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Abstract

Large language models (LLMs) have shown
significant potential to improve diagnostic per-
formance for clinical professionals. Existing
multi-agent paradigms rely mainly on prompt
engineering, suffering from improper agent se-
lection and insufficient knowledge integration.
In this work, we propose a novel framework
KACR (Knowledge-Aware Co-Reasoning)
that integrates structured knowledge reasoning
into multidisciplinary collaboration from two
aspects: (1) a reinforcement learning-optimized
agent that uses clinical knowledge graphs to
guide dynamic discipline determination; (2) a
multidisciplinary collaboration strategy that en-
ables robust consensus through integration of
domain-specific expertise and interdisciplinary
persuasion mechanism. Extensive experiments
conducted on both academic and real-world
datasets demonstrate the effectiveness of our
method.

1 Introduction

Accelerated LLM development has demonstrated
remarkable potential in various clinical decision
support systems (Rajashekar et al., 2024), such
as automated medical documentation (Mahar-
jan et al., 2024), intelligent diagnostic consulta-
tion (Tang et al., 2024), and AI-assisted report gen-
eration (Clusmann et al., 2023). These technologi-
cal breakthroughs have enabled the proliferation of
digital health platforms offering real-time consulta-
tion services, significantly enhancing treatment ef-
ficiency while substantially improving patient care
experiences through optimized service delivery.

Previous single-agent paradigms face problems
of knowledge limitation and model robustness.
Recent multi-agent paradigms simulate clinical
decision-making processes (Tang et al., 2024; Kim
et al., 2024), but still face two crucial limitations
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in clinical applications: (1) The absence of pre-
cise patient guidance procedure forces excessive
reliance on prompt engineering for discipline selec-
tion, posing substantial challenges especially in the
presence of complications. (2) Inadequate interdis-
ciplinary coordination and deficient evidence-based
validation result in superficial diagnostic reasoning
for clinical conclusions.

To address these challenges, a promising solu-
tion lies in the integration of external knowledge
graphs (KGs) to enhance the professional com-
petence, credibility, and interpretability of LLM
agents through structured knowledge infusion (Pan
et al., 2024). Although existing methods such
as Think-on-Graph (ToG) (Sun et al., 2024) and
Reasoning-on-Graph (RoG) (Luo et al., 2024) have
demonstrated the potential of LLM-based agents
for KG reasoning tasks, significant challenges per-
sist in clinical applications. Specifically, accu-
rately identifying relevant disciplines within clin-
ical knowledge graphs remains particularly chal-
lenging without domain-specific training. Recent
advancements exemplified by OpenAI-O1 (Zhong
et al., 2024) and DeepSeek-R1 (Guo et al., 2025)
demonstrate that reinforcement learning frame-
works incorporating rule-based reward mechanisms
can effectively optimize multi-step reasoning per-
formance. However, current research efforts have
not sufficiently explored the application of such re-
inforcement learning paradigms to improve LLMs’
layer-by-layer reasoning capabilities on KGs.

In this paper, we present a novel framework
KACR that advances clinical decision-making
through structured knowledge-based reasoning.
Our principal contributions are as follows:

• We propose the KACR framework to enhance
multidisciplinary collaboration. This design emu-
lates comprehensive clinical consultation through
dual-phase clinical reasoning: patient guidance
and multidisciplinary consultation.
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• We introduce a novel reinforcement learning
method for training the dynamic discipline deter-
mination module, enabling context-aware traver-
sal by an LLM-based Actor and estimating rea-
soning state with a graph convolutional network-
enhanced Critic.

• We propose a multidisciplinary knowledge-based
collaboration through confidence-enhanced delib-
erations. A robust consensus can be quantified by
the synergistic integration of domain-specific ex-
pertise and interdisciplinary persuasion through
the context of shared reasoning graph.

• Extensive experiments conducted on eight bench-
mark datasets show that our KACR outperforms
state-of-the-art clinical LLMs and multi-agent
frameworks. 1

2 Preliminary

The architecture of KACR is shown in Fig. 1 (a),
including two modules: the reinforcement learning-
optimized discipline agent reasoning module and
the knowledge-anchored multidisciplinary collabo-
ration module, which are conducted sequentially.

Step I: We start by training the discipline agent
reasoning module using the Proximal Policy Op-
timization (PPO) (Schulman et al., 2017) method.
This module employs an Actor-Critic architecture
where the Actor dynamically identifies question-
relevant nodes on the clinical knowledge graph,
while the Critic evaluates the quality of node se-
lections through value estimation. Unlike conven-
tional approaches, our method implements LLM-
powered reasoning on the clinical knowledge graph
to determine relevant disciplines, concurrently gen-
erating a reasoning subgraph that contextualizes
disciplinary roles through structured semantic re-
lationships. This graph-aware selection mecha-
nism enhances diagnostic relevance through ex-
plicit knowledge grounding.

Step II: Subsequently, the multidisciplinary col-
laboration module coordinates multiple rounds of
interdisciplinary discussions among selected clini-
cal agents. This collaborative process includes two
key innovations: 1) an uncertainty quantification
mechanism that dynamically weights agents’ opin-
ions based on their prediction confidence; 2) a KG-
enhanced confidence reflection mechanism where

1Main work done when working at Alibaba: https://
anonymous.4open.science/r/KACR_RL-2B64

agents iteratively refine their positions through
evidence-based persuasion. Persuasion strength
is explicitly measured using the value estimates
from the Critic trained in Step I, ensuring that
consensus-building is aligned with the underlying
clinical knowledge structure. This dual mechanism
effectively balances specialized expertise with col-
lective intelligence during differential diagnosis.

Knowledge Graph. The clinical knowledge
graph (CKG), denoted as G, comprises three core
components: entity set V , structural relation set
E , and relation type set R. The entities are classi-
fied into three distinct categories: symptom entities
Vs, disease entities Vd, and discipline entities Vc.
Each relation is formally represented as a triplet
(vi, r, vj), where vi (head entity) and vj (tail entity)
are interconnected through the relation type r ∈ R.

3 Methodology

Briefly, the pipeline consists of two stages: (1)
Discipline reasoning training: PPO-based RL with
exclusive LoRA fine-tuning on the Actor, updating
RGCN/MLP in the Critic; (2) Collaborative infer-
ence: Frozen LLM for multi-agent consultations
using Stage I’s reasoning subgraphs, with training-
free discussion via confidence-based voting.

3.1 Discipline Agent Reasoning Module
In Step I, the discipline reasoning module uses an
Actor to identify relevant disciplines for a given
question q through iterative layer-by-layer searches
on the CKG. The Actor contains rule-based heuris-
tic strategies and an LLM-based Actor Net. The Ac-
tor adheres to a predefined meta-path to implement
iterative search: “Question → (Symptom ↔
Disease ↔ Discipline)×N”, where (·)×N indi-
cates the number of iterations. The initial symp-
tom entities are extracted from the question q, and
a trajectory of T = 3N action steps is required
to collect the most relevant nodes in three types:
symptoms, diseases, and disciplines. The Actor
Net utilizes a frozen LLM backbone augmented
with trainable Low-Rank Adaptation (LoRA) pa-
rameters (Hu et al., 2021) for text generation.

3.1.1 Actor with exploration and pruning
At the t-th step (1 ≤ t ≤ T ), the Actor sequentially
executes two operations: exploration and pruning.
In the exploration phase, the Actor traverses along
a predefined meta-path and examines first-order
neighboring nodes, thereby constructing a candi-
date set. Subsequently, during the pruning phase,
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Figure 1: (a) The overall architecture of KACR. (b) Illustration of reasoning on KG layer-by-layer for symp-
tom/disease/discipline nodes determination. (c) State transitions via Actor. (d) Details for Critic Net.

the Actor takes the action of selecting the most rel-
evant nodes from the candidates and, together with
the previously selected Gt−1, forms a new subgraph
Gt ⊆ G. The maximum number for disciplines is
K, and that is K

′
for symptoms and diseases.

The iterative process addresses two primary chal-
lenges: 1) ambiguous patient queries that hinder
effective symptom extraction; 2) inadequate symp-
tom information for precise diagnosis. As illus-
trated in Fig. 2, the initial symptom extraction
from the patient’s statement “I have been...flowers”
yields Fatigue and Cough. Following the for-
ward inference path “Symptom → Disease →
Discipline”, Pneumoni emerges as a relevant diag-
nosis due to its established associations with these
symptoms. Subsequently, this identification leads
to the exploration of Pulmonology through disci-
pline layer analysis. To enhance diagnostic com-
pleteness, a reverse inference path “Discipline →
Disease → Symptom” is subsequently executed
from the Pulmonology node. This bidirectional
search strategy successfully identifies additional
relevant nodes: disease COVID-19 and its asso-
ciated symptom Dysgeusia. The query-specific
candidate set ultimately comprises symptom enti-
ties {Fatigue,Cough,Dysgeusi}, disease entities
{Pneumoni,COVID-19}, and discipline entities
{Pulmonology}. Notably, the identification of Dys-
geusia during secondary iteration demonstrates the
framework’s capability to resolve ambiguous de-
scriptions - this particular symptom aligns more
accurately with the patient’s metaphorical expres-
sion “I can’t even smell the fragrance of flowers”

Fatigue

Cough

Pneumoni Pulmonology

COVID-19
Dysgeusi

Disease DisciplineSymptom

I have been experiencing 
fatigue and cough. I can't 
even smell the fragrance 
of flowers

Query

Figure 2: Illustration for iterative searching on KG.

than the initially reported symptoms.

3.1.2 Critic with text & topological info
The Critic estimates the state value by comprehen-
sively analyzing the newly obtained subgraph Gt

following the execution of the action. As shown
in Figure 1 (d), the Critic’s network architecture
integrates both structural and semantic features
through a dual-stream processing framework. The
implementation involves feeding the subgraph Gt

into a Relational Graph Convolutional Network
(RGCN) (Schlichtkrull et al., 2018) layer for hier-
archical feature extraction.

h
(l+1)
i = σ

( ∑

r∈Rq

∑

j∈Nr
i

1

|N r
i |

W(l)
r h

(l)
j +W

(l)
0 h

(l)
i

)
(1)

where h
(l)
i denotes the node representation of vi at

the l-th layer of the RGCN, N r
i is the neighbors

of node vi under relation r, W(l)
r and W

(l)
0 are

weight matrices, and σ(·) is a sigmoid function.
Node representations are initialized using features
derived from LLM. The subgraph representation
for Gt obtained through global average pooling of
all node representations from the output layer L,
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formally expressed as:

hG = MeanPooling
({

h
(L)
i |1 ≤ i ≤ |Vq|

})
(2)

In addition to topological representation, we add
a multi-layer perceptron MLP1 layer at the final
transformer block of the LLM to encode the ques-
tion q into a vector hS, which maintains identi-
cal dimensionality with the graph representation
hG. The subsequent fusion process involves com-
puting the element-wise average of hS and hG,
followed by a transformation through a secondary
multi-layer perceptron MLP2 to generate the final
probability output p = MLP2(

hS+hG
2 ). Note that

the Critic Network shares the identical LLM back-
bone with the Actor Network, ensuring efficient
training and computing resource utilization.

In Step I, The Critic assesses the quality of the
Actor’s reasoning path to facilitate more effective
exploration and pruning of candidates during train-
ing, while in Step II, it evaluates the factual consis-
tency for the generated clinical diagnoses.

3.1.3 Actor and Critic training with PPO
The neural network architecture is meticulously de-
signed for effectiveness and performance balance.
We use LoRA to achieve optimal performance with
minimal computational overhead. To mitigate po-
tential degradation of the Critic based on LLM
itself, our method combines LLM with RGCN to
achieve better performance in downstream tasks.

During training, only the RGCN and MLPs for
the Critic and the LoRA parameters for the Actor
are updated, making training efficient. The train-
ing procedure employs PPO (Huang et al., 2024)
under the assumption of an episodic setting, which
is an actor-critic method that optimizes the policy
based on the accumulative reward with advantage
function. Let Dk = {(st, at, rt, st+1)}Tt=1 be a tra-
jectory that consists of a sequence of transitions.
st is the state at step t ∈ [0, T ], formed by sub-
graph Gt−1. The action at at step t represents the
selection operation among the nodes of symptoms,
disease, and disciplines within a dynamically evolv-
ing action space. Specifically, action includes using
heuristic rules to explore candidate nodes and textu-
alizing Gt−1 to prompt the LLM to generate pruned
nodes’ information. By integrating Gt−1 with the
pruned node set parsed from the LLM output, the
system progresses to the subsequent state st+1 by
constructing the updated subgraph Gt. Here, rt is
the immediate reward for at, which returns 1 when
at least one node in the selected subset matches

the discipline labeled with ground-truth, and con-
versely assigns 0 when no alignment occurs.

Let θ denote the parameterization of the Actor
network, where the importance sampling ratio is
defined as the probability ratio between succes-
sive policy iterations: rt(θ) =

πθ(at|st)
πθold

(at|st) . Concur-
rently, let ϕ parameterize the Critic network. Actor
maximization and Critic minimization objectives
in PPO can be formulated as:

L
(θ)
actor = Êt

[
min

(
rt(θ)Ât, clip(rt(θ), 1± ϵ)Ât

)]

L
(ϕ)
critic = Êt

(
Vϕ(st)− R̂t

)2 (3)

where Êt is the expectation and the clipping opera-
tor clip(·) regulates policy updates by constraining
the probability ratio rt(θ) within [1− ϵ, 1+ ϵ], thus
preventing excessive deviation of the importance
sampling ratio from 1. The cumulative future re-
ward is R̂t =

∑T
t′=t

(
γ
)t′−t

rT , where γ ∈ [0, 1] is
the reward discount factor. The advantage function
Ât is computed through the generalized advantage
estimation (GAE) framework (Zhao et al., 2024):

Ât =
T∑

t′=t

(
γλ

)t′−t(
rt′ + γV (st′+1)− V (st′)

)
(4)

where λ is a hyper-parameter and V (st′) is a value
function denoting the expected return at state st′ .

3.2 Multidisciplinary Collaboration Module

In Step II, all participating agents employ an iden-
tical frozen LLM to facilitate multi-agent collabora-
tive reasoning. For a user query q and its associated
disciplinary nodes Vd identified in Step I, we instan-
tiate |Vd| distinct disciplinary agents A = {Ai}|Vd|

i=1

to engage in a multi-round discussion. This module
strengthens inter-agent collaboration through two
principal mechanisms: 1) vertical domain-specific
knowledge grounding to improve initial diagnostic
precision, and 2) horizontal consensus formation
by integrating knowledge derived from the reason-
ing subgraph into factual consistency check. The
illustration is shown in Fig. 1 (a), following two
phases: Initial diagnosis and expert discussion.

3.2.1 Initial diagnosis from separate agent.
The set of candidate diagnostic hypotheses for the
question q can be represented as Oq. For every
discipline vi node, we reverse the question-specific
graph GT from which vi originates, to derive its
reasoning subgraph Gi

T . We textualize Gi
T into a

reference description Ri. For each domain-specific
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agent Ai associated with discipline vi ∈ Vd, the
initial diagnostic outcome can be formalized as:

(
a
(0)
i , x

(0)
i , c

(0)
i

)
= Ai

(
q,Oq,Ri|Pg

)
(5)

where Pg denotes a prompting strategy (see in Ap-
pendix), a(0)i is the predicted diagnosis option, x(0)i

denotes the generated explanatory rationale, and
c
(0)
i ∈ [0, 1] quantifies the confidence level of this

diagnostic decision. Prompting LLM to score its
own output can cause Degeneration-of-Thought
(DoT) (Liang et al., 2024) issues due to excessive
self-overconfidence. To address this, we repur-
pose the well-trained Critic to assess the confidence
score, using the discipline-specific reasoning sub-
graph Gi

T as a reference.

3.2.2 Multi-round expert discussion.
The multidisciplinary collaboration module pro-
ceeds to the R-round discussion phase. In the dis-
cussion round r, agent Ai uses a discussion prompt
Pm to refine its diagnostic results. The primary
discussion step for each agent Ai in round r can be
expressed as:

(
a
(r)
i , x

(r)
i , c

(r)
i

)
= Ai

(
q,Oq,Ri,H(r−1)

i |Pm

)
(6)

Specifically, each round contains three stages:
1) Confidence assignment for all answers. For

each round r, we use the Critic to estimate the
confidence c

(r)
i for each agent Ai. This allows

us to construct the grouped answer tuples T (r) ={
(a

(r)
i , x

(r)
i , c

(r)
i )

}|Vd|
i=1

for all the agents A.
2) Enhancing reasoning through inter-agent

opinion integration. When an agent attempts to
refine its cognitive process by assimilating perspec-
tives from peer agents, we postulate that persua-
sive demonstrations capable of effectively shaping
others’ judgments can yield strategic advantages.
Let H(r)

i denote the dialogue history for agent i in
round r, initialized as an empty set during the ini-
tial round. We implement a debate-oriented agent
governed by Pd to iteratively refine the current so-
lution a

(r)
i into an updated version a

′(r)
i , leveraging

the aggregated responses T (r) collected among all
agents. Concurrently, the agent produces a cali-
bration rationale x

′(r)
i that elucidates the reasoning

adjustments, which is later attached to the respec-
tive dialogue history H(r)

i .
3) Consultation result aggregation. During the

conclusion of each round r, the multidisciplinary

collaboration module generates the consolidated re-
sponse â(r) through an adaptive weighting mecha-
nism. Although conventional approaches including
simple majority voting demonstrate practical viabil-
ity, our empirical analysis reveals that the calibrated
weight-based aggregation scheme demonstrates en-
hanced performance in cross-disciplinary scenarios.
The formal implementation of this mechanism is
formulated as below:

â(r) = argmax
oj∈Oq

|Vd|∑

i=1

c
(r)
i I

(
a
′(r)
i = oj

)
(7)

The indicator function I(·) evaluates to 1 if the con-
dition a

(r)
i = oj is satisfied, and 0 otherwise. The

discussion continues for a maximum of R rounds
or terminates prematurely when all agents achieve
unanimous consensus. Details for the multidisci-
plinary collaboration are provided in Appendix.

4 Experiments And Results

4.1 Experimental Setting

Datasets. We evaluate our method based on var-
ious benchmark datasets. Primary experiments
were conducted on the four most widely used med-
ical datasets: MedQA (Jin et al., 2021), MedM-
CQA (Pal et al., 2022), PubMedQA (Jin et al.,
2019), and MMLU medical topics (Hendrycks
et al., 2020). These datasets include various med-
ical questions, such as disease diagnosis, medica-
tion inquiries, and health advice. We also create
a re-labeled sub-dataset for training the discipline
reasoning module, using 2000 samples from the
above datasets. Three experienced medical pro-
fessionals annotate the appropriate disciplines for
queries, with final labels determined by majority
voting. The annotation shows high reliability, with
a Fleiss’s kappa of 0.86. The CKG is derived from
the authoritative Unified Medical Language Sys-
tem (UMLS) (Amos et al., 2020), which is an au-
thoritative resource published by the United States
National Library of Medicine. It is continuously
updated to ensure latest medical knowledge update,
and we use its 2024AA version2. Note that our em-
phasis lies in enhancing multi-agent reasoning with
external graph integration, not KG construction,
and better KG alternatives can be involved.

To validate the generalizability of our established
model in more complex clinical scenarios, we per-
formed extended evaluations on four additional

2https://www.nlm.nih.gov/research/umls/
licensedcontent/umlsknowledgesources.html
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Model MedQA MedMCQA PubMedQA MMLU AVGan ck cm cb mg pm Avg.

Galactica-120B 44.4 52.9 77.6 58.5 59.2 57.8 68.8 70.0 59.6 62.3 59.3
Clinical Camel-70B 53.4 47.0 74.3 62.2 69.8 67.0 79.2 69.0 71.3 69.7 61.1
PMC LLaMA-13B 56.4 56.0 77.9 61.5 63.0 52.6 59.7 70.0 64.3 61.8 63.0

Meditron-70B 60.7 65.1 80.0 62.7 72.3 62.8 82.5 77.8 77.9 72.6 69.6
Med42-70B 61.3 61.9 77.2 64.4 75.9 69.9 84.0 83.0 78.7 75.9 69.1

BiMediX-8×7B 62.8 62.7 80.2 74.1 78.9 68.2 86.1 85.0 80.5 78.8 71.1
Flan-PaLM-540B 67.6 57.6 75.2 71.9 80.4 76.3 88.9 74.0 83.5 79.1 69.6
Med-PaLM-540B 67.1 57.6 80.0 66.7 77.7 73.4 88.2 73.0 80.1 76.5 70.3

LLaMA3-8B 60.9 50.7 73.0 63.0 72.1 64.2 79.7 76.0 77.2 72.0 64.2
LLaMA3-70B 79.9 69.6 75.8 76.3 87.2 81.5 92.4 93.0 88.2 86.4 77.9

ChatGPT 64.0 68.7 73.4 64.4 78.5 84.7 76.0 82.0 74.0 76.6 70.7
GPT-4 81.4 72.4 75.2 80.0 86.0 76.9 95.1 91.0 93.0 87.0 79.0

†KACR(LLaMA3−70B) 90.4 81.8 86.5 89.2 88.9 87.6 96.1 91.8 95.8 91.6 87.6

Table 1: Comparison with different vanilla clinical/general LLMs. † denotes models trained with PPO.

clinical datasets that reflect more intricate and real-
world clinical scenarios. DDXPlus (Fansi Tchango
et al., 2022) is a large-scale Electronic Health
Record (EHR) dataset, which is used to test the
performance of models in diagnosing complex
and diverse medical conditions. SymCat (Al-Ars
et al., 2023) is a synthetic dataset which includes
symptom-condition samples according to ICD-10-
CM. JAMA (Chen et al., 2025) includes real-world
clinical cases collected from the JAMA Network
Clinical Challenge archive. Medbullets (Chen
et al., 2025) comprises USMLE Step 2/3 style ques-
tions collected from tweets since April 2022, which
emulate common clinical scenarios. Table 9 sum-
marizes the statistics of the datasets.

Implementation. We implement our method using
PyTorch and conduct experiments on a server with
8 NVIDIA A100 80GB GPUs. We use the OpenAI
API3 to access ChatGPT and GPT-4. For all experi-
ments, we determine hyperparameters through grid
search. The Actor and Critic models are trained
over maximum 50 epochs (mini-batch 8) at learn-
ing rate 5e-5, with warm-up and early-stop strategy.
Training for the 70B model takes about an hour
per thousand samples/epoch. The maximum input
length for LLM is 8192 tokens. The hyperparam-
eters for PPO is γ = 0.9, λ = 0.95 and ϵ = 0.2.
The temperature is set to 0.9 during PPO training,
whereas it is set to zero during inference to ensure
reproducibility. The reported results come from the
following upper bound settings: discipline number
K = 5, symptoms and diseases number K

′
= 10,

and the reasoning and collaboration rounds N and
R are both 3. Details can be seen in computational
study section. Each experiment is repeated 3 times,
with a t-test result of t ≤ 0.005.

3https://platform.openai.com/docs/overview

4.2 Baseline Comparisons

Comparison with different vanilla LLMs. We
employ the PPO-trained †KACR(LLaMA3−70B) as
our primary model unless otherwise specified. We
first compare its performance directly with various
vanilla general/clinical LLM backbones in Table 1.
Galactica is trained on a scientific corpus (Taylor
et al., 2022). Clinical Camel incorporates question-
answering data through a dialogue-based knowl-
edge encoding process, transforming PubMed ar-
ticles and MedQA into questions and detailed an-
swers (Toma et al., 2023). Both PMC-LLaMA (Wu
et al., 2023) and Meditron (Chen et al., 2023b)
perform pretraining on PubMed content and clin-
ical texts, followed by refinements on individual
multiple-choice question answer datasets. Med42
serves as an instruction-tuned LLaMA model de-
signed for clinical tasks (Christophe et al., 2024).
BiMediX is a bilingual clinical mixture of experts
based on Mixtral-8×7B (Pieri et al., 2024). Flan-
PaLM is the instruction-tuned variant of PaLM,
while Med-PaLM is its resulting model with addi-
tional prompt parameters aligned with the clinical
domain (Singhal et al., 2023). LLaMA3 is a herd
of language models and we use both Llama-3-8B-
Instruct and Llama-3-70B-Instruct for comparison
(Dubey et al., 2024). GPT-4 (gpt-4-turbo) is a pow-
erful LLM accessible via API service, and we re-
port its 5-shot performance (Achiam et al., 2023).
The experimental results in Table 1, apart from
our KACR algorithm, are referenced from the orig-
inal reports of baseline models. It can be seen that
the performance of KACR surpasses all existing
state-of-the-art medical LLM backbones. Addi-
tionally, the analysis on the six subcategories of
MMLU demonstrates its consistent performance
across different medical scenario problems.
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Method MedQA MedMCQA PubMedQA MMLU

ReConcile∗ 70.9 54.2 77.4 78.2
CMD∗ 66.0 58.0 74.0 76.4
MAD 80.8 73.2 79.6 84.2

ChatEval 81.3 76.2 82.6 86.9
Debating 82.0 72.8 80.5 85.4
DyLAN 81.9 74.0 82.8 81.4

Medagents 83.0 78.0 83.1 89.1
MDAgents 88.7 79.8 75.0 90.2

PMC-LLaMA-13B 56.4 56.0 77.9 63.0
Meditron-70B 60.7 65.1 80.0 69.6
Qwen2.5-7B 63.2 51.4 70.8 73.1

Qwen2.5-72B 78.2 75.4 78.3 84.3
†KACR(PMCLLaMA) 65.3 64.4 81.5 72.7
†KACR(Meditron) 74.1 69.4 83.5 78.7

†KACR(Qwen2.5−7B) 69.1 60.4 73.5 69.7
†KACR(Qwen2.5−72B) 87.3 80.8 83.5 89.6

LLaMA3-70B(SFT ) 80.2 71.4 76.3 78.5
KACR(GPT4) 86.3 80.3 84.4 90.4

KACR(LLaMA3−8B) 65.1 54.3 74.4 75.3
†KACR(LLaMA3−8B) 70.1 62.3 78.6 77.3
KACR(LLaMA3−70B) 84.2 78.4 80.4 87.2
†KACR(LLaMA3−70B) 90.4 81.8 86.5 91.6

Table 2: Comparison among various multi-agent meth-
ods. The baselines in the first part use GPT4 by default.
“∗" indicates methods based on mixture LLMs.

Comparison with multi-agent methods. We com-
pare our method with leading multi-agent frame-
works. ReConcile and CMD facilitate collabo-
ration among multiple LLMs (Bard, Gemini and
ChatGPT) as per their original settings. (Chen
et al., 2023a; Wang et al., 2024). For other meth-
ods, we use GPT-4 as LLM backbone. MAD
promotes divergent thinking via opposing perspec-
tives (Smit et al., 2023). ChatEval uses three com-
munication strategies, favoring simultaneous-talk-
with-summarizer (Chan et al., 2023). Debating
leverages non-expert judgment of expert debates
to identify correct answers (Khan et al., 2024).
DyLAN enables agents to interact for multiple
rounds in a dynamic architecture with inference-
time agent selection to improve performance (Liu
et al., 2023). Medagents leverages role-playing
LLM-based agents who participate in a collabo-
rative discussion for the clinical domain, thereby
enhancing LLM proficiency and reasoning capabil-
ities (Tang et al., 2024). MDAgents (Kim et al.,
2024) proposes adaptive collaboration frameworks
for medical decision support, yet oversimplifies
discipline reasoning and inter-agent coordination
through heavy reliance on prompt engineering, re-
sulting in performance limitations. As shown in
the first block of Table 2, our method outperforms
all baselines on MedQA, MedMCQA, PubMedQA
and MMLU. To further validate the generalizabil-
ity of our established model in more complex clin-
ical scenarios, we show extended evaluations on

more complex datasets such as DDXPlus, SymCat,
JAMA and Medbullets in Fig. 3. We can find that
our KACR also performs the best on most datasets
in these scenarios. Compared to CMD and ReC-
oncile, our approach enhances output diversity by
incorporating role-specific knowledge. Unlike gen-
eral frameworks such as ChatEval, Debating, and
DyLAN, our method optimizes multidisciplinary
consultations by integrating professional clinical
knowledge and involving clinical experts. Com-
pared to Medagents and MDAgents that heavily re-
lies on prompt engineering, our KACR introduces
additional CKG components with PPO-optimized
reasoning agents and knowledge-grounding cali-
bration, which enhances collaboration quality.

Applying KACR on different LLM backbones.
We evaluate the KACR performance by applying
it on different backbones such as Qwen2.5 (Yang
et al., 2024), LLaMA3 and other two clinical LLMs.
Since we focus on the joint training based on re-
inforcement learning and knowledge graph. The
closed-source models accessed via API such as
GPT-4 or Claude-3.5 Sonnet can only used as base-
lines instead of training backbones of our KACR.
Here KACR(GPT4) indicates we only apply the
GPT-4 on the inference framework without PPO
training. We also compared LLaMA3-70B(SFT ),
which is finetuned using traditional SFT method
on the training set, with only a slightly improve-
ment compared to base LLaMA3-70B while un-
derperforming †KACR(LLaMA3−70B). SFT meth-
ods struggles with graph reasoning as training data
lacks explicit reasoning traces, inducing pattern
over-fitting. Our framework resolves this via two
approaches: (1) PPO-driven integration of struc-
tured rule rewards and metapath-guided explo-
ration; (2) Actor-Critic agents’ multi-layer CKG
exploration for contextualized diagnoses via pro-
gressive evidence accumulation. It can be found
that KACR improves the performance for different
LLM backbones. We focus on training the rea-
soning ability of the LLM on KG for discipline
selection, without developing its generation capa-
bilities for discussions, as this is not our primary fo-
cus. Notably, although the original performance of
GPT-4 exceeds that of LLaMA3-70B, our method
†KACR(LLaMA3−70B) outperforms KACR(GPT4)

because of well-crafted PPO training.
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Figure 3: Comparisons on complex clinical datasets.

Method MedQA MedMCQA PubMedQA

w/o CKG 83.0 78.0 83.1
w/o PPO 84.2 78.4 80.4

w/o confidence 88.2 80.2 84.3
LLM confidence 89.2 81.1 85.1

single round reasoning 88.9 80.7 84.6
single round discussion 88.7 79.6 84.8

†KACR(LLaMA3−70B) 90.4 81.8 86.5

Table 3: Component contribution study.

4.3 Ablation Study

Component contribution study. To investigate
the contributions of each component in KACR,
we conduct an ablation study with several vari-
ants, as shown in Table 3. Following Meda-
gents (Tang et al., 2024), w/o CKG removes the
CKG-enhanced discipline reasoning module. w/o
PPO uses the original LLM for discipline reason-
ing. w/o confidence and LLM confidence exclude
the confidence-enhancement strategy or use the
LLM for scoring instead of the Critic model. sin-
gle round reasoning and single round discussion
disable the iterative reasoning and discussion mech-
anisms, respectively. Overall, each component con-
tributes positively to the performance.

1 2 3 4

0 . 5

1 . 0

2 4 6 8
7 0

8 0

9 0  ( a )

 ( b ) ( b )

 D i s c u s s  R o u n d

 

 

Co
nv

erg
enc

e

 M e d Q A
 M e d M C Q A
 P u b M e d Q A

Ac
cur

acy
 (%

)

 A g e n t  N u m b e r

 M e d Q A
 P u b M e d Q A
 M e d M C Q A

Figure 4: (a) Influence of maximum discipline agents
number K on various datasets. (b) Convergence analy-
sis for different discuss round r at 5-agent configuration.

Computational study. The impact of the number
of discipline agents on various datasets is depicted
in Fig. 4 (a), with all other parameters fixed. It can
be observed that the optimal number of agents is 5,
and this value remains consistent across different
datasets. We then present the convergence patterns
using the identified optimal 5-agent configuration.
From Fig. 4 (b) we can see that basically more than
90% of the questions reached an agreement in the
third round, and more than 95% of the questions
reached an agreement in the fourth round. This
finding aligns with the trends reported by other
multi-agent frameworks (Kim et al., 2024).

5 Related Work

Multi-Agent Systems. Agents are a promising
development in artificial intelligence, with early
studies showing that assigning roles to LLMs sig-
nificantly influences their output (Shanahan et al.,
2023). Role playing introduces specific knowl-
edge, making LLMs more interactive and capa-
ble of tackling complex tasks. However, LLM-
based agents can introduce bias and instability, and
may face DoT issues (Liang et al., 2024). Re-
cent research on multi-agent collaboration aims
to enhance LLM truthfulness by leveraging col-
lective intelligence (Smit et al., 2023) and fos-
tering divergent thinking for in-depth tasks. For
example, Du et al. (2023) proposed a Society of
Minds (SoM) where multiple agents share their an-
swers to collaborate effectively. Chan et al. (2023)
introduced ChatEval, featuring three communica-
tion strategies: one-by-one, simultaneous-talk, and
simultaneous-talk-with-summarizer. However, role
identity is often manually assigned or generated by
LLMs, leading to errors from imprecise selections.
Moreover, current multi-agent frameworks often
overlook individual roles’ self-evaluations. In con-
trast, we integrate LLMs with knowledge graphs to
facilitate deeper reasoning.

LLM-KG Integrating Paradigm. LLMs often
fail to capture and access factual knowledge due to
their black-box characteristics. In contrast, knowl-
edge graphs, which act as structured knowledge
frameworks, can enhance LLMs by providing exter-
nal knowledge and improving interpretability (Pan
et al., 2024). Meanwhile, KGs struggle with com-
plexity and updates, limiting new knowledge gen-
eration. Integrating LLMs with KGs synergizes
their strengths, often by converting KG knowl-
edge into prompts for LLMs. However, loose-
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coupling restricts LLMs’ role in graph reasoning.
Fusion models like QA-GNN (Yasunaga et al.,
2021) and GreaseLM (Zhang et al., 2022) com-
bine LLMs and GNNs to jointly reason over text
and graph knowledge. In addition, LLMs can also
be treated as agents that interact with KGs to con-
duct reasoning. Think-on-Graph (ToG) (Sun et al.,
2024) and Reasoning-on-Graph (RoG) (Luo et al.,
2024) provide tight-coupling paradigms where
KGs and LLMs work in tandem, complementing
each other’s capabilities in each step of graph rea-
soning. However, due to the complexity of graph
patterns and target tasks, LLMs often struggle with
accurate inference without task-specific optimiza-
tion. Furthermore, studies rarely effectively inte-
grate KGs into different clinical phases, including
domestic knowledge provision, confidence scoring,
and multi-agent collaboration.

Generalizability to Similar Scenarios. Our
KACR framework can be easily generalized to var-
ious scenarios, such as law and finance. On the one
hand, many domains have high-quality knowledge
graphs, and users can freely define meta-paths by
analogy with medical scenarios. On the other hand,
each domain has different agent roles, who reach a
consensus conclusion through discussion. Finally,
knowledge graphs are not always necessary, and
our framework will degenerate into a multi-agent
collaborative framework without external KG. For
example, a financial investment in the "new en-
ergy vehicle industry chain" can benefit from joint
discussions by different expert agents (e.g., "auto-
motive" and "battery" experts). A meta-path like
“customer needs → related products → core com-
panies → niche domains” can guide the selection
of domain-specific expert agents.

6 Conclusion

Our work introduces KACR, a knowledge-aware
framework that bridges structured clinical knowl-
edge with multi-agent collaboration to advance di-
agnostic reasoning. By integrating PPO-optimized
discipline reasoning and knowledge-anchored dis-
cussion via confidence enhancement, KACR alle-
viates critical limitations in multi-agent collabo-
ration for complex clinical decision-making. Ex-
tensive experiments conducted on eight clinical
benchmarks demonstrate that our method achieves
the best performance.

7 Limitations

This study focuses on enhancing the reasoning abil-
ity of LLM through knowledge graph integration.
Additional training could improve performance. Al-
though hand-crafted prompts for knowledge node
selection, clinical diagnosis, and multidisciplinary
consultation are iteratively refined through multi-
phase experimentation, their current implementa-
tions do not represent theoretically optimal config-
urations. Future investigations will prioritize the
development of a systematic framework integrating
knowledge graph embeddings and neural architec-
ture search to automate prompt optimization, thus
establishing a robust paradigm for dynamic prompt
engineering in medical decision-support systems.
In this paper, we adopt UMLS for its authorita-
tive and semi-annual updates, ensuring sustained
knowledge currency. Note that our implementation
focuses on using KGs as contextual references for
LLM agents rather than graph-construction itself,
and better KG alternatives could further improve
the performance.

8 Ethical Considerations

This study presents a decision-support framework
conceptualized as a supplementary tool for health-
care professionals and end-users, providing data-
driven insights to improve clinical decision-making
processes. It is imperative to emphasize that di-
agnostic determinations and therapeutic interven-
tions must remain in the purview of licensed med-
ical practitioners. The model outputs should un-
dergo rigorous clinical validation and be interpreted
within comprehensive diagnostic contexts, as un-
critical reliance on algorithmic recommendations
without adequate human oversight may introduce
clinical risks. The proposed system is conceived
as complementary enhancements to, rather than
substitutes for, professional medical judgment and
domain expertise. All experimental resources (i.e.,
datasets, KGs and LLMs) utilize exclusively pub-
licly accessible datasets derived from established
medical repositories and research resources that
have undergone extensive validation within the sci-
entific community.
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A Graph Description Template Exemplar

Graph Structure Description: In this heterogeneous
graph, Symptoms nodes are connected to Diseases nodes
through “Related to” edges, indicating the associations
between symptoms and diseases. Diseases nodes are con-
nected to Disciplines nodes through “Belongs to Disci-
pline” edges, indicating the medical disciplines to which
the diseases belong. This structure clearly demonstrates
the complex relationships among symptoms, diseases,
and disciplines.

Node Types:

• Symptoms: Represent various symptoms exhib-
ited by patients, such as headache, fever, etc.

• Diseases: Represent specific types of diseases,
such as influenza, pneumonia, etc.

• Disciplines: Represent medical disciplines, such
as internal medicine, surgery, etc.

Edge Types:

• Related to: Connects Symptoms and Diseases,
indicating the association between symptoms and
diseases.

• Belongs to Discipline: Connects Diseases and
Disciplines, indicating the medical discipline to
which a disease belongs.

Node Sets:

• Symptoms Node Set: S =
{Symptom1, Symptom2, . . . , SymptomL}

• Diseases Node Set: D =
{Disease1,Disease2, . . . ,DiseaseM}

• Disciplines Node Set: C =
{Discipline1,Discipline2, . . . ,DisciplineK}

Edge Sets:

• Related to Edge Set: Erelated =
{(Symptomi,Diseasej) | i ∈ [1, L], j ∈ [1,M ]}

• Belongs to Discipline Edge Set: Ebelongs =
{(Diseasej ,Disciplinek) | j ∈ [1,M ], k ∈
[1,K]}

Table 4: Graph Description Template Exemplar.
.

#Background: You are a clinical assistant, and a user
consults you with a clinical question: {{question q}}.
From the question, we have initially extract potential
symptoms {{initial symptoms}}

#Current reasoning subgraph: {{Gt Description}}

#Candidate node set for current step: From the current
reasoning graph Gt, we have explored from a clinical
knowledge graph that the question is related to potential
symptoms (or diseases / disciplines): {{symptoms Vs}}(
or {{diseases Vd}} / {{disciplines Vc}}

)
.

#Instruction: Select {{top-K}} symptoms (or diseases /
disciplines) from the candidate setNt that are relevant
to the question.

Table 5: Pa: Exemplar prompt template for Actor Net
to prune nodes from candidates.

.

#Background: You are a clinical assistant in {discipline
vi}, a user consults you with a clinical question: {{ques-
tion q}}.

#References: There is a reference information which
contains all the reasoning paths from question q to disci-
pline vi. The reference description isRi.

#Options: {{options Oq}}

#Instruction: Given the references, you should conduct
step-by-step reasoning and select the best answer from
the options.

Table 6: Pg: Exemplar prompt template for initial diag-
nose generation.

.

B Prompt Template Exemplar

#Background You are a clinical assistant in {discipline
vi}, a user consults you with a clinical question: {{ques-
tion q}}.

#References: There is a reference information which
contains all the reasoning paths from question q to dis-
cipline vi. The reference description isRi. In addition,
from last round of discussion, there is a {{temporary
consensus result â(r)}}. You have also considered the
diagnosis results provided by other experts in various
disciplines, and put the calibrating explanation from the
debater agent into your {{chat historyH(r)

i }}.

#Options: {{options Oq}}

#Instruction: Considering the references, please think
step-by step, and select the best answer, with detailed
explanation.

Table 7: Pm: Exemplar prompt template for multi-round
expert discussion.

.
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#Background: You are a clinical debating assistant,
there is a clinical question: {{question q}}. Another
clinical assistant in {discipline vi} has initially give the
{{temporary answer a(r)

i }}, please help check the answer
and calibrate it if needed.

#References: There is a reference information which
contains the temporary answers, explanations and con-
fidence scores from all agents: {{grouped information
T (r)}}.

#Options: {{options Oq}}

#Instruction: Given the references, please think step-by-
step, and select the most proper answer from the options,
with your calibrating explanation .

Table 8: Pd: Exemplar prompt template for the debater
DEB.

.

C KG-enhanced Multidisciplinary
Collaboration

The pseudo-code for multidisciplinary collabora-
tion is shown in Algorithm 1.

Algorithm 1 KG-enhanced Multidisciplinary Col-
laboration
Require: Agents number |Vd|, discuss turn R, a group of

agents A = {Ai}|Vd|
i=1 , chat history of each agent at each

round r H(r) = {H(r)
i }

|Vd|
i=1 , debater DEB;

Ensure: Final answer ANS.
1: for r ← 1, R do
2: for i← 1, |Vd| do
3: (a(r)

i , x
(r)
i )← Ai(q,Oq,Ri, â

(r−1),H(r−1)
i );

4: c
(r)
i ← Critic(q, a

(r)
i , x

(r)
i ,GiT );

5: T (r) ← T (r−1) + [(a
(r)
i , x

(r)
i , c

(r)
i )];

6: end for
7: for i← 1, |Vd| do
8: (a′(r)

i , x
′(r)
i )← DEB(a

(r)
i , T (r));

9: H(r)
i ← H(r−1)

i + [x
′(r)
i ]

10: end for
11: â(r) = argmax

oj∈Oq

∑|Vd|
i=1 c

(r)
i I

(
a
′(r)
i = oj

)

12: end for
ANS ← â(R)

13: return ANS

D PPO Algorithm

Our PPO optimization with clipped surrogate ob-
jective follows OpenAI’s instruction 4, the pseudo-
code is shown in Algorithm 2.

4https://spinningup.openai.com/en/latest/
algorithms/ppo.html

Algorithm 2 PPO
Require: Initial policy parameters θ0 and value function pa-

rameters and ϕ0;
1: for k = 0, 1, 2, ... do
2: Collect set of trajectoriesDk = {τi} by running policy

πk = π(θk) in the environment.
3: Compute rewards-to-go R̂t.
4: Compute advantage estimates, Ât based on the current

value function Vϕk.
5: Update policy by maximizing PPO-Clip objective:

θk+1 = argmax
θ

1

∥Dk∥T
∑

τ∈Dk

T∑

t=0

[
min

(
rt(θ)Ât,

clip(rt(θ), 1± ϵ)Ât

)]

, typically via stochastic gradient with Adam.
6: Fit value function by regression on means-squared

error:

ϕk+1 = argmin
ϕ

1
∥Dk∥T

∑
τ∈Dk

T∑
t=0

(
Vϕ(st)− R̂t

)2

,

typically via some gradient descent algorithm.
7: end for

E Dataset Details

• MedQA5 is a multiple choice question an-
swering (MCQA) dataset based on the United
States Clinical License Exams. It covers three
languages, and we choose the subset of 12,723
English instances for experiments.

• MedMCQA6 is a large-scale MCQA dataset
designed to address real-world clinical en-
trance exam questions. It has more than 194k
high-quality entrance exam samples covering
2.4k healthcare topics and 21 clinical subjects.

• PubMedQA7 is a dataset for bio-clinical re-
search question answering which has 1k ex-
pert labeled, 61.2k unlabeled and 211.3k arti-
ficially generated QA instances.

• MMLU8 is a dataset of massive multitask
language understanding covering 57 sub-
jects. We select 6 clinical subjects, including
anatomy (an), clinical knowledge (ck), col-
lege medicine (cm), clinical genetics (mg),
and professional medicine (pm).

• DDXPlus (Fansi Tchango et al., 2022). DDX-
Plus is a medical diagnosis dataset using

5https://paperswithcode.com/dataset/
medqa-usmle

6https://medmcqa.github.io/
7https://pubmedqa.github.io/
8https://paperswithcode.com/dataset/mmlu
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synthetic patient information and symptoms.
Each instance represents a patient, with at-
tributes including age, sex, initial evidences,
evidence, multiple options of possible patholo-
gies, and a ground truth diagnosis.

• SymCat (Al-Ars et al., 2023). SymCat is
a synthetic dataset which includes 5 million
symptom-condition samples, covering 801
distinct conditions each with 376 potential
symptoms dataset.

• JAMA (Chen et al., 2025). JAMA includes
1524 clinical cases collected from the JAMA
Network Clinical Challenge archive, which
are summaries of actual challenging clinical
cases. Each sample is framed as a question,
with a long case description and four options.

• Medbullets (Chen et al., 2025). Medbullets
comprises 308 USMLE Step 2/3 style ques-
tions collected from open-access tweets on X
(formerly Twitter) since April 2022. The diffi-
culty is comparable to that of Step 2/3 exams,
which emulate common clinical scenarios.

F Clinical Knowledge Graph Details

To create the clinical knowledge graph, CKG, we
utilize the Quick-UMLS tool9 to extract pertinent
clinical concepts from the UMLS database. Quick-
UMLS identifies biomedical entities by linking
them to UMLS Concept Unique Identifiers (CUIs)
and their associated semantic types from the UMLS
Metathesaurus. Upon receiving a query, it retrieves
approximate matches within UMLS, returning both
the CUIs and the corresponding semantic types for
each concept. Each distinct CUI serves as a node
in our knowledge graph, with the relationships be-
tween these nodes established using the UMLS
Semantic Network module. In detail, we extract
an English subgraph comprising entities from three
conceptual types: “Sign or Symptom", “Disease or
Syndrome" and “Biomedical Occupation or Disci-
pline". For brevity, we refer to these entity types
as “Symptom”, “Disease” and “Discipline”, respec-
tively.

G Online Experiments

Conventional online consultation systems typi-
cally operate through a single-agent interaction

9https://github.com/Georgetown-IR-Lab/
QuickUMLS

Dataset Number of Choices Train/Dev/Test

MedQA Question + Answer 10,178/1,272/1,273
MedMCQA Question + Answer 182,822/4,183/6,150
PubMedQA Question + Context + Answer 400/100/500

MMLU Question + Answer 30/-/1,089

DDxPlus Question + Answer -/-/134K
SymCat Question + Answer -/-/369K
JAMA Case + Question + Answer -/-/1,524

MedBullets Case + Question + Answer -/-/308

Table 9: Statistics of the four benchmark datasets.

Patient  Guidance Multidisciplinary 
Consultation

(a) Traditional service (b) Our CDSS service

Discipline

Agent

Better
Result

Figure 5: Comparison between different services.

paradigm, as illustrated in Fig. 5(a). While this
streamlined single-agent approach enables rapid
responses, it often demonstrates limitations in di-
agnostic depth and explanatory capacity. Even
when incorporating human medical expertise, such
systems frequently encounter challenges includ-
ing elevated operational costs for manual diagnosis
and constraints imposed by individual practition-
ers’ knowledge boundaries. These inherent lim-
itations may compromise the system’s ability to
deliver comprehensive clinical solutions. Our pro-
posed framework, depicted in Fig. 5(b), addresses
these limitations through a dual-phase reasoning
architecture that emulates established clinical work-
flows. The system architecture comprises: (1) Pa-
tient Guidance and (2) Multidisciplinary Consulta-
tion. The first phase employs symptom-initialized
clinical reasoning to direct patients to appropriate
medical specialties (Tuncel et al., 2021), which
minimizes risks associated with diagnostic inac-
curacies and treatment delays through proper spe-
cialty allocation. For instance, patients presenting
with acute cephalalgia accompanied by neurologi-
cal deficits or ophthalmological manifestations re-
quire immediate neurosurgical evaluation rather
than general practitioner consultation. However,
clinical complexity arising from comorbid condi-
tions and multifaceted symptom presentations of-
ten exceeds the diagnostic capabilities of single-
specialty evaluation. Our second-phase multidis-
ciplinary consultation mechanism addresses this
through simulated expert collaboration, mirroring
real-world multidisciplinary team approaches (Shi
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Guidance 
Module

Multidisciplinary 
Consultation Module

LLM

KG

User query

Results

API

API

Cloud Server

KACR
拉肚子
反复的多次发作
有加重趋势

请描述您腹泻的
症状属性。

大便性状：稀烂便
颜色：黄绿色
气味：腥臭味

根据您的描述，AI分析结果
如下，供您参考。

您可能患有以下疾病：

• 急性阑尾炎 （72%）
• 腹膜炎（17%）
• 肠胃炎（11%）

详情>>

立即挂号>>

(a)
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Intervention
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Online Comparison

Rule-based System KACR (b)

Figure 6: (a) Launch of CDSS app. and (b) Online A/B
test.

et al., 2024). This consensus-driven diagnostic
model integrates cross-specialty perspectives to op-
timize treatment planning for complex cases.

To evaluate the online performance of KACR,
we deployed it in a phone app (see Fig. 6 (a)) and
conducted a two-month online test, during which
we recorded the metrics. In real-world applica-
tions, initial diagnosis results are provided by tradi-
tional clinical diagnosis systems or doctors. KACR
integrates seamlessly into the Clinical Decision
Support Systems (CDSS), featuring a streamlined
user interface that requires the entry of the pa-
tient’s symptom descriptions. During the obser-
vation period, our system facilitates over 10,000
online queries, generating clinical decisions based
on the information available. The initial diagnostic
suggestions stem from a traditional rule-based ap-
proach. We select the option with the highest prob-
ability in the initial rule-based system as the A/B
test comparison result. Given that Np is the number
of pre-diagnosis actions where the system success-
fully generates clinical suggestions, we evaluated
the effectiveness of the online system using the
following metrics:

• Adoption Rate Ra = Na/Np. Here Na is the
number of instances where the generated re-
sults have been deemed accurate by healthcare
professionals.

• Intervention Rate Ri = Ni/Np. Here Ni is

the number of seeking for help from customer
service when users are dissatisfied with pre-
diagnosis results. A lower intervention rate
reflects greater acceptance of these outcomes.

• Satisfaction Rate Rs = Ns/Np. Here Ns

is the number of the clicking the yes-or-no
satisfaction survey button. It is supposed that
this survey takes into account various factors
such as accuracy, usability, and explainability.

• Conversion Rate Rc = Nc/Np. Here Nc

is the number of effective conversion ac-
tions including registrations and paid consul-
tations taken by users after completing the
pre-diagnosis.

In this work, we not only consider the accuracy
metric, but also consider other online evaluation
metrics, including adoption rate, intervention rate,
satisfaction rate, and conversion rate. These auxil-
iary metrics show the subjective evaluation of real
users after seeing the diagnosis results with detail
reasons (e.g. reasoning on CKG, confidence for
discussions), which can well reflect the quality of
interpretability.

From Fig. 6 (b), we can see that our KACR has
improved the result accuracy by 27% and user satis-
faction by 25% compared to traditional rule-based
diagnostic systems. It also significantly reduces the
need for human customer service intervention by
61% while simultaneously increasing the effective
conversion rate by 58%. Given that the average pro-
cessing time for our method is less than one minute,
it enables near real-time clinical decision-making
while maintaining a high level of performance.

H Case Study

To better understand the diagnosis process of
KACR, we utilize a dataset instance for case study.
Results are in Table 10. We first infer description-
specific disciplines via the discipline reasoning
module. Method “w/o CKG” ignores genetics with-
out CKG guidance. In contrast, our reasoning strat-
egy on CKG gets better predictions. The neurology
expert identifies a cause consistent with the symp-
toms of neurological sequelae from meningiomas.
The oncology expert favors renal cell carcinoma
with low confidence. Genetics shows a genetic ba-
sis for meningiomas. After discussion, all agree op-
tion B) Meningioma is correct according to clinical,
neurological and genetic evidences. This verifies
our method’s holistic and accurate assessment.
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Description: A 20-year-old man comes to the physician because of
worsening gait unsteadiness and bilateral hearing loss for 1 month. He
has had intermittent tingling sensations on both cheeks over this time
period. He has no history of serious clinical illness and takes no medica-
tions. Audiometry shows bilateral sensorineural hearing loss. Genetic
evaluation shows a mutation of a tumor suppressor gene on chromosome
22 that encodes merlin. This patient is at increased risk for which of the
following conditions?
Choices: (A) Renal cell carcinoma. (B) Meningioma. (C) Astrocytoma.
(D) Vascular malformations. (E) Telangiectasias.
Truths: (B) Meningioma

Inferred disciplines from the discipline reasoning module:

• w/o CKG: 1) Neurosurgery. 2) Otolaryngology 3) Oncology.

• Our: 1) Neurology 2) Oncology 3) Genetics

Diagnostic result from the multidisciplinary collaboration:

• Neurology: Meningioma. (Confidence Level: 90%)

• Oncology: Renal Cell Carcinoma. (Confidence Level: 40%)

• Genetics: Meningioma. (Confidence Level: 95%)

Multidisciplinary Consultation Result: (B) Meningioma

Table 10: Case study for clinical decision.

I Notation Table
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Symbol Description

q For a given question

N Number of iterations on CKG

Gt−1 Previously selected subgraph for Actor

Gt The newly formed subgraph after taking an action of Actor

K The maximum number for disciplines

K
′

The maximum number for symptoms and diseases

Dk A trajectory that consists of a sequence of transitions for PPO training

Vd Associated disciplinary node set with question q

vi ith disciplinary node in Vd

Ai ith disciplinary agent for the given question q

Oq Set of candidate diagnostic hypotheses for question q

GT The whole reasoning graph for the given question q

Gi
T The subgraph backtracked from vi originating on GT

Ri A reference description textualized from Gi
T according to Appendix A

a
(0)
i The predicted diagnosis option in initial diagnose for Ai

x
(0)
i The generated explanatory rationale for a(0)i

c
(0)
i The confidence level for a(0)i

a
(r)
i The predicted diagnosis option in discussion round r for Ai

x
(r)
i The generated explanatory rationale for a(r)i

c
(r)
i The confidence level for a(r)i

a
′(r)
i The updated version for a(r)i from the debater

x
′(r)
i The calibration rationale that elucidates the reasoning adjustments for a′(r)i

T (r) The grouped answer tuples for all the agents A
â(r) The consolidated response through an adaptive weighting mechanism in rth round

Table 11: Symbol Description Table
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