%
LiveCodeBench 41.4% 42.0% 42.0% 42.0% 47.3% 48.2% 50.0% 50.0%

Table 11: Quantitative Comparison of Different Prompting Methods in Triggering Tool Use. Our post-hoc
Hint-infer method shows 100% reliability.

Prompting Method Tool Use % (QWQ-32B-Preview) Tool Use % (R1-distill-qwen-32B)

Direct Prompt 0% 0%
Well-designed Prompt 3.3% 2.4%
START (Hint-infer) 100% 100%

{startcoder}
Test the example inputs
solution = Solution()
Example input1
test_input1 = ...
Example input2
test_input2 = ...
Print output
print(solution.function_name(test_input1))
print(solution.function_name(test_input2))
Check the output
'''
'''output
[...]

For code problem without starter code, the code
template is
def function_name(parameters):
#Implementation\n

Test the example inputs
solution = Solution()
Example input1
test_input1 = ...
Example input2
test_input2 = ...
Print output
...(same as above)

13525

F More Experiments on Generalization

START shows consistent improvements across log-
ical reasoning (LogicBench: +1.5%), theoretical
computer science (TheoremQA: +2.4%), and tabu-
lar math word problems (TabMWP: +1.1%). These
results suggest that the benefits of our framework
extend beyond the primary evaluation domains,
demonstrating the general applicability of tool-
augmented reasoning.

Table 12: START’s generalization to additional rea-
soning tasks.

Model LogicBench TheoremQA∗ TabMWP

QwQ-32B-Preview 50.6 49.3 95.1
START 52.1 51.7 96.2

Improvement (+1.5) (+2.4) (+1.1)

13526

G Case Study For START

G.1 A case form AMC23

A case form AMC23

Problem:
In the state of Coinland, coins have values 6, 10, and 15 cents. Suppose x is the value in cents of
the most expensive item in Coinland that cannot be purchased using these coins with exact change.
What is the sum of the digits of x?
Solution:
So I’ve got this problem from the state of Coinland, where they have coins worth 6, 10, and 15
cents. The question is asking for the value of the most expensive item that you can’t buy using
these coins with exact change. Then, I need to find the sum of the digits of that value.
First off, I need to understand what this is asking. It seems like a problem related to the concept
of the Frobenius coin problem, which is about finding the largest amount that cannot be obtained
using given coin denominations. In the classic case, with two coprime denominations, there’s a
formula to find this number, but here we have three denominations: 6, 10, and 15 cents.
I know that for two coprime numbers, a and b, the largest number that can’t be expressed as a
non-negative integer combination of a and b is ab− a− b. But here, we have three numbers, and
they aren’t all pairwise coprime. For instance, 6 and 10 share a common factor of 2, and 6 and 15
share a common factor of 3. So, the standard Frobenius number formula doesn’t directly apply.
Maybe I should start by looking at the greatest common divisor (GCD) of these numbers. Let’s
find the GCD of 6, 10, and 15.
The GCD of 6 and 10 is 2.
The GCD of 2 and 15 is 1.
So, the overall GCD is 1. That means that eventually, any sufficiently large number can be
expressed as a combination of these coins, since their GCD is 1.
But, there might be some gaps before we reach a certain point where all numbers can be expressed.
Perhaps I should look for the Frobenius number for these three denominations. However, I recall
that for more than two denominations, there isn’t a general formula for the Frobenius number. So,
I might need to approach this problem differently.
One approach could be to consider the possible combinations of these coins and see which numbers
can be expressed. Maybe I can start by listing out the possible sums.
Let’s list out some combinations:
- 0 coins: 0 cents
- 1 coin: 6, 10, or 15 cents
- 2 coins: 6 + 6 = 12, 6 + 10 = 16, 6 + 15 = 21, 10 + 10 = 20, 10 + 15 = 25, 15 + 15 = 30
cents
- 3 coins: 6+6+6 = 18, 6+6+10 = 22, 6+6+15 = 27, 6+10+10 = 26, 6+10+15 = 31,
6+15+15 = 36, 10+10+10 = 30, 10+10+15 = 35, 10+15+15 = 40, 15+15+15 = 45
cents
- And so on...
This could take a while, and I might miss some numbers. Maybe there’s a better way.
Another thought: since the GCD is 1, I know that every number greater than or equal to a certain
number can be expressed as a combination of these coins. I need to find the largest number that
cannot be expressed this way.
Perhaps I can look at the problem in terms of modulo arithmetic. For example, since 6 is divisible
by 3, 10 is not, and 15 is divisible by 3, I can consider how these combine in terms of modulo 3.
Wait, but that might not be directly helpful. Let me think differently.
I’ve heard of the concept of the "Frobenius number" for two coins, but for three or more, it’s more
complicated. Maybe I can reduce this problem to a combination of smaller problems.

13527

Let me consider pairs of these denominations and find their Frobenius numbers, then see how that
helps.
First, consider only 6 and 10 cent coins. Since GCD(6, 10) = 2, which is greater than 1, the
Frobenius number for these two is not defined because you can’t make all even numbers greater
than a certain point with just 6 and 10. Wait, no. Actually, since their GCD is 2, you can make any
even number greater than or equal to a certain value.
Wait, the Frobenius number formula ab− a− b applies only when a and b are coprime. Here, 6
and 10 are not coprime, so that formula doesn’t apply.
Similarly, for 6 and 15, GCD(6, 15) = 3, which is greater than 1.
And for 10 and 15, GCD(10, 15) = 5.
So, none of the pairs are coprime.
This complicates things.
Alternatively, maybe I can look at the problem in terms of linear combinations.
I need to find the largest x such that there are no non-negative integers a, b, c satisfying 6a+10b+
15c = x.
This seems tricky. Maybe I can look for a pattern in the possible sums.
Let me try to list out the possible sums in order:
0, 6, 10, 12, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 30, etc.
Wait, I can use Python to generate specific examples that fit the problem’s conditions.

Python Code

from itertools import product
def can_be_paid(x, coins):

for a in range(x//coins[0] + 1):
for b in range(x//coins[1] + 1):

for c in range(x//coins[2] + 1):
if a*coins[0] + b*coins[1] + c*coins[2] == x:

return True
return False

coins = [6, 10, 15]
max_x = 100
arbitrary upper limit to search for the largest x that cannot be paid
possible_x = []
for x in range(1, max_x):

if not can_be_paid(x, coins):
possible_x.append(x)

print((max(possible_x), sum(int(digit) for digit in str(max(possible_x)))))

Output

(29, 11)

From the code, I found that the largest value that cannot be purchased using coins of 6, 10, and 15
cents is 29 cents. The sum of the digits of 29 is 2 + 9 = 11.
So, the answer is 11.
Final Answer

11

13528

G.2 A case form AIME24

A case form AIME24

Problem:
Let p be the least prime number for which there exists a positive integer n such that n4 + 1 is
divisible by p2. Find the least positive integer m such that m4 + 1 is divisible by p2.
Solution:

I’m trying to solve this problem. It says: Let p be the least prime number for which there exists a
positive integer n such that n4 + 1 is divisible by p2. Find the least positive integer m such that
m4 + 1 is divisible by p2.
First, I need to find the smallest prime p such that there’s some positive integer n making n4 + 1
divisible by p2. Then, using that p, I have to find the smallest positive integer m where m4 + 1 is
divisible by p2.
So, to start, I need to understand when n4 + 1 is divisible by p2. That means p2 divides n4 + 1, or
in other words, n4 ≡ −1 (mod p2).
I know that for primes, certain properties hold due to Fermat’s Little Theorem and Euler’s Theorem,
but I’m not sure how to apply them here directly because we’re dealing with p2, not just p.
Maybe I should look at the equation n4 ≡ −1 (mod p2). This implies that n8 ≡ 1 (mod p2),
because if n4 ≡ −1, then squaring both sides gives n8 ≡ 1 (mod p2).
So, the order of n modulo p2 divides 8, meaning the order is 1, 2, 4, or 8. But since n4 ≡ −1
(mod p2), the order can’t be 1, 2, or 4, because in those cases, n4 would be 1, not -1. Therefore,
the order must be 8.
This means that 8 divides the order of the multiplicative group modulo p2, which is ϕ(p2) =
p(p− 1), where ϕ is Euler’s totient function.
So, 8 divides p(p− 1). Since p is prime, there are a few cases to consider:
1. p = 2
2. p is an odd prime, and 8 divides p− 1
Let’s consider p = 2 first.
If p = 2, then p2 = 4. We need to check if there exists an n such that n4 + 1 is divisible by 4.
Let’s compute n4 + 1 modulo 4:
- If n is even, n4 is divisible by 16, so n4 ≡ 0 (mod 4), thus n4 + 1 ≡ 1 (mod 4), which is not
divisible by 4.
- If n is odd, n4 ≡ 1 (mod 4), so n4 + 1 ≡ 2 (mod 4), which is also not divisible by 4.
Therefore, there is no positive integer n such that n4 + 1 is divisible by 4. So, p = 2 is not a valid
choice.
Next, consider odd primes where 8 divides p− 1. That is, p ≡ 1 (mod 8).
The smallest such primes are 17, 41, 73, etc.
Alternatively, there could be other primes where p divides n4 + 1, but for p2 to divide n4 + 1, it’s
more restrictive.
Wait a minute, maybe I should consider quadratic residues or higher power residues.
Alternatively, perhaps I should look for primes where −1 is a fourth power residue modulo p2.
I recall that for primes, −1 is a quadratic residue if p ≡ 1 (mod 4), but here we’re dealing with
fourth powers.
Maybe I should consider the Legendre symbol or higher power residues.
Alternatively, perhaps I can use Hensel’s Lemma to lift solutions from modulo p to modulo p2.
First, I need to find primes p such that there exists an n with n4 ≡ −1 (mod p), and then check if
that solution can be lifted to modulo p2.
So, start by finding primes p for which n4 ≡ −1 (mod p) has a solution.
This is equivalent to saying that −1 is a fourth power residue modulo p.

13529

The multiplicative group modulo p is cyclic of order p− 1, so n4 ≡ −1 (mod p) has a solution
if and only if there exists an integer k such that 4k ≡ (p−1)

2 (mod p − 1), since −1 is a square
modulo p if p ≡ 1 (mod 4).
Wait, I can use Python to automate these extensive calculations.

Python Code

def find_least_p():
p = 3 # Start with the smallest odd prime
while True:

if any(pow(n, 4, p) == p - 1 for n in range(1, p)):
Check if n^4 = -1 mod p has a solution
for n in range(1, p):

if (n**4) % p == p - 1:
Now check if there exists m such that m^4 = -1 mod p^2

p_squared = p * p
for m in range(1, p_squared):

if (m**4) % p_squared == p_squared - 1:
return p, m

p = next_prime(p)

def next_prime(p):
Implement a function to get the next prime after p
if p == 2:

return 3
candidate = p + 2
while not is_prime(candidate):

candidate += 2
return candidate

def is_prime(num):
Implement a function to check if a number is prime
if num <= 1:

return False
if num == 2:

return True
if num % 2 == 0:

return False
for i in range(3, int(num**0.5) + 1, 2):

if num % i == 0:
return False

return True

Find the least prime p and the least m
p, m = find_least_p()
print((p, m))

Output

SyntaxError: invalid syntax

13530

It seems there was a syntax error in the code due to the way the condition was written. Let’s correct
the code and try again.
I need to ensure that the condition for checking if n4 ≡ −1 (mod p) is properly implemented.
Also, I need to make sure that the function to find the next prime is correctly defined.
Let’s fix the code accordingly.

Python Code

def find_least_p():
p = 3 # Start with the smallest odd prime
while True:

Check if there exists n such that n^4 = -1 mod p
found_n = False
for n in range(1, p):

if (n**4) % p == p - 1:
found_n = True
break

if found_n:
Now check if there exists m such that m^4 = -1 mod p^2
p_squared = p * p
for m in range(1, p_squared):

if (m**4) % p_squared == p_squared - 1:
return p, m

p = next_prime(p)

def next_prime(p):
Implement a function to get the next prime after p
if p == 2:

return 3
candidate = p + 2
while not is_prime(candidate):

candidate += 2
return candidate

13531

Python Code

def is_prime(num):
Implement a function to check if a number is prime
if num <= 1:

return False
if num == 2:

return True
if num % 2 == 0:

return False
for i in range(3, int(num**0.5) + 1, 2):

if num % i == 0:
return False

return True

Find the least prime p and the least m
p, m = find_least_p()
print((p, m))

Output

(17, 110)

The code has determined that the least prime p for which there exists a positive integer n such that
n4 + 1 is divisible by p2 is p = 17, and the least positive integer m such that m4 + 1 is divisible
by 172 = 289 is m = 110.
To verify this, let’s check if 1104 + 1 is indeed divisible by 289.
First, compute 1104:

1102 = 12100

1104 = 121002 = 146, 410, 000

Then, 1104 + 1 = 146, 410, 001.
Now, divide by 289:

146, 410, 001÷ 289

Let’s perform the division:

289× 506, 613 = 289× 500, 000 = 144, 500, 000

289× 6, 613 = 289× 6, 000 = 1, 734, 000

289× 613 = 289× 600 = 173, 400

289× 13 = 3, 757

Adding them up:

13532

144, 500, 000 + 1, 734, 000 = 146, 234, 000

146, 234, 000 + 173, 400 = 146, 407, 400

146, 407, 400 + 3, 757 = 146, 411, 157

Wait, that’s higher than 146,410,001. Maybe I miscalculated the multiplication.
Alternatively, perhaps I should compute 146, 410, 001− 146, 411, 157 = −1, 156, which is not
zero, indicating that 289 does not divide 146,410,001.
This suggests that there might be an error in the code’s result.
Alternatively, maybe I need to double-check the calculation.
Alternatively, perhaps there is a better mathematical approach to find p and m.
Let’s consider that n4 ≡ −1 (mod p2), which implies that n8 ≡ 1 (mod p2). So, the order of n
modulo p2 divides 8.
As earlier, the order must be 8 because smaller exponents wouldn’t satisfy n4 ≡ −1.
The multiplicative group modulo p2 has order p(p− 1), so 8 must divide p(p− 1).
Since p is prime, and greater than 2, p− 1 is even, and for 8 to divide p(p− 1), either:
- p ≡ 1 (mod 8), or
- p ≡ 3 (mod 4) and p− 1 is divisible by 4, but 8 divides p(p− 1), which would require p− 1 to
be divisible by 8.
Wait, actually, since p is odd (as p = 2 doesn’t work), p− 1 is even, and for 8 to divide p(p− 1),
since p is odd, p− 1 must be divisible by 8.
Therefore, p ≡ 1 (mod 8).
So, the smallest primes p to check are 17, 41, 73, etc.
Earlier, the code suggested p = 17, but the verification seems off.
Let me try to compute m = 110, p = 17, p2 = 289, and check 1104 + 1 modulo 289.
Compute 110 mod 17:
110÷ 17 = 6× 17 = 102, remainder 8, so 110 ≡ 8 (mod 17).
Wait, but we need modulo 289.
Alternatively, perhaps I can compute 1104 + 1 modulo 289 directly.
Let’s compute 1102 mod 289:
1102 = 12100.
12100÷ 289:
289 × 41 = 11849.
12100 - 11849 = 251.
So, 1102 ≡ 251 (mod 289).
Now, 1104 = (1102)2 ≡ 2512 (mod 289).
Compute 2512:
2512 = 63001.
Now, 63001÷ 289:
289 × 217 = 289 × 200 = 57,800; 289 × 17 = 4,913; total 57,800 + 4,913 = 62,713.
63,001 - 62,713 = 288.
So, 2512 ≡ 288 (mod 289).
Therefore, 1104 ≡ 288 (mod 289), so 1104 + 1 ≡ 288 + 1 = 289 ≡ 0 (mod 289).
So, indeed, m = 110 is a solution for p = 17.
Therefore, the least prime p is 17, and the least positive integer m such that m4 + 1 is divisible by
172 = 289 is 110.
Final Answer

110

13533

G.3 A case form AIME25
A case form AIME25

Problem:

The set of points in 3-dimensional coordinate space that lie in the plane x+ y + z = 75 whose
coordinates satisfy the inequalities x− yz < y− zx < z− xy forms three disjoint convex regions.
Exactly one of those regions has finite area. The area of this finite region can be expressed in the
form a

√
b, where a and b are positive integers and b is not divisible by the square of any prime.

Find a+ b.
Solution:
So I’ve got this problem here. It’s about finding the area of a specific region in 3-dimensional
space defined by some equations and inequalities. Let me try to wrap my head around it.
First, there’s a plane given by the equation x+ y+ z = 75. So, all the points we’re considering lie
on this plane. Then, there are these inequalities: x− yz < y − zx < z − xy. The problem says
that these conditions define three disjoint convex regions on the plane, and exactly one of them has
finite area. We need to find the area of that finite region, and it’s expressed in the form a

√
b, where

b is square-free, and then find a+ b.
Okay, let’s start by understanding the inequalities. They are:

x− yz < y − zx < z − xy

This is a chain of inequalities, so actually, there are two inequalities here:
1. x− yz < y − zx
2. y − zx < z − xy
I need to manipulate these inequalities to get a better understanding of the regions they define.
Let’s work on the first inequality:

x− yz < y − zx

Let’s bring all terms to one side:

x− yz − y + zx < 0

Factor terms:

x(1 + z)− y(1 + z) < 0

Factor out (1 + z):

(x− y)(1 + z) < 0

So, this inequality implies that (x− y)(1 + z) < 0.
Now, the second inequality:

y − zx < z − xy

Bring all terms to one side:

y − zx− z + xy < 0

Factor terms:

y(1 + x)− z(1 + x) < 0

Factor out (1 + x):

13534

(y − z)(1 + x) < 0

So, the second inequality is (y − z)(1 + x) < 0.
Now, combining both inequalities, we have:
1. (x− y)(1 + z) < 0
2. (y − z)(1 + x) < 0
These are the conditions that, along with the plane equation x+ y + z = 75, define the regions in
question.
Next, I need to consider the plane x + y + z = 75. Since we’re dealing with 3D space, but
constrained to this plane, it’s essentially a 2D surface. To find the area of a region on this plane, I
might need to parameterize the plane or find a way to project it onto a 2D coordinate system.
But before that, I need to understand how these inequalities divide the plane into regions.
Let’s consider the equalities corresponding to the inequalities to find the boundaries:
1. (x− y)(1 + z) = 0
2. (y − z)(1 + x) = 0
These equalities hold when either x = y or z = −1, and y = z or x = −1.
But since we’re dealing with a plane where x + y + z = 75, and presumably x, y, z are real
numbers (unless specified otherwise), I need to see how these boundaries intersect with the plane.
Wait a minute, maybe it’s better to consider substituting z = 75− x− y into the inequalities to
express everything in terms of x and y, reducing the dimensionality.
Let’s try that.
Given z = 75− x− y, substitute into the inequalities.
First inequality:

(x− y)(1 + z) < 0

Substitute z:

(x− y)(1 + 75− x− y) < 0

Simplify:

(x− y)(76− x− y) < 0

Second inequality:

(y − z)(1 + x) < 0

Substitute z:

(y − (75− x− y))(1 + x) < 0

Simplify:

(y − 75 + x+ y)(1 + x) < 0

Combine like terms:

(x+ 2y − 75)(1 + x) < 0

So now, the inequalities in terms of x and y are:
1. (x− y)(76− x− y) < 0
2. (x+ 2y − 75)(1 + x) < 0

More reasoning content are omitted here

13535

Wait, using Python, I can experiment with a new method to tackle this challenge.

Python Code

import sympy as sp

Define variables
x, y, z = sp.symbols('x y z')

Plane equation
plane_eq = x + y + z - 75

Inequalities
ineq1 = x - y*z < y - z*x
ineq2 = y - z*x < z - x*y

Solve plane equation for z
z_expr = sp.solve(plane_eq, z)[0]

Substitute z in inequalities
ineq1_sub = ineq1.subs(z, z_expr)
ineq2_sub = ineq2.subs(z, z_expr)

Simplify inequalities
ineq1_simplified = sp.simplify(ineq1_sub)
ineq2_simplified = sp.simplify(ineq2_sub)

print((ineq1_simplified, ineq2_simplified))

Output

(x + y*(x + y - 75) < x*(x + y - 75) + y, x*y + x + y - 75 < -x*(x + y - 75) - y)

More reasoning content are omitted here
To find the area of this triangle, we can use the formula for the area of a triangle given by three
points in 3D space:

Area =
1

2
∥−−→BC ×−−→

BF∥

First, let’s find the vectors
−−→
BC and

−−→
BF :

−−→
BC = C −B = (−1− 25,−1− 25, 77− 25) = (−26,−26, 52)

−−→
BF = F −B = (−1− 25, 38− 25, 38− 25) = (−26, 13, 13)

Next, compute the cross product
−−→
BC ×−−→

BF .
Wait, I can use Python to perform complex calculations for this problem.

13536

Python Code

import sympy as sp

Define the symbols for the components of the vectors
x1, y1, z1 = -26, -26, 52 # Components of vector BC
x2, y2, z2 = -26, 13, 13 # Components of vector BF

Create symbolic vectors
BC = sp.Matrix([x1, y1, z1])
BF = sp.Matrix([x2, y2, z2])

Compute the cross product BC x BF
cross_product = BC.cross(BF)

Print the cross product
print("Cross product BC x BF:", cross_product)

Calculate the magnitude of the cross product
magnitude = sp.sqrt(cross_product.dot(cross_product))

print(magnitude)

Output

1014*sqrt(3)

Therefore, the area of the parallelogram is 1014
√
3, and the area of the triangle is half of that:

Area =
1

2
× 1014

√
3 = 507

√
3

Hence, a = 507 and b = 3, so a+ b = 510.
Final Answer

510

13537

G.4 A case form MATH500

A case form MATH500

Problem:
The function f satisfies the functional equation

f(x) + f(y) = f(x+ y)− xy − 1

for all real numbers x and y. If f(1) = 1, then find all integers n such that f(n) = n. Enter all
such integers, separated by commas.
Solution:

So I have this functional equation: f(x) + f(y) = f(x+ y)− xy − 1 for all real numbers x and
y. And I’m given that f(1) = 1. I need to find all integers n such that f(n) = n.
First, I should probably try to find a general expression for f(x). To do that, I can start by plugging
in some specific values for x and y to see if I can find a pattern or determine the form of f .
Let me try setting y = 0. Then the equation becomes:

f(x) + f(0) = f(x+ 0)− x · 0− 1

Which simplifies to:

f(x) + f(0) = f(x)− 0− 1

So:

f(0) = −1

That’s helpful. Now I know that f(0) = −1.
Next, maybe I can try setting y = 1, since I know f(1) = 1. So:

f(x) + f(1) = f(x+ 1)− x · 1− 1

Substituting f(1) = 1:

f(x) + 1 = f(x+ 1)− x− 1

Let me solve for f(x+ 1):

f(x+ 1) = f(x) + 1 + x+ 1 = f(x) + x+ 2

So, I have a recursive relation: f(x+ 1) = f(x) + x+ 2.
This seems like it could be useful for finding a pattern or for induction.
Let me try to find f(2), f(3), and so on, to see if I can find a pattern.
Starting with x = 1:

f(2) = f(1) + 1 + 2 = 1 + 1 + 2 = 4

Now x = 2:

f(3) = f(2) + 2 + 2 = 4 + 2 + 2 = 8

Wait, that doesn’t seem right. Let me check the recursive formula again.
I have f(x+ 1) = f(x) + x+ 2.
So, for x = 1:

13538

f(2) = f(1) + 1 + 2 = 1 + 1 + 2 = 4

For x = 2:

f(3) = f(2) + 2 + 2 = 4 + 2 + 2 = 8

Wait, but if I continue this pattern, f(3) = 8, then for x = 3:

f(4) = f(3) + 3 + 2 = 8 + 3 + 2 = 13

Hmm, I’m not seeing an immediate pattern here. Maybe there’s a better way to approach this.
Alternatively, perhaps I can assume that f(x) is a quadratic function, since the functional equation
involves a term like −xy, which is linear in both variables.
Let me assume that f(x) = ax2 + bx+ c, and try to find the coefficients a, b, and c.
Substituting into the functional equation:

f(x) + f(y) = f(x+ y)− xy − 1

So:

(ax2 + bx+ c) + (ay2 + by + c) = a(x+ y)2 + b(x+ y) + c− xy − 1

Let me expand both sides.
Left side:

ax2 + ay2 + bx+ by + 2c

Right side:

a(x2 + 2xy + y2) + b(x+ y) + c− xy − 1 = ax2 + 2axy + ay2 + bx+ by + c− xy − 1

Now, set the left side equal to the right side:

ax2 + ay2 + bx+ by + 2c = ax2 + 2axy + ay2 + bx+ by + c− xy − 1

Subtract ax2 + ay2 + bx+ by from both sides:

2c = 2axy + c− xy − 1

Wait, that seems off. Let me double-check the expansion.
Actually, perhaps Python can assist in managing these detailed computations automatically.

13539

Python Code

from sympy import symbols, Eq, solve

Define symbols
a, b, c, x, y = symbols('a b c x y')

Define f(x), f(y), and f(x + y)
f_x = a*x**2 + b*x + c
f_y = a*y**2 + b*y + c
f_x_y = a*(x + y)**2 + b*(x + y) + c

Define the functional equation
functional_eq = Eq(f_x + f_y, f_x_y - x*y - 1)

Expand both sides
lhs = f_x + f_y
rhs = f_x_y - x*y - 1

Simplify the equation
simplified_eq = Eq(lhs - rhs, 0)

Collect like terms
collected_eq = simplified_eq.expand()

Solve for coefficients a, b, c
solution = solve(collected_eq, (a, b, c))
print(solution)

Output

[(1/2, b, -1)]

From the symbolic computation, the solution for the coefficients is:

a =
1

2
, b = b, c = −1

Wait, it says b = b, which means b can be any value. That suggests that there’s some flexibility in
choosing b, but likely, there’s another condition that can help determine b.
Given that f(1) = 1, I can use this to find b.
Given f(x) = 1

2x
2 + bx− 1, and f(1) = 1:

f(1) =
1

2
(1)2 + b(1)− 1 =

1

2
+ b− 1 = b− 1

2
= 1

So:

b− 1

2
= 1 =⇒ b = 1 +

1

2
=

3

2

Therefore, the function is:

f(x) =
1

2
x2 +

3

2
x− 1

13540

Now, I need to verify if this function satisfies the original functional equation.
Let’s plug f(x) = 1

2x
2 + 3

2x− 1 and f(y) = 1
2y

2 + 3
2y − 1 into the left side:

f(x) + f(y) =

(
1

2
x2 +

3

2
x− 1

)
+

(
1

2
y2 +

3

2
y − 1

)
=

1

2
x2 +

1

2
y2 +

3

2
x+

3

2
y − 2

Now, the right side is:

f(x+ y)− xy − 1 =

(
1

2
(x+ y)2 +

3

2
(x+ y)− 1

)
− xy − 1

Expand f(x+ y):

1

2
(x2 + 2xy + y2) +

3

2
x+

3

2
y − 1 =

1

2
x2 + xy +

1

2
y2 +

3

2
x+

3

2
y − 1

More reasoning content are omitted here
Now, I need to find all integers n such that f(n) = n.
Set f(n) = n:

1

2
n2 +

3

2
n− 1 = n

Subtract n from both sides:

1

2
n2 +

3

2
n− 1− n = 0

Simplify:

1

2
n2 +

(
3

2
− 1

)
n− 1 = 0

1

2
n2 +

1

2
n− 1 = 0

Multiply both sides by 2 to eliminate fractions:

n2 + n− 2 = 0

Now, solve for n:

n =
−1±

√
1 + 8

2
=

−1± 3

2

So, two solutions:

n =
−1 + 3

2
= 1

n =
−1− 3

2
= −2

Therefore, the integers n that satisfy f(n) = n are n = 1 and n = −2.
Final Answer

−2, 1

13541

G.5 A case form GPQA

A case form GPQA

Problem:
Astronomers are studying a star with a 1.5 solar radius and 1.1 solar masses. When the star’s
surface is not covered by dark spots, its Teff is 6000K. However, when 40% of its surface is
covered by spots, the overall photospheric effective temperature decreases to 5500K.
In the stellar photosphere, when examining the ratio of the number of neutral atoms of Ti in two
energetic levels (level 1 and level 2), astronomers have observed that this ratio decreases when
the star has spots. What is the factor by which this ratio changes when the star does not have
spots compared to when it has spots? Note that the transition between the energy levels under
consideration corresponds to a wavelength of approximately 1448Å. Assume that the stellar
photosphere is in LTE.
Answer Choices: (A) ∼ 2.9
(B) ∼ 4.5
(C) ∼ 1.1
(D) ∼ 7.8
Output your final answer in boxes, such as A .
Solution:

So I’m trying to solve this astronomy problem. It’s about a star with some specific properties, and
it’s talking about how the temperature changes when there are spots on its surface. Then, it’s about
how the ratio of neutral titanium atoms in two different energy levels changes when there are spots.
It’s a bit complicated, but I’ll try to break it down step by step.
First, let’s understand what’s given:
- The star has a 1.5 solar radius and 1.1 solar masses. - When there are no spots, its effective
temperature (Teff) is 6000K. - When 40% of its surface is covered by spots, the overall Teff
decreases to 5500K. - We need to find the factor by which the ratio of neutral titanium atoms in
two energy levels changes when the star has spots compared to when it doesn’t. - The transition
between the levels corresponds to a wavelength of about 1448Å. - We’re to assume that the stellar
photosphere is in local thermodynamic equilibrium (LTE).
Okay, so the key here is to relate the change in effective temperature due to spots to the change in
the ratio of titanium atoms in different energy levels.
First, I need to recall what effective temperature is. Teff is a measure of the star’s surface tempera-
ture, and it’s related to the star’s luminosity and radius through the Stefan-Boltzmann law:

L = 4πR2σT 4
eff

Where L is luminosity, R is radius, and σ is the Stefan-Boltzmann constant.
But in this problem, the star’s radius is given, and the masses are given, but I’m not sure if I need
to use that information directly. Maybe it’s just to provide context.
The main change is in Teff, from 6000K to 5500K when 40% of the surface is covered by spots.
I need to find out how this change in Teff affects the ratio of titanium atoms in two energy levels.
First, I should recall that in LTE, the ratio of atoms in two energy levels is given by the Boltzmann
equation:

N2

N1
=

g2
g1

exp

(
−∆E

kT

)

Where:
- N2 and N1 are the number densities of atoms in energy levels 2 and 1, respectively. - g2 and g1
are the statistical weights of the two levels. - ∆E is the energy difference between the two levels. -

13542

k is the Boltzmann constant. - T is the temperature.
In this case, since we’re dealing with the same element (titanium), and assuming that the statistical
weights don’t change, the ratio simplifies to:

N2

N1
∝ exp

(
−∆E

kT

)

So, the ratio depends exponentially on the temperature.
Now, the problem states that the ratio decreases when the star has spots. That makes sense because
spots are cooler regions on the star’s surface, so the overall Teff decreases, which would lead to a
lower ratio according to the equation above.
But the question is asking for the factor by which the ratio changes when the star does not have
spots compared to when it has spots.
So, I need to find the ratio of

N2

N1

∣∣∣∣
no spots

to
N2

N1

∣∣∣∣
with spots

.

Let’s denote:

Rno spots =
N2

N1
at Teff = 6000K

Rwith spots =
N2

N1
at Teff = 5500K

More reasoning content are omitted here
But that seems too large. Maybe using Python here is a good idea.

Python Code

\begin{verbatim}
import math
Given values
T_{\text{eff}} = 5500 \, \text{K}
T_u = 6000 \, \text{K}
\text{fraction_spots} = 0.4
\text{fraction_unspotted} = 0.6
Calculate T_{\text{eff}}^4
T_{\text{eff_4}} = T_{\text{eff}}^{4}
Calculate T_u^4
T_{u_4} = T_u^{4}
Calculate T_s^4
T_{s_4} = \frac{T_{\text{eff_4}} - \text{fraction_unspotted} \cdot
T_{u_4}}{\text{fraction_spots}}
Calculate T_s
T_s = T_{s_4}^{1/4}
print(T_s)

Output

4305.574037901423

13543

Wait, according to the calculation, Ts ≈ 4305.57K, which is lower than the unspotted temperature
of 6000K, as expected for spots.
I must have made a mistake in my earlier manual calculation. So, the temperature of the spots is
approximately 4305.57K.
Given that, and considering that the answer choices are discrete, option C) ∼ 1.1 is the closest.
Alternatively, perhaps there is a miscalculation in ∆E/k.
Let me double-check that with Python code.

Python Code

import numpy as np

Constants
h = 6.626e-34 # Planck's constant in Joules second
c = 3.00e8 # Speed of light in meters per second
wavelength = 1.448e-7 # Wavelength in meters
k = 1.38e-23 # Boltzmann constant in Joules per Kelvin

Calculate the energy difference \Delta E
delta_E = (h * c) / wavelength
print(f"\\Delta E = {delta_E:.2e} J") # Output energy in scientific notation

Calculate the ratio \Delta E / k
delta_E_over_k = delta_E / k
print(f"\\Delta E / k = {delta_E_over_k:.2f} K") # Output in Kelvin

Calculate the final factor
T1 = 5500 # Temperature in Kelvin
T2 = 6000 # Temperature in Kelvin
factor = np.exp(delta_E_over_k * (1/T1 - 1/T2))
print(f"Factor = {factor:.3f}") # Output the factor

Output

∆E = 1.37× 10−18 J
∆E
k = 99477.54K

Factor = 4.514

Given that, and considering the answer choices, option B) ∼ 4.5 is the closest.
Final Answer

B

13544

G.6 A case form LiveCodeBench

A case form LiveCodeBench

Problem:
You are given an array of positive integers nums of length n.
We call a pair of non-negative integer arrays (arr1, arr2) monotonic if:

• The lengths of both arrays are n.

• arr1 is monotonically non-decreasing, in other words, arr1[0] ≤ arr1[1] ≤ . . . ≤ arr1[n−
1].

• arr2 is monotonically non-increasing, in other words, arr2[0] ≥ arr2[1] ≥ . . . ≥ arr2[n−
1].

• arr1[i] + arr2[i] == nums[i] for all 0 ≤ i ≤ n− 1.

Return the count of monotonic pairs.
Since the answer may be very large, return it modulo 109 + 7.

Example 1:
Input: nums = [2,3,2]
Output: 4
Explanation:
The good pairs are:

• ([0, 1, 1], [2, 2, 1])

• ([0, 1, 2], [2, 2, 0])

• ([0, 2, 2], [2, 1, 0])

• ([1, 2, 2], [1, 1, 0])

Example 2:
Input: nums = [5,5,5,5]
Output: 126

Constraints:
1 ≤ n == nums.length ≤ 2000
1 ≤ nums[i] ≤ 50

You will use the following starter code to write the solution to the problem and enclose your code
within delimiters.

Python Code

class Solution:
def countOfPairs(self, nums: List[int]) -> int:

Solution:

13545

Alright, I’ve got this problem to solve. Let’s see what it’s asking for. I’m given an array of positive
integers called nums, and I need to find the count of monotonic pairs (arr1, arr2). The conditions
are:

1. Both arr1 and arr2 have the same length as nums.

2. arr1 is monotonically non-decreasing, meaning each element is less than or equal to the next
one.

3. arr2 is monotonically non-increasing, meaning each element is greater than or equal to the
next one.

4. For every index i, arr1[i] + arr2[i] equals nums[i].

And finally, I need to return the count of such pairs, modulo 109 + 7 because the number can be
really big.
Okay, first things first, I need to understand what constitutes a valid pair (arr1, arr2). Given that
arr1 is non-decreasing and arr2 is non-increasing, and their sum at each position equals nums[i],
there must be some relationship between the possible values in arr1 and arr2.
Let me consider a simple example to get a feel for the problem. Take nums = [2, 3, 2], which is in
the example. The output is 4, and they provided four pairs that satisfy the conditions.
Let’s list them out again:

1. ([0, 1, 1], [2, 2, 1])

2. ([0, 1, 2], [2, 2, 0])

3. ([0, 2, 2], [2, 1, 0])

4. ([1, 2, 2], [1, 1, 0])

I can see that in each pair, arr1 is non-decreasing, arr2 is non-increasing, and their sums equal the
corresponding nums[i].
Now, how can I generalize this to any given nums array?
I need to find all possible arr1 and arr2 that satisfy these properties.
One approach that comes to mind is to iterate through all possible arr1 arrays that are non-
decreasing, and for each arr1, determine if the corresponding arr2 array, which is nums - arr1, is
non-increasing.
But this seems inefficient, especially since n can be up to 2000, and the numbers can be up to 50.
That means nums[i] can be up to 50, so arr1[i] and arr2[i] can range from 0 to 50.
Wait, but arr1 and arr2 are arrays of non-negative integers, and their sum is nums[i], which is at
least 1 according to the constraints. So arr1[i] can range from 0 to nums[i], and arr2[i] would be
nums[i] - arr1[i].
Given that, for each index i, arr1[i] can be any integer from 0 to nums[i], and arr2[i] is determined
once arr1[i] is chosen.
But I also have the constraints on the monotonicity of arr1 and arr2.
So, arr1 has to be non-decreasing, and arr2 has to be non-increasing.
This means that for arr1, arr1[i] ≤ arr1[i+ 1], and for arr2, arr2[i] ≥ arr2[i+ 1].
Given that arr2[i] = nums[i]− arr1[i], I can substitute this into the condition for arr2.
So,

nums[i]− arr1[i] ≥ nums[i+ 1]− arr1[i+ 1].

Simplifying this,
arr1[i+ 1]− arr1[i] ≥ nums[i+ 1]− nums[i].

13546

Let me denote d[i] = nums[i+ 1]− nums[i].
Then,

arr1[i+ 1]− arr1[i] ≥ d[i].

Additionally, since arr1 is non-decreasing,

arr1[i+ 1]− arr1[i] ≥ 0.

Combining these,
arr1[i+ 1]− arr1[i] ≥ max(0, d[i]).

This is interesting. It means that the difference between consecutive elements in arr1 has a lower
bound based on the difference in nums.
So, to build arr1, I need to ensure that each step increases by at least max(0, d[i]), and overall, arr1
is non-decreasing.
Given that, perhaps I can model this as a series of choices for the differences between consecutive
arr1 elements.
Let me define

diff[i] = arr1[i+ 1]− arr1[i],

and
diff[i] ≥ max(0, d[i]).

Also, since arr1 is non-decreasing, diff[i] ≥ 0.
But actually, diff[i] ≥ max(0, d[i]) already ensures that diff[i] ≥ 0 when d[i] ≥ 0.
When d[i] < 0, diff[i] ≥ 0 suffices because arr1 is non-decreasing.
Wait, let’s think about d[i] being negative.
If d[i] = nums[i+ 1]− nums[i] < 0, then

arr1[i+ 1]− arr1[i] ≥ d[i],

but since d[i] is negative, and arr1 is non-decreasing, arr1[i+ 1]− arr1[i] ≥ 0 is already stronger
than arr1[i+ 1]− arr1[i] ≥ d[i].
Therefore, for all i,

diff[i] ≥ max(0, d[i]).

More reasoning content are omitted here
To ensure that my code runs correctly, I need to embed all test case inputs directly into my code
and print the corresponding output, following the sample structure below:
Debug Code Template

c l a s s S o l u t i o n :
def c o u n t O f P a i r s (s e l f , nums : L i s t [i n t]) −> i n t :

pass # Implemen t your l o g i c here
s o l u t i o n = S o l u t i o n ()
T e s t t h e example i n p u t s
t e s t _ i n p u t 1 = . . .
t e s t _ i n p u t 2 = . . .
P r i n t o u t p u t
p r i n t (s o l u t i o n . c o u n t O f P a i r s (t e s t _ i n p u t 1))
p r i n t (s o l u t i o n . c o u n t O f P a i r s (t e s t _ i n p u t 2)) # Check t h e o u t p u t

This is a template, not for execution. I need to write code that processes the actual given sample
inputs locally for the task. Alright, with this structure, I can write and execute my code in a Python
compiler using real example inputs. By comparing the actual outputs with the expected outputs, I

13547

can initially assess the correctness of my code. If the outputs do not match, I can debug accordingly.
Recall the test cases in the problem statement.
Example 1:

• Input: nums = [2,3,2]

• Output: 4

• Explanation: The good pairs are:

– ([0, 1, 1], [2, 2, 1])
– ([0, 1, 2], [2, 2, 0])
– ([0, 2, 2], [2, 1, 0])
– ([1, 2, 2], [1, 1, 0])

Example 2:

• Input: nums = [5,5,5,5]

• Output: 126

Alright, now I can write a debug code with samples input.

Python Code

class Solution:
def countOfPairs(self, nums: List[int]) -> int:

MOD = 10**9 + 7
n = len(nums)
if n == 0:

return 0
max_num = max(nums)
dp = [[0] * (max_num + 1) for _ in range(2)]
for x in range(nums[0] + 1):

dp[0][x] = 1
for i in range(1, n):

m = max(0, nums[i] - nums[i-1])
dp[i % 2] = [0] * (max_num + 1)
prefix = [0] * (max_num + 1)
for x in range(max_num + 1):

if x - m >= 0:
dp[i % 2][x] = dp[(i-1) % 2][x - m]

else:
dp[i % 2][x] = 0

prefix[x] = (prefix[x-1] + dp[i % 2][x]) % MOD if
x >= 1 else dp[i % 2][x]

dp[(i-1) % 2] = prefix
return sum(dp[(n-1) % 2][:nums[-1]+1]) % MOD

13548

Python Code

Test the example inputs
solution = Solution()

Example input1
test_input1 = [2,3,2]
Print output
print(solution.countOfPairs(test_input1)) # Expected Output: 4

Example input2
test_input2 = [5,5,5,5]
Print output
print(solution.countOfPairs(test_input2)) # Expected Output: 126

Output

2
6

It appears that the current implementation is not producing the correct outputs for the provided
examples. According to the explanation, the first example should yield 4, but it’s giving 2, and
the second example should yield 126, but it’s giving 6. This indicates a flaw in the logic or
implementation.
Let’s revisit the approach.
Corrected Approach

1. Initialization:

• We need to initialize a DP table where dp[i][x] represents the number of ways to form
the first i elements of arr1 such that arr1[i− 1] = x.

2. Transition:

• For each position i from 1 to n − 1, and for each possible value x that arr1[i] can
take (from 0 to nums[i]), we determine the valid range of arr1[i − 1] based on the
constraints.

• Specifically, arr1[i] ≥ arr1[i − 1] and arr2[i] ≤ arr2[i − 1], which translates to
arr1[i] ≥ arr1[i− 1] +m[i], where m[i] = max(0, nums[i]− nums[i− 1]).

3. Prefix Sums:

• Use prefix sums to efficiently compute the sum of dp[i− 1][y] for y in the valid range.

4. Final Result:

• Sum up dp[n− 1][x] for all x from 0 to nums[−1].

More reasoning content are omitted here
To fix the issues, we need to ensure that the prefix sums are correctly maintained and used in the
DP transitions. Here is the revised code:

13549

Python Code

from typing import List

class Solution:
def countOfPairs(self, nums: List[int]) -> int:

MOD = 10**9 + 7
n = len(nums)
if n == 0:

return 0
max_num = max(nums)
dp = [[0] * (max_num + 1) for _ in range(2)]
for x in range(nums[0] + 1):

dp[0][x] = 1
prefix = [0] * (max_num + 1)
for x in range(max_num + 1):
prefix[x] = dp[0][x] if x == 0 else (prefix[x-1] + dp[0][x]) % MOD
for i in range(1, n):

m = max(0, nums[i] - nums[i-1])
current_row = i % 2
dp[current_row] = [0] * (max_num + 1)
new_prefix = [0] * (max_num + 1)
for x in range(max_num + 1):

if x - m >= 0:
dp[current_row][x] = prefix[x - m]

else:
dp[current_row][x] = 0

new_prefix[x] = (new_prefix[x-1] + dp[current_row][x]) % MOD if
x >= 1 else dp[current_row][x]

prefix = new_prefix
return sum(dp[(n-1) % 2][:nums[-1]+1]) % MOD

Test the example inputs
solution = Solution()

Example input1
test_input1 = [2,3,2]
Print output
print(solution.countOfPairs(test_input1)) # Expected Output: 4

Example input2
test_input2 = [5,5,5,5]
Print output
print(solution.countOfPairs(test_input2)) # Expected Output: 126

Output

4
126

13550

Great! The revised code now produces the correct outputs for the provided examples. This
indicates that the approach and implementation are accurate.

More reasoning content are omitted here

Python Code

from typing import List

class Solution:
def countOfPairs(self, nums: List[int]) -> int:

MOD = 10**9 + 7
n = len(nums)
if n == 0:

return 0
max_num = max(nums)
dp = [[0] * (max_num + 1) for _ in range(2)]
for x in range(nums[0] + 1):

dp[0][x] = 1
prefix = [0] * (max_num + 1)
for x in range(max_num + 1):
prefix[x] = dp[0][x] if x == 0 else (prefix[x-1] + dp[0][x]) % MOD
for i in range(1, n):

m = max(0, nums[i] - nums[i-1])
current_row = i % 2
dp[current_row] = [0] * (max_num + 1)
new_prefix = [0] * (max_num + 1)
for x in range(max_num + 1):

if x - m >= 0:
dp[current_row][x] = prefix[x - m]

else:
dp[current_row][x] = 0

new_prefix[x] = (new_prefix[x-1] + dp[current_row][x]) % MOD if
x >= 1 else dp[current_row][x]

prefix = new_prefix
return sum(dp[(n-1) % 2][:nums[-1]+1]) % MOD

The final solution has been successfully implemented and validated with the provided test cases.
This approach ensures that we efficiently count the number of monotonic pairs while handling
the constraints and large input sizes appropriately. Explanation: - Initialization: We initialize
a DP table for the first element of nums, setting possible values for arr1[0]. - Transition: For
each subsequent element, we calculate the minimum difference and use prefix sums to efficiently
compute the number of valid sequences. - Final Calculation: We sum up the valid sequences for
the last element to get the total count of monotonic pairs.
This method ensures that we handle the constraints effectively and compute the result efficiently
even for larger input sizes.

13551

H Implementation Details

We implement our framework based on two base models: QwQ-32B-Preview and DeepSeek-R1-Distill-
Qwen-32B. For QwQ-32B-Preview, we use a learning rate of 7e-6, while for DeepSeek-R1-Distill-Qwen-
32B, we set it to 2e-6. Both models are trained for 3 epochs with a global batch size of 128 and a cosine
learning rate scheduler with 3% warm-up steps. We set the maximum context length to 16,384 tokens
during training and employ full-parameter fine-tuning with DeepSpeed ZeRO-3 (Rajbhandari et al., 2020)
optimization. During inference, we use greedy decoding with a maximum sequence length of 32,768
and limit tool usage to 6 times per reasoning process. We follow the evaluation metrics from (Yang
et al., 2024) and report pass@1 performance for all benchmarks. The training process is conducted on 32
NVIDIA A100 GPUs, and we maintain the same chat template as the original models for consistency.

I Data Format Comparison

Figure 4: Comparison between the responses generated by QwQ and START. This is a question from LiveCodeBench
with a difficulty level of "hard". QwQ employs long-chain CoT with self-reflection and trying different approaches,
yet hallucinates during complex test case analysis, leading to flawed solutions. START retains QwQ’s cognitive
framework but integrates code execution: (1) Runs code via interpreter, (2) Detects output mismatch, (3) Iteratively
analyzes and debugs, and (4) Gives the final solution. See more cases of START in Appendix G

J Distinction from Test-Time Compute Scaling

Distinction from Test-Time Compute Scaling While our START’s Hint-infer and the S1: Simple
Test-Time Scaling method (Muennighoff et al., 2025a) both involve test-time interventions, they are
fundamentally different in their motivation, mechanism, and method.

• Different Motivation & Goal: The goal of S1 is compute scaling. It utilizes "budget forcing" by
appending a generic "Wait" token to make the model "think longer" and expend more computational
budget, assuming that longer reasoning leads to better results. In contrast, the goal of Hint-infer
is capability activation. We aim to explicitly prompt a Large Reasoning Model (LRM) to switch
from its default text-based reasoning to a tool-integrated reasoning mode. It is a targeted intervention
designed to trigger a specific, latent capability.

13552

• Different Mechanism & Method: The core difference lies in how the reasoning process is guided.
S1 uses a content-free signal, whereas START uses a semantically rich, guiding prompt. S1 appends
a simple, repetitive token to interrupt the model’s termination and force it to continue its current
thought process. START, however, inserts specific, meaningful hints that explicitly suggest using a
tool. Furthermore, our insertion is more strategic: we place hints not only at the end of the thought
process but also at natural junctures within it (e.g., after words like Alternatively or Wait) to encourage
tool use.

In summary, while S1 scales computation, START fundamentally alters the reasoning modality. This
targeted approach to activating tool use is the core novelty of Hint-infer. The stark difference is
illustrated in Table 13.

Table 13: Detailed comparison of intervention strategies between S1 and START.

Method Example of Inserted Text
(in bold)

Purpose

S1 ‘...the answer is 5. Wait‘ Forcing the model to continue rea-
soning.

START (end-process) ‘...the answer is 5. Wait, I
can use Python to check...‘

Activating post-hoc verification.

START (mid-process) ‘...Alternatively, we use
Python to explore a new
way...‘

Prompting an alternative strategy.

J.1 Analysis of Tool Diversity and Generalization
A core design principle of our framework is to treat the Python interpreter not as a single, monolithic
tool, but as a versatile gateway to a vast ecosystem of specialized libraries. This paradigm is a standard
consensus in the Tool-Integrated Reasoning (TIR) subfield. During the synthesis of our training data, the
START framework prompts the model to autonomously leverage a wide array of these tools, demonstrating
a broad range of capabilities from symbolic mathematics to graph analysis, as shown in Table 14.

Table 14: Frequency of various Python libraries used during the synthesis of training data.

Library Count Brief Description

sympy 14,469 Symbolic mathematics
math 11,655 Basic mathematical functions
numpy 5,790 Numerical arrays and computation
itertools 3,131 Iterator tools for sequences
scipy 2,942 Scientific and engineering computation
cmath 104 Complex number mathematical functions
networkx 90 Graph theory and network analysis

13553

