
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 14003–14023
November 4-9, 2025 ©2025 Association for Computational Linguistics

Teaching Your Models to Understand Code via Focal Preference Alignment

Jie Wu⋆ϕ, Haoling Li⋆ϕ, Xin Zhang⋄⋆π, Xiao Liuπ, Yangyu Huangπ, Jianwen Luoσ,
Yizhen Zhangϕ, Zuchao Li⋄, Ruihang Chu†ϕ, Yujiu Yangϕ, Scarlett Liπ

ϕTsinghua University πMicrosoft Research σCASIA ⋄Wuhan University

Abstract

Preference learning extends the performance
of Code LLMs beyond traditional supervised
fine-tuning by leveraging relative quality com-
parisons. In existing approaches, a set of n can-
didate solutions is evaluated based on test case
success rates, with the candidate demonstrating
a higher pass rate being labeled as positive and
its counterpart with a lower pass rate as neg-
ative. However, because this approach aligns
entire failing code blocks rather than pinpoint-
ing specific errors, it lacks the granularity nec-
essary to capture meaningful error-correction
relationships. As a result, the model is un-
able to learn more informative error-correction
patterns. To address these issues, we propose
Target-DPO, a new preference alignment frame-
work that mimics human iterative debugging
to refine Code LLMs. Target-DPO explic-
itly locates error regions and aligns the corre-
sponding tokens via a tailored DPO algorithm.
To facilitate it, we introduce the CodeFlow
dataset, where samples are iteratively refined
until passing tests, with modifications capturing
error corrections. Extensive experiments show
that a diverse suite of Code LLMs equipped
with Target-DPO achieves significant perfor-
mance gains in code generation and improves
on challenging tasks like BigCodeBench. In-
depth analysis reveals that Target-DPO yields
fewer errors. Code, model and datasets are in:
https://github.com/JieWu02/Target-DPO.

1 Introduction

Preference learning offers a promising complement
to supervised fine-tuning (SFT) (Zhang et al., 2023)
for improving code generation accuracy in cod-
ing large language models (Code LLMs). Exist-
ing methods (Zhang et al., 2024, 2025; Liu et al.,

⋆Equal contribution. Work done during the internships of
Jie Wu, Haoling Li, and Jianwen Luo at Microsoft Research.
Email: {wujie24,li-hl23}@mails.tsinghua.edu.cn.

⋄Project leader.
†Corresponding author.

Figure 1: Target-DPO achieves significant performance
gains over DPO variants on challenging coding tasks,
i.e., BigCodeBench-Hard, with Qwen2.5-Coder-7B.

2024c) mainly rely on unit test feedback to con-
struct preference pairs. In these approaches, a
Code LLM generates multiple code snippets as
candidates and evaluates each against a suite of
test cases. The snippet with the higher pass rate is
considered preferred, while the one with the lower
pass rate is marked as dispreferred, which forms
the pair for preference learning such as Direct Pref-
erence Optimization (DPO) (Rafailov et al., 2023).
However, this paradigm suffers from two critical
drawbacks. First, constructing pairs purely on pass
rate cannot guarantee high-quality labels. A high-
pass-rate snippet may still carry subtle but crucial
bugs, while a low-pass-rate snippet might need only
a few modifications to become correct (as shown in
Figure 2), resulting in noisy preference data. Sec-
ond, as errors may be isolated to specific code parts,
aligning entire snippets can dilute the correct sig-

14003

https://github.com/JieWu02/Target-DPO

nal. It forces the model to adjust irrelevant tokens
and hinders its ability to learn more specific error
patterns (Pal et al., 2024; Chen et al., 2024; Wu
et al., 2024), which would increase the overfitting
risk. The limitations call for a better framework
that can pinpoint error regions and apply targeted
learning to correct those precise areas.

To tackle these challenges, we draw inspiration
from how developers debug code. Typically, a pro-
grammer first locates the module that generates
errors based on execution feedback and then fo-
cuses on fixing that specific portion until all tests
pass. Following this human approach, we intro-
duce Target-DPO, a novel framework for prefer-
ence learning in Code LLMs that leverages iterative
debugging insights. Rather than only using pass
rate to measure the degree of preference, Target-
DPO derives preference pairs from debugging pro-
cess itself, where the refine steps yield a preference
pair, labeling the corrected snippet as preferred and
its previous version as dispreferred. By explicitly
contrasting the tokens that resolve the error, Target-
DPO trains Code LLMs to learn fine-grained align-
ment for precise error correction, enabling models
to truly understand the code.

To support this framework, we efficiently synthe-
size high-quality preference pairs to create Code-
Flow, a novel dataset systematically recording
code iterations and corresponding error corrections.
Compared to sampling-based methods, CodeFlow
enables the efficient creation of preference pairs
by (1) generating code snippets and test cases, (2)
iteratively refining code until all tests pass, and (3)
annotating key token changes between failed and
corrected versions. This process ensures that prefer-
ence learning focuses on the actual error-resolution
steps taken by developers.

Building on CodeFlow, we propose an improved
DPO algorithm that rewards correct code tokens
while penalizing only error-specific tokens in dis-
preferred samples, minimizing irrelevant noise dur-
ing preference learning and thus improving effi-
ciency. Comprehensive ablation studies show how
to best select dispreferred samples and how much
context to include during alignment, verifying our
optimal design for code correction.

We conduct extensive experiments on five pub-
lic datasets to validate the effectiveness of Target-
DPO. With only 59k preference pairs, Target-
DPO achieves significant performance gains across
various base and instruct-tuned Code LLMs. No-
tably, as shown in Figure 1, Target-DPO attains

superior results on complex coding tasks like Big-
CodeBench. Through detailed ablation studies, we
also demonstrate that Target-DPO outperforms al-
ternative strategies by a clear margin. Our contri-
butions are as follows:

1. We propose Target-DPO, a novel framework
that leverages the idea of iterative debugging
to address challenges in preference learning,
enabling more precise alignment on critical
error tokens.

2. We construct a new function-level dataset
CodeFlow that iteratively tracks token differ-
ences across preference pairs, and propose a
tailored adaptation of the DPO algorithm that
avoids unnecessary optimization noise.

3. Target-DPO consistently improves perfor-
mance across diverse benchmarks and various
base and instruct-tuned Code LLMs.

2 Target-DPO Framework

The Target-DPO framework mimics human iter-
ative debugging to refine Code LLMs. It explic-
itly identifies error regions and focuses on aligning
the corresponding tokens through a tailored DPO
algorithm. To achieve this, Target-DPO follows
two steps: (1) synthesizing preference code pairs
through an iterative debugging process and locate
error regions within code, resulting in the creation
of CodeFlow (Section 2.1), and (2) performing
fine-grained and focal alignment by contrasting
critical tokens via the designed DPO algorithm
(Section 2.2). The overall workflow is illustrated in
Figure 3. In the following sections, we will provide
a detailed description of each step.

2.1 Synthesize Preference Code Snippets

As part of our method, we synthesize 59k pref-
erence pairs to enable targeted alignment. In con-
trast to previous methods that synthesize preference
pairs based on pass rate, Target-DPO synthesizes
preference code snippets from an iterative debug-
ging process. In this process, an initial code snippet
is refined until it passes the test cases, and a prefer-
ence pair is constructed between the final correct
version and the previous iteration.

Generate Raw Code Snippets and Tests. To ob-
tain diverse and complex code data, we adopt the
practice of EpiCoder (Wang et al., 2025a), utiliz-
ing its feature tree-based synthesis framework with

14004

Implement the function calculate_statistics(ages: List[int]) -> Tuple[float, float, float] that computes the mean, sample
variance, and standard deviation for the list ages.

def calculate_statistics(ages: List[int]) -> Tuple[float, float,
float]:
 if not ages:
 # Handle empty list case
 return (0.0, 0.0, 0.0)

 # Calculate mean
 mean = sum(ages) / len(ages)

 # Calculate variance
 if len(ages) > 1:
 variance = sum((x - mean) ** 2 for x in ages) / (len(ages) - 1)
 else:
 variance = 0.0

 # Calculate standard deviation
 ...

Correct Code ✅

def calculate_statistics(ages: List[int]) -> Tuple[float,
float, float]:
 if not ages:
 # Handle empty list case
 return (0.0, 0.0, 0.0)

 # Calculate mean
 mean = sum(ages) / len(ages)

 # Calculate variance
 variance = sum((x - mean) ** 2 for x in ages) / len(ages)

 # Calculate standard deviation
 std_dev = math.sqrt(variance)

 return (mean, variance, std_dev)

Incorrect Code❌

Figure 2: In LLM-generated code, errors are usually confined to critical parts. Minor adjustments to the corre-
sponding erroneous tokens can correct the code while leaving the majority unchanged. Therefore, an effective error
correction requires first identifying the key error lines and then performing focal alignment.

GPT-4o (OpenAI, 2024) to generate high-quality
code and test cases. This approach directs the
LLM to produce a coding task instruction, the cor-
responding code snippet, and multiple test cases.

To ensure the quality of the generated test cases,
we applied several validation measures, including
coverage analysis, LLM-based evaluation, and hu-
man verification. Detailed discussions and prompt-
ing examples are provided in Appendix A.2.

Iterative Refinement via Verification. LLMs
cannot guarantee the correctness of generated
code (Ma et al., 2025). Therefore, we verify each
code sample and refine it through iterative debug-
ging based on execution feedback from verified test
cases. As shown in Figure 3, when the initial code
fails the unit tests, we collect the error information
and refine the code iteratively until it passes the
test. The pass rate at the T -th iteration is reported
in Figure 6 of Appendix A.1.

Our goal is to collect program changes made
during the iterative debugging process. To reduce
costs, we discard code that fails to be corrected
within five iterations. Although this filter removes
some extremely challenging cases, it does not make
the generated dataset predominantly easier, as clar-
ified in Appendix A.1. Samples requiring more
than five iterations for a solution generally fail to
pass all test cases anyway, regardless of additional
sampling efforts.

After iterative debugging, we treat the final cor-
rect code as the preferred sample and randomly
select an earlier version as the dispreferred sample,
forming the pair (y+, y−) for preference learning.

Critical Difference Extraction. To identify the

Algorithm 1 Extracting Code Difference

Require: Code pair y+ and y−

Ensure: Difference lines D+ and D− for y−

1: Split y+ and y− into lines: y+lines and y−lines
2: Find the LCS of lines between y+lines and y−lines
3: Initialize D+ = ∅ and D− = ∅
4: D+ = {l+ ∈ y+lines | l+ /∈ LCS}
5: D− = {l− ∈ y−lines | l− /∈ LCS}
6: return D+ and D−

targeted regions for alignment, we extract the crit-
ical differences responsible for the functional di-
vergence between each (y+, y−) pair. Specifically,
we pinpoint the sets of differing lines, D+ and D−,
by computing the Longest Common Subsequence
(LCS). Lines not part of the LCS are considered
difference lines, as detailed in Algorithm 1. Con-
sequently, the key modifications distinguishing the
preferred from the dispreferred samples are local-
ized within D+ and D−. These segments encap-
sulate the changes driving the functional distinc-
tions and represent the critical regions that Target-
DPO aims to contrast and align.

Quality Control for Preference Pairs. We
initially synthesize 104k instruction data points
through iterative refinement. To further ensure
data quality, we implement several filtering mea-
sures. Specifically, rule-based filtering is applied
to remove trivial or uninformative samples, such
as those where: (i) D− consists only of comments;
(ii) D− exceeds 20 lines; (iii) y+ or y− exceeds
2048 tokens; and (iv) Samples where the abstract
syntax tree (AST) of y+ and y− are identical.

14005

def calculate _statistics (ages # Calculate variance \n... if len ages >

((x - mean **) 2 for x invariance = sum1 :\n

, std _dev)\n...ages) / len (ages) - 1)\n else

Preferred Code

((x - mean **) 2 for x in ages) / len (ages

variance = sumdef calculate _statistics (ages # Calculate variance \n...

)\n\n # Calculate mean Return (mean , variance , std _dev)\n...

Dispreferred Code

Rewarded Tokens (Keep loss) Penalized Tokens (Keep loss) Masked Tokens (Remove loss)

Code 1

Execute

Code 2

Generate

Debug

...

Correct Code

Execute

Instruction

Debug

Figure 3: Method Overview. Target-DPO constructs preference pairs via iterative debugging, treating the correct
version as preferred and the previous as dispreferred. DPO adaptations enable code LLMs to learn the correct
pattern from the preferred code while highlighting critical tokens with a masking strategy in the dispreferred sample.

The application of these filters reduced the
dataset to 84k samples. In the next stage, we uti-
lized GPT-4o as an LLM-judge to assess whether a
significant logical distinction existed between y+

and y−. We further filter out pairs where the dif-
ferences are limited to code formatting, comments,
variable names, whitespace, or blank lines. These
efforts ensure that the selected and rejected sam-
ples reflect key functional differences. The final
dataset, consisting of 59k samples, is thus prepared
for preference-based alignment training.

2.2 Targeted Preference Alignment
Direct Preference Optimization (DPO) directly op-
timizes the policy model using relative quality com-
parisons. Given a prompt x, a preference pair
(y+, y−), where y+ is of higher quality than y−,
DPO aims to maximize the probability of the pre-
ferred response y+ while minimizing that of the
less desirable response y−. The KL divergences
for y+ and y− are defined as:

K+ = log πθ(y
+|x)

πref(y+|x) , K− = log πθ(y
−|x)

πref(y−|x) , (1)

and the optimization objective LDPO(πθ;πref) is:

LDPO = −E(x,y+,y−)∼D [log σ (β (K+ −K−))] (2)

DPO optimizes the expectation over the pairwise
preference dataset D, and σ is the sigmoid function.

While Direct Preference Optimization (DPO)
has demonstrated effectiveness in domains such as
mathematics (Lai et al., 2024), its standard objec-
tive function, as shown in Equation (2), may be
suboptimal for preference-based alignment in code
generation, as a large portion of the tokens in y+

and y− are identical, with only minor differences.

This can confuse the policy model in identifying
the critical differences necessary for functional cor-
rectness, and diminish alignment gains (Pal et al.,
2024; Chen et al., 2024; Wu et al., 2024).

To help code LLMs better grasp the critical to-
kens driving functional differences between pref-
erence pairs, we modify the DPO algorithm to
highlight key tokens in the dispreferred code snip-
pet using a masking strategy. Specifically, given
y− = [y−1 , y

−
2 , .., y

−
L] containing L tokens, vanilla

DPO computes K− as:

K− = log
πθ(y

−|x)
πref(y−|x)

= log

∏L
i=1 πθ(y

−
i |x)∏L

i=1 πref(y
−
i |x)

=

L∑

i=1

log
πθ(y

−
i |x)

πref(y
−
i |x)

(3)

We make the following adaptations to K− while
keeping K+ unchanged:

K+′
= K+ (4)

K−′
=

∑L
i=1 I(y

−
i ∈ D−) log πθ(y

−
i |x)

πref(y
−
i |x) (5)

Equation (4) guides the code LLM to learn cor-
rect code generation patterns from y+. In contrast,
Equation (5) explicitly focuses on contrasting crit-
ical tokens within y−. It achieves this by mask-
ing tokens in the dispreferred code that do not ap-
pear in D−, thereby excluding correct tokens in
y− from the loss computation, as illustrated on the
right side of Figure 3. By penalizing critical to-
kens that cause functional errors and preventing
over-optimization on tokens common to both y+

and y−, Target-DPO achieves a more fine-grained
alignment tailored for code, improving upon pre-
vious sample-level optimization approaches. This

14006

refined strategy enables code LLMs to better inter-
nalize correct coding patterns and more effectively
identify crucial token-level errors.

Our loss also targets pairwise optimization:

L′
DPO = −E(x,y+,y−)∼D log σ

(
β
(
K+′ −K−′

))
(6)

Correspondingly, the RPO loss (Liu et al., 2024a;
Pang et al., 2024), a variant of DPO, consists of
a weighted SFT loss on y+, scaled by α. Our
modified DPO loss also complements RPO, and
the RPO-format L′

RPO loss is:

LSFT = −E(x,y+)∼D [log pθ(y
+|x)] (7)

LRPO′ = L′
DPO + αLSFT (8)

3 Experiments

Experiment Setup. For our Target-DPO, the learn-
ing rate is set to 1e-5 for the 7B code LLMs and
5e-6 for the 15B models, using a global batch
size of 128, with a cosine scheduler and warm-
up. The maximum sequence length is set to 2048
tokens. Detailed training settings are presented in
Appendix A.3 For the DPO algorithm, β is set to
0.1, and for RPO, α is set to 1.0. The rationale be-
hind the choice of α and β is supported by ablation
studies presented in Appendix C.2. πθ and πref are
both initialized with the weights of the evaluated
model, while πref keeps frozen during training.

Benchmarks. We evaluate the Code LLMs using
multiple benchmarks: HUMANEVAL Base (Chen
et al., 2021), HUMANEVAL Plus (Liu et al.,
2023), Mostly Basic Python Problems (MBPP
Base (Austin et al., 2021), MBPP Plus), Live-
CodeBench (LCB) (Jain et al., 2024) (v5 with prob-
lems released between May 2023 and Jan 2025),
and BIG-CODEBENCH (BCB) (Zhuo et al., 2025)
with instruct and completion splits. We report the
pass@1 score under greedy decoding.

Evaluated Models and Baselines. We evalu-
ate models including DeepSeek-Coder-7B-Instruct-
v1.5 (Guo et al., 2024), CodeQwen1.5-7B-
Chat (Bai et al., 2023), as well as base models
such as Qwen2.5-Coder-7B (Hui et al., 2024b) and
StarCoder2-15B (Lozhkov et al., 2024). Results for
the 32B model are in Appendix C.1. CodeDPO and
PLUM are compared using their reported results,
as their data and code are currently unavailable.
Code-Optimise (Gee et al., 2025) is reproduced
using GPT-4o, with 100 solutions sampled at a tem-
perature of 0.6 for each problem. The DPO-PvF
setting results for Code-Optimise are reported.

4 Main Results

Table 1 presents a comparison between baseline
models, DPO variants, and Target-DPO. We dis-
cuss the findings from the following perspectives.

Focal Alignment Outperforms Global Align-
ment. Preference pairs from iterative debugging
differ significantly from those in datasets like
Code-Optimise, causing a performance drop with
vanilla DPO or RPO. While some settings, like
DS-Coder-7B-Instruct-DPO, show gains on BIG-
CODEBENCH, DPO and RPO generally underper-
form compared to baselines. In typical correction
scenarios, an LLM modifies only a small portion of
the code to fix errors, creating highly similar pref-
erence pairs. This overlap introduces ambiguity,
as identical tokens in both positive and negative
examples weaken the model’s ability to distinguish
meaningful differences.

This degradation underscores the need for ex-
plicit mechanisms to focus the policy model on
tokens responsible for functional faults. Target-
DPO addresses this by emphasizing error tokens in
the dispreferred code and explicitly contrasting the
critical edits. As shown in Table1, Target-DPO out-
performs DPO by 3.3% and 5.9% on average across
benchmarks, while Target-RPO yields improve-
ments ranging from 6.3% to 12.4%.

Target-DPO Achieves Significant Improvements
over Methods that Rely on Coarse-grained Pass
Rate Signals. While methods like PLUM and Cod-
eDPO, which construct preference pairs by test-
ing multiple sampled solutions, offer a straight-
forward and effective approach, their reliance on
coarse-grained pass/fail signals inherently limits
the model’s ability to learn nuanced error correc-
tion and generalize improvements. As shown in

59.8

51.8

72.2

60
56.7

48.8

72.9

58.9

47.6

37.2

72.2

57.6

66.5

60.4

76.5

61.4

30

40

50

60

70

80

HumanEval HumanEval+ MBPP MBPP+

CodeDPO PLUM Code-Optimise Ours

Figure 4: Comparison with CodeDPO, PLUM, and
Code-Optimise using DeepSeekCoder-6.7B. Additional
results are provided in Appendix B.3.

14007

Model Variant HumanEval MBPP BCB-Full BCB-Hard LCB Avg.Base Plus Base Plus Comp. Inst. Comp. Inst. Inst.

DS-Coder-7B-Ins-v1.5

Ref. 75.6 71.3 75.2 62.3 43.8 35.5 15.5 10.1 20.6 45.5
DPO 69.5 65.2 77.2 67.2 46.1 37.9 12.2 14.2 20.4 45.5
RPO 65.2 59.8 75.7 66.1 43.2 37.5 10.8 13.8 20.2 43.6
Code-Optimise 64.6 60.4 78.8 69.3 45.2 36.5 13.5 13.5 21.3 44.8
Target-DPO 76.2 72.0 79.1 65.3 47.5 37.8 22.3 17.6 21.8 48.8
Target-RPO 78.0 73.2 78.8 67.2 49.3 39.0 20.9 20.9 22.0 49.9

CodeQwen1.5-7B-Chat

Ref. 83.5 78.7 79.4 69.0 43.6 39.6 15.5 18.9 15.3 49.3
DPO 79.3 73.8 79.9 69.0 43.3 36.1 14.9 10.8 15.5 47.0
RPO 79.3 73.2 80.2 68.8 41.6 32.5 14.8 10.6 12.9 46.0
Code-Optimise 78.5 75.0 80.7 69.6 43.3 36.1 17.6 11.5 16.2 47.6
Target-DPO 89.6 85.4 83.9 69.8 48.7 39.9 20.3 16.9 18.1 52.5
Target-RPO 89.6 86.0 82.5 70.4 48.4 38.3 20.3 18.2 17.2 52.3

StarCoder2-15B

Ref. 46.3 37.8 66.2 53.1 38.4 - 12.2 - - -
DPO 51.8 45.1 63.8 42.9 27.3 16.2 8.1 5.4 12.7 30.4
RPO 53.0 45.7 63.0 42.6 28.7 17.2 9.1 6.0 13.1 30.9
Code-Optimise 61.0 54.9 66.5 53.4 31.8 18.8 6.8 6.1 14.9 34.9
Target-DPO 70.7 64.6 67.2 54.5 39.7 37.7 17.6 16.9 18.7 43.1
Target-RPO 73.2 65.2 65.9 53.4 40.3 38.8 18.9 18.2 19.4 43.7

Qwen2.5-Coder-7B

Ref. 61.6 53.0 76.9 62.9 45.8 40.2 16.2 14.2 24.1 43.9
DPO 71.3 59.1 76.2 48.7 38.8 28.5 12.8 12.2 22.6 41.1
RPO 71.3 59.8 70.9 50.3 39.8 29.7 14.2 13.5 23.0 41.4
Code-Optimise 82.3 78.7 76.2 60.4 48.5 39.6 18.9 12.2 23.2 48.9
Target-DPO 89.0 83.6 83.1 69.0 52.7 41.0 25.6 20.9 32.6 55.3
Target-RPO 89.6 84.8 83.3 69.6 53.3 43.1 29.7 20.9 32.2 56.3

Table 1: Pass@1 (%) results of different LLMs on HumanEval, MBPP, BigCodeBench, and LiveCodeBench-v5
(LCB) under greedy decoding setting. We conducted the evaluation on the Full and Hard subsets of BigCodeBench
(BCB), including the Complete (Comp.) and Instruct (Inst.) tasks. The best results are highlighted in Bold.

Figure 4, this limitation becomes apparent when
compared to our Target-DPO.
Target-DPO Improves Challenging Coding Task.
We highlight that the Target-DPO framework has
the potential to boost Code LLMs to solve com-
plex coding tasks. Notably, Qwen2.5-Coder-
7B equipped with Target-DPO achieves a 29.7%
pass@1 score on BigCodeBench Complete Hard,
matching the performance of larger Code LLMs
DeepSeek-Coder-V2-Instruct (29.7%) and Claude-
3-Opus (29.7%) (Anthropic, 2024), and approach-
ing Llama-3.1-405B-Instruct (30.4%) (Grattafiori
et al., 2024). When given more attempts, Target-
DPO achieves pass@5 of 45.7%, outperforming
DeepSeek-R1 (40.5%) (DeepSeek-AI et al., 2025)
and GPT-o1 (40.2%). On the Instruct Hard split,
pass@5 of the Target-DPO-Qwen is 34.7%, compa-
rable to the performance of GPT-o3-mini (33.1%).

5 Ablation Study

Despite the effectiveness of Target-DPO in pin-
pointing critical error regions, there remain open
questions about how best to incorporate negative
examples and how much context is truly benefi-
cial for code correction. We therefore explore sev-

eral settings: (i) SFT: Supervised fine-tuning us-
ing the positive sample from the preference pair;
(ii) Hybrid Training: Half of the samples in a
batch are trained using vanilla DPO, while the other
half follows the Target-DPO approach; (iii) Diff-
Augmentation: provide more context for the dis-
preferred sample by including 1 or 2 lines of tokens
before and after D−; and (iv) Symmetric Masking
Strategy: The Code LLMs learn from the tokens in
D+ rather than the full sequence of positive sample.
In Figure 5, we illustrate these settings.

Supervised Fine-Tuning. A comparison with
EpiCoder-SFT, considering varying amounts of
training data, is shown in Table 2. Our Target-
DPO achieves performance comparable to the
strong SFT baseline EpiCoder-380k using only 59k
training samples (about one-sixth), unveiling the
power of targeted alignment.

The positive samples undergo iterative debug-
ging and are validated by test cases, they main-
tain high quality, allowing SFT to achieve reason-
ably strong performance. However, SFT overlooks
dispreferred samples, missing the opportunity to
contrast and precisely align positive and negative
examples. In contrast, Target-DPO not only lever-

14008

Figure 5: Illustration for Target-DPO and its ablations. Target-DPO rewards correct code tokens while penalizing
only error-specific tokens in rejected code, teaching models to truly understand code through targeted alignment.

HumanEval(Avg) MBPP(Avg) BCB(Complete) BCB(Instruct) Average

SFT (EpiCoder 40k) 83.9 75.5 50.9 39.1 62.4
SFT (EpiCoder 80k) 85.1 78.9 52.3 39.4 63.9
SFT (EpiCoder 380k) 85.7 77.8 53.4 43.8 65.2
SFT (CodeFlow 59k) 85.5 75.7 51.6 39.1 62.9
Our Target-DPO (59k) 87.2 76.5 53.3 43.1 65.0

Table 2: Results of EpiCoder-SFT with varying amounts of training data and our method on Qwen2.5-Coder-7B.

Aug Hybrid HumanEval MBPP BCB-Inst BCB-Comp Average
Base Plus Base Plus

CodeQwen1.5-7B-Chat - - 83.5 78.7 79.4 69.0 39.6 43.6 65.6

Target-DPO
✗ ✔ 83.5 79.3 81.5 66.1 38.2 44.5 65.5
✔ ✗ 83.5 76.8 80.2 65.1 34.7 44.5 64.1
✗ ✗ 89.6 85.4 83.9 69.8 39.9 48.7 69.6

Target-RPO
✗ ✔ 84.8 79.3 81.5 67.7 34.6 44.0 65.3
✔ ✗ 86.0 79.9 81.5 65.9 36.0 45.0 65.7
✗ ✗ 89.6 86.0 82.5 70.4 38.3 48.4 69.2

Table 3: Ablation study on how much contextual information from negative examples is beneficial for Target-DPO,
evaluated using CodeQwen1.5-7B-Chat. Additional results with Qwen2.5-Coder-7B are provided in Appendix C.

HumanEval(Avg) MBPP(Avg) BCB(Complete) BCB(Instruct) Avg.

SFT (Correct) 85.5 75.7 51.6 39.1 63.0
SFT (Incorrect) 82.7 73.5 49.2 38.6 61.0

Table 4: Performance comparison of SFT on correct and incorrect code from CodeFlow uisng Qwen2.5-Coder-7B.

ages error-free code to increase the likelihood of
correct code but also precisely penalizes tokens re-
sponsible for critical errors, achieving finer-grained
alignment and better performance consequently.

Hybrid Training & Diff-Augmentation. Both set-
tings expose Code LLMs to more tokens from the
dispreferred samples but differ in scope: in Hybrid
Training, 50% of the training samples use the entire
dispreferred sequence, while Diff-Augmentation
provides a small token window around the D−. Ta-
ble 3 shows that while adding extra context around

D− may appear beneficial, it often introduces noise
that confuses the model, making it unclear which
parts need local alignment, ultimately leading to
degraded performance.

We find that concentrating solely on the most
critical tokens yields better results, highlighting the
importance of accurately grounding these tokens
for more effective targeted alignment. The iterative
debugging process naturally supports this precise
localization, as typically only a small portion of the
code changes between iterations, while the majority

14009

remains unchanged. These targeted regions can be
easily identified using the Longest Common Sub-
sequence (LCS), allowing meaningful differences
to be isolated with high precision.
Symmetric Masking Strategy. When training
with the symmetric masking, where Code LLMs
learn from both D+ and D− without access to the
full positive sample, the model struggles to retain
its core code generation capabilities and fails to
benchmark effectively. The primary goal of Code
LLMs is to generate complete and correct code. Al-
though learning symmetrically from both D+ and
D− may seem appealing, the focus should be on
ensuring Code LLMs learn from fully correct code
rather than fragmented pieces. Without complete
code contexts, the positive sample cannot properly
align with the instruction, leading to incomplete
and misleading signals in the learning process.
Generated Test Cases can Distinguish Good and
Error Code. Table 4 compares supervised fine-
tuning using either preferred or dispreferred sam-
ples. The results show that SFT on preferred sam-
ples outperforms that on dispreferred ones by an
average of 2.0%. This quality gap between pairs,
introduced through debugging iterations, suggests
that test cases effectively differentiate high- and
low-quality code snippets, providing training pairs
with clear quality contrast. In our debugging pat-
tern, the quality differences between code snippets
are primarily influenced by the feedback from test
cases, indicating that test cases can reliably distin-
guish between good and bad code when verified
through dedicated efforts.

6 Related Work

Code Language Models. Powerful Code LLMs
like Qwen2.5-Coder (Hui et al., 2024a), DeepSeek-
Coder (Guo et al., 2024), StarCoder (Li et al., 2023;
Lozhkov et al., 2024), Magicoder (Wei et al., 2024)
and EpiCoder (Wang et al., 2025b) demonstrate
their capabilities in various code generation tasks.
Current Code LLMs primarily focus on supervised
fine-tuning during the post-training stage. While
SFT enables Code LLMs to learn the correct pat-
terns, it fails to effectively make them aware of
incorrect patterns or how to rectify errors in code.
In this work, Target-DPO framework aims to en-
able Code LLMs to further learn through pairwise
contrasting of critical tokens (Lin et al., 2024), al-
lowing Code LLMs to continually improve.
Reinforcement Learning (RL) (Hu et al., 2025;

Kaufmann et al., 2024) maximizes the following
objective for a prompt x and response y:

max
πθ

Ex∼Dp,y∼πθ(·|x)

[
r(x, y)− β log

πθ(y|x)
πref(y|x)

]

where Dp is the dataset, πθ is the policy model
to be optimized, πref is the reference, and β con-
trols the degree of regularization. RL for code
generation attracts attention recently (Dou et al.,
2024; Li et al., 2024; Sun et al., 2024; Miao et al.,
2024; Dai et al., 2025). A commonly used approach
is DPO (Rafailov et al., 2023), which eliminates
the need for an explicit reward model r. Variants
like RPO (Liu et al., 2024a; Pang et al., 2024) and
KTO (Ethayarajh et al., 2024) are also frequently
used in optimizing code generation.
Preference Pair Construction. Existing methods
construct preference pairs by ranking candidate so-
lutions based on pass rates. PLUM (Zhang et al.,
2024) constructs preference pairs by ranking can-
didate code solutions based on passed test cases.
Code-Optimise (Gee et al., 2025) incorporates effi-
ciency as an additional learning signal, augmented
with annotations from unit test feedback and ex-
ecution time. AceCoder (Li et al., 2024) selects
pairs with distinct pass rate differences. DSTC (Liu
et al., 2024b) constructs preference pairs using self-
generated code and tests. A related concurrent
work is CodeDPO, which formulates preference
learning as a direct optimization problem using
pass/fail signals and proposes a PageRank-inspired
algorithm to select high-quality preference pairs.
In contrast, our method aligns code LLMs through
error-resolving edits rather than relying on coarse-
grained execution outcomes. This fine-grained su-
pervision provides richer training signals that better
capture the semantics of code correction, resulting
in improved performance, as verified in Figure 4.

7 Conclusion

We present Target-DPO, a novel preference align-
ment framework that emulates human iterative
debugging to capture critical errors in incorrect
code for precise optimization. Target-DPO first
identifies error-prone regions and applies an im-
proved DPO algorithm contrasting pivotal seg-
ments, teaching Code LLMs to understand and
correct code through targeted preference alignment,
achieving promising coding performance. To sup-
port this framework, we efficiently synthesize high-
quality preference pairs to create CodeFlow, where

14010

each sample undergoes iterative refinement until it
passes unit tests, with the modification history pro-
viding a natural record of error corrections. Exten-
sive experiments show that Target-DPO-equipped
Code LLMs achieve significant performance im-
provements in code generation and excel in tack-
ling basic and complex coding tasks.

Limitations

Target-DPO is inspired by the debugging pattern
of developers, serving as a novel framework for
fine-grained preference learning in Code LLMs.
Instead of using pass rate alone, Target-DPO de-
rives preference pairs from iterative debugging pro-
cess. By contrasting critical tokens between a cor-
rected version and its preceding iteration, Target-
DPO helps the model to understand code through
targeted alignment. However, this study focuses on
a dataset of 59k samples without further expansion,
which may limit generalizability, but offers oppor-
tunities for future exploration with larger data.

Acknowledgments

This work was partly supported by the Na-
tional Natural Science Foundation of China
(Grant No. 62576191), the research grant No.
CT20240905126002 of the Doubao Large Model
Fund, and the National Natural Science Foundation
of China (No. 62306216).

References
Anthropic. 2024. Claude 3.5: Advancing ai safety and

performance. Technical report, Anthropic.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, and
Charles Sutton. 2021. Program synthesis with large
language models. Preprint, arXiv:2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, and et al. 2023. Qwen technical
report. arXiv preprint arXiv:2309.16609.

Huayu Chen, Guande He, Hang Su, and Jun Zhu. 2024.
Noise contrastive alignment of language models with
explicit rewards. CoRR, abs/2402.05369.

Mark Chen, Jerry Tworek, Heewoo Jun, and Qim-
ing Yuan et al. 2021. Evaluating large language
models trained on code. Preprint, arXiv:2107.03374.

Ning Dai, Zheng Wu, Renjie Zheng, Ziyun Wei, Wenlei
Shi, Xing Jin, Guanlin Liu, Chen Dun, Liang Huang,
and Lin Yan. 2025. Process supervision-guided pol-
icy optimization for code generation.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang,
Junxiao Song, Ruoyu Zhang, Runxin Xu, and et al.
2025. Deepseek-r1: Incentivizing reasoning capa-
bility in llms via reinforcement learning. Preprint,
arXiv:2501.12948.

Shihan Dou, Yan Liu, Haoxiang Jia, Enyu Zhou, and Li-
mao et al. Xiong. 2024. StepCoder: Improving code
generation with reinforcement learning from com-
piler feedback. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics, Bangkok, Thailand. Association for Compu-
tational Linguistics.

Kawin Ethayarajh, Winnie Xu, Niklas Muennighoff,
Dan Jurafsky, and Douwe Kiela. 2024. Model align-
ment as prospect theoretic optimization. In Proceed-
ings of the 41st International Conference on Machine
Learning, ICML’24. JMLR.org.

Leonidas Gee, Milan Gritta, Gerasimos Lampouras,
and Ignacio Iacobacci. 2025. Code-optimise: Self-
generated preference data for correctness and effi-
ciency. Preprint, arXiv:2406.12502.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, and et al. 2024. The llama 3 herd
of models. Preprint, arXiv:2407.21783.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. Deepseek-coder: When the large
language model meets programming – the rise of
code intelligence. Preprint, arXiv:2401.14196.

Yulan Hu, Ge Chen, Jinman Zhao, Sheng Ouyang,
and Yong Liu. 2025. Coarse-to-fine process re-
ward modeling for mathematical reasoning. Preprint,
arXiv:2501.13622.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, and et al.
2024a. Qwen2.5-coder technical report. Preprint,
arXiv:2409.12186.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024b. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free evalu-
ation of large language models for code. Preprint,
arXiv:2403.07974.

Timo Kaufmann, Paul Weng, Viktor Bengs, and
Eyke Hüllermeier. 2024. A survey of reinforce-
ment learning from human feedback. Preprint,
arXiv:2312.14925.

Xin Lai, Zhuotao Tian, Yukang Chen, Senqiao Yang, Xi-
angru Peng, and Jiaya Jia. 2024. Step-dpo: Step-wise
preference optimization for long-chain reasoning of
llms. Preprint, arXiv:2406.18629.

14011

https://www.anthropic.com/
https://www.anthropic.com/
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.48550/ARXIV.2402.05369
https://doi.org/10.48550/ARXIV.2402.05369
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=Cn5Z0MUPZT
https://openreview.net/forum?id=Cn5Z0MUPZT
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://doi.org/10.18653/v1/2024.acl-long.251
https://doi.org/10.18653/v1/2024.acl-long.251
https://doi.org/10.18653/v1/2024.acl-long.251
https://arxiv.org/abs/2406.12502
https://arxiv.org/abs/2406.12502
https://arxiv.org/abs/2406.12502
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2501.13622
https://arxiv.org/abs/2501.13622
https://arxiv.org/abs/2409.12186
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2312.14925
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629
https://arxiv.org/abs/2406.18629

Jia Li, Yunfei Zhao, Yongmin Li, Ge Li, and Zhi Jin.
2024. Acecoder: An effective prompting technique
specialized in code generation. ACM Trans. Softw.
Eng. Methodol., 33(8).

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, and et al. 2023. Starcoder: may the
source be with you! Preprint, arXiv:2305.06161.

Zicheng Lin, Tian Liang, Jiahao Xu, Xing Wang,
Ruilin Luo, Chufan Shi, Siheng Li, Yujiu Yang, and
Zhaopeng Tu. 2024. Critical tokens matter: Token-
level contrastive estimation enhence llm’s reasoning
capability. arXiv preprint arXiv:2411.19943.

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chatgpt
really correct? rigorous evaluation of large language
models for code generation. In Proceedings of the
37th International Conference on Neural Information
Processing Systems, NIPS ’23, Red Hook, NY, USA.
Curran Associates Inc.

Zhihan Liu, Miao Lu, Shenao Zhang, Boyi Liu, Hongyi
Guo, Yingxiang Yang, Jose Blanchet, and Zhaoran
Wang. 2024a. Provably mitigating overoptimization
in RLHF: Your SFT loss is implicitly an adversarial
regularizer. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems.

Zhihan Liu, Shenao Zhang, Yongfei Liu, Boyi Liu,
Yingxiang Yang, and Zhaoran Wang. 2024b. Dstc:
Direct preference learning with only self-generated
tests and code to improve code lms. Preprint,
arXiv:2411.13611.

Zhihan Liu, Shenao Zhang, and Zhaoran Wang. 2024c.
DSTC: direct preference learning with only self-
generated tests and code to improve code lms. CoRR,
abs/2411.13611.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Fed-
erico Cassano, Joel Lamy-Poirier, Nouamane Tazi,
and et al. 2024. Starcoder 2 and the stack v2: The
next generation. Preprint, arXiv:2402.19173.

Zeyao Ma, Xiaokang Zhang, Jing Zhang, Jifan Yu,
Sijia Luo, and Jie Tang. 2025. Dynamic scaling
of unit tests for code reward modeling. Preprint,
arXiv:2501.01054.

Yibo Miao, Bofei Gao, Shanghaoran Quan, Junyang
Lin, Daoguang Zan, Jiaheng Liu, Jian Yang, Tianyu
Liu, and Zhijie Deng. 2024. Aligning codellms
with direct preference optimization. Preprint,
arXiv:2410.18585.

OpenAI. 2024. Gpt-4 technical report. Preprint,
arXiv:2303.08774.

Arka Pal, Deep Karkhanis, Samuel Dooley, Manley
Roberts, Siddartha Naidu, and Colin White. 2024.
Smaug: Fixing failure modes of preference optimisa-
tion with dpo-positive. Preprint, arXiv:2402.13228.

Richard Yuanzhe Pang, Weizhe Yuan, He He,
Kyunghyun Cho, Sainbayar Sukhbaatar, and Jason E
Weston. 2024. Iterative reasoning preference opti-
mization. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems 36: Annual
Conference on Neural Information Processing Sys-
tems 2023, NeurIPS 2023, New Orleans, LA, USA,
December 10 - 16, 2023.

Jiankai Sun, Chuanyang Zheng, Enze Xie, Zhengy-
ing Liu, Ruihang Chu, and et al. 2024. A sur-
vey of reasoning with foundation models. Preprint,
arXiv:2312.11562.

Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao
Liu, Wenxiang Hu, Zhongxin Guo, Yangyu Huang,
Ying Xin, Yujiu Yang, Jinsong Su, Qi Chen, and Scar-
lett Li. 2025a. Epicoder: Encompassing diversity and
complexity in code generation. In Arxiv.

Yaoxiang Wang, Haoling Li, Xin Zhang, Jie Wu, Xiao
Liu, Wenxiang Hu, Zhongxin Guo, Yangyu Huang,
Ying Xin, Yujiu Yang, et al. 2025b. Epicoder: En-
compassing diversity and complexity in code genera-
tion. arXiv preprint arXiv:2501.04694.

Yuxiang Wei, Zhe Wang, Jiawei Liu, Yifeng Ding, and
Lingming Zhang. 2024. Magicoder: empowering
code generation with oss-instruct. In Proceedings of
the 41st International Conference on Machine Learn-
ing, ICML’24. JMLR.org.

Junkang Wu, Yuexiang Xie, Zhengyi Yang, Jiancan Wu,
Jinyang Gao, Bolin Ding, Xiang Wang, and Xiangnan
He. 2024. β-dpo: Direct preference optimization
with dynamic β. CoRR, abs/2407.08639.

Dylan Zhang, Shizhe Diao, Xueyan Zou, and Hao
Peng. 2024. PLUM: preference learning plus test
cases yields better code language models. CoRR,
abs/2406.06887.

Kechi Zhang, Ge Li, Yihong Dong, Jingjing Xu, Jun
Zhang, Jing Su, Yongfei Liu, and Zhi Jin. 2025. Cod-
eDPO: Aligning code models with self generated and
verified source code.

Shengyu Zhang, Linfeng Dong, Xiaoya Li, Sen Zhang,
Xiaofei Sun, Shuhe Wang, Jiwei Li, Runyi Hu, Tian-
wei Zhang, Fei Wu, and Guoyin Wang. 2023. In-
struction tuning for large language models: A survey.
CoRR, abs/2308.10792.

Terry Yue Zhuo, Vu Minh Chien, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, and et al. 2025.
Bigcodebench: Benchmarking code generation with
diverse function calls and complex instructions. In
The Thirteenth International Conference on Learning
Representations.

14012

https://doi.org/10.1145/3675395
https://doi.org/10.1145/3675395
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://openreview.net/forum?id=2cQ3lPhkeO
https://openreview.net/forum?id=2cQ3lPhkeO
https://openreview.net/forum?id=2cQ3lPhkeO
https://arxiv.org/abs/2411.13611
https://arxiv.org/abs/2411.13611
https://arxiv.org/abs/2411.13611
https://doi.org/10.48550/ARXIV.2411.13611
https://doi.org/10.48550/ARXIV.2411.13611
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2402.19173
https://arxiv.org/abs/2501.01054
https://arxiv.org/abs/2501.01054
https://arxiv.org/abs/2410.18585
https://arxiv.org/abs/2410.18585
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2402.13228
https://arxiv.org/abs/2402.13228
https://openreview.net/forum?id=4XIKfvNYvx
https://openreview.net/forum?id=4XIKfvNYvx
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/a85b405ed65c6477a4fe8302b5e06ce7-Abstract-Conference.html
https://arxiv.org/abs/2312.11562
https://arxiv.org/abs/2312.11562
https://api.semanticscholar.org/CorpusID:275357789
https://api.semanticscholar.org/CorpusID:275357789
https://doi.org/10.48550/ARXIV.2407.08639
https://doi.org/10.48550/ARXIV.2407.08639
https://doi.org/10.48550/ARXIV.2406.06887
https://doi.org/10.48550/ARXIV.2406.06887
https://openreview.net/forum?id=U5TebOVpfd
https://openreview.net/forum?id=U5TebOVpfd
https://openreview.net/forum?id=U5TebOVpfd
https://doi.org/10.48550/ARXIV.2308.10792
https://doi.org/10.48550/ARXIV.2308.10792
https://openreview.net/forum?id=YrycTjllL0
https://openreview.net/forum?id=YrycTjllL0

Appendix

In this appendix, we first provide more details of
our core methodology, including preference pair
construction and implementation specifics (Sec-
tion A). Section B then introduces the evaluation
benchmarks and presents comprehensive experi-
mental results, showcasing performance on various
benchmarks and detailed comparisons against Epi-
Coder and other relevant methods. Subsequently,
we provide in-depth analyses such as scaling laws,
ablation studies on key parameters, data diversity
assessments, error pattern examinations, and effi-
ciency evaluations (Section C).

A Methodology and Data Construction

This section details the core methodology of our
proposed approach, including the iterative refine-
ment process for preference pair construction and
the generation and quality assessment of synthetic
test data. Implementation specifics relevant to these
methodological aspects are also covered.

A.1 Iterative Refinement and Preference Pair
Construction

The core of our data generation relies on an iterative
refinement process. Figure 6 illustrates the progres-
sion of code sample pass rates through successive
refinement iterations using execution verification
feedback.

As depicted in Figure 6, at the first attempt
(iter0), only 36.7% of the code samples pass their
corresponding test file, indicating that debugging
is necessary for the remaining code. Failed codes
go through continual refinement, with the pass rate
gradually approaching 67.5%. The pass rate rises
sharply from iter 1 to iter 3 and then slows. Be-
tween iter 4 and iter 5, only 1.2% of cases improve,

Figure 6: The pass rate progression across iterations of
refinement with execution verification feedback.

indicating incremental benefits from further itera-
tions. Thus, additional iterations are not consid-
ered.

Current methods construct preference pairs
based on pass rate signals and conduct DPO to op-
timize Code LLMs. Two notable limitations arise:
one from the data and one from the algorithm.

Regarding preference data, a snippet with a low
pass rate may only require minor modifications
to become correct, as errors tend to be isolated
to specific parts of the code. We address this by
iterative debugging with editing traces naturally
annotated by the differences between iterations.

Regarding the algorithm, relying solely on full
preference learning can introduce noise during op-
timization, as positive and negative pairs can be
highly similar. This not only hinders the model
from learning more effective error correction pat-
terns but also increases the risk of overfitting. We
solve this by explicitly identifying which parts of
the code need to be aligned.

Iterative debugging can pass through 67.5% of
tasks within a 5-time API call budget for each task.
But given just 5 sampling attempts, the pass rate
falls to 51.90% averaged across 5k samples, as
shown in Table 5. This initial comparison high-
lights that iterative debugging can achieve a higher
pass rate under similar API constraints.

API Calls Pass rate (%)

Debugging (Ours) Up to 5 times 67.5
Sampling 5 times for each task 51.9

Table 5: Pass Rate of Debugging and Sampling for
Preference Pair Construction.

To further investigate the limits of sampling for
difficult cases, we collected 5k samples that didn’t
succeed within 5 debugging iterations. Table 6
details the pass rate when applying N sampling
solutions to these difficult tasks.

The results in Table 6 indicate that for samples
which could not succeed with 5 iterations using

Sampled Solutions N Passed Failed

5 2.42% 97.58%
10 3.26% 96.26%
15 3.96% 96.04%
30 4.20% 95.80%
50 4.36% 95.64%

Table 6: Pass Rate of Sampling for Difficult Cases
(Failed within 5 Debugging Iterations).

14013

interpreter feedback and runtime error informa-
tion, additional sampling alone yields very low
pass rates (e.g., only 3.96% pass with 15 sampling
attempts). This suggests such cases can hardly pass
through additional sampling alone.

To directly compare the effectiveness of prefer-
ence pairs generated via iterative debugging versus
sampling, we conducted experiments using 10k
training samples. Table 7 presents these compar-
ative results. As shown in Table 7, iterative de-
bugging can generate more meaningful preference
pairs than sampling by leveraging interpreter feed-
back and runtime information, thereby achieving
better results (e.g., an average score of 64.1 vs 62.3)
with lower API costs.

A.2 Synthetic Test Case Generation

A.2.1 Rationale for using Synthetic Test Cases
We address the relationale behind systhetic test
cases from the following perpectives. Optimizing
code LLMs through preference learning requires a
large amount of training data, which is difficult
to annotate or verify manually. Synthetic data
has become a widely adopted approach. For ex-
ample, Qwen2.5-Coder utilizes tens of millions
of synthetic instruction samples, and models like
DeepSeek-V3 and R1 also incorporate synthetic
data during training, also as demonstrated in stud-
ies like PLUM, SelfCodeAlign and DSTC.

A.2.2 Validity of Synthetic Test Cases
We have made the following efforts to ensure the
qaulity of test cases: (i) First, we adopted a pow-
erful LLM, GPT-4o, as the test case generator to
primarily ensure its validity. (ii) Through prompt-
ing engineering, we have invested significant effort
into making the generated test cases broad and
meaningful. (iii) We conducted a manual evalua-
tion by performing a random sample check. We
manually examined 100 data samples and found
that all the generated test cases correctly reflected
the task requirements. However, we observed that
these test cases tend to be relatively simple and
may not cover all edge cases.

A.2.3 Coverage Analysis of Test Cases
To validate the effectiveness of test cases in exer-
cising source code, we conducted coverage analy-
sis on a sample of 1,000 training instances. Code
coverage, a crucial metric in software testing, quan-
tifies the extent to which a program’s source code
is exercised by test cases. This metric measures

Figure 7: Coverage Distribution of Test Case.

the percentage of code executed by a test suite,
which we evaluated using the Python Coverage li-
brary1. Our evaluation framework organizes the
source code and test cases into directories, main-
taining a clear separation between the source code
(implemented as Python modules) and the corre-
sponding unit tests (developed using the unittest2

framework). The coverage metric is calculated
through the following equation:

Code Coverage = 100%×
(

Number of lines of code executed
Total Number of lines of code in system component

)
.

(9)

The results of the coverage analysis are shown
in Figure 7.

A.2.4 Evaluating the quality of test cases
using LLM-as-a-judge

To evaluate test case quality, we employ the LLM-
as-a-judge approach, assessing three dimensions:
accuracy, effectiveness, and reasonableness on
a 5-point scale. Detailed evaluation prompts are
provided in 9. We sample 1,000 data points from
the training data and conduct evaluations using
the DeepSeek-V3-0324 model. The evaluation
results in Figure 8 demonstrate satisfactory test
case quality across all dimensions.

A.2.5 Prompt and Examples for Generated
Test Cases

To illustrate our synthetic test case generation pro-
cess, Figure 10 displays the prompt template pro-
vided to the LLM. Following this prompt, Figure
11 presents an example of the test cases generated

1https://github.com/nedbat/coveragepy
2https://docs.python.org/3/library/un

ittest.html

14014

https://github.com/nedbat/coveragepy
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html

HumanEval HumanEval+ MBPP MBPP+ BCB-Inst BCB-Comp LCB-v5 Avg.

Ref. 61.6 53.0 76.9 62.9 40.2 45.8 24.1 52.1
Sampling 84.1 79.3 82.3 68.5 40.8 49.2 32.4 62.3
Debugging 87.8 84.8 83.3 69.7 41.1 49.6 32.5 64.1

Table 7: Results of Preference Pair Construction using Sampling vs. Debugging (10k training samples).

Figure 8: Comparative distribution of LLM-as-a-judge
scores across three evaluation metrics: accuracy, effec-
tiveness, and reasonableness.

for question “Create a Python function named ‘gen-
erate_arithmetic_sequence’ that generates the first
N terms of an arithmetic sequence given the first
term and the common difference. The function
should take three parameters: the first term (a), the
common difference (d), and the number of terms
(N). The function should return a list containing
the first N terms of the sequence”.

A.3 Training and Inference Parameters

Unless specified otherwise for a particular experi-
ment, our code LLMs were trained with consistent
hyperparameter settings. The learning rate was set
to 1×10−5 for the 7B code LLMs and 5×10−6 for
the 14B models. We used a global batch size of 128,
full-parameter training 3 epochs with max prompt
length of 1024 and generation length of 2048. A
cosine learning rate scheduler with was employed,
with 3% of the total training steps dedicated to
warm-up. For the DPO algorithm, β is set to 0.1,
and α is set to 1.0 for RPO. πθ and πref are both
initialized with the weights of the evaluated model,
while πref keeps frozen during training. For all in-
ference, greedy decoding was utilized with pass
rate at first attempt reported. For Code-Optimise,
we replicated their setup, and the DPOPvF setting
results are reported. For PLUM and CodeDPO,

their scores are taken from their respective papers.

B Experimental Results and Comparisons

This section begins by describing the evaluation
benchmarks and their statistics. It then presents the
comprehensive experimental results of our method
on these benchmarks, followed by detailed compar-
isons against Supervised Fine-Tuning (SFT) and
other relevant state-of-the-art methods.

B.1 Evaluation Benchmarks: Description and
Statistics

We detail the individual function-level code gener-
ation benchmarks used for evaluation in this sub-
section. Table 8 summarizes key statistics for these
benchmarks, such as the number of problems and
the average number of tests per problem.

Dataset Problems Avg. Tests

HumanEval 164 9.57
HumanEval+ 748.07

MBPP 378 3.11
MBPP+ 105.40

Easy 279 18.07
LiveCodeBench Medium 331 21.81

Hard 270 24.78

Table 8: Statistics of Evaluation Benchmarks.

HumanEval and MBPP are popular bench-
marks for assessing code generation. Considering
the limited test cases in these benchmarks (Hu-
manEval: 9.57 avg. tests; MBPP: 3.11 avg. tests,
as seen in Table 8), we followed previous work and
utilized the EvalPlus framework to evaluate model
robustness across a broader range of test cases (Hu-
manEval+: 748.07 avg. tests; MBPP+: 105.40
avg. tests). To ensure fair comparison, we used ver-
sion 0.2.0 of MBPP+ provided by EvalPlus3 v0.3.1
, which removes some broken tasks (399 → 378
tasks).

BigCodeBench (BCB) is a comprehensive
benchmark designed to assess a model’s ability

3https://github.com/evalplus/evalplus

14015

https://github.com/evalplus/evalplus

Figure 9: Prompt for evaluating the quality of test cases using LLM-as-a-judge.

14016

Now that you are a code expert, I have provided you with the QUESTION. Complete the problem with awesome code logic and give a
richly commented analysis in the code of your answer. Include the necessary packages and test cases.
- QUESTION
{task}
- Full code implementation with test cases
Enclose the python code with ```python and ``` and enclose the file name with <file> and </file>. For example:
<file>add.py</file>
```python
# add.py
# Code implementation here
def add(x, y):
return x + y
``` The test code should be in a single file.
<file>test.py</file>
Note that the following code will be executed directly, so only the test cases that can be executed directly need to be retained. You only
need to test some simple functions in the code. Tests that depend on external files cannot be executed because these files do not exist.
```python
from add import add
def test():
assert add(3, 5) == 8
assert add(4, 6) == 10
test()
```
- File names in order and packages required
Answer file names and packages in JSON format, wrapped in <json> and </json> tags. For example:
<json>
{
"file_names": ["add.py", "test.py"],
"packages": ["package1", "package2"]
}</json>

Prompt for Generating Code and Test Cases

Figure 10: Prompt used for generating code and test cases.

to handle real-world programming tasks, particu-
larly its effectiveness in utilizing various function
calls as tools. Our model’s ability to adeptly man-
age these high-complexity scenarios underscores
its suitability for BigCodeBench.

LiveCodeBench (LCB), statistics for which are
also included in Table 8 (showing problem distri-
bution by difficulty), is a benchmark designed to
evaluate code generation models on challenging
competitive programming problems, often sourced
from real coding contests. Unlike benchmarks fo-
cused solely on function completion, LCB tasks
typically require more complex algorithmic rea-
soning and problem-solving skills. The evaluation
often simulates a contest environment, potentially
including hidden test cases to assess the robust-
ness and correctness of the generated solutions
under pressure. In our experiments, we utilize
LiveCodeBench-v5 (LCB-v5) to gauge the model’s
capabilities in tackling these demanding, contest-
style coding scenarios.

B.2 Comparison with Supervised Fine-Tuning

We compare our method with standard Supervised
Fine-Tuning (SFT) to demonstrate the benefits of

our preference alignment approach. The overall
comparison of our method (Target-RPO) against
SFT and reference models on various benchmarks
is presented in Table 9. For instance, on Qwen2.5-
Coder-7B, our Target-RPO achieves an average of
65.3, surpassing the SFT baseline’s 63.2.

Table 10 provides a more granular breakdown
of performance on LiveCodeBench-v5 by diffi-
culty, where our method consistently outperforms
the SFT versions of both CodeQwen-7B-Chat and
Qwen-Coder-7B, especially on Easy and Medium
problems.

Similarly, Table 11 shows detailed results on
BigCodeBench categories, again illustrating the ad-
vantage of our approach over SFT across different
task types and difficulties. For example, Qwen-
Coder-7B with our method achieves an average of
36.8 compared to SFT’s 31.8.

B.3 Comparison with Other Code Generation
Methods

We further benchmark our method against other no-
table code generation techniques. Table 12 bench-
marks our method against techniques like Cod-
eDPO, Code-Optimise, and PLUM on HumanEval

14017

import unittest
from generate_arithmetic_sequence import generate_arithmetic_sequence

class TestGenerateArithmeticSequence(unittest.TestCase):

 def test_basic_case(self):
 """Test a standard arithmetic sequence with positive common difference."""
 self.assertEqual(generate_arithmetic_sequence(2, 3, 5), [2, 5, 8, 11, 14], "Basic case failed")

 def test_single_term(self):
 """Test when only one term (N=1) is requested."""
 self.assertEqual(generate_arithmetic_sequence(5, 10, 1), [5], "Single term case failed")

 def test_zero_terms(self):
 """Test when zero terms (N=0) are requested; should return an empty list."""
 self.assertEqual(generate_arithmetic_sequence(7, 3, 0), [], "Zero terms case failed")

 def test_negative_number_of_terms(self):
 """Test when a negative number of terms (N<0) is requested; should return an empty list."""
 self.assertEqual(generate_arithmetic_sequence(5, 3, -1), [], "Negative N (-1) case failed")
 self.assertEqual(generate_arithmetic_sequence(5, 3, -5), [], "Negative N (-5) case failed")

 def test_negative_common_difference(self):
 """Test a sequence with a negative common difference (decreasing sequence)."""
 self.assertEqual(generate_arithmetic_sequence(10, -2, 4), [10, 8, 6, 4], "Negative common difference case
failed")

 def test_zero_common_difference(self):
 """Test a sequence where all terms are the same (common difference is zero)."""
 self.assertEqual(generate_arithmetic_sequence(5, 0, 4), [5, 5, 5, 5], "Zero common difference case failed")
 self.assertEqual(generate_arithmetic_sequence(-3, 0, 3), [-3, -3, -3], "Zero common difference with negative
start failed")

 def test_mixed_sign_inputs(self):
 """Test with mixed positive and negative inputs for 'a' and 'd' where sequence crosses zero."""
 self.assertEqual(generate_arithmetic_sequence(-5, 2, 5), [-5, -3, -1, 1, 3], "Mixed sign inputs case failed")

 def test_float_inputs(self):
 """Test with floating-point numbers for the first term and common difference."""
 self.assertEqual(generate_arithmetic_sequence(1.5, 0.5, 4), [1.5, 2.0, 2.5, 3.0], "Float inputs case failed")
 self.assertEqual(generate_arithmetic_sequence(0.0, -0.1, 3), [0.0, -0.1, -0.2], "Float inputs with negative
difference failed")
 # Example where direct float comparison could be tricky, but Python handles these well.
 self.assertEqual(generate_arithmetic_sequence(0.1, 0.1, 3), [0.1, 0.2, 0.3], "Float inputs (0.1 increments)
failed")

 def test_large_number_of_terms(self):
 """Test with a large number of terms for basic performance and correctness of first/last terms."""
 N_large = 1000
 a_val = 1
 d_val = 1
 sequence = generate_arithmetic_sequence(a_val, d_val, N_large)

 self.assertEqual(len(sequence), N_large, "Large N: Length mismatch")
 if N_large > 0:
 self.assertEqual(sequence[0], a_val, "Large N: First term mismatch")
 # The Nth term (index N-1) is a + (N-1)*d
 self.assertEqual(sequence[-1], a_val + (N_large - 1) * d_val, "Large N: Last term mismatch")

 def test_invalid_N_type(self):
 """Test with non-integer N; should return an empty list."""
 self.assertEqual(generate_arithmetic_sequence(1, 1, 3.5), [], "Non-integer N (float) case failed")
 self.assertEqual(generate_arithmetic_sequence(1, 1, "abc"), [], "Non-integer N (string) case failed")

if __name__ == '__main__':
 # Running the tests
 unittest.main(argv=['first-arg-is-ignored'], exit=False)

Generated Test Cases

Figure 11: An example of generated test cases.

14018

HumanEval MBPP BCB-Inst BCB-Comp LCB-v5 Average
Base Plus Base Plus

CodeQwen1.5-7B-Chat
Ref. 83.5 78.7 79.4 69.0 39.6 43.6 15.3 58.4
SFT 87.8 83.5 82.3 69.6 35.9 45.6 17.0 60.2
Target-DPO 89.6 85.4 83.9 69.8 39.9 48.7 20.2 62.5
Target-RPO 89.6 86.0 82.5 70.4 38.3 48.4 19.9 62.2

Qwen2.5-Coder-7B
Ref. 61.6 53.0 76.9 62.9 40.2 45.8 24.1 52.1
SFT 87.2 82.9 83.1 68.3 39.1 51.6 30.0 63.2
DiffAug-RPO 86.0 81.7 82.8 67.5 40.7 51.4 30.5 62.9
Target-RPO 89.6 84.8 83.3 69.5 43.1 53.3 33.3 65.3

Table 9: SFT and our results on CodeQwen1.5-7B-Chat and Qwen2.5-Coder-7B. Detailed results on LiveCodeBench
and BigCodeBench are presented in Table 10 and Table 11.

EASY MEDIUM HARD Avg

CodeQwen-7B-Chat-SFT 41.87 9.14 0.75 17.06
CodeQwen-7B-Chat-Ours 48.73 11.89 0.75 20.16
Qwen-Coder-7B-SFT 67.14 21.03 2.61 30.01
Qwen-Coder-7B-Ours 69.31 27.13 3.73 33.33

Table 10: Detailed Results on LiveCodeBench-v5, comparing SFT with Our Target-DPO.

Complete-Full Instruct-Full Complete-Hard Instruct-Hard Average

CodeQwen-7B-Chat-SFT 45.6 35.9 18.3 15.5 28.8
CodeQwen-7B-Chat-Ours 48.4 38.3 20.3 18.2 31.3
Qwen-Coder-7B-SFT 51.6 39.1 21.6 14.9 31.8
Qwen-Coder-7B-Ours 53.3 43.1 29.7 20.9 36.8

Table 11: Detailed Results on BigCodeBench, comparing SFT with Our Target-DPO.

14019

and MBPP. Notably, on the DeepSeekCoder-6.7B
base, our method achieves significantly higher
scores (e.g., 66.50 on HumanEval vs. 59.75 for
CodeDPO and 56.70 for PLUM).

C In-depth Analyses and Ablation
Studies

In this section, we conduct several in-depth anal-
yses and ablation studies to better understand
the characteristics and behavior of our proposed
method. This includes investigating the impact of
model size (scaling laws), sensitivity to key hy-
perparameters (β and α), the diversity of our con-
structed preference data, common error patterns
in the generated code, and the efficiency of our
preference annotation process.

C.1 Scaling Law on Model Size

The impact of model size on performance when
applying our method is detailed in Table 13. The
results show a clear trend: as model size increases
from 1.5B to 32B parameters, the average perfor-
mance improves from 54.4 to 74.7, demonstrating
the scalability of our approach.

C.2 Ablation Studies on Hyperparameters β
and α

In Direct Preference Optimization (DPO), the hy-
perparameter β controls the strength of the pref-
erence signal, essentially determining how strictly
the model should adhere to the learned preferences
relative to the reference model. The hyperparame-
ter α, when part of the DPO framework or a com-
bined loss, often serves as a weighting factor for
an additional objective or regularization term. We
performed ablation studies on key hyperparameters
β and α. Table 14 presents the results for β when
α is set to 0, suggesting that a smaller β (e.g., 0.1)
yields the best average performance (69.7).

The corresponding ablation for α, with β fixed
at 0.1, is shown in Table 15. These results indicate
that α = 1.0 provides the highest average score
(70.5), while α = ∞ (equivalent to SFT) performs
relatively worse.

C.3 Ablation on Context Usage

Beyond CodeQwen1.5-7B-Chat, we also provide
ablation results on the use of context from the re-
jected sample using Qwen2.5-Coder-7B, as shown
in Table 16.

C.4 Analysis of Preference Data Diversity

To understand the characteristics of our CodeFlow
preference dataset, Table 17 provides a distribu-
tional analysis of various features (e.g., Workflow,
Functionality, Data Processing) across 1k samples,
comparing it with other common datasets like Al-
paca and OSS-Instruct. Our CodeFlow dataset
(both preferred and dis-preferred samples) gener-
ally exhibits a higher count and thus potentially
greater diversity across most features, particularly
in Data Processing, File Operation, and Advanced
Techniques.

C.5 Error Analysis of Generated Code

Target-DPO Generates Fewer Errors. In this
section, we present a statistical analysis of com-
mon failure case types to pinpoint frequent pitfalls
in code generation. By contrasting critical tokens
between a corrected version and its preceding itera-
tion explicitly, a Code LLM equipped with Target-
DPO makes fewer errors. Table 18 presents the fre-
quency of common failure types (e.g., AttributeEr-
ror, KeyError) on the BigCodeBench Complete-
Full set. Our Target-RPO method shows a no-
table reduction in the sum of these errors (308
occurrences) compared to RPO (369) and Code-
Optimise-RPO (396) on Qwen2.5-Coder-7B. This
suggests that while RPO includes SFT, it still re-
quires targeted learning of critical errors in the dis-
preferred samples to effectively reduce mistakes.

C.6 Efficiency Analysis of Preference
Annotation

Additionally, we compare the costs of generating
and annotating preference pairs to guide more effi-
cient preference alignment and reduce errors.

Target-DPO Provides an Efficient Pathway for
Preference Annotation. We compare the cost of
synthesizing one preference pair between Target-
DPO and the sampling techniques adopted by Code-
Optimise, primarily considering external LLM
calls and execution times. Given an instruction,
Code-Optimise synthesizes m code snippet candi-
dates (where m is often set to 100), using n test
cases from the raw dataset, leading to m × n ex-
ecutions on the CPU. In contrast, for a single in-
struction, Target-DPO requires up to 7 LLM calls
and executions for successful pair generation in
most cases. Considering the failure ratio (when
code can’t pass the generated test cases within the

14020

HumanEval HumanEval+ MBPP MBPP+

StarCoder2-7B 35.40 29.90 54.40 45.60
CodeDPO 48.17 34.15 58.40 49.37
Code-Optimise 32.32 28.05 58.90 47.89
PLUM 46.30 39.60 60.40 49.10
Our Target-DPO 48.20 43.90 63.50 50.60

DeepSeekCoder-1.3B 31.53 28.65 57.40 48.67
CodeDPO 42.07 38.04 61.37 53.43
Code-Optimise 34.15 30.49 59.15 49.87
Our Target-DPO 47.00 43.30 61.37 54.20

DeepSeekCoder-6.7B 47.60 39.60 70.20 56.60
CodeDPO 59.75 51.83 72.18 60.01
Code-Optimise 47.56 37.20 72.18 57.64
PLUM 56.70 48.80 72.90 58.90
Our Target-DPO 66.50 60.40 76.50 61.40

Table 12: Performance comparison with baselines.

Model HumanEval MBPP BCB-Inst BCB-Comp Average
Base Plus Base Plus

Qwen2.5-Coder-1.5B 67.7 62.8 66.7 55.3 33.4 40.5 54.4
Qwen2.5-Coder-7B 89.6 84.8 83.3 69.5 43.1 53.3 70.6
Qwen2.5-Coder-32B 92.7 86.6 89.4 74.6 45.7 58.9 74.7

Table 13: Ablations on model size.

β
HumanEval MBPP BCB-Inst BCB-Comp Average
Base Plus Base Plus

0.1 89.0 83.6 83.1 69.0 41.0 52.7 69.7
0.3 86.6 80.5 82.5 68.5 40.3 50.3 69.1
0.5 85.4 80.5 83.6 66.7 40.5 48.2 67.5

Table 14: Ablations on β with α set 0.

α
HumanEval MBPP BCB-Inst BCB-Comp Average
Base Plus Base Plus

1.0 89.6 84.8 83.1 69.3 43.1 53.3 70.5
3.0 87.2 81.1 82.8 69.0 40.3 52.7 67.9
5.0 84.1 80.5 83.1 70.1 40.3 54.0 68.7
∞ (SFT) 87.2 82.9 83.1 68.3 39.1 51.6 68.7

Table 15: Ablations on α with β set 0.1.

14021

HumanEval MBPP BCB-Inst BCB-Comp LCB-v5 Average
Base Plus Base Plus

Qwen2.5-Coder-7B 61.6 53.0 76.9 62.9 40.2 45.8 24.1 52.1
SFT 87.2 82.9 83.1 68.3 39.1 51.6 30.0 63.2
Hybrid-RPO 82.9 79.3 81.7 67.5 41.2 50.5 29.8 61.8
DiffAug-RPO 86.0 81.7 82.8 67.5 40.7 51.4 30.5 62.9
Target-RPO 89.6 84.8 83.3 69.5 43.1 53.3 33.3 65.3

Table 16: Ablation results on the Target-DPO using Qwen2.5-Coder-7B.

Datasets Workflow Functionality Computation
Operation

User
Interaction

Data
Processing

File
Operation

Alpaca 994 393 282 82 221 11
CodeFeedback 2079 535 689 143 895 39
Evol-Alpaca 2163 591 783 134 1401 55
OSS-Instruct 2254 669 413 192 903 102
CodeFlow (Preferred) 2689 805 967 410 2418 290
CodeFlow (Dis-Preferred) 2490 772 964 406 2327 287

Logging Algorithm Data
Structures

Implementation
Logic

Advanced
Techniques Average

Alpaca 1 232 72 67 10 215.00
CodeFeedback 10 427 100 49 63 457.18
Evol-Alpaca 15 414 130 74 94 532.18
OSS-Instruct 62 150 140 82 26 453.91
CodeFlow (Preferred) 133 790 367 152 178 836.27
CodeFlow (Dis-Preferred) 129 785 361 149 193 805.73

Table 17: Distribution of total features across 1k samples.

Error Type RPO Code-Optimise-RPO Target-RPO (Ours)

AttributeError: ‘X’ has no attribute ‘Y’ 145 149 127
KeyError: ‘X’ 139 128 100
NameError: name ‘X’ is not defined 41 58 46
FileNotFoundError: No such file or directory 44 61 35
Sum 369 396 308

Table 18: The frequency of the most common failure types on the BigCodeBench Complete-Full set.

budget), an estimated 10.4 calls are needed for
a given instruction on average across the dataset.
This is far fewer than the m (e.g., 100) calls for
sampling candidates plus subsequent executions of-
ten employed by sampling-heavy methods. Though
massive sampling can yield diverse candidates, it
is not efficient as most code snippets are discarded.
Target-DPO shows that starting with a single code
snippet, even if it fails initially, it still holds high
potential to form a valuable preference pair for
alignment training through iterative refinement.

C.7 Alternatives to LCS for Code
Differencing

To explore alternatives beyond LCS-based code
differencing, we considered a simple baseline ap-
proach where we extract the common prefix and
suffix, treating the middle part as the difference.

The results are shown in Table 19:
Consider these two versions of a Python function

where only two lines are truly different:

Listing 1: Chosen Code
def hello():

print("Hello") # <-- difference
x = 1 # <-- unchanged
y = 2 # <-- unchanged
return x + y # <-- difference

z = hello()

Listing 2: Rejected Code
def hello():

print("Hi") # <-- difference
x = 1 # <-- unchanged
y = 2 # <-- unchanged
return x * y # <-- difference

z = hello()

14022

Method HE HE+ MBPP MBPP+ BCB-Comp BCB-Inst LCB-v5 Avg.

Ref. 61.6 53.0 76.9 62.9 45.8 40.2 24.1 52.1
Prefix-Suffix 86.6 79.9 81.5 68.0 47.8 39.2 30.1 61.9
LCS 89.0 83.6 83.1 69.0 52.7 41.0 32.6 64.4

Table 19: Comparison of Prefix-Suffix and LCS methods for code difference extraction across benchmarks.

Method HE HE+ MBPP MBPP+ BCB-Comp BCB-Inst LCB-v5 Avg.

Ref. 61.6 53.0 76.9 62.9 45.8 40.2 24.1 52.1
First 87.8 81.7 81.0 67.5 47.2 40.4 29.7 62.2
Last 88.4 82.9 82.0 68.0 51.7 41.2 31.5 63.7
Random (Ours) 89.0 83.6 83.1 69.0 52.7 41.0 32.6 64.4

Table 20: Comparison of different negative sample selection strategies across benchmarks.

Method HE HE+ MBPP MBPP+ BCB-Comp BCB-Inst LCB-v5 Avg.

Ref. 61.6 53.0 76.9 62.9 45.8 40.2 24.1 52.1
DS-v3-SFT 82.3 76.2 83.3 69.8 46.9 40.7 26.4 60.8
DS-v3-Ours 84.8 79.3 84.7 72.0 47.5 40.7 27.7 62.4

Table 21: Results of distillation from DeepSeek-V3 to Qwen2.5-Coder-7B.

Prefix-Suffix-based method incorrectly marks
both x = 1 and y = 2 as differences, while the
LCS-based method correctly identifies only the two
truly changed lines (print("Hi") and return
x * y, providing a more precise grounding of the
differences, enabling more targeted training.

C.8 Different Negative Samples
We chose the random negative selection method
to better simulate the variety of error types in real-
world scenarios, where some versions are severely
flawed and others only slightly. This random slec-
tion approach enhances the diversity of negative
samples and helps improve generalization.

To validate this choice, we conduct additional
experiments using only the first or last incorrect
versions as negatives. The results in Table 20 show
that our method consistently achieves superior per-
formance on six benchmarks.

C.9 Different Teacher Model
We adopt DeepSeek-V3 (671B MoE LLM with
37B active parameters) as the teacher model and
synthesize a total of 28k pairs with resource
constraints. The results using Qwen2.5-Coder-
7B as the student model are shown in Table 21.
Target-DPO demonstrates generalizable improve-
ment when using different teachers for distillation.

14023

