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Abstract

Converging societal and technical factors have
transformed language technologies into user-
facing applications used by the general public
across languages. Machine Translation (MT)
has become a global tool, with cross-lingual
services now also supported by dialogue sys-
tems powered by multilingual Large Language
Models (LLMs). Widespread accessibility has
extended MT’s reach to a vast base of lay users,
many with little to no expertise in the lan-
guages or the technology itself. And yet, the
understanding of MT consumed by such a di-
verse group of users—their needs, experiences,
and interactions with multilingual systems—
remains limited. In our position paper, we
first trace the evolution of MT user profiles,
focusing on non-experts and how their engage-
ment with technology may shift with the rise of
LLMs. Building on an interdisciplinary body of
work, we identify three factors—usability, trust,
and literacy—that are central to shaping user
interactions and must be addressed to align MT
with user needs. By examining these dimen-
sions, we provide insights to guide the progress
of more user-centered MT.

1 Introduction

The success of technology hinges on its ability
to serve users, and Natural Language Processing
(NLP) confronts this challenge as it transitions
from an academic pursuit to a set of impactful
tools. Among them, MT stands out as a cornerstone
application, with current breadth and quality that
fostered wider adoption (Wang et al., 2022). Mul-
tilingual demands (Moorkens and Arenas, 2024),
paired with the accessibility of online systems, has
put MT at the forefront of user-facing language
technologies. Once confined to professional set-
tings, MT is now used by millions (Pitman, 2021),
bringing into its fold an array of lay users in con-
texts ranging from casual interactions (Gao et al.,
2015) to critical domains such as healthcare and
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Figure 1: Trend of interest in machine translation MT ,
language models LM , users U , and combinations
thereof in the ACL community over the last 10 years.
Besides illustrating the rapid growth of LLM studies,
the left panel highlights the increase in MT research
incorporating LLMs ( MT + LM ), while the right panel
shows rising attention to users, particularly in LLM-
related work ( LM + U ).1

employment (Patil and Davies, 2014; Dew et al.,
2018; Liebling et al., 2022; Valdez et al., 2023).

Despite MT’s broad reach and potential for so-
cial impact in sensitive scenarios (Vieira et al.,
2021), still little is known about its evolving re-
lationship with the general public, how non-expert
users interact with it, or how it caters to their needs
(Carpuat et al., 2025). MT research has mainly
focused on modeling advancements and—although
translation studies have called for greater attention
to end-user perspectives (Guerberof-Arenas and
Moorkens, 2023) and related efforts from human-
computer interaction (Zhang et al., 2021, 2022)—
MT works that actively involve lay people and their
experiences are still rare (Mehandru et al., 2023;
Briakou et al., 2023).

In the wake of broader calls to bridge MT
(Liebling et al., 2021) and language technologies
with user-centered research (Heuer and Buschek,
2021; Kotnis et al., 2022), we posit that it is time
to fill this gap and focus on how to support interac-
tions between systems and lay people. Arguably,

1Details on the ACL Anthology queries are provided in
Appendix A. For a complementary view, Figure 2 in the ap-
pendix also shows absolute counts in the trends of interest
over the last ten years.
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the rise of powerful, instruction-following LLMs
(Touvron et al., 2023; Achiam et al., 2023; Gemini
et al., 2024; Üstün et al., 2024, inter alia) engag-
ing non-experts via chat interfaces has heightened
user concerns (see Figure 1, LM + U on the right)
and underscores the urgency to align with real-
world interactions (Haque et al., 2022; Liao and
Vaughan, 2023; Szymanski et al., 2024).2 As MT
moves towards LLM-based solutions (see Figure 1,
MT + LM vs MT on the left), these have the po-

tential to redefine how people engage with multilin-
gual systems, challenging traditional task divisions
with new paradigms for cross-lingual communica-
tion (Ouyang et al., 2023; Lyu et al., 2024).

To set the stage for this shift towards lay users’
perspective, we examine the evolution of MT from
professional settings to its wide general adop-
tion (§2). We then identify three key factors—
usability ª, trust ✓, and literacy _—to ground
user interactions with automatic translation tools
(§3). Through this lens, we take stock of the cur-
rent landscape to guide MT research in tandem
with users (§4).

We release a curated list of the works discussed
in the paper at: https://github.com/hlt-mt/
awesome-human-centered-MT.

2 MT and User Evolution

Although online systems have existed for some
time (Yang and Lange, 1998; McCarthy, 2004;
Somers, 2005), we are now seeing unprecedented
volumes of unrevised MT outputs being directly
consumed by the public.3 Historically, real-world
applications of MT often regarded so-called
“mixed MT” workflows (Wagner, 1983), where
human intervention serves to revise—i.e. post-edit
(Li, 2023)—MT to produce a reliable final trans-
lation. Attention to this usage scenario (Church
and Hovy, 1993) is reflected in MT development
(Green et al., 2014; Bentivogli et al., 2015; Daems
and Macken, 2019), interfaces (Vieira and Specia,
2011; Vela et al., 2019), and evaluation (Popović
and Ney, 2011; Bentivogli et al., 2016) using profes-
sional translators as a target. Such a trajectory was
also paired with empirical experiments on when

2For wider initiatives towards human-centered approaches
in the *CL community, we notice the introduction of the
Human-Centered NLP track since 2023, as well the HCI+NLP
workshop (Blodgett et al., 2024a) and the tutorial on Human-
Centered Evaluation of Language Technologies (Blodgett
et al., 2024b).

3See the rising volume of Google Translate app downloads
and words translated with it (Pitman, 2021).

MT could support (Koponen, 2016; Moorkens and
O’Brien, 2017) or interfere (Federico et al., 2014;
Daems et al., 2017) with translators’ activity.

The advent of stronger models with expanded
language coverage—along with the rise of the Web
and personal devices—progressively altered this
landscape. MT consumption has now reached
wider adoption by the general public, who di-
rectly accesses raw MT output in many diverse
scenarios,4 e.g. to gist content, for multilingual
conversations (Pituxcoosuvarn et al., 2020; Pom-
bal et al., 2025), in education (Yang et al., 2021;
Yang, 2024), but also in high-stakes domains
such as healthcare (Khoong et al., 2019; Valdez
and Guerberof-Arenas, 2025), migration (Liebling
et al., 2022), and emergency services (Turner et al.,
2015).5 This shift to unmediated MT has led
to a vast, heterogeneous base of lay users and,
with it, novel desiderata and concerns. For one,
since lay users may have limited to no proficiency
in at least one of the involved languages,6 they are
more vulnerable to errors. Mistranslations can lead
to discomfort, misunderstandings, and even life-
threatening errors (Taira et al., 2021) and arrests
(The Guardian, 2017). Besides, non-experts can
have requirements and expectations of which little
is known, and that cannot be directly informed by
existing research on professionals, as shown in the
context of LLMs—e.g. Szymanski et al. (2024),
see also Figure 1, Appendix B).

Indeed, general-purpose LLMs are calling for
more considerations of users and real-world con-
texts of use, as demonstrated by surveys to un-
derstand how people interact with technologies,
for which purposes and needs (Tao et al., 2024;
Skjuve et al., 2024; Kim et al., 2024b; Stojanov
et al., 2024; Bodonhelyi et al., 2024; Wang et al.,
2024; Hyun Baek and Kim, 2023, inter alia). Chat-
based LLMs have drawn in millions of users,7 with
their impressive versatility and engaging inter-
faces that allow verbalizing requests, also for
automatic translation (Ouyang et al., 2023). As
the MT field explores such LLM-based solutions
(Zhu et al., 2024; Lyu et al., 2024; Alves et al.,
2024, inter alia) and integrates MT into more com-

4Also leading to a decrease in the demand for language
skills and professional work (Frey and Llanos-Paredes, 2025).

5e.g. with COVID to compensate for interpreters shortages
(Khoong and Rodriguez, 2022; Anastasopoulos et al., 2020).

6e.g. the source language in gisting and the target in com-
munication contexts. See also Nurminen and Papula (2018).

7According to OpenAI, in the summer of 2024 ChatGPT
reached 200 millions weekly active users.
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plex systems, these solutions have the potential
to reshape cross-lingual services and user engage-
ment.

While this transition unfolds, overdue research
on the experiences of lay users in cross-lingual and
MT settings is gaining urgency. We map this gap
and call for first steps to fill it.

3 Three Factors for MT Lay Users

ª Usability The usability of MT systems—how
effectively, efficiently, and satisfactorily users can
achieve their goals in a given context (ISO, 2018)—
is informed and guided by how these systems
are evaluated. The field, however, tends towards
performance-driven leaderboards (Rogers, 2019),
which have been criticized for pursuing abstract
notions of accuracy and quality above the practical
utility of a model or other relevant values (Etha-
yarajh and Jurafsky, 2020). These values are often
contextual: Parthasarathi et al. (2021) discuss how
robustness to misspellings might be detrimental if
using MT for learning. Also, faithfulness is nor-
mally key to “MT quality”, but in creative contexts
like subtitling, enjoyability may take precedence
over fidelity (Guerberof-Arenas and Toral, 2024).

Standard MT metrics offer coarse scores of
generic performance to rank and compare mod-
els, but are opaque and only assume to inform
how useful the model is when embedded within
the system the user interacts with (Liebling et al.,
2022). And yet, lay people are only involved as
evaluators to provide model-centric insights, rather
than to inform their experiences (Saldías Fuentes
et al., 2022; Savoldi et al., 2024).8 Furthermore,
general-purpose LLMs now confront us with an
“evaluation crisis” (Liao and Xiao, 2023), where
existing methods and predefined benchmarks for
modular tasks may be obsolete, failing to capture
real-world downstream contexts. This raises the
risk of widening the socio-technical gap, where
evaluation practices lack validity and might diverge
from human requirements in realistic settings.

✓ Trust To prevent over-reliance on automatic
translations, lay users must calibrate an appropri-
ate level of (dis)trust. Indeed, they risk accepting
potentially flawed translations at face value, and
trust may be misplaced when an output appears

8This trend might be exacerbated by AI surrogates, which
have been suggested as a “replacement” for human partici-
pants (Wang et al., 2025; Agnew et al., 2024).

believable but is inaccurate—an issue that is espe-
cially harmful in high-stakes contexts (Mehandru
et al., 2023). Prior research on MT has shown
that fluency and dialogue flow can falsely signal
reliability (Martindale et al., 2021; Robertson and
Díaz, 2022), and LLMs amplify this issue with their
overly confident tone, even when incorrect (Xiong
et al., 2024; Kim et al., 2024a). As general-purpose
models increasingly replace domain-specific ap-
plications, providing mechanisms for trust cali-
bration becomes even more urgent (Deng et al.,
2022; Litschko et al., 2023). To harness the ben-
efits of MT systems while avoiding over-reliance
on flawed translations, lay users often resort to
back-translation9 as a strategy to improve con-
fidence (Shigenobu, 2007; Zouhar et al., 2021;
Mehandru et al., 2023). However, back-translation
is often performed manually due to the lack of ded-
icated functionalities, and its soundness remains
debated. Another critical factor in fostering ap-
propriate trust is transparency—e.g. communicat-
ing uncertainty and providing explanations (Liao
and Vaughan, 2023). While explainability work
is growing (Ferrando et al., 2024), ensuring that
explanations are informative and digestible to lay
users rather than just developers is not trivial. More-
over, how to effectively integrate such uncertainty
signals into the development of translation systems
and their user interfaces is still an open question.

_ Literacy MT-mediation, as a form of human-
machine interaction (Green et al., 2015; O’Brien,
2012), should also regard how lay users themselves
play a role in improving interactions and apply con-
trol strategies to overcome MT limitations. This re-
quires critical agency rather than passive consump-
tion. In this area, prior work (Miyabe and Yoshino,
2010) has shown that preventing the display of po-
tentially flawed translations causes discomfort to
users, indicating that they prefer warnings and guid-
ance over outright blocks. But warnings serve as
an initial signal; then users should know how to
proceed in recovering from MT errors (Shin et al.,
2013). To address this, Bowker and Ciro (2019)
introduce the concept of MT literacy, a digital skill
to equip users with the knowledge to interact more
effectively with MT.10 This includes pre-editing
input text to mitigate common failures (e.g. us-

9i.e. automatically translating a text to a target language
and then back to the source language.

10For online materials, see https://sites.google.com/
view/machinetranslationliteracy/.
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ing short sentences). While literacy workshops
proved beneficial to students (Bowker, 2020),11

reaching more vulnerable populations and under-
served languages remains a challenge (Liebling
et al., 2020).12 Focusing on target comprehension,
Liebling et al. (2021) explore interfaces with dic-
tionary access and assistive bots.13 While LLMs
encourage participation through chat and interac-
tive queries (Qian and Kong, 2024), their reliability
in this role remains uncertain, as LLM-powered
systems may impact cognitive attention required
for critical engagement (Zhai et al., 2024; Lee et al.,
2025). Also, MT literacy must evolve to address
new opportunities and failures introduced by LLMs,
such as cascading errors across multiple requests.

4 Future Directions and Conclusion

To conclude, we examine directions for future re-
search in traditional or LLM-based MT that inte-
grates lay user perspectives. We map such direc-
tions and corresponding recommendations to the
three factors outlined in Section §3.

Consider Lay People As Users (ª, ✓, _) To
gauge how/when users interact with MT as well
as current blindspots we should consider their ex-
periences rather than just involve them as manual
evaluators. Inspired by monolingual work (Handa
et al., 2025), analyzing user logs can help us ob-
serve real engagement and preferences. Surveys
and in vivo research offer qualitative insights into
users’ perceptions (Zheng et al., 2019; Robertson
and Díaz, 2022). To this aim, it is essential to avoid
two main pitfalls: i) exploiting participants (see §6)
and ii) treating them as a homogeneous group: fac-
tors like sociodemographics, education, and stress
levels can greatly influence their expectations and
interactions (Rooein et al., 2023; Ge et al., 2024).

Design for Usability and Utility (ª) Achiev-
ing human-like translations should not be blindly
viewed as the ultimate goal—automated text is a
means to serve a broader purpose, not an end in
itself (Caselli et al., 2021). Prior work has eval-
uated systems based on their success in guiding
human decision-making (Zhao et al., 2024) or by

11For other data literacy initiatives targeting students, see
the DataLitMT project (Hackenbuchner and Krüger, 2023).

12e.g. see BabelDr for a case of MT design for healthcare in-
volving migrant populations: https://babeldr.unige.ch/.

13See the Lara system, integrating the two-box interfaces
with a bot: https://laratranslate.com/translate.

assessing gender bias in MT via user-relevant mea-
sures, like time, effort, or economic costs (Savoldi
et al., 2024). Research could focus on making
measurements more actionable (Delobelle et al.,
2024), e.g. to identify usability thresholds below
which MT is no longer beneficial. Therefore, we
should aim to correlate automated approaches with
human-centered measurements to harness the ben-
efits of both.14 However, this is challenging due
to the variability of utility values among users and
usages. Multi-metric and multifaceted approaches
like HELM (Bommasani et al., 2023) show promise
in this area, but future work could further align MT
evaluation and design with socio-requirements and
prototypical use cases (Liao and Xiao, 2023).

Enrich MT Outputs (✓) In user-facing systems,
it is crucial to not only focus on generated trans-
lations but also to develop methods for estimating
and conveying uncertainty, ambiguities, and errors
to ensure reliable usage (Xu et al., 2023; Zaranis
et al., 2024). For instance, Briakou et al. (2023) use
contrastive explanations to help users understand
cross-linguistic differences, but it is unclear how to
disentangle when their approach captures critical
errors or simple meaning nuances in the wild. Qual-
ity estimation can also warn users in real time about
flawed translations, though numeric indicators are
hard to interpret to lay users (Miyabe and Yoshino,
2010). Indeed, a key area of future research is how
to best communicate digestible information to lay
users, e.g. via visualizations.15 Textual explana-
tions show promise in communicating uncertainty
and avoiding over-reliance in LLMs, but the exact
language used is relevant (Kim et al., 2024a), and
we thus advocate for MT work in this area.

Foster Transparency (✓ _) and Agency (_)
Users should have the option to be active partic-
ipants when interacting with MT. In addition to
real-time explanations, they could receive clear in-
formation about MT’s strengths and limitations
(e.g. support across languages). The field might
adapt transparency tools like model cards (Mitchell
et al., 2019) into simplified, public-facing ver-
sions and support literacy efforts around emerging
technologies.16 To foster user agency—the abil-
ity to make informed, intentional decisions about
MT use—approaches such as gamification (Chen,

14e.g. replicability and ecological validity, respectively.
15e.g. by highlighting errors or reliable keywords.
16For example, see the Elements of AI program: https:

//www.elementsofai.com/.
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2023) could help promote literacy and lightweight
critical engagement. Yet, since MT often serves im-
mediate, time-sensitive needs, it remains uncertain
whether users always want or are able to engage
critically (Buçinca et al., 2021). MT experts are
well placed to advance these efforts through inter-
disciplinary collaboration. For instance, Xiao et al.
(2025) investigate how to sustain non-native speak-
ers in influencing the production of their message
in MT-mediated communication.

Bridge Interdisciplinary Avenues (ª, ✓, _)
Incorporating user needs, values, desiderata, and
human factors is still in its early stages in NLP.
However, disciplines like human-computer inter-
action (HCI), experimental psychology, and social
sciences have established practices to draw from
(Liao and Xiao, 2023). These methodologies may
take longer to implement, but they yield useful in-
sights, e.g. on people cognition and trust, or to
implement user studies. Besides, they offer meth-
ods that approximate real-world interactions cost-
effectively, e.g. Wizard of Oz tests prior to de-
veloping a new method (Goyal et al., 2023), or
simulating user actions based on past user data
(Zhang et al., 2021). These approaches can be
highly useful, but—circling back this section—the
fundamental first step remains engaging with end
users to understand their needs and behaviors first.

5 Limitations

Factors Our analysis centers on three key crite-
ria. These are not exhaustive of all user-centered
concerns, but they serve as a starting point for a
research agenda on human engagement with MT.
The selection of these criteria was guided, first, by
the aim to capture complementary and distinct di-
mensions of MT usage, namely: i) usability—how
to align technology with users through model/sys-
tem adaptation; ii) trust—how to calibrate user-MT
interactions by addressing dynamics of reliance
and confidence; and iii) literacy—how to empower
users by fostering their ability to engage with and
learn about MT. Second, our choice reflects their
recurrence in the literature we reviewed and dis-
cussed throughout the paper. At the same time, they
resonate with broader debates in adjacent fields:
in HCI and translation studies, usability is an es-
tablished quality characteristic (Guerberof-Arenas
et al., 2019); in AI governance, the EU AI Act ex-
plicitly foregrounds trust/trustworthiness as a core

principle17 and introduces literacy as a requirement
for fostering awareness and competence.18

Text-to-Text MT We do not unpack the differ-
ences between text-to-text MT and other modal-
ities, such as speech translation and multimodal
cross-lingual tasks (Papi et al., 2025). While we ac-
knowledge the relevance of these distinctions, we
chose to focus on the broadest and most established
MT technology. Expanding to other modalities is
an important avenue for future work, but our scope
was limited by space and focus.

ACL Anthology Query Our trends assessment
of prior work on MT, LLMs, and Users—reported
in Figure 1—is based on papers published in the
ACL Anthology (see Appendix A). While includ-
ing other sources could have further enriched our
trend overview, the Anthology remains the main
historical reference point in NLP. Hence, it repre-
sents an optimal litmus test for assessing trajecto-
ries in the field. Still, throughout the paper, we
engage with literature from diverse communities,
primarily from translation studies and human fac-
tors in computing, to provide a broader interdisci-
plinary perspective.

Slower Science Our proposed future directions
advocate for user-centered analyses and studies that
require more time and resources compared to auto-
mated evaluations and in vitro experiments, poten-
tially slowing down the research cycle. However,
we argue that user-driven insights are crucial and
can only yield benefits to align MT with real-world
needs and users.

6 Ethics Statement

In this work, we advocate for user-centered MT
research by focusing on lay users. First, unlike
human-in-the-loop methods (Wang et al., 2021)—
which rely on human contributions to enhance
model functionality—we prioritize approaches and
directions that are intended to serve and benefit
users.

Second, we do not conduct experiments with
participants in this paper. Hence, we do not dis-
cuss ethical best practices for research in this area,
though we deem them as indispensable, e.g. ob-
taining proper ethical approval, securing informed

17https://digital-strategy.ec.europa.eu/en/
library/ethics-guidelines-trustworthy-ai.

18https://artificialintelligenceact.eu/article/
4/.
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consent, and ensuring non-intrusive engagement
when working with human participants.

Finally, while we broadly discuss lay users,
we do recognize that they actually encompass di-
verse groups and communities. Many remain un-
derserved by language technologies, particularly
speakers of “low-resource” languages, and might
face well-known biases in NLP tools related to gen-
der (Savoldi et al., 2025), dialect (Blodgett et al.,
2020), or social class (Cercas Curry et al., 2024).
Especially when engaging with more vulnerable
communities and user groups, it is important to
respect their lived experiences, avoid exploitative
research practices, and ensure they are not treated
as mere data sources but as valued participants and
users—see e.g. Bird and Yibarbuk (2024); Ram-
poni (2024) and Birhane et al. (2022).
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Appendix

A ACL Anthology Query

To identify research trends in the ACL commu-
nity (Figure 1), we searched for specific keywords
in either the title or abstract of research articles
published from 2015-01-01 to 2024-12-31 and
hosted in the ACL anthology repository.19 Specif-
ically, we use the following keywords in a case-
insensitive fashion and including all grammatical
numbers by means of regular expressions:

• machine translation (MT): translation, ma-
chine translation, nmt, and mt;

• language models (LM): llm, language model,
large language model, and foundation model;

• users (U): user.

To reduce noise, we exclude editorials (i.e. those
with a proceedings bibtex type) and rare instances
of articles without any author from the matching
documents. We obtain a total of 62,032 articles, of
which 8,072 match MT keywords, 13,977 match
LM keywords, and 5,084 match U keywords.

In Figure 2, we present the trends of interest over
the last ten years in terms of absolute counts.
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Figure 2: Trend of interest (absolute counts) in machine
translation MT , language models LM , users U , and
combinations thereof in the ACL community over the
last 10 years. Besides illustrating the rapid growth of
LLM studies, the left panel highlights the increase in
MT research incorporating LLMs ( MT + LM ), while
the right panel shows rising attention to users, particu-
larly in LLM-related work ( LM + U ).

B Professional and Lay Users of MT

Table 1 offers a preliminary outline of some key
differences between professional (i.e. translators
or MT post-editors) and lay users of machine trans-
lation. While we acknowledge that these character-
istics often exist along a continuum rather than as
clear-cut categories, here we draw on prototypical

19https://aclanthology.org (accessed: 2025-02-01).

positions inspired by Cifter and Dong (2009) to
highlight contrasting tendencies. This distinction
is useful for framing how different user profiles
interact with MT systems, particularly in terms
of expectations, urgency, error tolerance, and the
ability to critically assess output.

A more fine-grained subclassification of user
types (e.g. according to varying degrees of lan-
guage proficiency or MT literacy) is currently hin-
dered by the limited literature on these aspects.
However, concurrent work by Bassignana et al.
(2025) highlights digital literacy as a key potential
divide in the use of language technologies. Along
these lines, post-editors can develop higher digital
literacy and skills through sustained engagement
with language technologies as part of their profes-
sional growth (Secara et al., 2025), in contrast to
lay users, whose levels of digital literacy or access
can vary greatly.
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Aspect Professional Users Lay Users

Training Specialized None or limited training

Usage Context Professional tasks Personal or immediate needs

Terminology Familiar with domain-specific terminol-
ogy

Can be unfamiliar with specialized ter-
minology translated

Awareness of Limitations Familiarity with MT capabilities and
limitations

Limited/None

Language Proficiency Proficient in both source and target lan-
guages

Limited or no proficiency in at least one
of the languages

Error Evaluation Can effectively judge translation quality
and identify errors

May struggle to spot errors

Table 1: Overview of Professional vs. Lay Users of Machine Translation.
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