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Abstract

Parameter-efficient fine-tuning (PEFT) of large
language models (LLMs) is critical for adapt-
ing to diverse downstream tasks with minimal
computational cost. We propose Directional-
SVD Low-Rank Adaptation (DisLoRA), a
novel PEFT framework that leverages Singu-
lar Value Decomposition (SVD) to decom-
pose pretrained weight matrices into orthog-
onal backbone and task-specific subspaces,
enabling precise capture of task-specific di-
rections (TSDs). By dynamically identify-
ing TSDs and employing adaptive soft orthog-
onal regularization with mean-normalization
mechanism, DisLoRA balances task-specific
and orthogonal losses without manual tun-
ing, ensuring robust training stability. Exten-
sive experiments on GLUE and Commonsense
Reasoning benchmarks demonstrate that Dis-
LoRA surpasses established PEFT methods,
including LoRA, PiSSA, DoRA, LoRA-Dash,
SORSA and MiLoRA. DisLoRA achieves supe-
rior performance on multiple individual GLUE
datasets, surpassing baselines by up to 10.28%
on SST-2 and 3.28% on CoLA, and consistently
attains higher average accuracy than baselines
across Commonsense Reasoning Tasks, with a
maximum gain of 3.1%. Additionally, We also
evaluated DisLoRA on the AQUA-RAT mathe-
matical dataset, where it achieved the highest
accuracy across all tested ranks. These results
demonstrate DisLoRA’s performance in effi-
cient and high-performing LLM adaptation for
domain-specific tasks while preserving gener-
alization.

1 Introduction

Large language models (LLMs) have transformed
natural language processing (NLP) by achiev-
ing extraordinary performance across diverse
tasks, including text generation, machine trans-
lation, and complex question answering (Zhao
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et al., 2025). State-of-the-art models such as
DeepSeek-R1 (DeepSeek-AI et al., 2025), LLaMA-
3 (Grattafiori et al., 2024), and Qwen-2.5 (Qwen
et al., 2025) demonstrate LLMs are competent for
these tasks. LLMs have enabled practical advance-
ments, such as conversational agents with near-
human fluency (Jin et al., 2024) and automated
systems for content summarization (Cajueiro et al.,
2023) and code generation (Lu et al., 2025). De-
spite these successes, the escalating scale of mod-
ern LLMs, often encompassing hundreds of bil-
lions of parameters, introduces significant training
challenges (Matarazzo and Torlone, 2025). Fur-
thermore, guided by the scaling law (Kaplan et al.,
2020), the trend of increasing model size has in-
tensified. The required computational resources,
including high-performance GPUs and extensive
memory, incur substantial financial and energy
costs.

Figure 1: DisLoRA decomposes W into backbone
(W prin) and task-specific (W res) subspaces via SVD,
further identifying task-specific directions (W TSD) for
fine-tuning.

To mitigate the computational burden of full
fine-tuning, parameter-efficient fine-tuning (PEFT)
methods have emerged as a promising solu-
tion (Houlsby et al., 2019), adapting LLMs to
downstream tasks by updating only a small subset
of parameters while rivaling full fine-tuning perfor-
mance (Han et al., 2024). Among these, Low-Rank
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Adaptation (LoRA) stands out for its efficiency in
updating model weights through low-rank matrices,
preserving pretrained weights (Hu et al., 2022). De-
spite its efficiency, LoRA often suffers from train-
ing instability and suboptimal generalization due
to the absence of regularization constraints (Bansal
et al., 2018).

Efficient task adaptation relies on task-specific
directions (TSDs), which are structured weight ad-
justment directions in the weight space critical for
downstream tasks (Si et al., 2024). Conceptually
akin to gradient vectors that guide optimization,
TSDs differ fundamentally: while gradients are
instantaneous and derived from loss function val-
ues, TSDs are identified through dynamic analysis
of weight update patterns, enabling precise fitting
of task-specific probability distributions, such as
decision boundaries in classification or linguistic
styles in generation. By focusing on TSDs, models
achieve superior performance with minimal param-
eter updates (e.g., 0.48%–1.88% of parameters).

LoRA’s limitations arise from two key shortcom-
ings. First, its unconstrained low-rank updates do
not explicitly identify TSDs, leading to inefficient
adaptation across diverse tasks. Second, the ab-
sence of regularization, such as subspace orthog-
onality constraints, causes training instability, re-
sulting in loss oscillations and reduced generaliza-
tion (Zhan et al., 2024).

To overcome these challenges, we propose
Directional-SVD Low-Rank Adaptation (Dis-
LoRA), a novel PEFT framework that leverages
Singular Value Decomposition (SVD) to address
LoRA’s limitations. Inspired by the low intrin-
sic dimensionality of pretrained models (Agha-
janyan et al., 2021), we decompose pretrained
weight matrices W 0 = UΣV ⊤ into a frozen
Backbone Subspace W prin = U prinΣprinV

⊤
prin,

preserving core capabilities, and a trainable Task-
specific Subspace W res = U resΣresV

⊤
res, captur-

ing TSDs. Unlike prior SVD-based methods like
PiSSA (Meng et al., 2024), we explicitly utilize
orthogonal SVD forms to identify TSDs by adopt-
ing the change rate formula from recent work (Si
et al., 2024). Building on this framework, Dis-
LoRA introduces Adaptive Soft Orthogonal Regu-
larization with Mean-Normalization to ensure sub-
space orthogonality, preventing coupling, and a
softmax-like dynamic adaptive weighting mech-
anism to balance task-specific loss Ltask and or-
thogonal loss Lortho, mitigating optimization in-
stability. These mechanisms enable DisLoRA to

outperform baselines, achieving a 10.28% accu-
racy gain over LoRA (Hu et al., 2022) on SST-2
(95.65% vs. 85.37%) and 5.61% on WNLI (78.87%
vs. 73.24%) with DeBERTaV3-base, up to 2.5%
higher average accuracy than LoRA-Dash (Si et al.,
2024) (86.1% vs. 84.1%) across Commonsense
Reasoning Tasks with Qwen2.5-7B-Instruct, and
the highest accuracy on AQUA-RAT under every
tested rank (details in Table 1, Table 2 and Table 3).
The full code is avaiable at GitHub - DisLoRA.

The key contributions of this paper are summa-
rized as follows:

1. We propose a new LLM fine-tuning method
named DisLoRA. By decomposing pretrained
weights into backbone and task-specific sub-
spaces via SVD, our approach disentangles
general capabilities from task-specific adap-
tations, providing a fine-grained strategy for
efficient fine-tuning.

2. We pioneer Adaptive Soft Orthogonal Regu-
larization with Mean-Normalization mecha-
nism that leverages normalized averages and
adaptive ratios to balance orthogonal and task-
specific losses, eliminating manual tuning
across heterogeneous model architectures for
robust stability and generalization.

3. We demonstrate that DisLoRA outperforms
LoRA (Hu et al., 2022), PiSSA (Meng et al.,
2024), DoRA (Liu et al., 2024), LoRA-
Dash (Si et al., 2024), SORSA (Cao, 2024)
and MiLoRA(Wang et al., 2025) on GLUE
benchmark and Commonsense Reasoning
Tasks using DeBERTaV3-base and Qwen2.5-
7B-Instruct respectively. On the GLUE bench-
mark, DisLoRA achieves the highest perfor-
mance in 6/9 datasets. On Commonsense Rea-
soning Tasks, DisLoRA consistently attains
the highest average accuracy across all eval-
uated ranks. Our experiments on the AQUA-
RAT mathematical dataset demonstrate the
versatility of DisLoRA.

2 Related Work

Parameter-efficient fine-tuning enables efficient
adaptation of LLMs to downstream tasks with min-
imal parameters. To address limitations in Low-
Rank Adaptation (LoRA), recent advancements
leverage structured weight updates. This section
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Figure 2: (a) LoRA updates pretrained weights W ∈ Rm×n by adding a low-rank adaptation A ∈ Rm×r and
B ∈ Rr×n, where A is initialized with Gaussian distribution and B is initialized to zero. (b) DisLoRA decomposes
W into backbone W prin and task-specific W res subspaces via SVD, further identifying TSDs W TSD for fine-tuning.
(c) Fine-tuning dynamics: LoRA performs chaotic search across coupled directions, while DisLoRA conducts
ordered search by utilizing orthogonal basis to approach TSDs, shown in blue, from initial basis directions (black)
within the reference coordinate axis (gray).

reviews two key developments: Singular Value De-
composition methods, which decompose weight
matrices into orthogonal matrices and singular val-
ues, and Task-specific Directions, which identify
critical weight adjustment directions for specific
tasks.

2.1 Singular Value Decomposition

The integration of SVD into PEFT has undergone
significant evolution, marked by three key devel-
opments: PiSSA, TriLoRA, SORSA and MiLoRA.
PiSSA (Meng et al., 2024) introduced a novel ap-
proach by decomposing pre-trained weight matri-
ces into principal and residual components using
SVD. By initializing trainable adapters with the
principal singular values and freezing the residual
components, PiSSA achieved faster convergence
and improved performance compared to traditional
LoRA. However, its reliance on SVD for initializa-
tion introduced computational overhead, and its ef-
fectiveness depended on the assumption that resid-
ual components contained less critical information.
Building on this, TriLoRA (Feng et al., 2024) in-
tegrated Compact SVD into the LoRA framework,
enabling finer control over weight updates and en-

hancing adaptability in text-to-image generation
tasks. While TriLoRA improved stability and re-
duced overfitting, its added complexity extended
training time, and its performance remained tied
to the quality of the pre-trained model. Finally,
SORSA (Cao, 2024) advanced the field further
by introducing orthonormal regularization to main-
tain the stability of singular vectors during train-
ing. This method not only preserved the benefits of
SVD-based decomposition but also demonstrated
faster convergence and superior performance in nat-
ural language tasks. Despite its strengths, SORSA’s
reliance on orthonormality constraints may limit
its flexibility in varied scenarios. MiLoRA (Wang
et al., 2025) also leverages SVD to decompose the
pretrained weight, but freezes the principal com-
ponents and updates only the minor singular val-
ues/vectors. While MiLoRA demonstrates con-
sistent gains over vanilla LoRA, it lacks explicit
identification of TSDs. Together, these methods
illustrate the progressive refinement of SVD-based
PEFT, with each method addressing the limitations
of its predecessors while pushing the boundaries of
efficiency and performance in fine-tuning LLMs.
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2.2 Task-specific Direction
The concept of task-specific directions has emerged
as a pivotal element in the development of PEFT
methods, particularly in adapting large pre-trained
models to downstream tasks. TSD refers to the
specific directions in the pre-trained weight matrix
that undergo significant changes when fine-tuning
for a particular task, capturing the essential task-
specific adaptations while minimizing the need for
extensive parameter updates. Early work, such as
DoRA (Liu et al., 2024), introduced the idea of
decomposing weights into magnitude and direc-
tional components, implicitly addressing TSD by
focusing on directional updates. However, it was
LoRA-Dash (Si et al., 2024) that explicitly defined
TSD as the core directions associated with smaller
singular values of the pre-trained weights, which
are crucial for task-specific performance. LoRA-
Dash further proposed a two-phase framework to
identify and optimize these directions, significantly
enhancing fine-tuning efficiency. Despite these
advancements, challenges remain in generalizing
TSD across diverse tasks and models, as their iden-
tification and utilization often require careful hy-
perparameter tuning and may vary depending on
the task complexity. The exploration of TSD con-
tinues to be a promising direction for improving
the efficiency and effectiveness of PEFT methods.

3 Methodology

This section presents a detailed description of our
proposed PEFT method, DisLoRA. Our approach
leverages SVD to decompose pretrained weight ma-
trices into orthogonal backbone and task-specific
subspaces, dynamically identifies TSDs, and em-
ploys adaptive soft orthogonal regularization with
mean-normalization mechanism to balance multi-
ple loss functions, thereby significantly enhancing
the performance of LLMs on downstream tasks.

3.1 Subspace Decomposition via SVD
We begin by performing SVD on the pretrained
weight matrix W 0 ∈ Rm×n:

W 0 = UΣV ⊤, (1)

where U ∈ Rm×m and V ∈ Rn×n are the left
and right singular vector matrices, respectively, and
Σ ∈ Rm×n is a diagonal matrix containing singular
values σ1, σ2, . . . , σmin(m,n) in descending order.

The weight matrix W 0 is decomposed into two
orthogonal subspaces:

• Task-specific Subspace (W res): Comprises
the smallest r singular values and their cor-
responding singular vectors, capturing direc-
tional information critical for specific tasks:

W res = U resΣresV
⊤
res. (2)

• Backbone Subspace (W prin): Consists of
the remaining larger singular values and vec-
tors, preserving the pretrained LLM’s general
capabilities:

W prin = U prinΣprinV
⊤
prin. (3)

This decomposition is motivated by the hypoth-
esis that singular vectors associated with smaller
singular values are more likely to correspond to
TSDs, as they represent underutilized directions in
the pretrained model (Si et al., 2024). During fine-
tuning, we freeze the backbone subspace W prin
and only train the task-specific subspace W res, up-
dating its singular vectors and values as trainable
parameters to capture TSDs while preserving core
model capabilities.

3.2 Dynamic Identification of Task-specific
Directions

Task-specific directions correspond to weight
matrix directions critical for given downstream
task (Lichtenstein et al., 2020), typically associated
with smaller singular values and high change rates.
Since the optimal weight matrix W ∗ is unknown
during fine-tuning, we adopt a dynamic identifi-
cation approach inspired by prior work (Si et al.,
2024) to approximate TSDs based on weight up-
dates.

We introduce a warmup phase at the start of
training to update the task-specific subspace pa-
rameters and obtain the refined weights Wres. By
default, this phase spans the first third of the total
steps, allowing TSDs to be captured before over-
fitting injects noise—a design inspired by early
stopping principles (Prechelt, 2012). Empirically,
the task loss converges within this period, leaving
the remaining two-thirds of training to fine-tune
the weighting coefficients. The warmup duration
is treated as a task-dependent hyperparameter, akin
to the rank r and scaling factor α in LoRA: com-
plex tasks (e.g., multi-step reasoning) benefit from
longer warmups, whereas simpler tasks require
shorter ones.
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For each singular vector pair ui and vi from W 0,
we compute the change rate along the direction
uiv

⊤
i :

δi =

∣∣∣∣
u⊤
i W resvi

σi

∣∣∣∣ , (4)

where:

• u⊤
i W resvi: The projection of the weight up-

date onto the direction uiv
⊤
i , reflecting the

magnitude of adjustment.

• σi: The i-th singular value of W 0, indicating
the direction’s pretrained significance.

The change rate δi quantifies the direction’s con-
tribution to task adaptation, with higher values in-
dicating TSDs that require significant adjustments.
After the warmup phase, we select the top stsd direc-
tions with the highest δi as TSDs, consistent with
the hypothesis that high-change directions reflect
critical task adaptation needs. The hyperparameter
stsd was set to 8 based on rigorous validation in (Si
et al., 2024), ensuring optimal performance and
consistent comparison.

3.3 Optimizing Weight Updates Using TSDs
Upon identifying TSDs, we optimize the weight
matrix by adjusting their linear combination to en-
hance task-specific performance. We freeze the
TSD directions and introduce learnable weighting
coefficients αi, updating the weight matrix as:

W = W prin+(U resΣresV
⊤
res)+

stsd∑

i=1

αiuiv
⊤
i . (5)

During training, only the TSD directions uiv
⊤
i

are frozen, while the coefficients αi and residual
weights U resΣresV

⊤
res are optimized. Inputs are

scaled by a factor αLoRA/r, where r is the rank of
the task-specific subspace and αLoRA is set to 1.5r
by default.

3.4 Adaptive Soft Orthogonal Regularization
with Mean-Normalization

To ensure orthogonality of the task-specific sub-
space and enhance training stability, we employ
soft orthogonal (SO) regularization (Bansal et al.,
2018):

Lortho =
1

Np

Np∑

i=1

(
∥U⊤

i U i − I∥2F + ∥V iV
⊤
i − I∥2F

)
,

(6)

where ∥·∥F denotes the Frobenius norm, I is the
identity matrix, and Np is the number of singu-
lar vector pairs. Normalizing by Np mitigates the
impact of varying layer counts across models, en-
suring architecture-agnostic generalization.

However, the orthogonal loss Lortho, derived
from matrix norms, inherently exhibits orders-of-
magnitude disparities with the probabilistic task-
specific loss Ltask (e.g., cross-entropy) due to vary-
ing model dimensions, rendering manual weighting
adjustments (Ltotal = Ltask+λ ·Lortho) challenging
and poorly generalizable. To address this, we pio-
neer a softmax-like dynamic weighting mechanism
that adaptively balances losses without manual tun-
ing. We compute the relative loss ratio:

k =
Lortho

Ltask
, (7)

and derive weights via a softmax-like mechanism:

αtask =
exp(−k)

exp(−k) + exp(−1/k)
, (8)

αortho = 1− αtask. (9)

The total loss is:

Ltotal = αtask · Ltask + αortho · Lortho. (10)

This approach seamlessly adapts to heterogeneous
model architectures and dynamically adjusts the
contributions of the two types of loss function
based on relative loss magnitudes to mitigate opti-
mization biases, ensuring robust optimization and
generalization. Detailed mathematical derivations
and gradient analyses are provided in Appedix A.

4 Experiments

We evaluate the performance of DisLoRA, across
natural language understanding (NLU) and Com-
monsense Reasoning Tasks, comparing it against
established PEFT baselines. Our experiments aim
to demonstrate the superior performance of Dis-
LoRA in capturing TSDs and the effectiveness of
its dynamic weighting algorithm. All experiments
are conducted on NVIDIA V100 (32GB) GPUs and
RTX4090 (24GB) GPU using the PyTorch frame-
work , DeepSpeed inference (Aminabadi et al.,
2022) and the AdamW optimizer with a linear
learning rate schedule.
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4.1 Baselines
For NLU tasks, we compare DiSLoRA with
three PEFT methods: LoRA (Hu et al., 2022),
PiSSA (Meng et al., 2024), and DoRA (Liu et al.,
2024). To validate DisLoRA’s performance for
Commonsense Reasoning Tasks, ablation stud-
ies assess orthogonal TSD identification capac-
ity and dynamic weighting mechanisms. Exper-
iments compare DisLoRA against LoRA (Hu et al.,
2022), LoRA-Dash (Si et al., 2024), SORSA (Cao,
2024), and DisLoRA* (a variant with fixed weight-
ing). LoRA employs unconstrained low-rank up-
dates without TSD focus, LoRA-Dash utilizes non-
orthogonal basis to capture TSDs, and SORSA ap-
plies a fixed weighting coefficient for total loss
Ltotal = Ltask + λLortho . DisLoRA* uses the same
total loss function with λ = 5× 10−5 as SORSA,
isolating the contribution of DisLoRA’s dynamic
weighting, which adjusts αtask and αortho based on
the loss ratio Lortho

Ltask
.

4.2 Natural Language Understanding
We fine-tune the W q,W k,W v in DeBERTaV3-
base (184M parameters) (He et al., 2023) on the
GLUE benchmark (Wang et al., 2019), which com-
prises nine datasets (Detailed descriptions are in
appedix B.1). All datasets are split into training,
validation, and test sets aligned with the default
in huggingface. These datasets evaluate a broad
range of natural language understanding tasks, in-
cluding sentiment analysis, semantic inference, and
grammatical judgment.

4.2.1 Experimental Results and Discussion
DisLoRA achieves leading performance on the
GLUE benchmark with DeBERTaV3-base, outper-
forming in SST-2 (95.65% Acc.), CoLA (68.33%
Mcc.), and RTE (86.64% Acc.), with stable results
across multiple tasks as shown in Table 1. Com-
pared to full fine-tuning (FFT), DisLoRA deliv-
ers comparable or superior performance, surpass-
ing FFT by 4.33% on RTE (86.64% vs. 82.31%)
while using only 0.48%–1.88% of parameters. This
efficiency stems from SVD separating pretrained
weights into task-specific subspaces, with orthogo-
nal basis capturing critical task features, enhanced
by dynamic loss balancing.

DisLoRA outperforms LoRA (Hu et al., 2022)
and its variants, PiSSA (Meng et al., 2024) and
DoRA (Liu et al., 2024), due to its well-designed
structure. LoRA’s unconstrained updates yield un-
stable results, trailing by 3.28% on CoLA (65.05%

vs. 68.33%) and 5.63% on WNLI (73.24% vs.
78.87%). PiSSA’s static SVD initialization excels
in QQP (91.58%) but lags by 18.61% on WNLI
(60.26%). DoRA’s direction-magnitude decou-
pling performs strongly in MRPC (93.69%) but
falls short by 1.73% on CoLA (66.60%). Dis-
LoRA’s orthogonal basis capture task-specific di-
rections, driving consistent task performance, with
dynamic weighting ensuring generally excellent
performance as shown in Table 1.

DisLoRA’s advantages are not universal, with
PiSSA (91.87% QQP) and DoRA (91.57% STS-
B) occasionally outperforming it (Table 1). In-
creased parameters introduce redundancy, dilut-
ing task-specific direction capture in QQP’s para-
phrase similarity and STS-B’s semantic correlation
tasks. Despite this, DisLoRA sustains robust per-
formance, achieving 68.33% Mcc. on CoLA and
86.64% Acc. on RTE, driven by dynamic loss bal-
ancing that prioritizes task optimization.

4.3 Commonsense Reasoning and Ablation
Studies

We fine-tune the W q,W k,W v,W o in Qwen2.5-
7B-Instruct (Qwen et al., 2025) on the Common-
sense Reasoning Tasks (Hu et al., 2023), which
aggregates training sets from eight commonsense
reasoning datasets (Detailed descriptions are in
appedix B.1). These datasets evaluate diverse com-
monsense reasoning abilities, including factual,
physical, social, and scientific inference. We fine-
tune the model on Commonsense170k and evalua-
tion is conducted on the individual test sets of these
datasets.

4.3.1 Experimental Results and Ablation
Studies

DisLoRA outperforms in Commonsense Reason-
ing Tasks, achieving top scores in BoolQ (73.4%),
HellaSwag (93.1%) and ARC-C (87.5%) and con-
sistently higher average accuracy than baselines
according to Table 2. Baselines without regular-
ization constraints, LoRA (Hu et al., 2022) and
LoRA-Dash (Si et al., 2024), exhibit unstable per-
formance, failing to achieve high accuracy across
all tasks, thus trailing SORSA’s average accuracy.
SORSA (Cao, 2024), with regularization but no
use of TSDs, sustains high average accuracy but
struggles in individual tasks. DisLoRA surpasses
MiLoRA (Wang et al., 2025) by +1.4 % aver-
age accuracy (r = 16), because MiLoRA only
uses the minor singular components to initialize
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Table 1: Performance of DeBERTaV3-base on the GLUE benchmark using FFT, LoRA (Hu et al., 2022),
PiSSA (Meng et al., 2024), DoRA (Liu et al., 2024), and DisLoRA. We report accuracy (Acc.) for SST-2,
QNLI, RTE, MNLI, QQP, and WNLI; F1 score (F1) for MRPC; Matthew’s correlation coefficient (Mcc.) for CoLA;
and Pearson correlation coefficient (Pcc.) for STS-B. Superscripts represent the standard deviation.

Method Rank Param. (%) SST-2 (Acc.) MRPC (F1.) CoLA (Mcc.) QNLI (Acc.) RTE (Acc.) STS-B (Pcc.) MNLI (Acc.) QQP (Acc.) WNLI (Acc.)

FFT - 100 94.8 90.2 69.19 92.8 82.31 91.2 89.90 91.87 63.38

LoRA 16 0.48 85.37±0.34 92.90±0.53 65.05±2.54 94.15±4.32 84.47±1.12 91.61±0.35 89.90±0.48 91.55±0.18 73.24±5.01

PiSSA 16 0.48 95.18±0.23 92.67±0.6 67.06±2.71 93.36±1.02 84.12±1.89 90.27±1.85 89.35±0.82 91.58±0.09 60.26±3.32

DoRA 16 0.48 95.41±0.38 93.69±0.44 66.60±1.83 94.02±0.45 84.51±2.54 91.57±0.23 90.06±0.35 91.54±0.31 70.42±4.15

DisLoRA (ours) 16 0.48 95.65±0.42 93.12±0.57 68.33±0.52 94.60±0.25 85.92±1.53 89.73±1.01 90.12±0.15 91.17±0.23 78.87±5.81

LoRA 32 0.95 95.13±0.17 88.97±0.63 65.78±1.28 93.64±0.39 84.47±1.27 91.06±0.41 89.38±0.47 91.80±0.13 64.82±5.42

PiSSA 32 0.95 94.61±0.23 88.92±0.68 64.45±1.57 94.12±0.14 82.13±1.95 90.75±0.53 89.88±0.43 91.63±0.17 56.34±4.17

DoRA 32 0.95 94.84±0.14 89.95±0.47 65.63±1.08 94.11±0.19 85.20±0.97 91.40±0.23 89.29±0.52 91.74±0.14 64.79±7.76

DisLoRA (ours) 32 0.95 95.87±0.16 90.20±0.49 66.37±1.18 94.02±0.16 83.75±1.23 90.39±0.37 90.11±0.31 91.56±0.22 76.06±6.24

LoRA 64 1.88 95.36±0.27 88.48±0.73 64.57±1.52 94.01±0.37 84.84±1.43 91.15±0.42 90.08±0.47 91.56±0.23 73.24±6.38

PiSSA 64 1.88 94.15±0.31 89.95±0.57 64.36±1.82 94.27±0.17 81.23±2.53 90.59±0.63 90.34±0.36 91.87±0.14 56.34±3.15

DoRA 64 1.88 95.18±0.22 89.46±0.58 64.90±1.32 94.14±0.26 85.92±1.12 91.34±0.31 90.26±0.43 91.77±0.19 69.01±6.07

DisLoRA (ours) 64 1.88 95.52±0.29 93.24±0.51 67.79±1.43 94.03±0.21 86.64±1.47 90.52±0.46 90.15±0.39 91.56±0.24 76.06±5.84

Table 2: The accuracy of Qwen2.5-7B-Instruct on Commonsense Reasoning Tasks using LoRA (Hu et al., 2022),
LoRA-Dash (Si et al., 2024), SORSA (Cao, 2024), MiLoRA (Wang et al., 2025),DisLoRA, and DisLoRA* with
fixed weighting. We report accuracy (Acc.) for all datasets. Superscripts represent the standard deviation.

Method Rank Param. (%) BoolQ PIQA SIQA HellaSwag Winogrande ARC-C ARC-E OBQA Avg.

LoRA 8 0.07 70.5±2.7 84.9±1.3 79.4±0.8 73.7±3.1 85.0±1.2 86.0±0.9 93.6±0.7 88.4±1.6 82.7±1.5

LoRA-Dash 8 0.07 69.9±3.0 83.6±1.7 78.3±1.1 83.1±1.9 87.4±1.5 88.0±1.2 95.6±0.6 89.1±0.8 84.4±1.9

SORSA 8 0.07 68.6±2.2 85.0±1.4 78.5±0.9 90.9±0.9 84.6±1.3 86.3±1.0 94.4±0.6 86.4±1.3 84.3±1.6

MiLoRA 8 0.07 69.3±2.1 81.0±1.9 79.6±1.3 87.1±1.8 84.7±1.4 87.8±1.2 94.6±0.8 90.2±1.5 84.3±2.7

DisLoRA (ours) 8 0.07 72.3±0.4 85.5±0.6 79.3±0.8 92.3±0.7 83.7±0.6 87.3±0.7 95.1±0.7 88.6±0.4 85.5±1.3

DisLoRA* (ours) 8 0.07 72.4±0.9 84.9±0.8 79.3±0.9 91.7±0.5 82.9±0.9 87.0±0.9 94.5±0.7 87.4±0.4 85.0±1.1

LoRA 16 0.13 71.4±2.4 77.1±1.9 78.9±0.9 88.3±2.7 83.3±1.1 85.2±0.8 93.3±0.6 86.6±1.7 83.0±1.3

LoRA-Dash 16 0.13 68.0±2.8 80.5±2.4 79.2±1.0 91.0±1.0 82.1±2.1 85.4±1.4 95.8±0.5 91.0±0.7 84.1±2.0

SORSA 16 0.13 71.4±1.7 85.1±1.8 79.6±0.7 91.2±0.7 85.4±0.9 84.8±1.1 94.7±0.5 90.4±0.4 85.3±1.5

MiLoRA 16 0.13 69.2±2.0 85.5±1.6 74.9±1.8 92.3±1.1 85.5±1.3 86.7±1.3 94.1±0.7 89.2±1.4 84.7±3.0

DisLoRA (ours) 16 0.13 72.7±1.3 85.9±0.4 79.2±0.7 92.8±0.8 85.4±0.5 87.0±0.9 95.0±0.3 90.4±0.4 86.1±1.0

DisLoRA* (ours) 16 0.13 72.8±1.1 85.0±1.0 79.0±0.7 92.8±0.6 83.4±0.4 85.8±0.7 94.4±0.4 90.0±0.6 85.4±1.3

LoRA 32 0.26 71.2±2.3 80.3±1.9 78.6±0.8 85.1±2.6 84.5±0.9 84.7±0.8 93.8±0.5 89.0±1.5 83.5±1.2

LoRA-Dash 32 0.26 64.3±2.7 83.8±2.3 79.7±0.9 92.3±0.9 85.5±2.1 85.3±1.3 95.5±0.5 90.8±0.6 84.7±1.9

SORSA 32 0.26 70.3±1.6 85.1±1.7 78.2±0.5 92.7±0.6 84.9±0.7 85.9±0.9 94.6±0.4 90.9±0.5 85.3±1.4

MiLoRA 32 0.26 72.0±1.9 83.8±1.7 78.9±1.2 92.7±1.0 86.1±1.5 85.1±1.4 94.1±0.6 90.8±1.1 85.4±2.6

DisLoRA (ours) 32 0.26 73.3±1.1 85.7±1.4 80.0±0.7 93.1±0.5 85.0±0.4 87.5±1.3 95.1±0.6 89.8±0.5 86.2±1.4

DisLoRA* (ours) 32 0.26 73.4±1.3 83.9±1.6 79.2±0.6 92.4±1.3 83.9±0.9 85.5±1.6 93.9±1.0 89.4±0.6 85.2±1.4

adapters—a static SVD initialization—whereas
DisLoRA retains the explicit SVD matrix form and
jointly optimizes TSD enhancement, yielding supe-
rior adaptation. DisLoRA*, employing TSDs and
fixed-weight regularization, surpasses baselines in
both individual tasks and average accuracy. Dis-
LoRA, with dynamic weighting, further exceeds
DisLoRA*’s performance, demonstrating the supe-
riority of its adaptive approach.

The dynamic weighting mechanism in DisLoRA,
as depicted in the fluctuations of αtask and αortho
(Figure 3), ensures robust convergence by adap-
tively balancing task-specific optimization and or-
thogonal regularization. Throughout training, αtask
remains above 0.9, while αortho stays below 0.1, pri-
oritizing task-specific loss to effectively learn from
training datasets, with orthogonality as a secondary
constraint. This supports our adaptive weight-

ing design, which outperforms fixed-weighting ap-
proaches (e.g., when rank is 32, the maximum av-
erage accuracy difference reaches to 1.0% on Com-
monsense Reasoning Tasks, Table 2). Frequent
fluctuations in both weights highlight the necessity
of adaptive weighting, enabling the model to dy-
namically adjust to varying loss magnitudes, unlike
static methods, thus enhancing training stability
and performance.

DisLoRA’s training dynamics demonstrate ro-
bust optimization, achieving superior performance
over baselines. Task-specific loss Ltask decreases
rapidly, then stabilizing with minimal fluctua-
tions (Figure 4a), driven by task-specific direc-
tion (TSD) identification. Orthogonalization loss
Lortho declines steadily (Figure 4b), reflecting soft
orthogonal regulation enforcing subspace inde-
pendence, contributing to highest average accu-
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(a) Dynamic weight of the task-specific component (αtask)
over training steps, showing fluctuations between 0.9 and
1.

(b) Dynamic weight of the orthogonal component (αortho)
over training steps, illustrating the contribution of orthog-
onalization during training.

Figure 3: Dynamic weight allocation in DisLoRA: (a) the task-specific weight (αtask), consistently above 0.9,
exhibits frequent fluctuations, prioritizing task-specific optimization to achieve high performance (e.g., 93.1% on
HellaSwag when rank is 32, Table 2); (b) the orthogonal weight (αortho), below 0.1, adjusts dynamically to enforce
subspace orthogonality, enhancing generalization (e.g., 86.2% average accuracy on Commonsense Reasoning Tasks
when rank is 32). These fluctuations underscore the adaptive weighting mechanism’s ability to balance task-specific
learning with structural regularization across training steps.

racy across Commonsense Reasoning Tasks. The
loss ratio Lortho

Ltask fluctuates (Figure 4c), showcas-
ing DisLoRA’s dynamic weighting mechanism is
neccesary, which timely adjusts αtask and αortho
to balance task optimization and orthogonality.
Consequently, total loss Ltotal = αtask · Ltask +
αortho · Lortho converges with minimal fluctuations
(Figure 4d), ensuring training stability. Unlike
LoRA’s (Hu et al., 2022) non-orthogonal updates,
LoRA-Dash’s (Si et al., 2024) coupled TSD identi-
fication, SORSA’s (Cao, 2024) fixed regularization,
or MiLoRA‘s (Wang et al., 2025) static SVD initial-
ization, DisLoRA’s orthogonal TSD identification
and adaptive loss balancing yield the highest ac-
curacy, validating its efficacy for commonsense
reasoning.

4.4 Mathematical Reasoning

To demonstrate the versatility of DisLoRA, we
conduct supplementary experiments on mathemati-
cal reasoning. We fine-tune the Qwen2.5-Instruct
on a mixture of mathematical datasets, including
GSM8K (Grade School Math 8K) (Cobbe et al.,
2021), MAWPS (MAth Word ProblemS) (Koncel-
Kedziorski et al., 2016), and AQUA-RAT (Algebra
Question Answering with Rationales) (Ling et al.,
2017), following the setup from (Hu et al., 2023).
The model’s performance is then evaluated on the
test dataset of the AQUA-RAT benchmark.

As shown in Table 3, DisLoRA consistently out-
performs both LoRA and MiLoRA across all tested
ranks. At rank 16, DisLoRA achieves 37.0% ac-
curacy, surpassing LoRA by 1.9 percentage points,
and it reaches a peak accuracy of 38.2% at rank

Table 3: The performance of Qwen2.5-7B-Instruct
on the AQUA-RAT mathematical reasoning bench-
mark (Accuracy, %) using LoRA (Hu et al., 2022),
MiLoRA (Wang et al., 2025) and DisLoRA.

Method Rank AQUA-RAT (Acc.)

LoRA 8 35.1±1.4

MiLoRA 8 35.4±1.6

DisLoRA (ours) 8 35.8±1.2

LoRA 16 35.1±1.5

MiLoRA 16 36.2±1.3

DisLoRA (ours) 16 37.0±1.0

LoRA 32 37.8±1.7

MiLoRA 32 37.4±1.8

DisLoRA (ours) 32 38.2±1.1

32. These results underscore DisLoRA’s robust
adaptability to different domains beyond natural
language understanding. Its ability to effectively
capture task-specific directions proves versatile for
quantitative reasoning tasks.

5 Conclusion

We propose DisLoRA, a parameter-efficient fine-
tuning method that uses Singular Value Decomposi-
tion to separate pretrained weights into orthogonal
backbone and task-specific subspaces, dynamically
use orthogonal basis to identify task-specific di-
rections, and adaptively balances losses. On the
GLUE benchmark, it outperforms LoRA, PiSSA,
and DoRA, achieving top scores in 6/9 tasks with
0.48% parameters. On Commonsense Reasoning
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(a) Task-specific loss Ltask: the loss decreases rapidly
and fluctuates near convergency value over training steps,
reflecting effective optimization for the target task in Dis-
LoRA, enabling high performance

(b) Adaptive soft orthogonal regularization with mean-
normalization: the orthogonalization loss decreases
steadily over training steps, reflecting the weights’ increas-
ing orthogonality, which enhances subspace independence
and training stability in DisLoRA.

(c) Ratio of task-specific to orthogonalization loss Lortho
Ltask

:
the ratio fluctuates over training steps, highlighting the
adaptive weighting mechanism’s dynamic balance be-
tween task optimization and orthogonality in DisLoRA.

(d) Total loss Ltotal = αtask · Ltask + αortho · Lortho: the
loss decreases rapidly in the beginning and then fluctuates
very little near the convergence value, reflecting robust
convergence driven by adaptive weighting in DisLoRA.

Figure 4: Loss components in DisLoRA’s fine-tuning: (a) task-specific loss converges rapidly, optimizing task
performance; (b) orthogonalization loss decreases, ensuring subspace independence; (c) the task-to-orthogonal loss
ratio highlights adaptive weighting; (d) total loss reflects overall convergence. These trends demonstrate effective
balancing of task optimization and regularization, achieving overall high performance (e.g., The average accuracy
of DisLoRA has always been the highest).

Tasks, it surpasses LoRA, LoRA-Dash, SORSA
and MiLoRA, reaching 86.2% average accuracy.
On AQUA-RAT mathematical dataset, our eval-
uation confirms DisLoRA’s versatility. These re-
sults demonstrate its efficacy for efficient and high-
performing LLM adaptation.

Limitations

While DisLoRA achieves superior performance
in parameter-efficient fine-tuning, it is not with-
out limitations. The SVD required to decom-
pose pretrained weight matrices into backbone and
task-specific subspaces is computationally inten-
sive, particularly for large-scale models with high-
dimensional weight matrices. This process can
significantly increase preprocessing time. Never-
theless, for large-scale matrices the SVD can be ac-
celerated by randomized Krylov iterations, making
the overhead acceptable in practice. Additionally,
the soft orthogonal regularization loss, which relies
on computing the Frobenius norm of singular vec-

tor matrices (Equation 6), introduces further com-
putational overhead during training. For models
with large dimensions, such as those with billions
of parameters, calculating these norms can slow
down training speed, potentially offsetting the ef-
ficiency gains from parameter reduction. These
trade-offs between performance and computational
cost highlight the need for optimized SVD algo-
rithms and loss computation strategies to make Dis-
LoRA more practical for very large-scale models.
Despite these challenges, the enhanced stability
and generalization offered by our approach justify
its use in scenarios where model performance is
prioritized over training speed.
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A Mathematical Analysis of the Dynamic
Adaptive Weighting Mechanism

In the DisLoRA framework, we propose a dynamic
adaptive weighting mechanism to balance the task-
specific loss Ltask (e.g., cross-entropy loss) and the
soft orthogonal regularization loss Lortho. This ap-
pendix provides a rigorous mathematical analysis
of the mechanism’s definition, feasibility, numeri-
cal stability, and gradient properties to validate its
correctness and robustness.

A.1 Method Definition
The dynamic adaptive weighting mechanism bal-
ances the task-specific loss Ltask (e.g., cross-
entropy) and the orthogonal regularization loss
Lortho to optimize the DisLoRA framework. This
subsection defines these components and their inte-
gration.

The orthogonal regularization loss enforces or-
thonormality of the task-specific subspace singular
vectors:

Lortho =
1

Np

Np∑

i=1

(∥∥∥U⊤
i U i − I

∥∥∥
2

F
+

∥∥∥V iV
⊤
i − I

∥∥∥
2

F

)
,

(11)

where Ui ∈ Rm×r and Vi ∈ Rn×r are the singu-
lar vectors, I is the identity matrix, ∥·∥F denotes
the Frobenius norm, and Np is the number of sin-
gular vector pairs across model layers. The nor-
malization by Np ensures scalability across diverse
architectures.

To balance Ltask and Lortho, we define a relative
loss ratio:

k =
Lortho

Ltask + ε
, (12)

where ε > 0 (e.g., 10−6) prevents division by zero.
Adaptive weights are computed via a softmax-like
function:

αtask =
exp(−k)

exp(−k) + exp(−1/k + ε)
, (13)

αortho = 1− αtask. (14)

The total loss is:

Ltotal = αtask · Ltask + αortho · Lortho. (15)

The constant ε in (12) ensures numerical stability,
while the additional ε in (13) fine-tunes the weight
balance by slightly adjusting the denominator. This
mechanism dynamically prioritizes Ltask or Lortho
based on their relative magnitudes, ensuring robust
optimization without manual tuning.

A.2 Feasibility: Non-Negativity and
Normalization

We verify that the weights αtask and αortho, defined
in (13) and (14), satisfy non-negativity and nor-
malization conditions, ensuring their suitability for
weighted loss combination.

• Non-Negativity: Since Lortho ≥ 0, Ltask ≥ 0,
and Ltask + ε > 0 with ε > 0 (e.g., 10−6),
the loss ratio k = Lortho/(Ltask + ε) in (12)
satisfies k ≥ 0. For αtask in (13), the nu-
merator exp(−k) ≥ 0, and the denomina-
tor exp(−k) + exp(−1/k + ε) > 0, as
exp(−1/k + ε) ≥ 0 for ε > 0 (e.g., 10−6)
and all k ≥ 0 (noting that exp(−1/k + ε) →
exp(ε) > 0 as k → 0). Thus, αtask ≥ 0.
Since exp(−k) ≤ exp(−k)+exp(−1/k+ε),
we have αtask ≤ 1. For αortho = 1 − αtask, it
follows that 0 ≤ αortho ≤ 1.

• Normalization: By definition, αortho = 1 −
αtask, so:

αtask + αortho = αtask + (1− αtask) = 1.

These properties confirm that αtask and αortho are
well-defined, non-negative, and normalized, mak-
ing them suitable for balancing Ltask and Lortho in
(15).

A.3 Dynamic Adjustment Behavior
To validate the adaptive behavior of the weights
αtask and αortho defined in (13) and (14), we ana-
lyze their variation with the loss ratio k from (12).
Define:

a = exp(−k), b = exp(−1/k + ε), (16)

so that:

αtask =
a

a+ b
, αortho =

b

a+ b
. (17)

We examine three scenarios to illustrate how the
mechanism prioritizes Ltask or Lortho based on their
relative magnitudes.

Case 1: Small k (Lortho ≪ Ltask). As k → 0,
which occurs when Lortho is much smaller than
Ltask + ε, we have:

a = exp(−k) → 1, b = exp(−1/k + ε) → 0,
(18)

since −1/k → −∞ dominates ε. Thus, αtask =
a/(a + b) → 1 and αortho = b/(a + b) → 0, so
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Ltotal → Ltask in (10), prioritizing task-specific
optimization.

Case 2: Large k (Lortho ≫ Ltask). As k →
∞, which occurs when Lortho is much larger than
Ltask + ε, we have:

a = exp(−k) → 0, b = exp(−1/k+ε) → exp(ε),
(19)

where exp(ε) ≈ 1 for small ε (e.g., 10−6). Thus,
αtask → 0 and αortho → 1, so Ltotal → Lortho,
emphasizing orthogonal regularization.

Case 3: Balanced k (Lortho ≈ Ltask). When
k = 1, implying Lortho ≈ Ltask + ε, we have:

a = exp(−1), b = exp(−1 + ε) ≈ exp(−1),
(20)

since ε is small. Thus, αtask ≈ a/(a+a) = 0.5 and
αortho ≈ 0.5, so Ltotal balances both losses equally.

This adaptive mechanism dynamically priori-
tizes the dominant loss, ensuring robust optimiza-
tion and stability in (15) across varying loss magni-
tudes.

A.4 Gradient Analysis

We analyze the gradient of the total loss Ltotal with
respect to model parameters θ, defined in (15) as:

Ltotal = αtask · Ltask + αortho · Lortho. (21)

In practice, αtask and αortho are computed using
detached loss values (e.g., via .detach() in Py-
Torch) to treat them as constants during gradient
computation. The gradient is:

∂Ltotal

∂θ
= αtask ·

∂Ltask

∂θ
+ αortho ·

∂Lortho

∂θ
. (22)

Task Loss Gradient. In supervised fine-tuning
(SFT), the task-specific loss is typically a cross-
entropy loss tailored to the task. For classification
tasks, it is defined as:

Ltask = − 1

N

N∑

i=1

C∑

c=1

yi,c log(ŷi,c), (23)

where yi,c ∈ {0, 1} is the true label for class c,
and ŷi,c = f(xi;θ) ∈ (0, 1) is the predicted prob-
ability for class c from the model f parameterized
by θ. For generative tasks, the loss is the negative
log-likelihood:

Ltask = − 1

T

T∑

t=1

logP (xt|x<t;θ). (24)

The gradient ∂Ltask
∂θ is computed via backpropaga-

tion, with its form depending on the task and model
architecture.

Orthogonal Loss Gradient. The orthogonal
regularization loss, defined in (11), is:

Lortho =
1

Np

Np∑

i=1

(∥∥∥U⊤
i U i − I

∥∥∥
2

F
+

∥∥∥V iV
⊤
i − I

∥∥∥
2

F

)
,

(25)

where U i ∈ Rm×r and V i ∈ Rn×r are singular
vectors derived from weight matrices parameter-
ized by θ, and Np is the number of singular vector
pairs. For the term

∥∥U⊤
i U i − I

∥∥2
F

, we express the
Frobenius norm as:

∥∥∥U⊤
i U i − I

∥∥∥
2

F
= tr

(
(U⊤

i U i − I)2
)
, (26)

with gradient:

∂
∥∥U⊤

i U i − I
∥∥2
F

∂U i
= 4U i(U

⊤
i U i − I). (27)

Similarly, for
∥∥V iV

⊤
i − I

∥∥2
F

:

∂
∥∥V iV

⊤
i − I

∥∥2
F

∂V i
= 4(V iV

⊤
i − I)V i. (28)

The gradient of Lortho with respect to θ is:

∂Lortho
∂θ

=
1

Np

Np∑

i=1




∂
∥∥∥U⊤

i Ui − I
∥∥∥
2

F

∂θ
+

∂
∥∥∥V iV

⊤
i − I

∥∥∥
2

F

∂θ


 ,

(29)

where the terms depend on the relationship between
U i,V i, and θ via the chain rule.

The total gradient in (22) is a convex combina-
tion of ∂Ltask

∂θ and ∂Lortho
∂θ , with weights αtask and

αortho adapting to the relative magnitudes of the
losses. Rapid fluctuations in Ltask or Lortho may
cause variations in αtask and αortho, potentially lead-
ing to unstable gradient directions. Smoothing tech-
niques, such as exponential moving averages of
loss values, can stabilize the weights and improve
optimization robustness.

B Datasets, Metrics and
Hyperparameters

B.1 Description of Benchmarks
GLUE Benchmark: We evaluate our model
on the General Language Understanding Evalu-
ation (GLUE) benchmark (Wang et al., 2019).
GLUE comprises nine datasets designed to as-
sess a broad range of natural language understand-
ing tasks: CoLA (Warstadt et al., 2019) (Cor-
pus of Linguistic Acceptability, grammatical ac-
ceptability), SST-2 (Socher et al., 2013) (Stanford
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Table 4: Hyperparameter settings for GLUE benchmark datasets.

Hyperparameter Debertav3-base

SST-2 MRPC CoLA QNLI RTE STS-B MNLI QQP WNLI

AdamW
LR Schedule Linear
Rank r 16, 32, 64
LoRA Scaling 1.5, 2.0
Dropout 0.1
Max Seq. Len. 128
Batch Size 32 8 8 32 8 8 64 40 8
Learning Rate 1e-3 3e-3 8e-4 3e-3 3e-3 3e-3 3e-3 1e-3 3e-3
Training Duration 55min 3min 7 min 30min 2min 4min 110min 110min 1min
Epochs 4

Sentiment Treebank 2, sentiment classification),
MRPC (Dolan and Brockett, 2005) (Microsoft Re-
search Paraphrase Corpus, paraphrase detection),
QQP (Quora Question Pairs, question paraphrase
detection), STS-B (Cer et al., 2017) (Semantic Tex-
tual Similarity Benchmark, semantic similarity),
MNLI (Williams et al., 2018) (Multi-Genre Nat-
ural Language Inference, natural language infer-
ence, matched and mismatched), QNLI (Rajpurkar
et al., 2016) (Question Natural Language Inference,
question-answering entailment), RTE (Recogniz-
ing Textual Entailment, textual entailment), and
WNLI (Morgenstern and Ortiz, 2015) (Winograd
Natural Language Inference, coreference resolu-
tion). These tasks primarily involve single-sentence
classification, sentence-pair similarity, and para-
phrase evaluation

Commonsense Reasoning: For commonsense
reasoning, we fine-tune our model on the Common-
sense170K dataset (Hu et al., 2023). This dataset
aggregates the training sets from eight distinct com-
monsense reasoning benchmarks: BoolQ (Clark
et al., 2019) (Boolean Questions, binary question
answering), PIQA (Bisk et al., 2019) (Physical In-
teraction Question Answering, physical common-
sense), SIQA (Sap et al., 2019) (Social Interaction
Question Answering, social commonsense), Hel-
laSwag (Zellers et al., 2019) (sentence completion,
narrative reasoning), WinoGrande (Sakaguchi et al.,
2019) (Winograd Schema Challenge, pronoun dis-
ambiguation), ARC-e and ARC-c (Clark et al.,
2018) (AI2 Reasoning Challenge, easy and chal-
lenge sets, scientific reasoning), and OBQA (Mi-
haylov et al., 2018) (Open Book Question Answer-
ing, scientific knowledge integration). These tasks,

typically structured as multiple-choice questions,
evaluate diverse commonsense reasoning abilities.

B.2 Hyperparameter Settings

This subsection details the hyperparameter configu-
rations employed during the fine-tuning process for
both the GLUE benchmark and the commonsense
reasoning tasks. The specific settings for each are
presented in the tables below.

B.2.1 GLUE Benchmark
The hyperparameter settings used for fine-tuning
on the GLUE benchmark datasets are summarized
in Table 4.

B.2.2 Commonsense Reasoning
Table 5 outlines the hyperparameter settings for the
commonsense reasoning tasks.

Table 5: Hyperparameter settings for Commonsense
Reasoning.

Hyperparameter Qwen2.5-7B-Instruct

r = 8 r = 16 r = 32

Rank r 8 16 32
α 16 32 48
Learning Rate 5e-4 3e-4 3e-4
LR Scheduler Linear
Dropout 0.05
Optimizer AdamW
Batch Size 18
Micro Batch Size 6
Epochs 3
Training Duration 6.5 hours
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B.3 Hyperparameter Sensitivity Analysis
DisLoRA introduces a key hyperparameter stsd to
determine the number of task-specific directions
selected for optimization after the warmup phase.
These directions correspond to the singular vec-
tors with the highest change rates, signifying their
importance for the downstream task. While the pri-
mary experiments in this paper use a fixed stsd of
8 based on prior validation, its optimal value may
vary across different tasks and datasets.

To investigate the sensitivity of DisLoRA’s per-
formance to this hyperparameter, we conducted
an analysis using the DeBERTaV3-base model on
three distinct GLUE tasks: MRPC, CoLA, and
STSB. We fine-tuned the model with stsd values
of 6, 8, and 10. As shown in the Table 6, varying
values of stsd do influence the results; nevertheless,
the overall trend aligns with the recommendations
in the (Si et al., 2024), with stsd = 8 yielding an
optimal balance.

Table 6: Sensitivity analysis of the stsd hyperparameter.
Performance of DeBERTaV3-base on MRPC, CoLA,
and STSB datasets for different values of stsd.

stsd MRPC (F1.) CoLA (Mcc.) STSB (Pcc.)

6 92.55±0.29 67.82±0.33 90.72±0.92

8 93.12±0.57 68.33±0.52 89.73±1.01

10 92.57±0.41 66.92±0.41 91.03±0.81
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