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Abstract

Recently, large reasoning models (LRMs)
have demonstrated state-of-the-art performance
across a wide range of benchmarks. However,
a common challenge for these models is the
“overthinking” problem, which leads to exces-
sive reasoning steps and significant computa-
tional overhead. Furthermore, the issues with
long Chain-of-Thought (CoT) are especially
pronounced in smaller models (≤ 3B param-
eters). Aside from producing excessively ver-
bose “reflection words”, they often exhibit rep-
etition and get trapped in unproductive genera-
tion loops.

Existing solutions typically involve either us-
ing flexible reasoning chains as training data
or leveraging the model’s latent space to by-
pass intermediate reasoning steps, but none of
these methods have considered directly opti-
mizing reasoning trajectories during the sam-
pling phase of training. In our work, we in-
troduce the Multi-Turn Intervention Sampling
Framework (MuTIS). Our framework leverages
multi-turn interventions to produce concise rea-
soning chains. It fine-tunes reasoning models
through reinforcement learning, demonstrably
breaking the accuracy-efficiency trade-off.

It also demonstrates strong scalability, exhibit-
ing excellent performance on 7B models. Code
is available at https://github.com/Edric
-Zhao/MuTIS/tree/main

1 Introduction

The advent of DeepSeek-R1 (Guo et al., 2025)
in early 2025 marked a new avenue for training
large language models (LLMs) through reinforce-
ment learning with verifiable rewards (RLVR).
For models with a large number of parameters
(e.g. DeepSeek-R1 671B), long chain-of-thought
(CoT) (Wei et al., 2022; Chen et al., 2025) has
proven particularly effective in enhancing reason-
ing capabilities. This improvement is attributed

Accuracy (%, ↑) # Tokens (↓)

Qwen2.5-Math-1.5B 22.7 692.15
R1-Distill-Qwen-1.5B 38.8↑ 2914.20↑
MuTIS (Our Method) 47.3↑ 1340.49↓

Table 1: We calculated the average accuracy across
five mathematical datasets. For token usage, we selected
problems that all three models generate final answers
correctly to facilitate a fair comparison in efficiency.

to the capacity of long CoT models for deep rea-
soning, extensive exploration, self-verification and
reflection, particularly the “aha moment” described
in DeepSeek-R1-Zero.

However, recent research indicates that o1-like
models (e.g. OpenAI o1-preview (Team, 2024))
do not show advantage over non-o1-like models in
the critique abilities and longer reasoning chains
do not necessarily yield superior performance. (He
et al., 2025; Wu et al., 2025). The limitations be-
come particularly pronounced when applying the
long CoT paradigm to smaller models (≤ 3B pa-
rameters), a phenomenon termed the Small Model
Learnability Gap (Li et al., 2025). Consequently,
the significant computational overhead in reasoning
models presents a critical challenge that requires
an effective solution.

Building on prior research, we tested the DeepSeek-
R1-Distill-Qwen-1.5B (Guo et al., 2025) model on
five mathematical reasoning benchmarks1. Our
analysis identifies two severe drawbacks of long
CoT in smaller models, which we categorize as
follows:

1) Repetition. For complex tasks that the reasoning
model fails to answer correctly, its output can de-
volve into unproductive, repetitive sequences. We
found that, on average, 46.6% of tasks become
trapped in such loops, simultaneously wasting to-

1Math500, AMC23, OlympiadBench, Minerva, AIME24.
See Section 4.1 for details.
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Okay, so I have this function  f(x) … , let me think about 
how to approach this step by step.

First, ... Next..., , , that seems a bit high. Let me 

 my calculations.... First... , but let me think 
. ,   just to make sure... ... ..., 
, another thought...  but just to make sure, let me 

compute each step again... ... ...,

Just to  I didn't make any arithmetic errors, let me 
add 2 + 5/3 + 1 ... 

So, I think I've  all my steps...

Hmm

Wait hold on
double-check Wait
again Wait But Hmm Alternatively
Wait

Wait Alternatively
make sure

again
double-checked

Wait

To find the value of f(-2) + 
f(-1) + f(0) for the function 
f(x) = (3x-2)/(x-2), I will 
evaluate each term separately 
and then sum them up.


…

First, I will calculate...

Next, I will calculate...

Then, I will calculate...

Finally, I will sum the results  

 Question: If f(x)=(3x-2)/(x-2), what is the value of f(-2)+f(-1)+f(0)?
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Find the largest possible real part of (75+117i)z+(96+144i)/z where z is a complex number with |z|=4.

First, I know that any complex number z can be written in polar form as z = 4e^{iθ} since 
its magnitude is 4. That might make things easier because then I can express everything in 
terms of θ.... 

 Alternatively, perhaps I can 
write f(z) = (75 + 117i)z + (96+144i)/z as (75 + 117i)z + (96 + 144i)z^{-1}, and then write 
it as (75 + 117i)z + (96 + 144i)z^{-1}, and then take the real part.But again, that's the 
same as before ...... 

Alternatively, perhaps I can write f(z) = (75 + 117i)z + (96+144i)/z as (75 
+ 117i)z + (96 + 144i)z^{-1}, and then write it as (75 + 117i)z + (96 + 144i)z^{-1}, and 
then take the real part.But again, that's the same as before. × N times

I can represent z in polar form. That means z 
= 4e^{iθ} where θ is the argument of z. So,z = 
4(cosθ + isinθ)....  The 
maximum value of 324cosθ - 432sinθ is the 
amplitude C: C = sqrt{324^2 + (-432)^2} = sqrt 
{104976 + 186624} =sqrt{291600} = 540. 

Let's simplify this...

Thus, 
the largest possible real part is boxed{540}

Figure 1: Overview of MuTIS(Our Method). 1) left: A comparative illustration of reasoning chains for the
baseline reasoning model versus MuTIS. 2) right: Our method significantly reduces token cost while concurrently
enhancing accuracy on mathematical reasoning datasets. This dual improvement is demonstrated under distinct
experimental conditions: with a token limit of 1000, accuracy increases by 32.8%. Meanwhile, the average token
consumption drops from 10,083 to 3,947 in an unrestricted setting.

ken resources and failing to provide correct solu-
tions.

2) Overthinking. For simple reasoning tasks, these
models tend to generate verbose and redundant
thinking processes, resulting in significant com-
putational overhead. For instance, as shown in
Table 1, the R1-Distill model consumes 4.21 times
more tokens than the base model on identical tasks.

The research question arises: How do we improve
the performance of reasoning models while reduc-
ing unnecessary tokens? Existing solutions often
involve using prompts to guide or route reason-
ing behavior, training the model via methods like
Supervised Fine-Tuning (SFT) and Reinforcement
Learning (RL), and leveraging the latent space to
optimize intermediate reasoning steps. However,
none of these methods have considered directly op-
timizing reasoning trajectories during the sampling
phase of training.

Given that simply imposing single-turn length re-
strictions often degrades accuracy (shown in Ta-
ble 4), we propose instead to use multi-turn to-
ken limits to intervene in model rollouts. In this
work, we introduce a new framework: Multi-Turn
Intervention Sampling (MuTIS). Our approach ap-
plies token restrictions during the model’s rollout
but leverages multi-turn interventions, enabling the
model to refine its reasoning and continue its re-
sponse after being truncated. This design enables
us to intervene in the model’s reasoning trajectory

during the sampling phase, guiding the model to
streamline its own thinking process.

As shown in Figure 1, through multi-turn interven-
tion sampling in reinforcement learning, we curtail
the tendencies for repetition and overthinking, guid-
ing the model towards more concise and effective
reasoning.

Experimental evaluations demonstrate that our
method achieves impressive performance gains
over the original model in the challenging math
reasoning datasets. As depicted in Figure 1, a per-
formance improvement of 32.8% was observed un-
der a 1K token limit.

Furthermore, our method possesses excellent scal-
ability, as evidenced by its superior performance
on larger-parameter models (e.g., 7B)

2 Related Work

2.1 Efficient Reasoning

Efficient Reasoning aims to optimize inference cost
for long chain-of-thought (CoT) LLMs while pre-
serving reasoning capabilities, offering practical
benefits such as reduced computational costs and
improved responsiveness for real-world applica-
tions. To address these challenges, researchers
have focused on improving token efficiency in long
CoT LLMs. TALE-EP (Han et al., 2024) uses the
LLM itself to estimate a token budget and incor-
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porates it into the prompt to guide more token-
efficient responses. RouteLLM (Ong et al., 2024)
trains a query router to dispatch incoming queries
to suitable LLMs based on complexity. Cheng
and Van Durme (2024), Xu et al. (2025), and
Geiping et al. (2025) compress textual reasoning
steps into fewer latent representations to shorten
response lengths. KimiTeam et al. (2025), Sheng
et al. (2024), Yeo et al. (2025), and (Aggarwal and
Welleck, 2025) integrate a length reward into the
RL framework. Despite the success of approaches
like L1 (Aggarwal and Welleck, 2025), current
methods have yet to leverage the advantages of
multi-turn intervening reasoning.

2.2 LLM Reasoning

Progress in LLM reasoning has been achieved
through various methods, including knowledge dis-
tillation from LLMs to smaller models (Ho et al.,
2022) and variational optimization of latent distri-
butions (Chen et al., 2024). Recent advancement
in reasoning large language models such as Ope-
nAI o1 (Jaech et al., 2024) and DeepSeek-R1 (Guo
et al., 2025) greatly improves performance in rea-
soning domains like mathematics and program-
ming by harnessing supervised fine-tuning (SFT)
and reinforcement learning (RL) techniques to en-
hance CoT reasoning. (Chen et al., 2025) However,
while longer CoT reasoning sequences improve
performance, they also introduce significant com-
putational overhead due to verbose and redundant
output, especially for models with smaller param-
eter counts. In worse cases, excessive reasoning
steps introduce errors or obscure logical clarity,
leading to incorrect answers. (Sui et al., 2025)

3 Method

3.1 MuTIS Overview

The core innovation of our work is the Multi-
Turn Intervention Sampling (MuTIS) framework.
MuTIS reframes the generation of a reasoning trace
from a single, monolithic action into a sequential,
multi-turn decision-making process. By decompos-
ing the reasoning process into discrete turns, the
framework can apply targeted interventions to cor-
rect inefficient or unproductive reasoning paths, a
capability absent in prior methods (Aggarwal and
Welleck, 2025; Hou et al., 2025).

Algorithm 1: Multi-Turn Intervention Sam-
pling (MuTIS) RL Training

Inputs: LLM policy πθ(y|x), intervention
prompt IP , max turns T , max
response length per turn Lenmax,
Initial Reasoning Task I

Outputs :Updated policy πθ′

1 S0 ← I; Let H0 ← S0;LetHfull ← [] ;
2 for t = 1 to T do
3 Let current input xt ← Ht−1;
4 Generate response segment τ ′t ;
5 Infer action at from τ ′t ;
6 if at = ‘provide_final_answer‘ then
7 Extract final answer Res from τ ′t ;
8 Append τt toHfull;
9 Break For loop;

10 else
11 τt ← τ ′t ;
12 Ht ← Ht−1 ⊕ τt ⊕ IP;
13 Append (τt ⊕ IP) toHfull;

14 St ← Ht;

15 Sfinal ←
⊕

segment∈Hfull
segment;

16 Calculate reward Rfinal and LMuTIS(θ) ;
17 θ′ ← f(θ,LMuTIS(θ), Rfinal);
18 return πθ′

3.2 Multi-turn Intervention Markov Decision
Process

We employ the Markov Decision Process (MDP)
and construct a quadruple <S,A,P,R> to model
the multi-turn intervention process. A multi-
turn rollout produces a sequence of transitions,
(s0, a0, R1, s1, a1, · · ·RT , sT ), where T is the
number of turns.

State Space (S): The state st at any turn t within a
rollout is defined as the complete history of all
tokens generated and received up to that point:
st = (I, τ1, IP1, τ2, . . . , IPt−1, τt). Here, I is
the initial problem prompt, τi is the text segment
generated by the model in turn i, and IPi is the in-
tervention prompt inserted by the framework after
turn i if its output was truncated.

Action Space (A): At each turn t, the model’s
action at is the generation of a text segment τt. The
turn concludes based on one of two conditions: (1)
the model generates a predefined terminal phrase
(e.g., "Final Answer:", //boxed{}), signaling its
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Actor

Mathematical task

1st Turn 2nd Turn Final Turn

Warning! Invalid Action.

Please try again:

Intervention

Prompt

Completed 
Trajectory

Employ the trajectory 
in PPO policy updates

Multi-Turn Intervention Rollout Intervention Case

Pivoting to a concise answer

Redundant and Verbose

Exceed token 
restriction


Truncated!

Hmm

Alternatively... Wait... Wait... 
Wait... But... Wait...


. So it's a problem related to 
the pigeonhole principle or maybe 
something to do with intervals. 

Insert Intervention Prompt

Given that the maximum 
number of numbers..... perhaps 
it's better to realize that each 
interval...... in conclusion, the 
minimal k is 45.

Using a more concise trajectory optimizes 
the model for efficient reasoning

Invalid Action. 

Please try again

Figure 2: Framework of MuTIS. Left: 1) The LLM initiates a rollout based on the provided mathematical task. 2)
If the LLM’s response exceeds the predefined maximum length, the rollout is truncated, and an Intervention
Prompt (IP) is inserted. 3) The truncated response, combined with the IP, forms the input for the LLM to continue
its rollout in the subsequent turn. 4) After multi-turn rollout finished, all outputs from the individual turns are
merged. 5) The integrated rollout is then used to train the model via reinforcement learning. Right: This
example shows the complete rollout after our intervention. We impose a strict token restriction and insert a prompt
to encourage concise reasoning, and then let the model continue its answer.

intent to provide a final answer, or (2) the length of
the generated segment τt exceeds a per-turn token
budget Lenmax.

Transition Dynamics (P): The transition from
state st to st+1 is deterministic given the model’s
generated output τt+1. The key mechanic of
MuTIS resides in the environmental perturbation
of this transition. If the length of the generated
segment τt+1 exceeds Lenmax, the segment is trun-
cated, and the dialogue history is appended with
a fixed intervention prompt IP . The new history
is constructed as Ht¸Ht−1 ⊕ truncate(τ) ⊕ IP
This active intervention forces the model to deviate
from its current, potentially unproductive, reason-
ing trajectory and reconsider its approach in the
subsequent turn.

Reward Function (R): employs a binary reward
signal that is assigned only at the termination of
an rollout. An episode ends when the model pro-
vides a final answer or the maximum number of
turns, Tmax, is reached. The final reward, Rfinal,
is defined as:

Rfinal =

{
1 correct answer within limited turn,
0 otherwise.

3.3 Reinforcement Learning with Multi-Turn
Intervention Sampling

The overall pipeline of MuTIS is illustrated in Fig-
ure 2. The core of our method is to guide the
reasoning model to generate efficient and concise
reasoning chains for RL training.

Multi-turn Intervention Rollout. To achieve con-
cise reasoning, we enforce a maximum response

length of 2000 tokens for each turn. If a model’s
output surpasses this limit, its rollout is forcibly
terminated, and the model receives the interven-
tion prompt: "Warning! Your previous action
is invalid. Please try again:". Following this
intervention, the model is allowed to continue its
response, effectively resuming from the point of
interruption. This iterative process repeats until
the model provides a final answer or the dialogue
exceeds a predefined maximum number of turns.

Reinforcement Learning. We employ the Proxi-
mal Policy Optimization (PPO) algorithm for train-
ing and adopt a rule-based accuracy reward, which
is granted solely based on the correctness of the
final answer. Thus, a reward of 1 is received if the
model outputs the correct final answer within the
predefined turn limit. Conversely, the reward is 0
if the model either fails to respond within this limit
or provides an incorrect answer.

The success of our multi-turn intervention design
hinges on the careful selection of the number of
turns and the per-turn token constraint. We impose
a strict limit on each turn such that the total token
budget across three turns approximates the typical
token usage of the baseline reasoning model for
completing most tasks.

This design ensures that our multi-turn mechanism
effectively intervenes within the model’s process of
generating a complete answer, rather than simply
extending its original generation. We provide a
detailed analysis of the trade-off between the per-
turn token limit and the number of turns in our
ablation study in Section 4.5.
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4 Experiment

4.1 Experiment Setup

MuTIS is implemented using the veRL (Sheng
et al., 2024) reinforcement learning framework. For
the multi-turn generation design, we reference the
codebase from Search-R1 (Jin et al., 2025).

Training Dataset. Our primary training data was
derived from the "default" partition of the OpenR1-
Math-220k (Face, 2025) dataset, which initially
comprised over 90,000 samples. We applied sev-
eral filtering criteria to refine this dataset. A de-
tailed description of the filtering process is pro-
vided in the Appendix A.

Additionally, recent studies have highlighted the
benefits of using smaller datasets for model train-
ing (Muennighoff et al., 2025; Ye et al., 2025).
However, these researches mainly focus on Su-
pervised Fine-Tuning(SFT). We aimed to inves-
tigate the impact of RL training across different
data scales. Therefore, we conducted a separate
set of experiments using 817 data points from the
LIMO(Ye et al., 2025) as training data, with 10%
of these reserved for validation. Our experiments
demonstrated that training on both datasets yielded
comparably strong performance.

Evaluation. We assessed our method and baseline
models on five math reasoning benchmarks. The
dataset versions used were aligned with those avail-
able in the LIMO repository. We use greedy de-
coding for all evaluations, which introduces no ran-
domness in the outputs, ensuring that all reported
data correspond to results from a single sampling
pass. Further evaluation details can be found in
Appendix A.

Our experiments were conducted on R1-Distill
Models (Guo et al., 2025) and DeepScaleR-1.5B-
Preview (Luo et al., 2025).

Baselines. For our efficiency evaluation, we chose
methods based on test-time prompt optimization to
serve as the baselines.

(1) Original Model (Guo et al., 2025; Luo et al.,
2025): The original reasoning model already have
strong mathematical problem-solving capabilities.

(2) CCoT (Renze and Guven, 2024): It appends
the phrase "be concise" to the base prompt.

(3) Fixed Budget (Nayab et al., 2024): Prompt
the model to "limit the answer length to [Token

0 1000 2000 3000 4000 5000 6000
Thinking Length

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

(a) Original Model

0 1000 2000 3000 4000 5000 6000
Thinking Length

0

20

40

60

80

100

120

Fr
eq

ue
nc

y

(b) MuTIS (Ours)

Figure 3: (a), (b) present an analysis of "thinking length"
distributions on Math-500, specifically for correctly an-
swered problems. (a) shows the distribution for the
R1-distill (baseline) model, while (b) depicts the distri-
bution for the same model after MuTIS RL training.

Limit] words." We adopted a similar approach, aug-
menting the base prompt by adding the following
instruction: "The final answer is output before the
maximum number of tokens (max_tokens) is used".

4.2 Evaluation Results

As indicated in Table 2, MuTIS simultaneously im-
proves accuracy while significantly reducing token
consumption. Furthermore, when evaluated on five
mathematical reasoning datasets, the model con-
sistently exhibited performance enhancements to a
notable degree across all of them.

Enhanced Response Succinctness for Correct
Solutions. As shown in the table 1. For prob-
lems where both the baseline and our model pro-
vided correct answers, our method demonstrated
a remarkable capability for response compression,
yielding more concise yet accurate solutions.

Refinement of Thinking Phase. Recent efforts to
enhance the efficiency of reasoning models have
largely focused on optimizing their thinking phase.
Muennighoff et al. (2025) employ test-time scaling
to allocate predefined token budgets, while Ma et al.
(2025) directly bypass the thinking process via sim-
ple prompting. In line with these research direc-
tions, we analyzed the behavioral changes within
the thinking phase of MuTIS.

As depicted in figure 3, MuTIS exhibits a sub-
stantially reduced thinking length compared to the
original model. This performance strongly demon-
strates MuTIS’s capability for concise and accurate
reasoning.

Strong scalability with large-parameter mod-
els. To validate the scalability of our method,
we extended the MuTIS RL Training Pipeline
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Accuracy (%, ↑) # Tokens (↓)
MATH500 AMC23 Olympiad Minerva AIME24 MATH500 AMC23 Olympiad Minerva AIME24

DeepSeek-R1-Distill-Qwen-1.5B

R1-Distill (2025) 69.4 55.0 28.9 23.9 16.7 10083 15927 20686 14410 25549
CCoT (2024) 69.8 47.5 32.2 23.5 16.7 8818 17773 18535 9639 26130
Fixed Budget (2024) 69.8 52.5 30.2 22.8 16.7 9753 17648 20518 13075 24376
MuTIS (Ours) 74.6 62.5 40.2 29.4 30.0 3060 5847 8248 2586 13640

DeepScaleR-1.5B-Preview

DeepScaleR (2025) 78.8 65.0 45.0 34.2 30.0 6586 9335 13015 11810 19051
CCoT (2024) 78.4 72.5 45.2 30.5 26.7 5861 9183 11848 9691 17471
Fixed Budget (2024) 81.0 67.5 43.1 32.0 36.7 5351 8298 12686 10148 18898
MuTIS (Ours) 84.8 70.0 48.9 35.7 26.7 3564 5809 8667 5647 14892

Table 2: This table provides a visual comparison of accuracy and efficiency between MuTIS and baseline methods
on mathematical reasoning benchmarks. All evaluations were conducted using an identical framework and
consistently aligned hyperparameters to ensure a fair comparison.

Accuracy (%, ↑) #Token (↓)
MATH500 AMC23 Olympiad MATH500 AMC23 Olympiad

DeepSeek-R1-Distill-Qwen-7B

R1-Distill 86.4 67.5 44.3 5053 9178 12061
MuTIS (Ours) 87.4 77.5 54.1 2377 3296 5966

Table 3: MuTIS demonstrates superior scalability on
7B models, with the figure presenting a comparison
of accuracy and efficiency between the DeepSeek-R1-
Distill-Qwen-7B and MuTIS.

Math500 AMC Olympiad
Bench

Minerva AIME Avg.
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Figure 4: This figure illustrates the frequency of the
“Repetition” phenomenon across various datasets. Our
method is represented by the right-hand hatched bars,
while the original reasoning model is represented by the
left-hand bars.

to larger models (DeepSeek-R1-Distill-Qwen-
7B (Guo et al., 2025)). As presented in the table 3,
the experimental results demonstrate that MuTIS
achieves similarly significant improvements on
these larger-parameter models: reasoning effi-
ciency is enhanced, token consumption is markedly
reduced, and dataset accuracy is increased. For in-
stance, on OlympiadBench, MuTIS boosted perfor-
mance by 9.8% while decreasing token consump-
tion by 50%. These findings illustrate the superior
and scalable performance of MuTIS across mod-
els of varying parameter sizes. For more detailed
experimental details, please refer to Appendix A

4.3 Reasoning Under Token Constraints

We conducted evaluations under varying maxi-
mum generation token constraints, forcing the
model to complete its reasoning and generate a re-
sponse within the token limit. As shown in figure
5, comparative analysis across multiple datasets
reveals that MuTIS significantly outperforms the
original reasoning model.

The original model’s accuracy typically com-
mences its improvement only after the token ex-
ceeds approximately 500. This behavior suggests
the existence of a significant “Effective Token
Threshold”— a point that must be reached for the
model to complete its reasoning process and gener-
ate an answer. In stark contrast, MuTIS demon-
strates significant performance gains even with
highly restricted token budgets. For instance, on
the Math-500 dataset, MuTIS achieves over 40%
accuracy using only 800 tokens.

4.4 Mitigation of Repetition Issues

As shown in the Figure 4, MuTIS substantially
mitigates the incidence of “ineffective loops”—a
phenomenon where models generate excessively
long, non-productive responses when failing to
solve a problem. Consequently, the proportion
of responses truncated due to exceeding the de-
fault maximum token limit (typically 32,768 to-
kens in standard evaluations) was markedly re-
duced from 46.6% to 10.8 %. This provides strong
evidence that our method effectively mitigates the
“Repetition” problem across most scenarios.
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Figure 5: The figure compares the accuracy of MuTIS with two baseline models: R1-Distill (first row) and
DeepscaleR (second row). All evaluations presented were conducted under identical token limit settings.

Accuracy (%, ↑) #Tokens (↓)
MATH

500
AMC23 Olympiad

MATH
500

AMC23 Olympiad

R1-Distill 69.4 55.0 28.9 10083 15927 20686
Single-turn 67.0 52.3 30.2 1483 4072 4688
3-turn (Ours) 74.6 62.5 40.2 3060 5847 8248
5-turn 67.8 45.0 32.0 665 1580 2096

Table 4: Our ablation studies ensured a consistent total
length across varied experimental configurations, fix-
ing the overall token limit at 6000. This was achieved
through setups such as 3 turns with a 2000-token limit
each (3×2000), a single 6000-token turn (1×6000), and
5 turns with a 1200-token limit each (5×1200)

4.5 Ablation Study

Pivotal Role of Multi-turn. Our method’s core
philosophy is to utilize Multi-turn Interventions to
influence the model’s reasoning trajectory, thereby
steering reinforcement learning (RL) optimization
towards more effective and efficient policy space
regions.

To assess the specific contribution of our method’s
multi-turn interaction, we conducted a controlled
ablation study. To ensure fairness and isolate the
iterative impact, the single-turn baseline also re-
ceived an Intervention Prompt (IP) post-interaction.
This design enables precise analysis of the multi-
turn engagement’s pivotal role in the observed per-
formance benefits.

As shown in the Figure 4, While a single-turn set-
ting significantly reduces token consumption, it
sightly reduces accuracy. A 3-turn setup sub-

stantially boosts accuracy compared to the single-
turn approach, though token consumption increases.
Conversely, further increasing the number of turns
to five can again lower token consumption, but this
often leads to a decline in accuracy. Our analysis
indicates that with a 5-turn setup constrained by
a tight 1200-token per-turn limit, the model expe-
riences excessive intervention, which adversely
impacts its performance.

This ablation study across different turn configura-
tions demonstrates that the 3-turn design ultimately
chosen for MuTIS achieves an optimal balance
between accuracy and token consumption. It ap-
pears to exert an “appropriate level of intervention”
on the model’s rollouts, thereby fostering both ef-
fective and efficient reasoning.

5 Discussion

5.1 Reflection Words in Reasoning Models

Do small inference models really need tons of re-
flection words?

Research on DeepSeek-R1-Zero (Guo et al., 2025)
has shown that reflection words like “Wait” are
important markers of self-verification in reason-
ing models. However, as shown in Table 5, our
experimental results on smaller models show that
such self-reflection words (including “Wait”) de-
crease significantly during the MuTIS training pro-
cess. Concurrently, the model’s reasoning becomes
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Keyword Original Model MuTIS

wait 8.73 0.97
hold on 0.18 0.00
but 10.92 3.63
not sure 0.21 0.06
maybe 3.51 0.71
double-check 0.07 0.10
think again 0.09 0.01
alternatively 2.03 0.84
another idea 0.11 0.02
another approach 0.04 0.03

Table 5: This table illustrates the difference in the fre-
quencies of the reflection words between the original
R1-Distill-1.5B model and the two variants of MuTIS.
The frequencies are counted as the average times of
occurrence every 1000 tokens in responses.
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Figure 6: This figure illustrates the progression of both
response length and the number of response turns for
the deepscaler-1.5B model during MuTIS RL training.

more concise, and its performance under limited
token conditions improves. These observations
suggest that reflection words are substantially re-
dundant. While prior work has documented "Su-
perficial Reflection" behavior(Liu et al., 2025) in
base models such as Qwen2.5-Instruct, our experi-
ments reveal that reasoning models exhibit a form
of self-verification that can be characterized as
“Ineffective Noise”.

5.2 Behavior Analysis in the Reinforcement
Learning Process

After MuTIS intervenes to guide models toward
generating concise reasoning chains, it primar-
ily employs RL to optimize LLM parameters.
Consequently, we further analyzed the behavioral
changes exhibited by the models during this RL
process. As depicted in figure 6, the average re-
sponse length of models undergoing MuTIS’s RL

process steadily decreases, from an initial 5000 to-
kens to approximately 1500 tokens. Concurrently,
the average number of multi-turn iterations drops
from an original 2.5 to around 1.25. This indicates
that while original models struggle under strict to-
ken constraints, models trained with MuTIS learn
to provide concise answers within a minimal num-
ber of turns.

A recent study posited that RL does not fundamen-
tally expand a model’s capability boundaries (Yue
et al., 2025) but rather increases the probability
of accessing pre-existing correct states within its
search space. This implies that RL predominantly
helps models solidify their conviction in effective
reasoning paths. Our experimental findings this
perspective: RL’s role in making responses increas-
ingly concise demonstrates its efficacy in enabling
rapid convergence within the model’s search space.
This process embodies the model shifting from
self-doubt to firm conviction.

6 Conclusion

We introduce a novel Multi-Turn Intervention Sam-
pling (MuTIS) approach for RL training. This
method innovatively employs multi-turn rollouts
and incorporates guidance from an Intervention
Prompt to steer models toward generating high-
quality, concise reasoning chains. It fine-tunes
reasoning models through reinforcement learn-
ing, demonstrably breaking the accuracy-efficiency
trade-off.
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Limitations

We demonstrate that training small reasoning mod-
els with multi-turn intervening sampling achieves
effective reasoning. While computational con-
straints prevented us from exploring the full po-
tential of the method on larger models (e.g., 32B
models), future work will focus on extending our
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approach for enhanced generalization and wider
applicability.

During training, our method’s response length can
significantly fluctuate before ultimately stabiliz-
ing. This suggests that effective KL divergence
constraints could be important for achieving more
stable training dynamics in our Multi-Turn Inter-
vention process.
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Appendix

A Experiment Details

A.1 Dataset filtering details

• Remove multiple-choice questions (MCQs). To
focus on the model’s ability to generate answers
rather than merely select them, thereby provid-
ing a more rigorous assessment of its reasoning
capabilities, all MCQs were excluded.

• Remove questions with overly long (≥55 tokens)
answers. We observed that some answers in the
original dataset had non-standard formatting or
contained excessive descriptive language. Such
answers are challenging to evaluate accurately
using a rule-based reward system.

• Remove questions with multiple answers or in-
volving multiple variables. The presence of mul-
tiple valid answers complicates the extraction
and comparison process during evaluation, poten-
tially leading to mismatches that can negatively
impact training.

Following these filtering steps, our final training
dataset consisted of over 60,000 samples. From
this, 0.5% was allocated as a dedicated validation
set to monitor model performance throughout the
training process.

A.2 Evaluation Details

We assessed our method and baseline models
on the following five math reasoning bench-
marks: Math-500 (Lightman et al., 2023), AIME
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2024 (AMC. American Mathematics Competitions,
2025a), AMC23 (AMC. American Mathematics
Competitions, 2025b), Olympiadbench (He et al.,
2024), Minerva (math-ai, 2025)

The dataset versions used were aligned with those
available in the LIMO repository. We used greedy
decoding for all evaluations, which introduces no
randomness in the outputs. Consequently, the same
answer is obtained regardless of the random seed,
ensuring that all reported data correspond to results
from a single sampling pass.

Our mathematical reasoning evaluation also
leveraged LIMO’s evaluation framework, whose
methodology is primarily derived from Qwen2.5-
Math. This framework employs a rule-based as-
sessment to determine answer correctness, without
relying on model-based judgments.

For MCQ tasks, we predominantly utilized the lm-
eval (Gao et al., 2024) framework, as LIMO’s eval-
uation framework offers limited support for these
types of evaluations.

A.3 Experiment Model

Our experiments are conducted on DeepSeek-R1-
Distill-Qwen-1.5B (Guo et al., 2025), DeepScaleR-
1.5B-Preview (Luo et al., 2025), and DeepSeek-R1-
Distill-Qwen-7B (Guo et al., 2025). Given the orig-
inal reasoning model’s already strong mathematical
problem-solving capabilities, coupled with our re-
search emphasis on efficiency, we also included it
as a key baseline for performance comparison.

A.4 Analysis of Responses Length

Figure 7 shows the generation length histogram
of MuTIS and the original DeepSeek-R1-Distill-
Qwen-1.5B model on Math500 dataset. It demon-
strates that MuTIS evidently mitigates the over-
thinking problems (shown by the overall distribu-
tion) and the repetition issues (shown by the red
part of the rightmost bar).

A.5 Detailed Results on Large-Parameter
Models

Figure 8 shows the comparison of accuracy under
token limits between the original DeepSeek-R1-
Distill-Qwen-7B and our MuTIS.
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Figure 7: Generation Length

A.6 further discussion on Reflection Word

The advent of sophisticated reasoning models, ex-
emplified by OpenAI o1 (Jaech et al., 2024) and
DeepSeek-R1 (Guo et al., 2025), has catalyzed
a research emphasis on long Chain-of-Thought
(CoT) methodologies as a primary target for op-
timizing model training. Nevertheless, contempo-
rary studies indicate a prevalent "OverThinking"
phenomenon within these models, characterized by
excessive or non-productive cognitive steps.

Table 1 illustrates that original reasoning models
often introduce significant redundancy. In con-
trast, our optimization (MuTIS) not only further
improves accuracy but also concurrently reduces
token consumption. This demonstrates that the
Chain-of-Thought (CoT) in such reasoning models
contains many unnecessary steps. Indeed, analysis
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Figure 8: Accuracy vs Token Limits on 7B models. The
original model is DeepSeek-R1-Distill-Qwen-7B and
the MuTIS is trained on it.

of MuTIS’s post-training reasoning CoT, reveals a
significant reduction in "reflection words"–terms
frequently occurring in standard distilled models.

B Prompt Design

B.1 Chat Template Design

We employed a system prompt inspired by
DeepSeek-R1 Zero. For our two model versions,
MuTIS and MuTIS-Ask, distinct chat templates
were developed. Within the system role specified
in these templates, we outlined the specific interac-
tion workflow to guide the LLM.

MuTIS-Ask

role: ’system’,content: The user asks a ques-
tion, and the Assistant solves it. The assis-
tant first thinks about the reasoning process in
the mind and then provides the user with the
answer. The answer is enclosed within <an-
swer> </answer> tags. i.e., <answer> answer
here </answer>. During the assistant’s reason-
ing process, if he realizes that his reasoning
may be problematic or wrong, he can ask other
agents for help. The query is inclosed within
<ask> </ask> Tags. i.e., <ask> put confused
point here </ask>. It will return the advice from
other agent within <communicate> </commu-
nicate>. The assistant can ask other agents for
help multiple times. If the assistant understands
the question and find no further other agents’
advice needed, the assistant can directly pro-
vide the answer inside <answer> </answer>.

MuTIS

role: ’system’,content: The user asks a ques-
tion, and the Assistant solves it. The assistant
first thinks about the reasoning process in the
mind and then provides the user with the an-
swer. The answer is enclosed within <answer>
</answer> tags. i.e., <answer> answer here
</answer>. If the assistant understand the ques-
tion, he can directly provide the answer inside
<answer> </answer>.

B.2 Intervention Prompt Design

MuTIS-Ask

Warning! My previous action is invalid. If I
want to ask other agents for help, I should put
the query between <ask> and </ask>. If I want
to give the final answer, I should put the answer
between <answer> and </answer>. Let me try
again:

MuTIS

Warning! My previous action is invalid. If I
want to give the final answer, I should put the
answer between <answer> and </answer>. Let
me try again:

B.3 Analysis of Prompt Sensitivity and
Generalization

To ensure that our experimental design was not
overly sensitive to prompt hyperparameter selec-
tion, we analyzed the experimental results and train-
ing processes associated with different variants of
the ’Intervention Prompt.’ The specific prompts
used are as follows:

• Alert: The action you just performed was not
valid. Please attempt it again.

• Notice: Your last move was unsuccessful. Kindly
try once more.

• Error: The preceding operation failed. Please
redo the action.

• Caution: That last input was not accepted. Please
have another go.

• Unsuccessful Action: Your prior step could not
be processed. Please try again.
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C Additional Cases

C.1 MuTIS Inference Case

Figure 9 shows the inference outputs of MuTIS and the original model on the same question.

Question: If f(x) = 3x−2
x−2 , what is the value of f(−2) + f(−1) + f(0) ? Express your answer as a common fraction..

MuTIS(Ours): token consumption 650

Q: If f(x) = 3x−2
x−2 , what is the value of f(−2) +

f(−1) + f(0)? Express your answer as a common
fraction.
A: ¡think¿ To find the value of f(−2) + f(−1) + f(0)
for the function f(x) = 3x−2

x−2 , I will evaluate each
term separately and then sum them up.
First, I will calculate f(−2):

f(−2) = 3(−2)− 2

−2− 2
=
−6− 2

−4 =
−8
−4 = 2

Next, I will calculate f(−1):

f(−1) = 3(−1)− 2

−1− 2
=
−3− 2

−3 =
−5
−3 =

5

3

Then, I will calculate f(0):

f(0) =
3(0)− 2

0− 2
=

0− 2

−2 =
−2
−2 = 1

Finally, I will sum the results:

f(−2)+ f(−1)+ f(0) = 2+
5

3
+1 =

6

3
+

5

3
+

3

3
=

14

3

¡/think¿
To find the value of f(−2) + f(−1) + f(0) for the
function f(x) = 3x−2

x−2 , we will evaluate each term
separately and then sum them up.
1. Calculate f(−2):

f(−2) = 3(−2)− 2

−2− 2
=
−6− 2

−4 =
−8
−4 = 2

2. Calculate f(−1):

f(−1) = 3(−1)− 2

−1− 2
=
−3− 2

−3 =
−5
−3 =

5

3

3. Calculate f(0):

f(0) =
3(0)− 2

0− 2
=

0− 2

−2 =
−2
−2 = 1

4. Sum the results:

f(−2)+ f(−1)+ f(0) = 2+
5

3
+1 =

6

3
+

5

3
+

3

3
=

14

3

14

3

Distill Model(Origin): token consumption 2753

Okay, so I have this function f(x) which is equal to (3x − 2) divided by (x − 2). I need to find the value of f(−2) +
f(−1) + f(0). Hmm, let me think about how to approach this step by step. First, I should probably figure out what
each of these function values is individually. That is, I need to compute f(−2), f(−1), and f(0) separately and then
add them together. Sounds straightforward, but I want to make sure I do each step correctly. Starting with f(−2). The
function f(x) is (3x− 2)/(x− 2). So, substituting x with −2, I get: f(−2) = (3 ∗ (−2)− 2)/(−2− 2) Let me compute
the numerator and the denominator separately. The numerator is 3 ∗ (−2) which is −6, and then subtract 2, so that’s
−6− 2 = −8. The denominator is −2− 2, which is −4. So, f(−2) is −8 divided by −4. Hmm, dividing two negatives
gives a positive, so that’s 2. Okay, so f(−2) is 2. Next, let’s compute f(−1). Again, substituting x with −1 in the
function: f(−1) = (3 ∗ (−1)− 2)/(−1− 2) Calculating the numerator: 3 ∗ (−1) is −3, minus 2 is −5. The denominator
is −1 − 2, which is −3. So, f(−1) is −5 divided by −3. Again, dividing two negatives gives a positive, so that’s 5/3.
So, f(−1) is 5/3. Now, moving on to f(0). Substituting x with 0: f(0) = (3 ∗ 0− 2)/(0− 2) Calculating the numerator:
3 ∗ 0 is 0, minus 2 is −2. The denominator is 0− 2, which is −2. So, f(0) is −2 divided by −2, which is 1. So, f(0) is
1. Alright, so now I have all three function values: f(−2) is 2, f(−1) is 5/3, and f(0) is 1. Now, I need to add them
together. So, adding them up: 2+5/3+1. Let me convert all these to fractions with a common denominator to make it
easier. 2 is the same as 6/3, and 1 is the same as 3/3. So, adding them together: 6/3+5/3+3/3 = (6+5+3)/3 = 14/3.
Wait, hold on, that seems a bit high. Let me double-check my calculations. First, f(−2): 3 ∗ (−2) is −6, minus 2
is −8. Denominator: −2 − 2 is −4. So, −8/ − 4 is 2. That seems correct. f(−1): 3 ∗ (−1) is −3, minus 2 is −5.
Denominator: −1− 2 is −3. So, −5/− 3 is 5/3. That also seems correct. f(0): 3 ∗ 0 is 0, minus 2 is −2. Denominator:
0 − 2 is −2. So, −2/ − 2 is 1. That’s correct too. Adding them: 2 + 5/3 + 1. Let me convert 2 and 1 to thirds: 2 is
6/3, 1 is 3/3. So, 6/3 + 5/3 + 3/3 is indeed 14/3. Hmm, 14/3 is equal to 4 and 2/3, which is approximately 4.666...
Wait, but let me think again. Is there a possibility that I made a mistake in substituting the values? Let me check
each substitution again. For f(−2): (3 ∗ (−2) − 2)/(−2 − 2) = (−6 − 2)/(−4) = (−8)/(−4) = 2. Correct. For f(−1):
(3 ∗ (−1)− 2)/(−1− 2) = (−3− 2)/(−3) = (−5)/(−3) = 5/3. Correct. For f(0): (3 ∗ 0− 2)/(0− 2) = (−2)/(−2) = 1.
Correct. So, adding them: 2 + 5/3 + 1. Let me add 2 and 1 first: 2 + 1 is 3. Then, 3 + 5/3. 3 is 9/3, so 9/3 + 5/3 is
14/3. So, 14/3 is the correct sum.
Wait, but 14/3 is an improper fraction, and the question says to express the answer as a common fraction. So, 14/3
is already a common fraction, so that should be the answer. But just to make sure, let me think if there’s another way
to approach this problem, maybe simplifying the function first before plugging in the values. Sometimes, simplifying
can make the calculations easier or reveal any potential issues. Looking at f(x) = (3x− 2)/(x− 2). Hmm, can I factor
anything here? Let me see. The numerator is 3x − 2, which doesn’t factor nicely with the denominator x − 2. So, I
don’t think there’s a way to simplify this function further. So, I think my initial approach is correct. Alternatively,
maybe I can perform polynomial division or something, but since it’s a linear over linear function, it’s just a straight
division.
Wait, another thought: maybe I can write f(x) as 3 + something. Let me try that. Let me rewrite f(x) as (3x−2)/(x−
2). Let me perform the division: Divide 3x−2 by x−2. So, how many times does x−2 go into 3x−2? Well, x goes into
3x three times. So, 3∗(x−2) is 3x−6. Subtract that from 3x−2: (3x−2)−(3x−6) = 0x+4. So, the division gives 3 with
a remainder of 4. Therefore, f(x) can be written as 3+4/(x−2). So, f(x) = 3+4/(x−2). Hmm, that might be helpful
for checking the values. Let me compute f(−2) using this expression: 3+4/(−2−2) = 3+4/(−4) = 3−1 = 2. Correct,
same as before. f(−1): 3+4/(−1−2) = 3+4/(−3) = 3−4/3 = 5/3. Correct. f(0): 3+4/(0−2) = 3+4/(−2) = 3−2 = 1.
Correct. So, that’s another way to confirm the values. So, adding them together: 2 + 5/3 + 1 = 14/3. Wait but just
to make sure, let me compute each step again: f(−2): 3 ∗ (−2) = −6, −6− 2 = −8. Denominator: −2− 2 = −4. So,
−8/− 4 = 2. Correct. f(−1): 3 ∗ (−1) = −3, −3− 2 = −5. Denominator: −1− 2 = −3. So, −5/− 3 = 5/3. Correct.
f(0): 3 ∗ 0 = 0, 0 − 2 = −2. Denominator: 0 − 2 = −2. So, −2/ − 2 = 1. Correct. Adding them: 2 + 5/3 + 1. Let
me convert 2 and 1 to thirds: 2 is 6/3, 1 is 3/3. So, 6/3 + 5/3 + 3/3 = (6 + 5 + 3)/3 = 14/3. So, 14/3 is the sum.
Wait, 14/3 is an improper fraction, but the question says to express the answer as a common fraction. 14/3 is already
a common fraction, so that’s fine. Alternatively, if I wanted to write it as a mixed number, it would be 4 and 2/3,
but since the question specifies a common fraction, 14/3 is the appropriate answer. Just to make sure I didn’t make
any arithmetic errors, let me add 2 + 5/3 + 1 again: 2 + 1 is 3, and 3 + 5/3 is 3 + 1 and 2/3, which is 4 and 2/3, which
is 14/3. Yep, that’s correct. So, I think I’ve double-checked all my steps, and everything seems consistent. Therefore,
the value of f(−2) + f(−1) + f(0) is 14/3.

Final Answer The value of f(−2) + f(−1) + f(0) is
14

3
.

To find the value of f(−2) + f(−1) + f(0) for the function f(x) = 3x−2
x−2 , we need to evaluate the function at each

of these points and then sum the results. First, we compute f(−2): f(−2) = 3(−2)−2
−2−2 = −6−2

−4 = −8
−4 = 2 Next, we

compute f(−1): f(−1) = 3(−1)−2
−1−2 = −3−2

−3 = −5
−3 = 5

3 Then, we compute f(0): f(0) = 3(0)−2
0−2 = 0−2

−2 = −2
−2 = 1 Adding

these values together: f(−2) + f(−1) + f(0) = 2+ 5
3 + 1 Converting 2 and 1 to fractions with a common denominator:

2 = 6
3 and 1 = 3

3 Adding the fractions: 6
3 + 5

3 + 3
3 = 6+5+3

3 = 14
3 Thus, the value of f(−2) + f(−1) + f(0) is

14

3

Figure 9: Inference case. The left side is the original DeepSeek-R1-Distill-Qwen-1.5B model, and the right side is
our MuTIS model.
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