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Abstract

Vision-language-action models have gained sig-
nificant attention for their ability to model mul-
timodal sequences in embodied instruction fol-
lowing tasks. However, most existing models
rely on causal attention, which we find sub-
optimal for processing sequences composed
of interleaved segments from different modal-
ities. In this paper, we introduce Astra1, a
novel Transformer architecture featuring tra-
jectory attention and learnable action queries,
designed to efficiently process segmented mul-
timodal trajectories and predict actions for imi-
tation learning. Furthermore, we propose a con-
trastive dynamics learning objective to enhance
the model’s understanding of environment dy-
namics and multimodal alignment, comple-
menting the primary behavior cloning objective.
Through extensive experiments on three large-
scale robot manipulation benchmarks, Astra
demonstrates substantial performance improve-
ments over previous models.

1 Introduction

Vision-language-action models (VLAs) (Brohan
et al., 2023a) have recently emerged to address em-
bodied instruction following tasks (EIF) (Lu et al.,
2025). Previous multimodal models, such as vision-
language models (VLMs), have demonstrated pro-
ficiency in handling both visual and textual inputs,
successfully tackling a variety of tasks, such as
visual question answering and image captioning
(Zhang et al., 2024a). In contrast, VLAs differ
from VLMs in that they can interpret language in-
structions, visually perceive their environment, and
execute actions to fulfill specified embodied tasks.
As a result, VLAs can empower embodied agents
to interact with the physical world.

To accommodate multimodal inputs, previous
Transformer-based VLMs (Ghosh et al., 2024) ex-
plored designing special types of self-attention to

1https://github.com/yueen-ma/Astra
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Figure 1: Comparison of information flow in an ac-
tion segment. Squares represent tokens, while orange
dots represent their embeddings. Three action tokens
comprise an action “segment”. The lines illustrate infor-
mation flow from input embeddings (bottom) to output
embeddings (top) through a Transformer self-attention
layer. In trajectory attention, tokens attend not only to
preceding tokens, as in causal attention, but also to sub-
sequent tokens within the same segment, as indicated
by the green lines.

better suit the unique properties of different modal-
ities. For example, in the task of image captioning,
causal attention is not ideal for encoding images
because there is no inherent causal relationship
among image patches (Li et al., 2023a). Conse-
quently, these VLMs allow bidirectional attention
for image tokens while maintaining causal attention
for text tokens.

We have similarly observed that multimodal se-
quences in EIF tasks, which are often referred to
as trajectories, exhibit unique properties that can
be more effectively captured by a novel type of
self-attention, named trajectory attention, as illus-
trated in Figure 1 & 3. Specifically, each language
prompt, state, or action consists of multiple tokens,
which we collectively refer to as a “segment.” For
instance, embodied agents often utilize multiple
camera angles, resulting in a state that comprises
a segment of tokens, with each token correspond-
ing to a different camera. These state tokens lack
causal relationships within the same segment, as
they are conditionally independent. The same holds
for action tokens that correspond to action dimen-
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Figure 2: The architecture of Astra. A trajectory τ comprises a prompt segment p1:4, state segments s1:2,t, action
segments a1:3,t. Learnable action queries q1:3,t are inserted after state segments to extract information for action
generation. Vertical dashed lines separate these segments. Token embeddings (orange dots) can attend to embeddings
in all previous segments (thick horizontal arrows) and to all embeddings within the same segment (gray and green
lines). Notably, action queries are hidden from other tokens and can only read from preceding tokens. To facilitate
contrastive dynamics learning, Astra can also encode the entire trajectory by pooling the embeddings of the last
segment (red box).

sions. Therefore, causal attention hinders full infor-
mation flow within a segment because tokens are
restricted from attending to subsequent tokens.

To overcome this limitation, we design trajec-
tory attention with two key characteristics: inter-
segment attention is causal, and intra-segment at-
tention is bidirectional. Since a VLA model only
needs to encode the language prompt and follow
the corresponding instruction, we also apply bidi-
rectional attention to the prompt segment. Con-
sequently, our model processes EIF trajectories at
the segment level. Accordingly, we also devise
a segment-level decoding scheme that generates
a segment as a whole. Drawing inspiration from
DETR’s object query (Carion et al., 2020; Chen
et al., 2024) for object detection, we employ one
learnable action query for each action dimension.
Each action query extracts the most relevant in-
formation for its corresponding action dimension
from preceding tokens and generates the optimal
action independently of other action queries. By
combining trajectory attention and action queries,
we introduce an efficient Transformer architecture
for EIF trajectories, which we name the Action-
predicting Segment-level Transformer, or Astra
for short. Figure 2 provides an overview of Astra.

The Astra architecture also possesses the capa-
bility to encode the entire sequence, which opens
the possibility for contrastive dynamics learning
(CDL), as shown in Figure 2. Numerous prior ap-
proaches have explored incorporating dynamics

learning to bolster the main imitation learning task
(Xu et al., 2024), but these efforts typically rely
on decoding tasks: forward dynamics methods aim
to predict the next state, while inverse dynamics
methods attempt to reconstruct the action between
two consecutive states. Such approaches often add
considerable model complexity, such as requiring
a video generator.

Our CDL objective instead leverages the encod-
ing capabilities of Astra. As illustrated in Figure 4,
we create positive samples using a novel action
perturbation technique to augment action segments.
Negative samples are constructed by mismatch-
ing segments with those from other trajectories,
thereby violating the environment dynamics. By
distinguishing positive samples from negative ones,
it learns the correct dynamics, which in turn en-
hances performance on downstream EIF tasks. Due
to the encoding nature of CDL, its implementation
simply requires a classification head consisting of
a pooling layer followed by a linear layer—a sig-
nificantly lighter overhead compared to previous
decoding-based dynamics learning methods. From
another perspective, CDL also serves as a represen-
tation learning approach for multimodal alignment
(Xiao et al., 2025), as it requires effectively encod-
ing the multimodal trajectories.

The main contributions of this paper are:

• We introduce Astra, an efficient Transformer
architecture featuring trajectory attention and
action queries, designed to efficiently process
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multimodal trajectories on the segment level;

• We propose a contrastive dynamics learning
objective that enhances Astra’s understanding
of environment dynamics and its multimodal
encoding capabilities, thereby complementing
imitation learning;

• Extensive experiments across three large-scale
robot manipulation benchmarks demonstrate
that Astra significantly outperforms state-of-
the-art methods, showcasing the effectiveness
of our approach.

2 Related Work

Vision-Language-Action Models. VLAs (Ma
et al., 2024b) are a new class of multimodal models
designed to generate actions based on specified lan-
guage prompts and perceived environments, first
proposed by RT-2 (Brohan et al., 2023a). These
models adapt pretrained large VLMs to predict ac-
tions for EIF tasks and are often referred to as
“large VLAs.” Representative works include RT-2
(O’Neill et al., 2024), OpenVLA (Kim et al., 2024),
and π0 (Black et al., 2024).

Another line of work does not utilize pretrained
VLMs and instead builds VLAs from scratch,
which are termed “generalized VLAs.” These mod-
els predominantly draw upon the pioneering foun-
dations laid by DT (Chen et al., 2021) and TT
(Janner et al., 2021), where reinforcement learning
is framed as sequence modeling problems. Gato
(Reed et al., 2022) explored the use of a single
Transformer model (Vaswani et al., 2017) for tasks
spanning various domains. RT-1 (Brohan et al.,
2023b) was the first robotics Transformer. VIMA
(Jiang et al., 2022) studied multimodal prompts.
Astra can also be categorized as a generalized VLA.
However, distinct from these prior VLA models,
which rely on causal or cross attention mechanisms,
we propose a more efficient Transformer architec-
ture for multimodal EIF tasks.

Multimodal Transformers & Learnable Queries.
Several VLMs (Ghosh et al., 2024), such as UniLM
(Dong et al., 2019), M6 (Lin et al., 2021), and
PaliGemma (Beyer et al., 2024) have endeavored
to optimize Transformer’s self-attention for vision-
language inputs by proposing various attention
types, such as block attention. To the best of our
knowledge, our architecture is the first VLA de-
signed to accommodate multimodal EIF trajecto-
ries with a unique self-attention mechanism.

First introduced in DETR (Chen et al., 2024;
Carion et al., 2020), learnable object queries have
shown promising results in extracting information
for object detection. BLIP-2 (Li et al., 2023a) used
a similar strategy to extract visual embeddings for
vision-language tasks. In our approach, we employ
learnable action queries at the action-dimension
level to extract information most relevant to indi-
vidual action dimensions.

Dynamics Learning & Multimodal Contrastive
Learning. Many recent dynamics learning ap-
proaches (Li et al., 2024; Sun et al., 2023; Liu
et al., 2022) can be classified into two categories:
forward dynamics learning and inverse dynamics
learning. Most of these methods rely on extra gen-
erative modules, such as video generators (Cheang
et al., 2024; Du et al., 2023). Our CDL leverages
contrastive learning and involves only an encoding
process using a lightweight linear head.

A series of VLMs have demonstrated the signif-
icance of contrastive learning in enhancing multi-
modal interaction (Zhang et al., 2024a). However,
contrastive learning methods for EIF trajectories,
such as R3M (Nair et al., 2022) and VIP (Ma et al.,
2023a), primarily focus on improving visual rep-
resentations. In contrast, our CDL task compels
the model to align all three modalities, thereby en-
abling more effective encoding of EIF trajectories.

3 Method

3.1 Preliminaries
Multimodal sequences in embodied instruction
following tasks are often referred to as tra-
jectories (Lu et al., 2025). These trajectories
consist of a language instruction (p), states (s),
and actions (a). An trajectory is denoted as
τ = (p, st=1, at=1, . . . , st=T , at=T ), where t
represents the timestep. Each element in the
trajectory—p, st, or at—comprises a segment
of tokens. For instance, a state st is a segment
s1:M,t = (s1,t, s2,t, . . . , sM,t), where each element
is a token representing an image from a particular
camera angle. Action tokens in at represent either
SE(2) actions or 6D pose actions. Tokens in
p are standard language tokens. Therefore, a
trajectory at the token level can be written as τ =
(p1:L, s1:M,t=1, a1:N,t=1, . . . , s1:M,t=T , a1:N,t=T ).
L, M , and N are the length of their corresponding
segments. The goal is to obtain a policy that
can generate an optimal action based on the past
trajectory, expressed as π(at|p, s≤t, a<t).

13623



p₁ p₂ p₃ p₄ s₁ s₂ a₁ a₂ a₃

p₁

p₂

p₃

p₄

s₁

s₁

s₂

a₁

a₂

a₃

s₁

(a) Causal attention.

p₁ p₂ p₃ p₄ s₁ s₂ a₁ a₂ a₃

p₁

p₂

p₃

p₄

s₁

s₂

a₁

a₂

a₃

s₁

s₁

(b) Trajectory attention.

Figure 3: Attention matrices of causal and trajectory attention. The direction of attention is from the top (input) to
the left (output). Dark cells represent attention masks. Green-bordered cells highlight additional information flow
enabled by trajectory attention, corresponding to the green lines in Figure 1.

3.2 Architecture of Astra
Astra consists of two main novel components: tra-
jectory attention and action queries, as illustrated
in Figure 2. Most VLMs (Bai et al., 2025) uti-
lize Transformer decoders as the backbone for nat-
ural language generation (NLG). To ensure that
future tokens are not visible, these Transformer
decoders typically use causal attention. Previous
VLAs (O’Neill et al., 2024; Brohan et al., 2023b)
have also adopted this approach for action genera-
tion. Although causal attention is well-suited for
NLG, where language tokens are generated autore-
gressively, it is not the optimal attention mechanism
for modeling multimodal trajectories in EIF tasks.

Trajectory attention. Images of the state st from
multiple cameras arrive simultaneously, lacking
causality among themselves. They are determined
solely by the preceding action at−1 and the envi-
ronment. The same principle applies to actions:
the action dimensions of at depend only on pre-
vious states and actions and are conditionally in-
dependent of each other. They do not exhibit a
clear causal order. For instance, in a 3D coordinate
(x, y, z), it is not evident whether x depends on y
or vice versa. Regarding the language prompt, as
it is provided by the user, the model’s role is to
encode and understand it rather than generate it,
akin to BERT (Devlin et al., 2019). Vanilla causal
attention might impede information flow within
each segment of a multimodal EIF trajectory, pro-
hibiting s1,t from attending to s2:M,t, and s2,t from
attending to s3:M,t, and so forth. This phenomenon

also manifests in the prompt and action segments.
To address the issue, we propose an efficient

Transformer self-attention mechanism for multi-
modal EIF trajectories, termed trajectory attention.
Trajectory attention exhibits two key properties:
the inter-segment connections are causal, and the
intra-segment connections are bidirectional. Its
corresponding attention matrix is illustrated in Fig-
ure 3. Following the convention of Transformer
attention matrices, we designate the column index
(top) as the source of self-attention and the row
index (left) as the destination. Consequently, the
causal attention matrix has all its lower triangular
entries, (i, j) for i ≥ j, set to one, while the re-
maining entries are set to zero. Trajectory attention
is achieved by unmasking the entries correspond-
ing to (pi, pj), (si,t, sj,t), or (ai,t, aj,t) for i < j.
When compared with causal attention, there are
L(L− 1)/2 + T

(
M(M − 1)/2 +N(N − 1)/2

)

additional entries joining the self-attention in every
Transformer layer, which theoretically explains the
effectiveness of trajectory attention. As a result,
Astra is designed to process multimodal trajecto-
ries at the segment level, aligning well with the EIF
setting, as it involves states and actions rather than
individual tokens.

Action query. Adapting to the segment-level
trajectory attention mechanism, we introduce a
segment-level decoding scheme based on learnable
action queries. Most prior VLAs generate action
dimensions autoregressively, where each action di-
mension depends on its preceding token (Kim et al.,
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Figure 4: Contrastive dynamics learning. (a) In the anchor trajectory (blue arrow), the object on the right is picked
up and placed into the bin on the left. A slightly deviated trajectory (green arrow) can still reach the desired
destination, enabling action perturbation to be used in constructing positive samples. (b) Given the anchor, we
construct a positive sample by applying image augmentation (aug.) and the proposed action perturbation. Negative
samples are created by mismatching states and actions from other trajectories.

2024; Brohan et al., 2023a). However, this ap-
proach is suboptimal because the embedding of the
preceding token is highly dependent on its input
and may lack the most relevant information for the
action dimension. For instance, when generating
a1,t, its preceding token is sM,t. Although the em-
bedding of sM,t can aggregate information from
the past trajectory through self-attention, it remains
significantly influenced by its corresponding input
image due to various mechanisms in Transformers,
such as residual connections. Consequently, it may
fail to encapsulate sufficient information necessary
for accurately predicting a1,t.

To overcome this limitation, we adopt learnable
action queries q1:N for individual action dimen-
sions a1:N , inspired by DETR (Chen et al., 2024;
Carion et al., 2020). Each action query qi is ded-
icated to one action dimension ai and is shared
across all timesteps: qi,t=1 = qi,t=2 = · · · =
qi,t=T for i ∈ {1 . . . N}. We argue that this ap-
proach can find more relevant information for each
action dimension because the action query qi can
exclusively attend to information pertinent to ai,t.
Since action queries have no associated input to-
ken, their embeddings fully retain action dimension
information. Moreover, distinct from autoregres-
sive generation, the action queries are independent
of each other and can therefore generate all di-
mensions of an action segment in parallel. Con-
sequently, the decoding procedure operates at the
segment level. As the action queries are solely used
for information extraction and do not hold any tra-
jectory information, they are masked out from the
attention matrix, ensuring that other tokens cannot
see them through the self-attention mechanism.

Astra. Combining trajectory attention and action
queries, we introduce a novel Transformer archi-

tecture named Astra for imitation learning. The
training process optimizes the standard behavior
cloning objective on offline expert trajectories:

LBC = min
θ

T∑

t=1

− log πθ(at|p, s≤t, a<t). (1)

3.3 Contrastive Dynamics Learning
Dynamics learning encourages the model to learn
how the environment transitions from one state to
another based on the agent’s action, enabling it to
make more informed decisions for EIF. Our con-
trastive dynamics learning (CDL) introduces mini-
mal overhead to the model architecture, requiring
only an additional classification head composed
of a pooling and linear layer. As illustrated in
Figure 4b, we construct positive samples by aug-
menting the anchor trajectory using standard image
augmentation and a novel action perturbation tech-
nique. Negative samples are created by mismatch-
ing states and actions from different trajectories.

Concretely, we assume that the anchor trajectory
is τ = (p, st=1, at=1, . . . , st=T , at=T ). To con-
struct a positive sample, τ+, we first apply standard
computer vision data augmentation techniques to
state images, such as random cropping. Addition-
ally, we introduce a novel approach for augmenting
actions. The intuition is that a slightly deviated
path can still lead the agent to the desired destina-
tion, as shown in Figure 4a. To achieve this, we
perturb the actions by adding a small amount of
random noise. By combining image augmentation
and action perturbation, the positive sample is an
augmented version of the anchor trajectory.

Subsequently, we create negative trajectories
that violate the correct environment dynam-
ics. Given different trajectories from the an-
chor, τ ′ = (p′, s′t=1, a

′
t=1, . . . , s

′
t=T , a

′
t=T ) and
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Table 1: Performance comparison of success rate (%) on the VIMA-Bench benchmark. “Attn” stands for attention.
“Params” denotes the number of parameters. Gato∗ modifies the original Gato model by incorporating object tokens.

Configuration Generalization Levels
Model Attn Type Visual Token Params L1 L2 L3 L4
DT Causal Single Image 42.0M 56.15 55.38 44.17 12.50
Gato Causal Image Patches 42.0M 53.08 50.77 41.67 15.00
Flamingo Cross Image Perceiver 42.4M 51.54 52.31 43.33 10.00
Gato∗ Causal Object Tokens 42.0M 85.77 82.62 78.92 40.25
VIMA Cross Object Tokens 42.4M 87.69 86.92 84.17 47.50
Astra (ours) Trajectory Object Tokens 37.8M 97.08 94.62 86.17 49.50

τ ′′ = (p′′, s′′t=1, a
′′
t=1, . . . , s

′′
t=T , a

′′
t=T ), we mis-

match their states and actions with those of the
anchor trajectory to construct negative samples:
τ− = (p, s′t=1, at=1, . . . , st=T , a

′′
t=T ).

These strong negatives are constructed based on
the following three principles discovered during
the development of CDL. (1) We refrain from in-
serting entirely random actions or states, as these
have not appeared in the dataset and can be easily
identified as negatives. (2) Instead of mismatching
only the original states and actions, we also use
augmented ones. This prevents models from triv-
ially identifying positive samples by detecting the
presence of image augmentation or action pertur-
bation. (3) We avoid merely shuffling states and
actions along the time axis, as such negatives are
also easily recognizable.

In CDL, Astra encodes the entire multimodal tra-
jectory into a sequence of embeddings. Due to our
trajectory attention mechanism, the action tokens
at the final timestep attend to the entire trajectory.
Their token embeddings are then aggregated into a
single trajectory embedding using a simple classifi-
cation head, consisting of a pooling layer (Li et al.,
2023b) and a linear layer, as shown in Figure 2. We
denote this process as f(·). Finally, we employ the
standard InfoNCE objective (van den Oord et al.,
2018) in contrastive learning to train the model to
distinguish positive trajectories from negative ones:

LCDL(τ, τ
+, τ−)

=− logE

[
s(τ, τ+)

s(τ, τ+) +
∑

i s(τ, τ
−
i )

]
,

(2)

where s(x, y) = exp(f(x) · f(y)). Because Astra
does not need to decode actions for trajectory en-
coding, action queries and their corresponding at-
tention entries are not included during CDL.

During training, we incorporate CDL as an aux-
iliary objective alongside the primary behavior

cloning objective to define the overall training loss:
L = LBC + αLCDL.

4 Experiments

4.1 Experimental Setup

We compare our approach with various baseline
models across three different benchmarks: VIMA-
Bench (Jiang et al., 2022), ManiSkill (Tao et al.,
2024; Gu et al., 2023), and CALVIN (Mees et al.,
2022). Each benchmark emphasizes different as-
pects of robot learning. VIMA-Bench investigates
multimodal robot learning, where the embodied in-
structions are multimodal, and evaluates generaliza-
tion to novel adjectives, nouns, and even meta-tasks.
ManiSkill targets everyday objects with complex
geometries, testing generalization to objects with
unseen geometric and visual attributes. CALVIN,
on the other hand, examines long-horizon manipu-
lation tasks, assessing how well models generalize
to new environments.

4.2 Implementation Details

We introduce Astra with two model sizes. Astra
(38M) is composed of 12 layers, 16 attention heads,
and an embedding size of 512. Astra (198M) is
composed of 10 layers, 20 attention heads, and an
embedding size of 1280. As Astra is a novel archi-
tecture for Transformer backbones, it is compatible
with various types of vision encoders, language
encoders, and action types, as demonstrated by dif-
ferent configurations across the three benchmarks.
Within each benchmark, the vision encoder and lan-
guage encoder remain identical for Astra, DT, Gato,
Flamingo, and VIMA, as we focus on comparing
the core Transformer backbone. All models are
trained using the AdamW optimizer (Loshchilov
and Hutter, 2019). Baselines do not incorporate
CDL. We provide benchmark-specific implemen-
tation details—such as vision encoder, language
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Table 2: Performance comparison of success rate (%) on the ManiSkill benchmark. “Traj.” is an abbreviation for
trajectory attention. “Cont.” stands for container. “0”, “2-4”, “6-8” indicate the number of distractor objects.

Configuration Unseen Tasks Seen Tasks
Model Attn Params Color Size Shape Cont. All 0 2-4 6-8
RT-1 Causal 46M 27.03 6.36 20.30 0.79 1.27 61.09 39.17 23.40
VIMA Cross 525M 26.00 26.00 17.20 30.75 19.33 47.93 41.47 36.33
Gato Causal 198M 46.00 74.00 42.00 44.40 40.00 76.40 73.33 62.67
Astra (ours) Traj. 198M 72.00 91.00 52.40 63.43 70.67 90.93 90.53 79.07

Table 3: Performance comparison on the CALVIN benchmark under the most challenging ABC→D setting.

Configuration Tasks completed in a row (%)
Model Attn Type Params 1 2 3 4 5 Avg. Len.
MCIL 63.6M 30.4 1.3 0.2 0.0 0.0 0.31
OpenVLA Causal 7B 32.4 4.2 1.4 0.5 0.3 0.39
RT-1 Causal 46M 53.3 22.2 9.4 3.8 1.3 0.90
MDT Cross 75.1M 61.7 41.6 23.8 14.7 8.7 1.54
RoboFlamingo Cross 1B 82.4 61.9 46.6 33.1 23.5 2.48
GR-1 Causal 21.3M 85.4 71.2 59.6 49.7 40.1 3.06
VIMA Cross 42.4M 64.1 47.6 34.6 29.2 23.7 1.99
Flamingo Cross 42.4M 69.9 53.2 39.1 31.2 24.6 2.18
DT Causal 44.1M 74.1 56.1 42.0 32.2 25.6 2.30
Gato Causal 44.1M 77.3 57.0 44.4 33.4 26.1 2.38
Astra (ours) Trajectory 37.8M 89.7 79.2 65.8 52.4 42.3 3.29

encoder, and hyperparameters—in their respective
sections.

4.3 VIMA-Bench

VIMA-Bench (Jiang et al., 2022) focuses on mul-
timodal robot learning, where the instructions are
multimodal. We summarize the results in Table 1.
It evaluates generalization capabilities across four
levels: placement generalization (L1), combinato-
rial generalization (L2), novel object generaliza-
tion (L3), and novel task generalization (L4). Each
level presents increasing difficulty, with placement
generalization involving only the randomization
of object positions, combinatorial generalization
recombining seen adjectives and nouns, novel ob-
ject generalization introducing unseen adjectives or
nouns, and novel task generalization incorporating
entirely new meta-tasks.

The vision encoder is ViT (Dosovitskiy et al.,
2021) and the prompt encoder is T5 (Raffel et al.,
2020). Baselines in VIMA-Bench explore different
methods of encoding images, such as patch tokens
and object tokens. Astra uses the best-performing
object tokens as visual inputs. Discrete SE(2) ac-
tions are used in this benchmark. All models are
trained for 10 epochs with learning rate = 1×10−4

and weight decay = 0.1. Each task is evaluated
using 100 trials.

According to the VIMA-Bench paper, models
with cross-attention and self-attention achieve com-
parable performance only when the model size ex-
ceeds 42M parameters. Therefore, we adopt this
configuration for all baselines to strike a balance be-
tween model size and performance. We intention-
ally reduce our model size by approximately 10%.
Despite the smaller model size, Astra achieves im-
proved performance across all four generalization
levels, demonstrating its efficiency.

4.4 ManiSkill

In the ManiSkill2 environment (Tao et al., 2024;
Gu et al., 2023), we evaluate one of the most com-
monly utilized skills, “pick and place”, using every-
day objects with complex geometries, as detailed
in Table 2. Its goal is to pick up an object and
place it into a container. This benchmark spans
generalization levels L1 to L3 in VIMA-Bench: all
items are randomly placed and the robot pose is
randomly initialized, thereby including placement
generalization; novel objects are also introduced as
unseen tasks, facilitating both combinatorial and
novel object generalization. To test these general-
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Table 4: Ablation study of the components in Astra. In ManiSkill, we compare seen tasks with 2-4 distractors.

VIMA-Bench ManiSkill
Configuration L1 L2 L3 L4 Easy Medium Hard
Astra w/ CDL 97.08 94.62 86.17 49.50 93.83 89.71 83.50
Astra 94.69 92.15 85.83 50.00 91.33 88.57 75.00

w/o Trajectory Attention 91.23 89.31 84.42 47.50 86.33 83.71 76.00
w/o Action Query 89.08 84.85 82.58 45.25 86.00 80.86 69.00
w/o Both 85.77 82.62 78.92 40.25 72.33 76.00 67.00

ization capabilities, we limit the training set to 15
tasks and evaluate the models on 34 tasks. Training
data includes “2-4” distractors.

This benchmark consists of five types of unseen
tasks. The first three types involve picked objects
with unseen colors, sizes, and shapes. For example,
the apple is part of the training data, while the bowl,
with its novel shape, is not. The fourth type intro-
duces unseen containers. The fifth type composes
all of the first four types. A distractor is an item
that is neither the picked object nor the container.
They are randomly sampled from a diverse pool
of items. For all five types of “unseen tasks”, we
randomly sample and place 2-4 distractors. For
seen objects, we explore whether the number of
distractors can impact the models’ performance.

We utilize ResNet (He et al., 2016) for images
and T5 (Raffel et al., 2020) for language prompts.
Actions are discrete 6D poses. The models are
trained for 5 epochs with learning rate = 1× 10−4

and weight decay = 1 × 10−4. We conduct 50
trials for each task, and each trial is limited to 100
timesteps before a timeout.

We experiment with the same number of Trans-
former layers for Astra (198M), VIMA, and Gato.
RT-1 retains its original configuration with 46M
parameters. Our model matches the model size of
Gato while achieving superior performance. Due
to the additional cross-attention layers in VIMA,
its model size is significantly larger, which may
have contributed to overfitting in this experiment.

4.5 CALVIN

The CALVIN benchmark (Mees et al., 2022) fo-
cuses on long-horizon manipulation tasks. Per-
formance comparison results are presented in Ta-
ble 3. During each evaluation session, the model
is prompted with five random tasks. The session
terminates as soon as a task fails, and the remaining
tasks are not attempted. Performance is measured
by the number of tasks successfully completed in a

row. The benchmark provides three different exper-
imental settings: D→D, ABCD→D, and ABC→D,
where each letter represents a distinct environment.
For example, in the ABC→D setting, the model
is trained on data from environments A, B, and C,
but evaluated in environment D. This setting thus
assesses zero-shot generalization to new environ-
ments. We compare our model to baselines in this
most challenging ABC→D experiment. Since only
1% of the training dataset for ABC→D is annotated
with language prompts, we utilize this language-
annotated subset for training, further increasing the
difficulty of the task.

We use MAE-ViT vision encoder (He et al.,
2022) and CLIP language encoder (Radford et al.,
2021), following GR-1 (Wu et al., 2024). All
models use continuous 6D pose actions and are
trained from scratch for 20 epochs with learning
rate = 9× 10−4 and weight decay = 1× 10−4.

Since the rollout of a trajectory terminates as
soon as any of the five tasks fail, completing all
five tasks is highly challenging. Our model can
complete longer task sequences, highlighting its
effectiveness in generalizing to new environments.

4.6 Ablation Study

We analyze the effects of the proposed compo-
nents of Astra, including trajectory attention, ac-
tion queries, and contrastive dynamics learning, as
shown in Table 4. Since our trajectory data aug-
mentation method is only applied in conjunction
with CDL, it is not utilized for “Astra” (rows 2-5).
In ManiSkill, we provided more granular results
across three difficulty levels (Appendix A.6).

CDL proves effective in enhancing imitation
learning, particularly for the first three generaliza-
tion levels, as it enables the model to better learn
environment dynamics. The lower performance on
L4 may be attributed to CDL’s training data, which
includes only seen nouns and adjectives, thereby
enhancing the performance on seen meta-tasks at
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Figure 5: Loss and accuracy curves during training on VIMA-Bench.
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Figure 6: An example of instantaneous regrasp. The task is to “pick blue tea box and place into clear box.” Three
grasp attempts were completed within only 30 steps, a capability not observed in the baseline models.

the expense of generalizability to novel ones. The
removal of trajectory attention results in a notice-
able decrease in success rates across all levels, un-
derscoring its crucial role in processing segmented
multimodal trajectories. Similarly, the absence of
action queries leads to reduced success rates, high-
lighting its importance in enhancing information
extraction for action generation. When both com-
ponents are removed, the model reverts to a typical
token-level autoregressive model, akin to Gato.

4.7 Qualitative Analysis

We present the loss and accuracy curves for the
models on VIMA-Bench in Figure 5. Despite hav-
ing a model size approximately 10% smaller, our
model exhibits a faster convergence rate. The sub-
stantially lower loss and higher accuracy account
for Astra’s superior performance. Specifically, tra-
jectory attention facilitates improved information
flow within each segment, while action queries
more effectively extract information relevant to in-
dividual action dimensions. The Flamingo baseline
is excluded from the figure due to its significantly
worse performance.

In ManiSkill, we identified a crucial distinction
between Astra’s capabilities and those of the base-
lines: Astra masters “instantaneous regrasp”. Fig-
ure 6 illustrates the most challenging task in Man-

iSkill. Baseline models often struggle to recog-
nize failed grasps. In contrast, our Astra model
promptly detects a failed grasp and repeatedly at-
tempts to grasp the object until successful. A more
detailed description is provided in Appendix A.7.

5 Conclusion

This paper introduces Astra, an efficient Trans-
former architecture designed for multimodal trajec-
tories in embodied instruction following tasks. As-
tra distinguishes itself from standard Transformer
decoders through two novel components: trajectory
attention and action queries. Trajectory attention
harnesses the unique characteristics of multimodal
EIF trajectories, facilitating enhanced information
flow among tokens within each segment. Com-
bined with our action queries, which enable parallel
information extraction for individual dimensions,
Astra achieves segment-level decoding. Further-
more, we incorporate a contrastive dynamics learn-
ing objective to explicitly train the model to learn
environment dynamics, which also improves mul-
timodal alignment. This further elevates Astra’s
performance in imitation learning. Comprehensive
experiments across three large-scale benchmarks
demonstrate substantial performance gains by As-
tra. Detailed ablation studies and qualitative analy-
ses further validate its effectiveness.
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Limitations

Although real-world robot evaluation is a com-
mon practice, there is no widely accepted real-
world benchmark for embodied instruction follow-
ing tasks due to the difficulty of precisely repli-
cating environmental setups across different insti-
tutions. Benchmarks based on simulated environ-
ments offer the advantage of highly controllable set-
tings, eliminating variable factors that can lead to
imprecise measurements. Therefore, we focus on
well-established simulated benchmarks that evalu-
ate various aspects of model performance and gen-
eralization. Because 3D information can be more
informative than 2D image inputs for EIF tasks,
Astra can also be extended to integrate 3D vision
modules to further improve performance, as the
Astra backbone is compatible with various vision,
language, or action modules.
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A Appendix

A.1 Notation
In this paper, we use the following notation:

Symbol Description
Basic symbols
τ EIF trajectory
p Language instruction/prompt
s State (visual observation)
a Action
q Action queries (shared across timesteps)
Segment-level symbols
st State segment at timestep t
at Action segment at timestep t
s≤t All states up to and including timestep t
a<t All actions before timestep t
t Timestep index (1 ≤ t ≤ T )
T Total number of timesteps in a trajectory
Token-level symbols
pi The i-th prompt token
si,t The i-th state token at timestep t
ai,t The i-th action dimension at timestep t
qi / qi,t The i-th action query (shared across timesteps)
Token slices
p1:L Prompt tokens 1 through L
s1:M,t State tokens 1 through M at timestep t
a1:N,t Action dimensions 1 through N at timestep t
q1:N Action queries 1 through N (shared across

timesteps)
L Number of language instruction tokens
M Number of state tokens per segment
N Number of action dimensions/queries per seg-

ment
Contrastive dynamics learning
τ+ Positive trajectory sample
τ− Negative trajectory sample
τ ′, τ ′′ Alternative trajectories different from τ
Model
π Policy
πθ Policy parameterized by θ
θ Model parameters
f(·) Trajectory encoding model

A.2 Trajectory Attention Matrix
The trajectory attention is implemented with its
corresponding attention mask, as illustrated in Fig-
ure 7. Output tokens on the left attend to input
tokens at the top. For example, in the first row,
the token p1 can attend to tokens (p1, p2, p3, p4)
but not to any other subsequent tokens. Conse-
quently, tokens starting from s1 onward are masked
out. During action generation in imitation learning,
action queries can attend to all tokens up to the
current state, while no other tokens can attend to
action queries. Therefore, action query tokens are
completely masked from the input.

Although we can use the decoding attention ma-
trix for both decoding and encoding, utilizing the
encoding attention matrix can avoid computational
overhead for processing action queries. Regardless
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(a) Trajectory attention matrix for decoding.
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(b) Trajectory attention matrix for encoding.

Figure 7: The attention matrices of trajectory attention.
Input tokens are at the top, and output tokens are on the
left. Dark boxes represent masked entries in the atten-
tion matrices. The decoding attention matrix is utilized
in imitation learning, whereas the encoding attention
matrix is employed in contrastive dynamics learning.

of whether the decoding or encoding matrix is em-
ployed, the resulting embeddings for the encoded
trajectory remain identical in contrastive dynamics
learning.

A.3 Trajectory Attention Visualization

We present a visualization of the attention matri-
ces from the top layer of Astra, depicted in Fig-
ure 8. Prompt tokens exhibit similar attention val-
ues, while state and action tokens from more recent
timesteps receive higher attention weights com-
pared to those from earlier in the sequence. This
observation aligns with the expectation that the
latest timestep provides the most informative con-
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Figure 8: Visualization of two trained trajectory attention matrices over five timesteps. Brighter cells indicate higher
attention weights. Tick labels are displayed for the last token of each segment.

text for generating the next action. Moreover, sev-
eral attention weights above the main diagonal are
strongly activated, suggesting that the additional
attention connections enabled by our trajectory at-
tention mechanism are beneficial. In the second
matrix, a clear distinction emerges between the
attention weights for the output state tokens and
query tokens. This distinction highlights that action
queries extract information differently from state
tokens, elucidating their role in improving action
generation.

A.4 Integration with Large VLAs

Due to the trajectory attention mechanism and ac-
tion queries in Astra, large VLA models that rely on
autoregressive modeling cannot directly adopt this
architecture without significant retraining. How-
ever, there are alternative methods to leverage the
Astra architecture in large VLAs. For instance, it
can be incorporated as an action prediction head by
attaching it to the top of pretrained VLMs. The in-
tegration of Astra with large VLA models presents
a promising direction for future research.

A.5 ManiSkill Generalization Levels

For Astra, Gato, and VIMA in Table 2, unseen
shape proves to be the most challenging general-
ization level of ManiSkill, followed by unseen con-
tainers. VIMA also exhibits volatility when dealing
with small objects from the “Size” level. RT-1, in
particular, struggles with identifying the container
when an unseen container is introduced. It is im-
portant to note that not all seen target objects (the

object to be picked) have a generalized version.
For example, a strawberry is a seen target object
that is difficult to grasp, but there is no oversized
strawberry for the “Shape” level. Consequently,
models may achieve a higher success rate on some
generalization levels than on seen tasks. Further-
more, since unseen color and size are part of the
mixture, the success rate in “All” is not as low as
in “Shape” or “Container”. The introduction of
more distractors in the scene increases the likeli-
hood of collisions and causes additional difficulty
in grasping the objects. However, this negative ef-
fect is not severe enough to considerably degrade
the performance.

A.6 ManiSkill Difficulty Levels

The ablation study in the ManiSkill environment
is reported by difficulty level, as shown in Ta-
ble 4. In simple terms, easy tasks involve spherical,
regular-sized target objects, such as a baseball. The
medium difficulty level includes elongated or small
target objects, such as a banana or a strawberry.
Hard tasks encompass oversized, non-spherical, or
thin objects, such as a tea box or knife.

Easy tasks include spherical, regular-sized ob-
jects. Round objects are easier to pick because the
robot arm can close the gripper in any direction.
Size also has a significant impact on the success
rate because oversized objects require more precise
grasp poses. If a grasp is not precise, the two fin-
gers of the gripper may collide with the object and
not be able to reach down on the object. On the
other hand, small objects can increase the difficulty
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Figure 9: Astra in Franka Kitchen. The model com-
pletes four random tasks. The top left image shows the
initial state and the other three images are three different
final states.

because the gripper might miss them if the grasp is
slightly off. An elongated object, such as a remote
controller or a banana, must be picked up “across”
the object rather than “along” the object. Conse-
quently, we define the medium difficulty level as
the objects that are too big, too small, or elongated.
Hard tasks involve non-spherical, oversized, or thin
objects, such as a tea box and a knife. A tea box,
being both non-spherical and oversized, requires
the robot arm to grasp it precisely parallel to its
sides rather than diagonally. A knife can be hard
since it is very thin and close to the desk. During
grasping, the gripper may collide with the desk,
further increasing the difficulty.

A.7 Instantaneous Regrasp

We provide a more detailed explanation for the
example in Figure 6. Only three of the four grasp
attempts are shown, with the third one omitted due
to page limitations. Therefore, the grasp labeled as
“Grasp 3” in the figure is, in fact, the fourth grasp
attempt. The first grasp was unsuccessful because
one finger of the gripper collided with the blue tea
box, and the grasp slipped. Subsequently, Astra
swiftly initiated two additional grasps; however,
the gripper closed too early, resulting in collisions
with the tea box again. Shortly after the second
and third failures, the gripper’s fingers successfully
reached down to opposite sides of the blue tea box,
completing the fourth regrasp. Remarkably, all
four grasp attempts were executed within a mere
30 timesteps, a feat not achieved by any of the
baseline methods.

A.8 Additional Related Work

VLAs (Ma et al., 2024b,b) have recently emerged
as a new type of multimodal model for EIF

Figure 10: Astra in Push-T. The gray T is the object, and
the green T is its target position. The model controls the
blue dot to push the T-shaped object towards the target
position. The red cross is the cursor. The images on
the left and right are two different initial states, and the
middle image is the final state where the object perfectly
overlaps with the target position.

tasks in the field of embodied AI. MOO (Stone
et al., 2023) introduced multi-modal prompt ca-
pability to RT-1, while Q-Transformer (Chebo-
tar et al., 2023) adapted RT-1 to the Q-learning
setting. RoboFlamingo (Li et al., 2023b) con-
structed a VLA based on the existing Flamingo
VLM (Alayrac et al., 2022; Awadalla et al., 2023).
ACT (Zhao et al., 2023) adopts the DETR frame-
work for robotics tasks but utilizes fixed position
embeddings at the timestep level. VLAs can also
be integrated with high-level planners to address
long-horizon robotics tasks, as demonstrated by
SayCan (Ichter et al., 2022), PaLM-E (Driess et al.,
2023), and ChatGPT for Robotics (Vemprala et al.,
2023). Similar to other multimodal models, the
success of VLAs is predicated on a foundation of
numerous prior unimodal models and a variety of
deep learning techniques (Ma et al., 2023b, 2024a;
Song et al., 2023b; Zhang et al., 2024b; Song et al.,
2023a; Ma et al., 2021).

In addition to the primary learning objective,
auxiliary or pretraining objectives have proven
useful in further enhancing model performance.
The success of masked language modeling, as ini-
tially proposed in BERT (Devlin et al., 2019), has
prompted the adoption of similar objectives in var-
ious domains. In computer vision models and
VLMs, representative works like MAE (He et al.,
2022) and ViLBERT (Lu et al., 2019) have em-
ployed comparable strategies. VLAs have also uti-
lized masked modeling objectives for their vision
encoders, such as MVP (Radosavovic et al., 2022),
Voltron (Karamcheti et al., 2023), GR-1 (Wu et al.,
2024). While these approaches have proven benefi-
cial for the vision encoder, they often overlook the
crucial alignment between different modalities.

Dynamics learning has long been recognized
as a powerful technique for improving the perfor-
mance of robot learning models. Dreamer (Hafner
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Table 5: Performance comparison (%) in Franka Kitchen.

Configuration Continuous Action Discrete Action
Model Attn Type Params p1 p2 p3 p4 Mean p1 p2 p3 p4 Mean
Diffusion Causal 43M 100 94 72 34 76 54 18 10 2 21
VIMA Cross 113M 92 90 80 66 82 90 72 48 16 57
Gato Causal 43M 100 98 84 62 86 100 88 68 38 74
Astra (ours) Traj. 43M 100 100 94 70 91 100 94 68 52 79

Table 6: Performance comparison in Push-T (Discrete
Action).

Model Attn Params Score
Diffusion Causal 43M 83.89
VIMA Cross 26M 91.09
Gato Causal 19M 90.43
Astra (ours) Traj. 19M 94.11

et al., 2020) was a pioneering work in this domain,
inspiring several follow-up methods, including Iso-
Dream (Pan et al., 2022), TWM (Robine et al.,
2023), and IRIS (Micheli et al., 2023).

A.9 Additional Baselines
The “Diffusion” baseline in Appendix A.10 is
based on a causal Transformer backbone and is
trained with modified training objectives: DDPM
(Ho et al., 2020) for continuous actions and D3PM
(Austin et al., 2021) for discrete actions. The train-
ing losses are defined as follows:

LDDPM = MSE
(
εk, εθ(x

0 + εk, k
)
),

LD3PM = CE
(
εk, εθ(x

0 + εk, k)
)
,

(3)

where x0 is the original action and εk is the noise of
the k-th iteration; εθ is the Transformer backbone.

We have also experimented with π0 (Black et al.,
2024) on the CALVIN benchmark. However, its
performance was notably poor, and as a result, we
decided not to include it in Table 3.

A.10 Additional Benchmarks
Franka Kitchen. Franka Kitchen (Gupta et al.,
2019) includes five skills that span seven specific
tasks within the scene. The “turn knob” skill in-
volves turning the oven knob to activate either the
top or bottom burner. “Toggle switch” involves
turning on the light switch. “Slide door open” re-
quires opening the slide cabinet, while “swing door
open” involves opening either the left hinge cabi-
net or the microwave door by the door handle. The

“lift by handle” skill entails moving the kettle by its
handle. Figure 9 provides examples of executions
by Astra in Franka Kitchen.

Performance is measured by the completion of
multi-stage tasks, as summarized in Table 5. Re-
sults are averaged over 50 runs. In each run, the
models are required to complete four random tasks
within 280 steps. pi means the model has com-
pleted i tasks and thus reached the i-th stage. Since
the scale of Franka Kitchen is relatively small, we
compare the models using the Astra (43M) config-
uration. Astra (43.3M parameters) consists of 6
layers, 12 attention heads, and an embedding size
of 768. We also compare the performance of mod-
els using continuous and discrete actions in this
environment.

Push-T. In Push-T (Florence et al., 2021), the
models need to push a T-shaped object until it
aligns perfectly with the target position. This task
requires precise control, as performance is mea-
sured by the overlapping area, with perfect align-
ment equating to a score of 1.0. Several push-T
examples by Astra are included in Figure 10.

The performance of the models is compared in
Table 6. Results are averaged over 30 trials. The
maximum number of steps the models can take in
each trial is 200, so they need to push the object pre-
cisely while maintaining adequate speed. Because
this is a 2D task, we determined that the configu-
ration of Astra (19M) is adequate for most mod-
els, except for the diffusion-based model, which
utilizes the configuration of Astra (43M). Astra
(19.4M parameters) consists of 6 layers, 8 attention
heads, and an embedding size of 512. As the cross-
attention layers in VIMA result in a model size
of 50.8M parameters—exceeding the size of As-
tra (43M)—we instead employ three Transformer
blocks for VIMA. We found that models fail to
learn effective policies using continuous actions;
therefore, we only report results of discrete actions.
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A.11 Scalability
Astra is an efficient Transformer architecture de-
signed for EIF tasks. Consequently, it also inherits
the scalability of Transformers. Depending on the
complexity of the EIF benchmarks, we select the
most efficient configuration with sufficient capacity
to address the demands of each benchmark. In this
paper, we explore four configurations of Astra, with
model sizes ranging from 19M to 198M, tailored
to benchmarks of varying levels of difficulty:

• Astra (19M): Push-T (Table 6)

• Astra (38M): VIMA-Bench (Table 1) and
CALVIN (Table 3)

• Astra (43M): Franka Kitchen (Table 5)

• Astra (198M): ManiSkill (Table 2)

With the help of CDL, the performance of Astra
(38M) and Astra (198M) can be further improved,
as shown in Table 4. This suggests that CDL can
serve as an effective large-scale pretraining method
for VLAs.

A.12 Additional Qualitative Analysis
We provide two examples in Figure 11 that com-
pare Astra with CDL to Astra without CDL, aim-
ing to qualitatively demonstrate the effectiveness
of contrastive dynamics learning. The failure case
of Astra without CDL illustrates how CDL can
contribute to improved generalization. In this com-
parison, CDL enables Astra to more effectively
handle novel objects.

A.13 Additional Examples
We include a few execution examples of Astra in
VIMA-Bench tasks in Figure 12 & 13 and CALVIN
tasks in Figure 14 & 15 & 16.

Put into then

Multimodal Prompt

Initial State

Finally restore it into its original containerPut into then

Multimodal Prompt

Initial State Goal 1

Goal 3Goal 2

Finally restore it into its original container

(a) Astra with CDL.

Put into then

Multimodal Prompt

Initial State

Finally restore it into its original containerPut into then

Multimodal Prompt

Initial State Goal 1

Goal 3Goal 2

Finally restore it into its original container

(b) Astra without CDL.

Figure 11: Comparison between Astra with and without
contrastive dynamics learning.

Put the kobar wug into the dax
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is kobar than is kobar than is kobar than
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Initial State Goal State

Put all objects with the same texture as                    into it

Multimodal Prompt

Initial State
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Intermediate State

Figure 12: An example of an L4 generalization level
task (novel task generalization of “novel adjective and
noun”) in VIMA-Bench.
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Figure 13: An example of an L4 generalization level
task (novel task generalization of “same texture”) in
VIMA-Bench.
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Stack blocks
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Goal StateInitial State

Figure 14: An example of a task in CALVIN.

Open drawer
Prompt

Goal StateInitial State

Stack blocks
Prompt

Goal StateInitial State

Figure 15: An example of a task in CALVIN.
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Initial 
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Task 2 Task 3
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Turn off LED Move slider left Lift red block Place in slider

Figure 16: An example of a long-horizon trajectory in
CALVIN.
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