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Abstract

Large Language Models (LLMs) have demon-
strated the capability to refine their generated
answers through self-correction, enabling con-
tinuous performance improvement over multi-
ple rounds. However, the mechanisms under-
lying how and why accuracy evolves during
this iterative process remain unexplored. To
fill this gap, we propose a probabilistic the-
ory to model the dynamics of accuracy change
and explain the performance improvements ob-
served in multi-round self-correction. Through
mathematical derivation, we establish that the
accuracy after the tth round of self-correction
is given by: Acct = Upp− αt(Upp−Acc0),
where Acc0 denotes the initial accuracy, Upp
represents the upper bound of accuracy con-
vergence, and α determines the rate of con-
vergence. Based on our theory, these parame-
ters can be calculated and the predicted accu-
racy curve then can be obtained through only
a single round of self-correction. Extensive ex-
periments across diverse models and datasets
demonstrate that our theoretical predictions
align closely with empirical accuracy curves,
validating the effectiveness of the theory. Our
work provides a theoretical foundation for un-
derstanding LLM self-correction, thus paving
the way for further explorations.

1 Introduction

With the depletion of pre-training corpora, the train-
ing scaling law (Kaplan et al., 2020) reaches the
saturation point, and an alternative way to further
improve performance is introducing more com-
putational cost at test time, also known as infer-
ence scaling (Snell et al., 2025; Hoffmann et al.,
2022). Brown et al. (2024b) repeatedly sample
multiple answers and select the optimal one with
best-of-n (Li et al., 2023) or majority voting (Wang
et al., 2023) strategy, and the curve of how ac-
curacy changes in this process as inference costs
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increase is also experimentally recorded (Wu et al.,
2024a). Another approach to inference scaling
is self-correction (Kamoi et al., 2024; Pan et al.,
2024), where LLMs can refine their answers based
on intrinsic (Madaan et al., 2024) or external (Jiang
et al., 2023b) feedback. Xi et al. (2023); Liu et al.
(2024b) have empirically observed that model per-
formance continuously improves and eventually
converges during multi-round self-correction, but
the underlying reasons and mechanisms remain
poorly understood. To narrow this gap, we pro-
pose a probabilistic theory to model how accuracy
evolves and explain why performance improves in
multi-round self-correction.

In §2, we mathematically derive our theory from
a probabilistic perspective. Yang et al. (2024b)
decompose self-correction capabilities of LLMs
into confidence capability and critique capabil-
ity, introducing two metrics named Confidence
Level (CL) and Critique Score (CS) to measure
them, respectively. Based on their decomposition,
we further discover a recursive relationship be-
tween the accuracy of successive rounds of self-
correction: Acct = (CL − CS)Acct−1 + CS,
where Acct and Acct−1 denote the accuracy after
the tth and t− 1th round of self-correction, respec-
tively. From this recursive relationship, we fur-
ther find Acct = Upp − αt(Upp − Acc0), where
Upp = CS

1−CL+CS , α = CL − CS, and Acc0 is
the initial accuracy. This equation serves as the
core part of our theory by describing how accuracy
evolves in multi-round self-correction. Further, we
derive several corollaries about converged accuracy
and convergence rate.

To directly verify the theory, we compare the
empirical accuracy curve with the theoretical curve
given by our theory, and extensive experiments in
§3 demonstrate that the theoretical curve fits the
empirical curve well across various models and
datasets. Besides, we also give empirical verifi-
cation of 3 corollaries as further support for our
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theory in Appendix E.
Our contributions can be summarized as follows:

1. We propose a probabilistic theory to model
how accuracy evolves in multi-round self-
correction, along with 3 corollaries.

2. To validate our theory, we conduct extensive
experiments and find that our theoretical curve
fits empirical curve well.

3. Our theory provides a probabilistic perspec-
tive to better understand self-correction.

2 Theory

In this section, we introduce an inference scaling
theory to model and explain how accuracy changes
in multi-round self-correction. First, we formally
define the multi-round self-correction process and
provide mathematical notations in §2.1. Then we
discuss a simple scenario where the test set con-
sists of only one datum (§2.2), and further extend
our analysis to the general case where the test set
contains n questions (§2.3). According to our the-
ory, the accuracy after t rounds of self-correction
is given by Acct = Upp − αt(Upp − Acc0) and
finally converges to Upp. Besides, we also give
three corollaries for our theory in §2.4.

2.1 Problem Formulation and Notations

Initially, we have a set comprising of n questions
denoted as Q = {q1, q2, ..., qn}, and we utilize
multi-round self-correction to boost model perfor-
mance. For any given question qi, we first di-
rectly query the model and generate an answer
ai,0. Then we utilize an appropriate prompt to
encourage the model to self-correct ai,0 and get a
refined answer ai,1 and subsequently self-correct
ai,1 to get ai,2, and so on. This process is con-
ducted iteratively, yielding a sequence of answers
ai,0, ai,1, ..., ai,k after k rounds of self-correction.
For the answer ai,t from the tth self-correction,
we denote the probability that the model gener-
ates a correct answer through a single temperature-
based sampling as P (ai,t). The initial accuracy
is defined as Acc0 =

∑n
i=1 P (ai,0)

n , and the accu-
racy after the tth self-correction round is defined as
Acct =

∑n
i=1 P (ai,t)

n . For clarity, all notations and
their corresponding definitions are summarized in
Appendix A.

2.2 Question-Level Theory
We first discuss how the probability of generating
a correct answer for a single question qi evolves as
the number of self-correction rounds increases. For
answer ai,t generated in the tth self-correction, the
answer before self-correction ai,t−1 may be either
correct or wrong, so by the Law of Total Probability
we have:

P (ai,t) =P (ai,t−1)P (ai,t|ai,t−1)

+ [1− P (ai,t−1)]P (ai,t|¬ai,t−1),
(1)

where P (ai,t|ai,t−1) and P (ai,t|¬ai,t−1) denote
the conditional probabilities that ai,t is correct
given that ai,t−1 is correct or incorrect, respectively.
During the tth self-correction round, only ai,t−1 is
fed into the model, rather than the whole sequence
ai,0, ..., ai,t−1. Consequently, these two probabili-
ties depend solely on the question index i and are
independent of the current self-correction round t.
We denote these two probabilities as P con

i and P cri
i

respectively, which represent the probability of gen-
erating a correct answer after self-correction, given
the answer before self-correction is correct/wrong.
For any t ∈ N+, we have P (ai,t|ai,t−1) = P con

i

and P (ai,t|¬ai,t−1) = P cri
i , which we substitute

into Equation 1 to obtain:

P (ai,t) = P (ai,t−1)P
con
i + [1− P (ai,t−1)]P

cri
i

= (P con
i − P cri

i )P (ai,t−1) + P cri
i

(2)
It can be further derived (details are shown in

Appendix B):

P (ai,t) = P upp
i − αt

i(P
upp
i − P (ai,0)) (3)

where P upp
i =

P cri
i

1−P con
i +P cri

i
is the upper bound

accuracy converges to, and αi = P con
i − P cri

i de-
termines the convergence rate.

2.3 Dataset-Level Theory
Further we try to extend the question-level theory
in §2.2 to dataset-level. Yang et al. (2024b) de-
compose the self-correction capability of a model
into two components: confidence (the ability to
maintain confidence in the correct answer) and cri-
tique (the ability to correct wrong answers), and
propose two probabilistic metrics to measure these
capabilities quantitatively, which we adopt directly:

• The Confidence Level (CL) measures the
model confidence, defined as the probability that
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the model retains the correct answer after self-
correction:

CLt = E[P (a_,t+1|a_,t)]

=

∑n
i=1 P (ai,t)P (ai,t+1|ai,t)∑n

i=1 P (ai,t)
,

(4)

• The Critique Score (CS) measures the capabil-
ity to critique and reflect, defined as the probability
that the model corrects a wrong answer to a right
one after self-correction:

CSt = E[P (a_,t+1|¬a_,t)]

=

∑n
i=1[1− P (ai,t)]P (ai,t+1|¬ai,t)∑n

i=1[1− P (ai,t)]
,

(5)

In the tth round of self-correction, the rela-
tionship between accuracy before and after self-
correction and the two metrics above is given by
(with derivation details shown in Appendix B):

Acct = Acct−1CLt−1 + (1−Acct−1)CSt−1

(6)
Assuming that CL and CS reflect the inherent

confidence and critique capabilities of LLMs, so
we treat these metrics as constants independent of
the round number t, which is empirically validated
in Appendix C, and this yields:

Acct = Acct−1 ∗ CL+ (1−Acct−1) ∗ CS (7)

Noticing that Equation 7 and Equation 2 are
essentially the same recurrence relation, we can
similarly derive that:

Acct = Upp− αt(Upp−Acc0) (8)

where Upp = CS
1−CL+CS , α = CL − CS. Em-

pirically we have 0 < α < 1, and as t → +∞,
Acct → Upp. This equation describes how ac-
curacy changes in multi-round self-correction and
provides a theoretical performance upper bound,
serving as the core part of our theory.

2.4 Corollaries
Based on our theory, three corollaries can be further
derived: (1) after infinite rounds of self-correction,
the final accuracy converges to the upper bound
Upp, which is solely determined by CL and CS
and is independent of the initial accuracy Acc0; (2)
the speed of convergence depends α = CL− CS,
and accuracy converge faster when α is lower; (3)
in particular, under the ideal condition with an

oracle verifier (CL = 1), the accuracy follows
Acct = 1− (1−CS)t(1−Acc0), ultimately con-
verging to 100%. The derivation details are shown
in Appendix E.

3 Experiments

3.1 Experimental Setup

Models Experiments are conducted on both open-
source and closed-source models. For the closed-
source models, we assess Qwen-Max (Bai et al.,
2023), GPT-3.5 Turbo, and GPT-4 Turbo (Achiam
et al., 2023) by API calls. For the open-source
models, we evaluate Llama3-8B (AI@Meta, 2024),
Qwen2.5-7B (Yang et al., 2024a), DeepSeek-LLM-
7B (DeepSeek-AI, 2024), Mistral-7B-v3 (Jiang
et al., 2023a), and GLM4-9B (GLM et al., 2024),
and parameters of these models are publicly avail-
able on HuggingFace1. For each open-source
model (< 10B), we run the experiments on a single
Nvidia A100 80G GPU, and utilize vllm 2 to ac-
celerate generation. Similar to Yang et al. (2024b);
Zhang et al. (2024b), we adopt "reask" prompt strat-
egy to encourage models to self-correct (i.e. asking
the question again).

Dataset We conduct experiments on both clas-
sification and generation tasks, including GSM8k
(Cobbe et al., 2021), Humaneval (Chen et al., 2021),
IFEval (Zhou et al., 2023), MMLU (Hendrycks
et al., 2021), BoolQ (Clark et al., 2019), Common-
senseQA (Talmor et al., 2019), PiQA (Bisk et al.,
2019), and HotpotQA (Yang et al., 2018).

3.2 Main Results

To validate our theory, we compare the empir-
ical accuracy change curve with the theoretical
curve predicted by our theory by visualizing them
in the same figure and checking the alignment.
The empirical curve is acquired from a 5-round
self-correction process across multiple models and
datasets, during which we track accuracy and vari-
ance changes. To enhance the numerical stability
of experimental results, we sample five responses
independently for each question and use the aver-
age accuracy for analysis. For the theoretical curve,
we compute three key parameters with a single
self-correction: initial accuracy (Acc0), confidence
level (CL), and critique score (CS). Using these
values and Equation 8, we generate the theoretical

1https://huggingface.co/
2https://github.com/vllm-project/vllm
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Figure 1: Experimental verification of our theory on Llama3-8B-Instruct. The empirical curve in mult-round
self-correction, theoretical curve, and upper bound predicted by our theory are depicted in blue, green, and orange
respectively. The theoretical curve fits the empirical curve well and accuracy approaches but never surpasses the
upper bound.

curve and its upper bound. Since the calculation
of CL and CS relies on probability, we utilize the
probability estimation methods provided by Yang
et al. (2024b), and more details are shown in the
Appendix D.

The experimental results of Llama3-8B-Instruct
are presented in Figure 1, with more results of
other models provided in Appendix G. The re-
sults demonstrate that the theoretical curve closely
aligns with the empirical curve across various
datasets, suggesting that the proposed theory ef-
fectively models and explains the variations in ac-
curacy during self-correction. Furthermore, the
upper bound derived from the theory holds prac-
tical relevance, as the accuracy curve consistently
approaches but does not exceed it, further validat-
ing the effectiveness of our theory.

3.3 Verification of Corollaries

We also provide experimental verification of 3
corollaries, which can also serve as further vali-
dation of our theory: (1) we systematically manipu-
late the initial accuracy to various target values and
observe its impact on the final accuracy, finding
that the final accuracy consistently converges to the
same value (§E.1); (2) we compare the convergence
rates of models with distinct α values, finding that
models with lower α converge noticeably faster
(§E.2) (3) we equip models with an oracle verifier

(CL=1) and observe model performance, finding
that model performance boosts fast and finally con-
verges to 100% (§E.3). Detailed experiment setups
and results are provided in Appendix E.

4 Related Work

Inference Scaling Model performance can be
improved by introducing more computational cost
at test time, and this inference scaling (Snell et al.,
2025; Hoffmann et al., 2022) can be achieved
via Chain-Of-Thought Wei et al. (2022), repeated
sampling Wu et al. (2024a), Monte Carlo Tree
SearchZhang et al. (2023); Liu et al. (2024c), and
multi-round self-correction Liu et al. (2024b); Xi
et al. (2023); Zhang et al. (2024a). Our work pro-
vides a theoretical framework to understand why
and how inference scaling works.

LLM Self-Correction LLMs can correct their
self-generated answers, and this capability (Kamoi
et al., 2024; Pan et al., 2024; Yang et al., 2024b) can
be enhanced through external feedback (Jiang et al.,
2023b), better prompting strategies (Li et al., 2024;
Wu et al., 2024b), reinforcement learning (Kumar
et al., 2024) and iterative self-correction (Qu et al.,
2024; Madaan et al., 2024). Different from pre-
vious works, we propose a theory to explain and
model the accuracy curve for self-correction.
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5 Conclusion

We propose a probabilistic theory to model and
explain how accuracy evolves in multi-round self-
correction along with 3 corollaries. Extensive ex-
periments validate the theory by showing the align-
ment between our theoretical curves and empirical
curves, and empirical verification of 3 corollaries
also futher supports the theory. Our theory provides
theoretical support and a better understanding of
LLM self-correction, thus paving the way for fur-
ther explorations.

Limitations

The calculation of our theoretical curve relies on
probability estimation, which necessitates repeated
sampling for the same question, and the simulation
of multi-round self-correction (i.e. actual curve)
also generates multiple answers for the same ques-
tion. These can be more computationally expen-
sive than traditional experiments where only one
answer is generated for a question. We only exper-
imentally validate our theory on 8 models and 8
datasets in the intrinsic self-correction setting, leav-
ing more verification experiments on more datasets
(e.g. multi-step reasoning tasks) and setting (e.g.
external self-correction) for future work.

Though our theoretical curve can fit the ac-
tual curve to some extent, what happens in self-
correction and how accuracy changes can be much
more complex than our theory. Our theory can only
describe how accuracy changes in multi-round self-
correction, but how performance improves in other
inference scaling settings (e.g. long COT, MCTS)
is still unknown, and we leave it to future work.

Ethical Considerations

The data we utilized are open for research, and
evaluated LLMs are all publicly available by either
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anticipate any ethical concerns in our research.
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Appendix

A Mathematical Notations

This section shows all of the mathematical nota-
tions used in our theory. If you forget the meaning
of any notation, please refer to Table 1. We lever-
age ˆ to symbolize estimates (e.g. P̂ (ai) represents
the estimate of the true value P (ai) ).

B Mathematical Derivations

B.1 Derivation of Equation 3

First, we have the following equation:

P (ai,t) = P (ai,t−1)P
con
i + [1− P (ai,t−1)]P

cri
i

= (P con
i − P cri

i )P (ai,t−1) + P cri
i

(9)

By subtracting P cri
i

1−P con
i +P cri

i
from both sides of

the above equation, we have:

P (ai,t)−
P cri
i

1− P con
i + P cri

i

= (P con
i − P cri

i )(P (ai,t−1)−
P cri
i

1− P con
i + P cri

i

)

(10)

It is evident that P (ai,t) − P upp
i forms a ge-

ometric progression with a common ratio of αi,
where P upp

i =
P cri
i

1−P con
i +P cri

i
and αi = P con

i −P cri
i .

By applying the general term formula of a geo-
metric sequence, we obtain: P (ai,t) − P upp

i =
αt
i(P (ai,0)− P upp

i ).

After k rounds of self-correction, the probability
of the model correctly answering question qi is
expressed as:

P (ai,t) = P upp
i − αt

i(P
upp
i − P (ai,0)) (11)

B.2 Derivation of Equation 6

The detailed derivation of Equation 6 is show as
follows:

Acct

=

∑n
i=1 P (ai,t)

n

=

∑n
i=1 P (ai,t|ai,t−1)P (ai,t−1)

n

+
P (ai,t|¬ai,t−1)P (¬ai,t−1)

n

=

∑n
i=1 P (ai,t−1)

n

∑n
i=1 P (ai,t−1)P (ai,t|ai,t−1)∑n

i=1 P (ai,t−1)

+

∑n
i=1[1− P (ai,t−1)]

n

∗
∑n

i=1 P (¬ai,t−1)P (ai,t|¬ai,t−1)∑n
i=1[1− P (ai,t−1)]

= Acct−1 ∗ CLt−1 + (1−Acct−1) ∗ CSt−1

C Validation of Stability of CL and CS

The values of CL and CS can be influenced by the
model, dataset, and prompts (Yang et al., 2024b).
We investigate how CL and CS values change with
the round of self-correction increases for a given
dataset, model, and prompt strategy. As the results
of Llama3-8B-Instruct shown in Figure 2, CL and
CS values remain nearly constant across multiple
rounds of self-correction.

D Probability Estimation

The metrics CL and CS discussed in §2 are de-
rived from a probabilistic perspective and the cal-
culation depends on three key probability val-
ues for each question qi: P (ai,t), P (ai,t+1|ai,t),
and P (ai,t+1|¬ai,t). However, these probabilities
are not directly observable. Therefore, we em-
ploy statistical methods proposed by Yang et al.
(2024b) to estimate these probabilities as P̂ (ai,t),
P̂ (ai,t+1|ai,t), and P̂ (ai,t+1|¬ai,t) for metric com-
putation. Natural Language Processing (NLP)
tasks are generally divided into classification and
generation tasks, and we will separately discuss the
probability estimation methods applicable to each
type of task.

Probability Estimation for Classification Tasks.
In a K-class classification task, let the set
of all candidate labels be denoted by L =
{l0, l1, . . . , lK−1} (e.g., the candidate set for
MMLU is {A,B,C,D}). A question qi is input
into the model, which outputs a predicted label.
During next-token prediction, the model generates
a logit vector (o0, o1, . . . , o|V |−1), where each el-
ement corresponds to a token in the vocabulary

13580



Notations Meanings

Q a dataset with n questions

qi the ith question in Q

ai,t the answer to question qi generated in the tth round of self-correction

P (ai,t) the probability of generating a correct answer for question qi through a single
temperature-based sampling in the tth round of self-correction

P (ai,t|ai,t−1) the conditional probability of ai,t is correct given ai,t−1 is correct

P (ai,t|¬ai,t−1) the conditional probability of ai,t is correct given ai,t−1 is incorrect

P con
i model confidence in question qi: for any t ∈ N+, we have P (ai,t|ai,t−1) = P con

i

P cri
i critique capability in question qi: for any t ∈ N+, we have P (ai,t|¬ai,t−1) =

P cri
i ,

Pupp
i the upper bound of P (ai,t), and we have Pupp

i =
Pcri
i

1−Pcon
i +Pcri

i

αi the convergence rate of P (ai,t), and we have αi = P con
i − P cri

i

Acc0 the initial accuracy

Acct accuracy after the tth round of self-correction

CL the conditional probability of getting a correct answer after self-correction, given
the answer before self-correction is correct. (defined in Equation 4)

CS the conditional probability of getting a correct answer after self-correction, given
the answer before self-correction is incorrect. (defined in Equation 5)

Upp the upper bound of Acct, and we have Upp = CS
1−CL+CS

α the convergence rate of Acct, and we have α = CL− CS

Table 1: Mathematical notations and their meanings.
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Figure 2: CL of CS values of Llama3-8B-Instruct in different rounds of self-correction.

V , whose size is |V |. The logits are then passed through a softmax function to compute the proba-
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bility distribution for the next token across the en-
tire vocabulary. For classification tasks, we focus
only on probabilities over the candidate label set
L, not the whole vocabulary V . Thus, we discard
most logits, retaining only those corresponding to
candidate labels, producing a reduced logit vec-
tor (o

′
0, o

′
1, . . . , o

′
K−1). After applying the softmax

function, the model predicts the probabilities for
each label P (l0), P (l1), . . . , P (lK−1).

(1) Assuming without loss of generality that the
correct label is l0, then P̂ (ai,t) = P (l0).

(2) By feeding the correct answer l0 back into
the model for self-correction, it outputs a proba-
bility distribution over candidate labels, denoted
as P (l0|l0), P (l1|l0), . . . , P (lK−1|l0), leading to
P̂ (ai,t+1|ai,t) = P (l0|l0).

(3) The computation of P̂ (ai,t+1|¬ai,t) is more
complex. For each incorrect label lj (j ̸= 0), we
input it to the model, allowing for self-correction,
yielding the probability of correcting to the correct
label P (l0|lj). Using the law of total probability,
we have P̂ (ai,t+1|¬ai,t) =

∑K−1
j=1 P (l0|lj)P (lj).

Probability Estimation for Generation Tasks.
We utilize multiple sampling to estimate prob-
abilities by observing the frequency of correct
and incorrect answers. Given a question qi, we
input it to the model to obtain an initial answer,
which the model then attempts to self-correct
to produce a refined answer. This process is
independently repeated M times, and each
pair of initial and refine answers is evaluated
for correctness, yielding a sequence of results
(a0i,t, a

0
i,t+1), (a

1
i,t, a

1
i,t+1), . . . , (a

M−1
i,t , aM−1

i,t+1),
where (ami,t, a

m
i,t+1) denotes the outcome of the

mth repetition. Specifically, P (ami,t) and P (ami,t+1)
indicate the correctness of the initial and refined
answers, respectively. For a correct initial
answer ami,t, P (ami,t) = 1; otherwise, P (ami,t) = 0.
The same logic applies to ati,t+1. Using these
frequencies, we estimate the probabilities as
follows:

(1) P̂ (ai,t) =
∑M−1

m=0 P (ami,t)

M ;

(2) P̂ (ai,t+1|ai,t) =
∑M−1

m=0 P (ami,t)P (ami,t+1)∑M−1
m=0 P (ami,t)

;

(3) P̂ (ai,t+1|¬ai,t) =
∑M−1

m=0 (1−P (ami,t))P (ami,t+1)∑M−1
m=0 (1−P (ami,t))

.

E Corollaries

Based on the theory in §2, three corollaries can be
further derived: (1). the final converged accuracy
is independent of the initial accuracy (§E.1); (2).

the convergence rate of accuracy increases as α
decreases (§E.2); (3). a special case of the theory
where CL = 1 (§E.3). We provide both mathe-
matical derivation and experimental verification of
these corollaries, which can also serve as further
validation of our theory.

E.1 Corollary 1

Corollary 1: The final converged accuracy is
exclusively determined by the confidence and
critique capabilities (i.e., CL and CS), and re-
mains independent of the initial accuracy Acc0.

Derivation of Corollary 1 Intuitively, when the
model is provided with an initial correct or incor-
rect answer to self-correct, it has a higher probabil-
ity of reaching the correct answer when the initial
answer is correct. This implies that CL > CS,
which is also empirically demonstrated by Yang
et al. (2024b). Given that CL,CS ∈ (0, 1), it
follows that 0 < α = CL − CS < 1. Based
on Equation 8, as t → +∞, αt → 0, and thus
Acct → Upp. This indicates after sufficient rounds
of self-correction the final accuracy converges to
Upp = CS

1−CL+CS . Notably, Upp is entirely deter-
mined by CL and CS and is independent of the
initial accuracy Acc0.

Verification of Corollary 1 To validate this
corollary and investigate whether the initial accu-
racy influences the final converged accuracy after
infinite rounds of self-correction, we systematically
manipulate the initial accuracy to various target val-
ues and observe its impact on the final accuracy.
Unlike the experiments described in §3, where the
initial answer ai,0 is generated by feeding the ques-
tion qi to the model, we directly control the initial
accuracy to achieve a desired value Acctarget by
carefully setting the initial answers. For a K-class
classification task, we assign the initial probabil-
ity of the correct class to Acctarget and distribute
the remaining probability uniformly among the in-
correct classes, ensuring that each incorrect class
has a probability of 1−Acctarget

K−1 . This guarantees
that the initial accuracy Acc0 = Acctarget. For
generation tasks with n items in the dataset, we
first sample multiple answers for each question qi
to obtain both correct and incorrect answers. We
then randomly select ⌊Acctarget × n⌋ items to use
correct answers as initial answers, while assigning
incorrect answers to the remaining items, which
ensures that the initial accuracy Acc0 ≈ Acctarget.
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Figure 3: The accuracy convergency results with different initial accuracy Acc0 for Llama3-8B-Instruct: the
accuracy consistently converges to the same final value regardless of the initial accuracy.

In cases where no correct answer is sampled for a
question, we use the standard correct answer from
the dataset. Conversely, if no incorrect answers
are sampled, we truncate a correct answer to create
an incorrect one. As the results of Llama3-8B-
Instruct illustrated in Figure 3, the final accuracy
consistently converges to the same value regardless
of whether the initial accuracy is set to 0%, 20%,
40%, 60%, 80%, or 100%, which experimentally
verifies Corollary 1.

E.2 Corollary 2

Corollary 2: The convergence rate of accuracy
is determined by the parameter α = CL− CS.
Specifically, a model with a lower value of α
exhibits faster convergence in accuracy.

Derivation of Corollary 2 As discussed in §E.1,
as t → +∞, αt → 0, and consequently Acct →
Upp. The convergence rate of αt is decided by the
value α, and the closer the value of α is to 0, the
faster αt will converge to 0. To better illustrate
this difference in convergence speed, consider the
following example: when α = 0.9, α10 ≈ 0.35;
whereas when α = 0.2, α10 ≈ 10−7.

Verification of Corollary 2 To validate this
corollary, we compare the convergence rates of
models with distinct α values. Given the difficulty
in discerning convergence speed differences be-
tween models with similar α values, we select two
models with significantly differing α values for
comparison. As experimentally demonstrated in
§3, the Llama3-8B-Instruct model exhibits a lower
α value, while the Qwen2.5-7B-Chat model has a
higher α value, so we choose these two models for
comparison and analysis. The experimental results
are shown in Figure 4, with more results provided
in Appendix G. Llama3-8B-Instruct (lower α) con-

verges noticeably faster and its accuracy gets closer
to the upper bound after 5 rounds of self-correction
than Qwen2.5-7B-Chat (higher α), which experi-
mentally verifies Corollary 2.

E.3 Corollary 3

Corollary 3: A special case where CL=1, we
have Acct = 1 − (1 − CS)t(1 − Acc0), and
Acct → 1 as t → +∞.

Derivation of Corollary 3 For intrinsic self-
correction, LLMs need to independently evaluate
the correctness of their generated answers (Zhang
et al., 2024d), and errors in this process are almost
inevitable (Stechly et al., 2023; Tyen et al., 2024).
In cases where LLMs incorrectly identify a cor-
rect initial answer as erroneous and subsequently
generate an incorrect answer after self-correction
(!→ %), we have CL < 1 instead of CL = 1.
In contrast, external self-correction helps LLMs
determine the correctness of their answers through
external feedback, leading to a higher CL. For
instance, Zhang et al. (2023); Kim et al. (2023)
employ an oracle verifier to evaluate answer cor-
rectness, while Brown et al. (2024a) investigate
inference scaling laws under the best-of-n metric,
which can be considered as a special case in our
theory when CL = 1. Specifically, when CL = 1,
we have Upp = CS

1−CL+CS = 1, α = 1 − CS,
yielding:

Acct = 1− (1− CS)t(1−Acc0) (12)

As t → +∞, αt → 0, and thus Acct → 1,
which aligns with the idea proposed in Brown et al.
(2024a) that with sufficient times of sampling, the
correct answer will always be encountered.

Verification of Corollary 3 To validate this
corollary, we compare whether the accuracy change
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Figure 5: Curves for the special case (CL = 1) on Llama3-8B-Instruct. The theoretical curve fits the actual curve
well when CL = 1, and exceeds the standard intrinsic self-correction (CL < 1) by a large margin.

curve derived from our theory for the ideal sce-
nario (CL = 1) aligns with the actual experiment
curve. To simulate this special case (CL = 1)
and equip the model with an oracle verifier, once
a correct answer is generated in generation tasks,
we halt subsequent rounds of self-correction and
directly treat the following answers as correct.
For classification tasks, we set the conditional
probability of selecting the correct/incorrect an-
swer after self-correction given the answer be-
fore self-correction is correct to 1/0 (i.e. setting
P (ai,t+1|ai,t) = 1, P (ai,t+1|¬ai,t) = 0). As the
experimental results illustrated in Figure 5 and Ap-
pendix G, we show the experimental curve and
theoretical curve for the special case (CL = 1),
along with the curves for standard intrinsic self-
correction (CL < 1) for comparison. The results
demonstrate that the theoretical curve can still align
well with the empirical curve in this special case
(CL = 1), which experimentally verifies Corollary
3. Besides, we also find the accuracy of CL = 1
is improved by a large margin compared to that
of CL < 1 and can exceed the upper bound of
CL < 1, which shows a promising direction for
further optimization of self-correction.

F Discussion

The Failure of Self-Correction Though Madaan
et al. (2024); Liu et al. (2024a) have found
LLMs can achieve better performance after self-
correction, there is still a debate on the effective-
ness of self-correction and Huang et al. (2024);
Jiang et al. (2024); Valmeekam et al. (2023)
observe accuracy can even decrease after self-
correction with poor prompts. For instance, Xie
et al. (2024); Zhang et al. (2024b) find adding "Are
you sure?" to the prompt will significantly reduce
model confidence, causing it to change correct an-
swers to incorrect ones after self-correction. Our
theory can provide a new perspective to understand
how self-correction fails: poor prompts can disrupt
the balance between the confidence and critique
capabilities of LLMs (CL and CS), thereby reduc-
ing the upper bound (Upp) to which the accuracy
converges, ultimately resulting in Upp < Acc0,
and in this scenario accuracy will decrease after
self-correction. Figure 6 shows a failure case of
Llama3-8B-Instruct on GSM8k under the poor
prompt of "Are you sure?", where accuracy con-
verges to the bound in a descending fashion. For a
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Figure 6: The failure of self-correction of Llama3-8B-
Instruct on GSM8k under prompt of "Are you sure?".
The accuracy decreases after self-correction and con-
verges to the bound in a descending fashion.

given model and test set, different prompts corre-
spond to different Upp values, suggesting that we
should choose better prompts to avoid the failure
of self-correction. A simple approach inspired by
our theory could be testing various prompts and
selecting the one with the highest Upp, and we
leave further explorations in avoiding this failure
to future work.

How Far Can LLM Self-Correction Go? Al-
though previous works (Li et al., 2024; Zhang et al.,
2024c; Wu et al., 2024b) have utilized and opti-
mized self-correction for better performance, the
extent of performance improvements achievable
through self-correction under different settings and
methods is still not thoroughly explored, and our
theory partially fills this gap by providing a theo-
retical upper bound of accuracy. Our theory almost
announces the death of intrinsic self-correction (Xi
et al., 2023; Madaan et al., 2024), as it demonstrates
that intrinsic self-correction cannot surpass the up-
per bound (Upp), which is empirically shown to
be not that high in §3. A more promising direction
lies in external self-correction (Jiang et al., 2023b;
Chen et al., 2024), as we have discussed in §E.3
the great performance improvement brought by an
oracle verifier (i.e. CL = 1), and external feed-
back can be viewed as an approximation of oracle
verifier. Similarly, Kamoi et al. (2024) also discuss
this problem and point out future directions for
self-correction, and our work provides theoretical
support to these discussions.

G More Experiment Results

We try to verify on 8 models and 8 datasets in §3,
but full experiments include 8 ∗ 8 = 64 groups,
which is extremely expensive. So we only do a part
of them and we believe that is sufficient to validate
our theory. We show the results of 8 datasets on
GLM4-9B-Chat in Figure 7, and we also show the
results of 8 models on BoolQ in Figure 8, leaving
more validation experiments on other models and
datasets to further work.

Except for the main experiments, we also pro-
vide more results on the validation of corollaries
(§E). More results on convergence rate (§E.2) are
shown in Figure 9, and more results on a special
case where CL = 1 (§E.3) are illustrated in Figure
10.
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Figure 7: Experimental verification of our theory on BoolQ. The actual curve in mult-round self-correction,
theoretical curve, and upper bound predicted by our theory are shown in blue, green, and orange respectively. The
theoretical curve fits the actual curve well.
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Figure 8: Experimental verification of our theory on GLM4-9B-Chat. The actual curve in mult-round self-correction,
theoretical curve, and upper bound predicted by our theory are shown in blue, green, and orange respectively. The
theoretical curve fits the actual curve well.
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Figure 9: Convergence speed comparison of Llama3-8B-Instruct (α1) and Qwen2.5-7B-Chat (α2): we have
α1 < α2, so Llama3-8B-Instruct (α1) converges noticeably faster and its accuracy gets closer to the upper bound
after 5 rounds of self-correction than Qwen2.5-7B-Chat (α2).
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Figure 10: Curves for the special case (CL = 1) on Llama3-8B-Instruct. The theoretical curve fits the actual curve
well when CL = 1, and exceeds the standard intrinsic self-correction (CL < 1) by a large margin.
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