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Abstract

Document Understanding is a foundational AI
capability with broad applications, and Docu-
ment Question Answering (DocQA) is a key
evaluation task. Traditional methods convert
the document into text for processing by Large
Language Models (LLMs), but this process
strips away critical multi-modal information
like figures. While Large Vision-Language
Models (LVLMs) address this limitation, their
constrained input size makes multi-page doc-
ument comprehension infeasible. Retrieval-
augmented generation (RAG) methods miti-
gate this by selecting relevant pages, but they
rely solely on semantic relevance, ignoring log-
ical connections between pages and the query,
which is essential for reasoning.

To this end, we propose MoLoRAG, a logic-
aware retrieval framework for multi-modal,
multi-page document understanding. By con-
structing a page graph that captures contex-
tual relationships between pages, a lightweight
VLM performs graph traversal to retrieve rel-
evant pages, including those with logical con-
nections often overlooked. This approach
combines semantic and logical relevance to
deliver more accurate retrieval. After re-
trieval, the top-K pages are fed into arbitrary
LVLMs for question answering. To enhance
flexibility, MoLoRAG offers two variants: a
training-free solution for easy deployment and
a fine-tuned version to improve logical rele-
vance checking. Experiments on four DocQA
datasets demonstrate average improvements
of 9.68% in accuracy over LVLM direct in-
ference and 7.44% in retrieval precision over
baselines. Codes and datasets are released at
https://github.com/WxxShirley/MoLoRAG.

1 Introduction

Document Understanding is a foundational AI
capability with extensive real-world applications,
such as interpreting medical reports and assisting

Question How many days with overflow do Outfall 002A (Southwest 
Hoboken) and Outfall 005A (Central Hoboken) have in total?

Top-1 Page Retrieved by 
M3DocRAG and MDocAgent

Answer  49 days + 116 days = 165 days

绿框里的文字如果放
不下可以把框横向拉
一下因为左侧还有空
间以及三角形里的字
可以放在旁边更方便
看
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Figure 1: Illustration of a retrieval example on Long-
DocURL (Deng et al., 2024). Both M3DocRAG (Cho
et al., 2024) and MDocAgent (Han et al., 2025) rely
solely on semantic relevance between the query and
the page for retrieval. As a result, they retrieve a page
containing keywords from the question but lacking the
necessary information to answer it. In contrast, the
ground-truth evidence page, successfully retrieved by
our MoLoRAG, is logically relevant to the question,
providing detailed statistics for each outfall and enabling
accurate derivation of the correct answer.

with academic literature. This ability holds sig-
nificant potential to improve productivity and sup-
port decision-making (Ding et al., 2022; Ma et al.,
2024a; Suri et al., 2024; Zhang et al., 2024). A
key task for evaluating document understanding is
Document Question Answering (DocQA), which
requires models to automatically answer questions
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based on the content of a document.
Classic approaches to DocQA typically follow a

two-step pipeline: the document is first converted
into text using Optical Character Recognition
(OCR) (Memon et al., 2020; Wang et al., 2024a;
Wei et al., 2024), and then Retrieval-augmented
Generation (RAG) techniques identify relevant
paragraphs to feed into Large Language Models
(LLMs) for question answering. However, the text
extraction process often strips away essential multi-
modal information, such as tables, figures, and
document layouts, resulting in incomplete docu-
ment understanding. Large Vision-Language Mod-
els (LVLMs) address this limitation by processing
image-format document snapshots, enabling multi-
modal comprehension. Nevertheless, LVLMs, such
as LLaMA-Vision (Grattafiori et al., 2024) and
LLaVA-Next (Li et al., 2024a), are constrained to
single-image inputs, rendering them ineffective for
long, multi-page documents.

Recent research has explored methods to address
these challenges. For example, M3DocRAG (Cho
et al., 2024) leverages a document encoder, i.e.,
ColPali (Faysse et al., 2024), to encode individual
pages and retrieve relevant ones based on vector
similarity. This approach reduces the number of
input pages, alleviating the comprehension burden
for LVLMs. MDocAgent (Han et al., 2025) ex-
tends this by introducing parallel pipelines for text
and image retrieval, with specialized agents for
each modality to enable collaborative reasoning.
While effective, these methods focus primarily on
semantic relevance, matching queries to pages
based on embedding similarity. For example, as
shown in Figure 1, when asked to determine the
total overflow days for two outfalls, the top-1 page
retrieved by both methods contains keywords from
the question but lacks detailed information about
each outfall. In contrast, a logically relevant page,
such as the ground-truth evidence page, provides
detailed statistics for each outfall, enabling reason-
ing (e.g., summing the overflow days) to derive the
correct answer.

In DocQA, accurate retrieval is critical, as it di-
rectly impacts downstream answering. Without
precise retrieval, LVLMs are prone to errors or
hallucinations stemming from irrelevant or incom-
plete inputs. Addressing this challenge requires re-
trieval methods that go beyond surface-level seman-
tic matching to capture deeper logical relationships.
Building on this insight, we propose MoLoRAG, a
graph-based retrieval framework tailored for Multi-

modal Logic-aware document understanding. Doc-
ument pages naturally exhibit structured relation-
ships, e.g., cross-references and shared entities.
Leveraging this property, we first construct a page
graph to represent the dependencies between pages.
A lightweight VLM serves as the retrieval engine,
reasoning over this graph through traversal to iden-
tify logically relevant pages. Finally, both semantic
and logical relevance are combined into a unified
similarity score to re-rank pages, enabling a more
comprehensive retrieval process.

To further enhance its utility, MoLoRAG intro-
duces two variants to offer flexibility for different
deployments. The first is a training-free variant,
which leverages a pre-trained VLM, e.g., Qwen2.5-
VL-3B (Bai et al., 2025), to perform graph traver-
sal and retrieval directly, providing an off-the-shelf
solution that is easy to deploy. The second is a fine-
tuned variant, which involves training the retrieval
engine on a curated dataset to improve its reasoning
capabilities. This fine-tuned version functions as
a more intelligent retrieval engine, capable of cap-
turing nuanced relationships between queries and
document pages. Moreover, MoLoRAG demon-
strates strong compatibility with arbitrary LVLMs.
Once the retrieval step is complete, only the top-K
page snapshots are passed to an LVLM for question
answering, filtering out irrelevant content and en-
suring concise, high-quality inputs. To summarize,
our contributions are as follows:

• Logic-aware Retrieval Framework We high-
light the importance of page retrieval in
DocQA and propose MoLoRAG, a novel re-
trieval method that incorporates logical rel-
evance. By representing the document as a
page graph and enabling a VLM to perform
multi-hop reasoning through graph traversal,
our method identify both semantically and
logically relevant pages.

• Comprehensive Experiments We conduct
extensive experiments on four DocQA
datasets, comparing MoLoRAG with LLM-
based, LVLM-based, and Multi-agent meth-
ods. Results demonstrates its superior re-
trieval accuracy, significant performance im-
provements over baselines, and flexible com-
patibility with arbitrary LVLMs.

• Released Model and Dataset We release the
fine-tuned retriever engine model weights1

1https://huggingface.co/xxwu/MoLoRAG-QwenVL-3B
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and the curated training dataset2, empowering
further development of intelligent and logic-
aware retrieval engines.

2 Related Works

Document Question Answering DocQA is a core
task for evaluating document understanding. Early
benchmarks (Mathew et al., 2021; Tito et al., 2023;
Tanaka et al., 2023) focused on single-page or short
documents with low information density, where
questions targeted individual elements like text or
figures. Recent benchmarks (Ma et al., 2024b;
Deng et al., 2024) shift toward lengthy, information-
rich documents, introducing challenges like cross-
page and multi-modal reasoning. DocQA methods
can be broadly categorized into two branches based
on backbone models: LLM-based and LVLM-
based. LLM-based methods rely on OCR tech-
niques to extract text from the document, enabling
text-based question answering. LVLM-based meth-
ods, on the other hand, leverage their inherent
multi-modal capabilities to process document im-
ages directly. With the advancements in LVLMs,
the latter approach now dominates recent solutions.
A notable advancement is MDocAgent (Han et al.,
2025), which represents a new category by com-
bining both LLMs and LVLMs into a multi-agent
framework for collaborative question answering.
However, challenges like input size limitations still
necessitate effective retrieval strategies to reduce
input burden and enhance performance.
Retrieval-augmented Generation RAG enhances
LLMs by supplementing them with external knowl-
edge, improving performance in domain-specific or
knowledge-intensive tasks (Gao et al., 2024; Lewis
et al., 2021; Asai et al., 2024). The emergence of
LVLMs has further expanded RAG to multi-modal
contexts, enabling the retrieval of relevant images
to handle knowledge-seeking queries (Chen et al.,
2024, 2022). Despite these advancements, existing
RAG methods fail to address the unique challenges
of DocQA, involving highly interleaved textual and
visual elements. For page retrieval in DocQA, ex-
isting method like M3DocRAG (Cho et al., 2024)
rely on document encoders for semantic-based re-
trieval, neglecting the logical relevance essential
for accurate question answering.
Graph-based RAG GraphRAG is an advanced
RAG paradigm that leverages graph-structured
knowledge and retrieval for improved contextual

2https://huggingface.co/datasets/xxwu/MoLoRAG

reasoning (Zhang et al., 2025; Xiang et al., 2025).
Existing methods are categorized into two types:
Knowledge-based, which constructs knowledge
graphs through entity recognition and relation
extraction (He et al., 2024), and Index-based,
which creates a two-layer graph linking high-level
topic nodes to detailed text nodes for efficient re-
trieval (Sarthi et al., 2024; Edge et al., 2025; Liu
et al., 2025; Li et al., 2024b). However, current
GraphRAG approaches are limited to text and can-
not handle the document with multi-modal infor-
mation. We are the first to extend GraphRAG to
the document domain by constructing a page graph
that enables reasoning over its structure.

3 Methodology

In this section, we present the details of MoLoRAG,
a novel graph-based retrieval framework designed
to facilitate multi-modal and multi-page document
understanding. The overall framework is illustrated
in Figure 2.

3.1 Preliminary

Given a question q expressed in natural language
and a document D = {p1, p2, . . . , pN}, where
each pi represents an individual page in the form
of an RGB image, and N is the total number of
pages. The goal of DocQA is to generate an answer
a that accurately addresses q using the information
contained within D. To solve this task, MoLoRAG
adopts an LVLM-based two-stage framework:

• Retrieval: Given the extensive nature of doc-
ument D, the first step involves retrieving
the top-K most relevant pages for the ques-
tion, denoted as Pr = {pr1, . . . , prK}, where
K ≪ N (e.g., K = 3). Unlike traditional
retrieval methods that rely solely on seman-
tic relevance, MoLoRAG incorporates both
semantic and logical relevance to enhance re-
trieval accuracy and contextual understanding
for effective reasoning.

• Generation: The retrieved pages Pr, along
with the input question q, are then fed into an
LVLM to generate the answer a. For LVLMs
that cannot directly process multiple images,
we use a processing function Process(·) to pre-
pare Pr, e.g., concatenating multiple images
into a single composite one. Formally, this
stage is expressed as:
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Figure 2: Illustration of MoLoRAG framework.

a = LVLM(q,Process(Pr)).

3.2 Logic-aware Page Retrieval

In this subsection, we detail the retrieval process
of MoLoRAG. We first construct a page graph as
a graph-based index, depicting the relationships
between pages within a document. Then, a VLM
serves as the retrieval engine, performing reasoning
over this graph through traversal to adaptively iden-
tify pages that are both semantically and logically
relevant to the given question.
Graph-based Index Firstly, each document page
pi is encoded into a latent embedding that cap-
tures its distinct multi-modal content, represented
as Epi = DocEncoder(pi) ∈ Rk×d, where k de-
notes the number of visual tokens per page and
d is the embedding dimension. Following Cho
et al. (2024); Han et al. (2025), we choose Col-
Pali (Faysse et al., 2024) as the document encoder
due to its demonstrated effectiveness in preserving
multi-modal semantics.

Using these embeddings, we construct a page
graph G(V, E) to represent relationships between
pages. In this graph, each node pi ∈ V cor-
responds to a page from the document D, and
edges E are established between pairs of pages
based on their similarity. Specifically, an edge
(pi, pj) is added if the similarity between their
embeddings exceeds a threshold θ, expressed as:
E = {(pi, pj)|⟨Epi , Epj ⟩ ≥ θ}where ⟨·, ·⟩ denotes
the inner product as the similarity measure. While
such graph construction mechanism is simple, it
offers the advantages of being efficient, automatic,
ensuring scalability to large document, and lever-

aging prior knowledge encoded in the embedding.
Graph Traversal for Retrieval With the page
graph constructed, we leverage a VLM as the re-
trieval engine to evaluate the relevance of each
visited page in relation to the given question. This
approach overcomes the limitations of traditional
semantic-only retrieval by incorporating logical
checking into the process. By utilizing the reason-
ing capabilities of the VLM, our method effectively
identifies important pages that may otherwise be
overlooked. The graph traversal process is outlined
as follows, aligning with the pseudo-code in Algo-
rithm 1 in the Appendix.
− Initialization For the question q and a page
pi from the document, the document encoder
computes a semantic relevance score as ssem

i =
⟨DocEncoder(q), Epi⟩. Based on these scores, the
top-w nodes (pages) with the highest semantic
scores are selected as the initial exploration set.
− Relevance Scoring For page pi in the explo-
ration set, the VLM assigns a logical relevance
score s

logi
i using the prompt provided in Appendix

B, reflecting the deeper logical connection of the
page to the question. The final relevance score si is
then updated as si = Combine(ssem

i , s
logi
i ), where

Combine(·) integrates semantic and logical rele-
vance scores, e.g., taking their weighted average.
− Iterative Traversal The traversal proceeds iter-
atively: at each step, we define the candidate set as
the unvisited neighbors of the current exploration
set. Each page in this candidate set is evaluated and
its relevance score is updated using the same com-
bination of semantic and logical relevance. The
pages are ranked by their final relevance scores,
and only the top-w nodes are retained as the new
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Figure 3: Illustration of training data generation for
MoLoRAG+.

exploration set for the next iteration. The traversal
continues until either the candidate set is empty or
the maximum hop limit is reached. Both the explo-
ration set size w and the hop limit nhop constrain
the traversal space, ensuring efficiency by avoiding
the exhaustive process of sequentially traversing
every page in the document.

Once the traversal is complete, all visited nodes
are re-ranked based on their final relevance scores,
and the top-K pages are selected for the subsequent
question-answering phase.

3.3 Training-required Variant

While the MoLoRAG framework allows the use of
a pre-trained VLM as an off-the-shelf solution for
fast deployment, we propose an enhanced variant,
MoLoRAG+3. This variant fine-tunes the VLM
(retrieval engine) to bolster its reasoning capabili-
ties during graph traversal, enabling the model to
assign more accurate logical relevance scores.
Data Preparation (Figure 3) The success of fine-
tuning relies on the availability of high-quality
training data (Sun et al., 2024). To achieve this,
we utilize GPT-4o (OpenAI, 2024) as a data gener-
ation engine to create reliable triplets in the format
⟨Question, Image, Relevance_Score⟩, where the
Relevance_Score quantifies the alignment be-
tween the question and the image content. These
triplets serve as supervision signals for fine-tuning,
enabling the model to better estimate logical rel-
evance. The data creation process begins by ran-
domly selecting a page snapshot (image) from the
document and sampling a relevance score from a
pre-defined range. Using both the selected image
and the sampled relevance score as context, GPT-
4o generates a question that reflects the degree to
which the selected image can answer it. GPT-4o
then predicts the relevance score between the gen-
erated question and the image, enabling an auto-
mated quality-checking: only samples where the
predicted score and the target score closely match
(e.g., within a tolerance of ≤ 1) are retained. To

3We use MoLoRAG+ to denote the fine-tuned version.

further ensure accuracy, these filtered samples un-
dergo manual verification, ensuring that the final
dataset fully aligns with the task’s requirements.
Note that the data engine can be replaced with any
arbitrary LVLMs instead of proprietary models like
GPT-4o to reduce costs. An additional analysis is
provided in Appendix C.
Model Training Using the curated dataset, we
fine-tune the backbone VLM with supervised fine-
tuning (SFT) techniques (Hu et al., 2022). Detailed
training configurations are provided in Appendix
C. After fine-tuning, the updated VLM replaces
the original pre-trained model as the retrieval en-
gine. By incorporating enhanced logical checking
capabilities, this variant is expected to deliver more
accurate retrieval performance.

3.4 Summary

In the proposed MoLoRAG framework, the top-
K scored pages are fed into an LVLM during
the question-answering phase, ensuring that only
the most relevant information is utilized. Its
key strengths include compatibility with arbitrary
LVLMs, making it particularly adaptable for mod-
els limited to processing a single image by trans-
forming an otherwise infeasible task into a practical
solution. By incorporating both semantic and logi-
cal relevance, the framework enhances retrieval ac-
curacy (Section 4.3). Furthermore, the graph-based
traversal mechanism effectively narrows the search
space, prioritizing relevant pages and significantly
accelerating the retrieval process compared to ex-
haustive page-by-page traversal (Appendix D.4).
Collectively, these features position MoLoRAG as
a powerful solution for the DocQA task.

4 Experiments

4.1 Experimental Setup

Datasets We utilize four datasets from three
benchmarks for evaluation, including MMLong-
Bench (Ma et al., 2024b), LongDocURL (Deng
et al., 2024), and PaperTab and FetaTab from
the UDA-Benchmark (Hui et al., 2024). Dataset
statistics are shown in Table 1. These datasets
span a wide range of topics (e.g., administrative
files, tutorials, research reports) and feature diverse
multi-modal elements (e.g., chart, text, and table).
Additionally, they vary in average document length
and information density, ensuring a comprehen-
sive evaluation. Other benchmarks like DocVQA
(Mathew et al., 2021; Tanaka et al., 2023; Masry
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Table 1: Statistics of experimental datasets.
Dataset # Question # Document Avg. Pages Avg. Tokens

PaperTab 393 307 11.0 12,685.4
FetaTab 1,016 871 15.8 16.524.5

MMLongBench 1,082 135 47.5 24,992.6
LongDocURL 2,325 396 85.6 56,715.1

et al., 2022) are omitted due to their shorter docu-
ment lengths and lower information density.
Evaluation Metrics For MMLongBench and
LongDocURL, we follow their original evalua-
tion protocol, using a generalized Accuracy with
rule-based evaluation to handle various answer
types. Additionally, we report Exact Match
(EM) as a supplementary metric, as the answers
in these datasets are typically short and concise.
For PaperTab and FetaTab, where ground-truth an-
swers are formulated as long sentences or multiple
choices, we follow MDocAgent to employ GPT-4o
as the evaluator. Specifically, it evaluates Binary
Correctness by determining whether the generated
answer matches the ground-truth answer, assigning
a binary score of 0 or 1. We also evaluate retrieval-
stage accuracy using metrics like Recall@K, with
further details provided in Appendix D.1.
Baselines We consider the following baselines: (1)
LLM w. Text RAG first converts the document
into texts using OCR and then applies retrieval tech-
niques to the text, with LLMs serving as the back-
bone for question answering. (2) LVLM Direct
Inference directly feeds LVLMs with full docu-
ment snapshot images for question answering. For
LVLMs that only support single-image input, we
follow Ma et al. (2024b) by concatenating all im-
ages into a single combined one. (3) M3DocRAG
(Cho et al., 2024) uses ColPali as a page retriever
to identify relevant pages and feeds only the re-
trieved pages to the LVLM for further processing.
(4) MDocAgent (Han et al., 2025) is a strong base-
line for document understanding that employs a
multi-agent system. A text agent and an image
agent independently handle their respective modal-
ities and collaborate to synthesize the final answer.
Due to space limits, implementation details of each
method are provided in Appendix D.2.
Choices of LLMs For LLMs, we consider Mistral-
7B-Instruct-v0.2 (Jiang et al., 2023), Qwen2.5-
7B-Instruct (Qwen, 2025), LLaMA3.1-8B-Instruct
(Grattafiori et al., 2024), GPT-4o, and DeepSeek-
V3 (DeepSeek-AI, 2025). These models vary in se-
ries, scales, reasoning capabilities, and open-source
availability, offering a diverse evaluation of LLM-

based methods.
Choices of LVLMs We classify LVLMs into three
categories based on their input capacity: (1) Large
Input Size models, such as Qwen2.5-VL-3B and
Qwen2.5-VL-7B, which can process extensive con-
text sizes, e.g., 30 images. (2) Medium Input
Size models, such as DeepSeek-VL-16B (Lu et al.,
2024), which can handle a moderate number of in-
puts, e.g., 5 images. (3) Single Input models, such
as LLaVA-Next-7B, which are limited to process-
ing one image at a time. For each LVLM backbone,
we assess its compatibility with various methods
and sensitivity to context size, providing guidelines
for effectively leveraging LVLMs in document un-
derstanding tasks.

4.2 Overall Performance
In this subsection, we present the overall perfor-
mance of MoLoRAG alongside all baseline meth-
ods. To evaluate performance under varying re-
trieval availability, we consider top-K values of
K = 1, 3, 5. Results for top-3 retrieval are shown
in Table 2, while additional results for K = 1
and K = 5 are provided in Tables 9 and 10 in
Appendix, respectively. For LLM w. Text RAG,
each retrieved element corresponds to a text chunk,
whereas for LVLM-based methods, each retrieved
element represents a document page in image for-
mat. Based on the experimental results, we sum-
marize the key findings below:
1. LLMs struggle with document understanding
compared to LVLM-based methods. Even ad-
vanced LLMs like DeepSeek-V3, fall short in per-
formance compared to LVLM-based methods. This
highlights the inherent limitations of LLMs in han-
dling multi-modal document understanding tasks,
even when paired with sophisticated retrieval meth-
ods. LVLMs, on the other hand, can natively han-
dle multi-modal inputs, making them better suited
for document understanding. A fine-grained analy-
sis across different evidence modalities (e.g., text,
tables, figures) in Appendix D.7 reveals LLMs’
weak performance with non-text modalities, while
LVLMs excel across diverse modalities.
2. MoLoRAG consistently boosts LVLM per-
formance. Integrating LVLMs with MoLoRAG
significantly improves their question answering ca-
pabilities. For example, DeepSeek-VL-16B, which
performs poorly with concatenated document im-
ages (e.g., 8.40% on MMLongBench due to con-
tent overload), achieves a substantial improvement
when paired with MoLoRAG, reaching 20.43%.
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Table 2: Overall performance comparison (in %) under the retrieved top-3 setting. The “Direct” mode processes
up to 30 document pages, while “MoLoRAG+” refers to the variant with a fine-tuned retrieval engine. Results for
the top-1 and top-5 settings are in Tables 9 and 10, respectively. The best performance is highlighted .

Type Model Method MMLongBench LongDocURL PaperTab FetaTab Avg.

LLM-based

Mistral-7B Text RAG 24.47 25.06 11.45 41.14 25.53
Qwen2.5-7B Text RAG 25.52 27.93 12.72 40.06 26.56

LLaMA3.1-8B Text RAG 22.56 29.80 13.49 45.96 27.95
GPT-4o Text RAG 27.23 32.74 14.25 50.20 31.11

DeepSeek-V3 Text RAG 29.82 34.73 17.05 52.36 33.49

LVLM-based

LLaVA-Next-7B

Direct 7.15 10.78 3.05 11.61 8.15
M3DocRAG 10.10 13.85 5.34 13.98 10.82
MoLoRAG 9.37 13.49 4.83 13.78 10.37

MoLoRAG+ 9.47 13.58 5.60 13.48 10.53

DeepSeek-VL-16B

Direct 8.40 14.72 6.11 16.14 11.34
M3DocRAG 18.12 29.60 7.89 27.07 20.67
MoLoRAG 20.43 29.98 9.67 38.98 24.77

MoLoRAG+ 25.47 37.21 10.94 41.54 28.79

Qwen2.5-VL-3B

Direct 26.65 24.89 25.19 51.57 32.08
M3DocRAG 29.11 44.40 24.68 53.25 37.86
MoLoRAG 32.11 45.79 24.43 57.68 40.00

MoLoRAG+ 32.47 45.27 27.23 58.76 40.93

Qwen2.5-VL-7B

Direct 32.77 26.38 29.77 64.07 38.25
M3DocRAG 36.18 49.03 28.50 63.78 44.37
MoLoRAG 39.28 51.71 32.32 69.09 48.10

MoLoRAG+ 41.01 51.85 31.04 69.19 48.27

Multi-agent MDocAgent (LLaMA3.1-8B+Qwen2.5-VL-7B) 38.53 46.91 30.03 66.34 45.45

(a) Qwen2.5-VL-7B (b) Qwen2.5-VL-3B (c) DeepSeek-VL-16B (d) LLaVA-Next-7B

Figure 4: Performance trends of MoLoRAG across different top-K retrieval settings for LVLMs. LVLMs with
extensive context support (e.g., Qwen2.5-VL series) benefit from retrieving more pages, improving performance
with higher K. In contrast, LVLMs with limited context capacity (e.g., LLaVA-Next-7B) perform best with K = 1.

Similarly, high-capacity LVLMs like the Qwen2.5-
VL series benefit from MoLoRAG’s ability to filter
and prioritize relevant pages, further improving
their already strong performance.

3. Fine-tuned MoLoRAG+ delivers further
performance gains. The fine-tuned variant,
MoLoRAG+, outperforms the training-free ver-
sion, demonstrating the benefits of task-specific
optimization. For example, with DeepSeek-VL-
16B, MoLoRAG+ achieves 5.04% improvement
on MMLongBench compared to the training-free
MoLoRAG. This enhancement stems from its su-
perior ability to assess logical relevance, enabling
more accurate retrieval (details in Section 4.3).

4. The relationship between top-K retrieval and
performance depends on LVLM capability. Fig-

ure 4 illustrates how performance of MoLoRAG
varies with top-K retrieval settings across four
datasets. For LVLMs with extensive context sup-
port, such as the Qwen2.5-VL series, increasing K
(i.e., providing more pages) improves performance
across all scenarios. However, for LVLMs with
limited context capacity, such as DeepSeek-VL-
16B and LLaVA-Next-7B, additional pages often
exceed their processing capabilities, leading to de-
graded performance. For these models, K = 1 is
typically the optimal choice.

4.3 Retrieval Performance Comparison

In this subsection, we evaluate the retrieval accu-
racy of various methods to highlight the effective-
ness of MoLoRAG in identifying relevant pages.
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Table 3: Retrieval performance comparison (in %) under the top-K setting.
MMLongBench LongDocURLTop-K Method Recall Precision NDCG MRR Recall Precision NDCG MRR

1

M3DocRAG 43.31 56.67 56.67 56.67 46.84 64.66 64.66 64.66
MDocAgent (Text) 29.30 38.99 38.99 38.99 42.03 58.37 58.37 58.37

MDocAgent (Image) 43.79 57.49 57.49 57.49 46.80 64.57 64.57 64.57
MoLoRAG 45.46 59.95 59.95 59.95 48.98 67.71 67.71 67.71

MoLoRAG+ 51.32 66.86 66.86 66.86 50.82 70.08 70.08 70.08

3

M3DocRAG 64.17 31.62 54.13 65.36 67.00 33.78 58.23 72.51
MDocAgent (Text) 43.21 20.77 37.13 45.26 58.53 29.33 54.12 65.28

MDocAgent (Image) 64.74 31.97 54.75 66.12 66.67 33.62 58.26 72.47
MoLoRAG 67.22 40.81 57.34 68.56 70.04 36.41 61.56 75.78

MoLoRAG+ 68.87 48.67 64.49 73.50 68.92 47.53 64.90 77.14

5

M3DocRAG 72.00 22.58 54.06 66.92 74.32 23.34 58.05 73.83
MDocAgent (Text) 50.60 15.48 37.19 46.98 65.41 20.41 53.97 66.55

MDocAgent (Image) 71.45 22.37 54.58 67.53 74.60 23.50 58.06 73.90
MoLoRAG 74.13 35.83 57.29 69.63 77.14 26.13 61.30 76.88

MoLoRAG+ 72.37 45.34 64.36 73.97 73.69 42.47 64.74 77.89

Question What is the total square footage of office space for Gray Television’s newspaper publishing operations in Georgia and Indiana?

Qwen2.5-VL-7B Direct

Unanswerable

w. M3DocRAG

Evidence Page  Index 36

Retrieved Pages [15, 42, 119]
Unanswerable

MDocAgent
Retrieved Pages Text [119, 2, 4]  Image [15, 42, 119]
Unanswerable

w. MoLoRAG
Retrieved Pages [36, 15]
Answer 199,750       “ To determine the total square footage of office space for Gray 
Television’s newspaper publishing operations in Georgia and Indiana, we need to sum up the sizes 
provided for each location. From the first page: The Albany Herald (Albany, GA): 83,000 sq. ft. 
Conyers, GA: 20,000 sq. ft. Covington, GA: 3,750 sq. ft. Lawrenceville, GA: 72,000 sq. ft. Goshen, 
IN: 21,000 sq. ft. Adding these together: 83,000 + 20,000 + 3,750 + 72,000 + 21,000 = 199,750. 
Therefore, the total square footage of office space for Gray Television's newspaper publishing 
operations in Georgia and Indiana is 199,750 square feet.” 

“It is not possible to provide an exact total square footage 
based solely on the given information”

“ There is insufficient information 
provided to determine the total square 
footage of office space for … ”

“ There is insufficient information provided to 
determine the total square footable of office space for 
Gray Television’s newspaper … ”

Figure 5: Case study on LongDocURL. MoLoRAG successfully retrieves the correct evidence page for the
given question by leveraging logical relevance, enabling it to provide the correct answer. In contrast, both LVLM
direct inference and other baseline methods fail to answer the question due to limited or irrelevant context.

Since only MMLongBench and LongDocURL pro-
vide ground-truth evidence pages for each query,
our comparison is confined to these two datasets.
We employ standard metrics, including Recall, Pre-
cision, NDCG, and MRR (details in Appendix D.1),
where higher values indicate better retrieval perfor-
mance. We compare MoLoRAG and its fine-tuned
variant, MoLoRAG+, against two baseline meth-
ods: M3DocRAG (Cho et al., 2024) and MDocA-
gent (Han et al., 2025). MDocAgent performs
separate text- and image-based retrieval, and re-
sults for both modalities are reported. The de-
tailed results under top-K settings are presented
in Table 3. MoLoRAG consistently outperforms
baseline methods across metrics, with an average
improvement of 9.94% on MMLongBench and
7.16% on LongDocURL. This advantage arises
from MoLoRAG’s integration of both semantic and

logical relevance, unlike the baselines, which focus
solely on semantic relevance. The fine-tuned vari-
ant, MoLoRAG+, further improves performance
by leveraging task-specific optimization.

4.4 Case Study

Figure 5 presents a case study on LongDocURL.
LVLM direct inference marks the question as
“unanswerable” due to limited input context. Base-
lines such as M3DocRAG and MDocAgent rely
solely on semantic relevance for retrieval, failing
to locate the evidence page, which leads to incor-
rect answers. In contrast, MoLoRAG accurately
retrieves the evidence page by considering logi-
cal relevance, enabling the LVLM to leverage this
knowledge and correctly answer the question. An-
other case involving cross-page understanding is
illustrated in Figure 8 in the Appendix.
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Due to space limits, ablation study and efficiency
analysis are moved to Appendix D.6 and D.4.

5 Conclusion

In this paper, we tackle the DocQA task by address-
ing the limitations of prior methods that rely only
on semantic relevance for retrieval. By incorporat-
ing logical relevance, our VLM-powered retrieval
engine performs multi-hop reasoning over page
graph to identify key pages. Extensive experiments
demonstrate that MoLoRAG delivers superior re-
trieval accuracy, achieves SOTA performance, and
ensures seamless compatibility with LVLMs.
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Algorithm 1 Graph Traversal for Retrieval
Require: Question q, DocEncoder(·), Page graph

G, Exploration size w, Hop limit nhop, Docu-
ment D

Ensure: Re-ranked pages Dr

1: ssem
i ← ⟨DocEncoder(q),DocEncoder(pi)⟩

for each pi ∈ D ▷ Semantic relevance scoring

2: B ← TopK({ssem
i }, w) ▷ Exploration set

initialization

3: Dr ← ∅
4: S ← B ▷ Visited marking

5: for pi ∈ B do
6: s

logi
i ← VLM(q, pi) ▷ Logical relevance

scoring

7: si ← Combine(ssem
i , s

logi
i ) ▷ Score update

8: Dr ← Dr ∪ {(pi, si)}
9: end for

10: for Hop = 1 to nhop do
11: C ← ∅ ▷ Candidates initialization

12: for pi ∈ B do
13: for pj ∈ Neighbor(G, pi), pj /∈ S do
14: s

logi
j ← VLM(q, pj)

15: sj ← Combine(ssem
j , s

logi
j )

16: C ← C ∪ {sj}
17: Dr ← Dr ∪ {(pj , sj)}
18: S ← S ∪ {pj}
19: end for
20: end for
21: B ← TopK(C, w) ▷ Exploration set update

22: end for
23: Sort Dr by descending s ▷ Pages re-ranking

24: return Dr

A Algorithm Pseudo-Code

The graph traversal algorithm for retrieval is pre-
sented in Algorithm 1. This algorithm operates
by efficiently identifying relevant pages through
a combination of semantic and logical relevance
scores. By leveraging an exploration size w and
a hop limit nhop, the traversal is restricted to ex-
ploring only the most promising paths in the page
graph, ensuring scalability and avoiding the need to
process all pages. The output,Dr, is a re-ranked set
of document pages that are both semantically and
logically relevant, with its size typically smaller
than the total number of document pages N . From
this re-ranked set, the top-K pages are selected and
passed to the next stage for question answering.

B Prompt

In this section, we present all the prompts used
within the MoLoRAG framework, including query-
ing the VLM to assign logical relevance scores,
using LLMs or LVLMs for question answering,
and prompting GPT-4o to curate the dataset for
training MoLoRAG+.
Assessing Logical Relevance The prompt for
querying the VLM to assign a logical relevance
score between the observed image and the question
is provided below:

Prompt for Assessing Logical Relevance

# GOAL #
You are an Retrieval Expert, and your task
is to evaluate how relevant the input doc-
ument page is to the given query. Rate the
relevance on a scale of 1 to 5, where:
5 Highly relevant - contains complete infor-
mation needed to answer the query
4 Very relevant - contains most of the infor-
mation needed
3 Moderately relevant - contains some use-
ful information
2 Slightly relevant - has minor connection
to the query
1 Irrelevant - contains no information re-
lated to the query

# INSTRUCTION #
Please first read the given query, think about
what knowledge is required to answer that
query, and then carefully go through the
document snapshot for judgment.

# QUERY #
{{Question}}
Please generate just a single number (1-5)
representing your relevance judgment. Your
answer should be a single number without
any extra contents.

LLM Question Answering For LLM-based ques-
tion answering, all retrieved text chunks are con-
catenated into the context, and the LLM is queried
to answer the given question based on the provided
context as:“ {{Context}} Answer the question
based on the above context: {{Question}}”.
LVLM Question Answering For LVLM-based
question answering, the input includes document
images and the question: “{{Image}} Based
on the document, please answer the question:
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{{Question}}”.
Curating Training Data The prompt for guiding
GPT-4o to generate training data is shown below:

Prompt for Curating Training Data

# GOAL #
Given the input image, your task is to gen-
erate a question related to it. The relevance
score is {{relevance_score}}, where a
higher score indicates a closer connection
between the question and the image. For
example, a relevance score of 5 means the
answer is DIRECTLY contained in the im-
age, while a score below 3 indicates that the
answer CANNOT be derived from it, with
lower scores signifying less relevance.

# REQUIREMENT #
The question must be based on the content
of the input image, except when the rele-
vance score is ≤ 2. For relevance scores of
4 or higher, create clear and straightforward
questions with answers that are explicitly
present in the image. For relevance scores
of 3, generate questions that may require
some inference but are still somewhat re-
lated to the content. For relevance scores
of 2 or lower, formulate questions that are
unanswerable based on the snapshot.
You may consider various elements, includ-
ing text, layout, and figures. For this gener-
ation, please concentrate on {{focus}} if
applicable and remember that the relevance
score is {{relevance_score}}.
Your output should be formatted as follows:
{ “query”: “Your generated question”, “rele-
vance_score”: “relevance score”, “answer”:
“Corresponding answer or inference” }

C Supplementary Materials for
MoLoRAG+

This section provides detailed information on the
training data, learning configurations, and alterna-
tive data engine for MoLoRAG+.
Training Data In the first stage, Question Genera-
tion, we prompt GPT-4o to generate approximately
5,500 samples using the illustrated prompt. Docu-
ment snapshots are randomly selected from MM-
LongBench (Ma et al., 2024b) and LongDocURL
(Deng et al., 2024), as these datasets contain multi-
modal, information-rich documents. The relevance

score s is sampled from {1, 2, 3, 4, 5} with equal
distribution to ensure a balanced representation
across different levels of logical relevance, pre-
venting over-fitting to specific scores. For each
sampled document snapshot pi, the generated ques-
tion is expressed as: q′ = GPT-4o(prompt, s, pi),
where pi denotes the randomly selected document
snapshot, and s is the sampled relevance score.
To ensure data quality, each generated question q′

and its corresponding document snapshot pi are
fed back to GPT-4o to assign a predicted logical
relevance score as: s′ = GPT-4o(prompt, q′, pi).
Samples are retained only if the predicted score
closely matches the original score, i.e., |s− s′| ≤
1. After this automated filtering, the remaining
samples undergo manual verification. This pro-
cess results in a final high-quality training set
containing 3,519 samples, formatted as triplets:
⟨Question q′, Image pi,Relevance Score s′⟩. In
each sample, s′, the predicted relevance score, is
the expected output for model training.
Learning Configuration We utilize the LLaMA-
Factory package4 to fine-tune the backbone VLM,
Qwen2.5-VL-3B (Bai et al., 2025), using the LoRA
technique for parameter-efficient training. The fine-
tuning process is configured with the following
hyperparameters: a LoRA Rank of 8, a learning
rate of 1 × 10−4, a warmup ratio of 0.1, and gra-
dient accumulation steps set to 8. The model is
trained for a total of 2 epochs, ensuring efficient
and effective parameter adaptation.
Alternative Data Engine We primarily use GPT-
4o as the data engine for curating training data.
However, our data generation pipeline is flexi-
ble and can accommodate other LVLMs. To
demonstrate this flexibility, we replace the orig-
inal engine with the open-source model Qwen2.5-
VL-32B (Bai et al., 2025), while keeping all
prompts and processes consistent. This variant
is denoted as MoLoRAG+

Qwen. We compare the
retrieval performance of MoLoRAG, MoLoRAG+,
and MoLoRAG+

Qwen on MMLongBench (Table 4),
where the backbones are pre-trained Qwen2.5-VL-
3B, Qwen2.5-VL-3B fine-tuned with GPT-4o data,
and fine-tuned with Qwen2.5-VL-32B data, respec-
tively. The results indicate that the Qwen2.5-VL-
32B distilled model performs comparably to its
GPT-4o counterparts. This is attributed to (1) the
simplicity of logical relevance scoring, enabling
effective high-quality data generation by Qwen2.5-

4https://github.com/hiyouga/LLaMA-Factory/

14036

https://github.com/hiyouga/LLaMA-Factory/


Table 4: Retrieval performance comparison (in %)
between MoLoRAG, MoLoRAG+

Qwen, and MoLoRAG+
on MMLongBench.

Top-K Model Recall Precision NDCG MRR

1
MoLoRAG 45.46 59.95 59.95 59.95

MoLoRAG+
Qwen 51.62 67.56 67.56 67.56

MoLoRAG+ 51.32 66.86 66.86 66.86

3
MoLoRAG 67.22 40.81 57.34 68.56

MoLoRAG+
Qwen 71.79 37.94 64.24 74.57

MoLoRAG+ 68.87 48.67 64.49 73.50

5
MoLoRAG 74.13 35.83 57.29 69.63

MoLoRAG+
Qwen 78.72 29.06 64.01 75.69

MoLoRAG+ 72.37 45.34 64.36 73.97

VL-32B, and (2) the shared family of the data en-
gine and distilled model, which facilitates capabil-
ity transfer. Additionally, this variant reduces data
construction costs due to its open-source nature,
highlighting the effectiveness of our data construc-
tion pipeline.

D Supplementary Materials for
Experiments

D.1 Details of Metrics

Evaluation for Question Answering We utilize
Accuracy and Exact Match as evaluation metrics
for MMLongBench (Ma et al., 2024b) and Long-
DocURL (Deng et al., 2024). Accuracy is rule-
based to accommodate various answer types, with
detailed explanations provided in Appendix B.3
of Ma et al. (2024b). Exact Match measures the
percentage of predictions where the generated an-
swer exactly matches the ground-truth answer. For
the remaining datasets, PaperTab and FetaTab (Hui
et al., 2024), we employ GPT-4o as the evaluator
to assign a Binary Correctness score ∈ {0, 1},
where 1 indicates that the generated answer aligns
with the ground-truth answer. We report the aver-
aged values across all test samples.
Evaluation for Retrieval We employ stan-
dard retrieval metrics, including Recall@K,
Precision@K, NDCG@K, and MRR@K, where
K represents the number of retrieved elements. For
a specific data sample with ground-truth evidence
pages denoted as Pgt = {pgt

1 , . . . , p
gt
n} and the top-

K retrieved pages Pr = {pr1, . . . , prK}, these met-
rics are computed as follows:

• Recall measures the proportion of ground-
truth pages that are successfully retrieved
within the top-K results:

Recall@K =

∑K
i=1 I(pri ∈ Pgt)

n
,

where I(·) is the indicator function that returns
1 if the condition is true and 0 otherwise.

• Precision assesses the accuracy of the re-
trieved pages by calculating the proportion
of retrieved pages that are relevant:

Precision@K =

∑K
i=1 I(pri ∈ Pgt)

K
.

• NDCG (Normalized Discounted Cumulative
Gain) evaluates the ranking quality of the re-
trieved pages by considering the positions of
relevant pages within the top-K results. It is
computed in three steps:

DCG@K =

min(n,K)∑

i=1

I(pri ∈ Pgt)

log2(i+ 1)
,

IDCG@K =

min(n,K)∑

i=1

1

log2(i+ 1)
,

NDCG@K =
DCG@K

IDCG@K

• MRR (Mean Reciprocal Rank) measures the
reciprocal rank of the first relevant page within
the top-K retrieved pages. It is defined as:

MRR@K =

{
1
i if pri is the first relevant
0 otherwise

where i denotes the position of the first rel-
evant page that satisfies pri ∈ Pgt. If no rel-
evant page is retrieved within the top-K, the
MRR score for that sample is 0.

For each metric, we average the scores over all
test samples and report the values in Tables 3, 7
and 8, respectively.

D.2 Implementation Details

This subsection outlines the detailed configurations
for each method to ensure clarity and reproducibil-
ity. All experiments were conducted on 3 NVIDIA
A6000 48G GPUs.
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• LLM w. Text RAG We use the PyPDFLoader
from the LangChain package5 to extract
text from the raw document. Each docu-
ment is divided into chunks of 1,000 tokens.
The QwenRAG API6 is employed as the
text RAG engine. Specifically, we use the
text-embedding-v1 model to encode text
chunks and perform retrieval. For each top-
K setting, the top-ranked K text chunks are
combined as context, which is then passed to
the LLM for answering.

• LVLM Direct Inference To ensure scalabil-
ity, we truncate documents to retain only the
first 30 pages. For Qwen2.5-VL series, as
these models support extensive image con-
texts, all images are fed directly for process-
ing. For DeepSeek-VL-16B, although it sup-
ports multi-image inputs, it requires signifi-
cant memory for loading. Therefore, we con-
catenate document images into 5 larger im-
ages, ensuring compatibility with GPU mem-
ory. For LLaVA-Next-7B, as it accepts only a
single image, all available pages are combined
into one single image for processing.

• M3DocRAG This baseline is implemented ac-
cording to its original paper and official repos-
itory. The document encoder used is colpali
for encoding and retrieval. While the origi-
nal paper uses Qwen2-VL-7B (Wang et al.,
2024b) as the backbone LVLM, we extend
the evaluation by integrating the method with
various LVLMs to assess compatibility.

• MDocAgent This baseline is imple-
mented following its official repository:
colpaligemma-3b-mix-448-base for image
retrieval and colbertv2.0 for text retrieval.
For all five agents in this framework, we
consistently use the original LLaMA3.1-8B
(Grattafiori et al., 2024) as the LLM for the
text agent, while employing a consistent
LVLM, i.e., Qwen2.5-VL-7B (Bai et al.,
2025), for remaining agents.

• MoLoRAG For document encoding, colpali
is used as the document encoder. Pages are
connected in the graph if their similarity score
exceeds a threshold of 0.4. During graph
traversal, the number of hops nhop is set to

5https://python.langchain.com/
6https://dashscope.console.aliyun.com/overview

4, and the exploration set size w is set to 3.
Semantic relevance and LVLM-generated log-
ical relevance are combined using an aver-
age score. All visited pages are re-ranked
based on this combined score for final re-
trieval. Qwen2.5-VL-3B is employed as the
retrieval engine due to its strong performance
and lightweight architecture, ensuring both ef-
fectiveness and efficiency. The retrieved top-
K images are fed into LVLMs based on their
input format capabilities: for LLaVA-Next-
7B, the images are concatenated into a single
composite image, while for all other LVLMs,
the images are processed separately.

D.3 Discussion of Advanced OCR Methods
We expand our discussion on the LLM w. Text
RAG baseline by using more advanced OCR
tools, including MinerU (Wang et al., 2024a) and
GOT-OCR-2.0 (Wei et al., 2024), as alternatives to
PyPDFLoader, while ensuring consistency in the re-
trieval engine and LLM calling process. The results
across different top-K settings on MMLongBench
and PaperTab are presented in Table 5. Our findings
indicate that advanced tools generally enhance QA
performance due to improved OCR capabilities,
with the benefits becoming more pronounced as
K increases. For instance, replacing PyPDFLoader
with MinerU yields performance gains of up to 4%
across various LLMs. However, LLMs w. Text
RAG baselines still show a performance gap
compared to strong LVLMs, primarily due to
the inevitable loss of multi-modal information.

D.4 Efficiency Analysis
In this subsection, we provide efficiency analysis of
our MoLoRAG with baseline methods from three
aspects: (1) Retrieval scalability, (2) Inference effi-
ciency, and (3) Total time costs.
Retrieval Scalability The retrieval stage of
MoLoRAG requires the VLM to evaluate the log-
ical relevance score of each visited page. To effi-
ciently manage the traversal scope, we introduce
hyper-parameters such as hop limit and exploration
set size, which help narrow the querying space, en-
suring scalability and accelerating the retrieval pro-
cess. To illustrate the scalability of MoLoRAG, Fig-
ure 6 shows the average number of queried pages
alongside the total number of pages for all testing
samples across different datasets. The figure also
indicates the percentage of queried pages. As the
document size increases, the average percentage
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Table 5: Comparison of various OCR methods on the performance of LLM w. Text RAG.

Top-1 Top-3 Top-5Model OCR MMLongBench PaperTab MMLongBench PaperTab MMLongBench PaperTab

Qwen2.5-7B
PyPDFLoader 22.11 5.34 25.52 12.72 26.09 16.79
GOT-OCR-2.0 22.66 6.11 25.84 13.74 26.70 16.79

MinerU 21.99 7.63 24.54 16.28 27.53 19.08

GPT-4o
PyPDFLoader 24.07 8.65 27.23 14.25 28.74 20.36
GOT-OCR-2.0 23.86 8.91 27.78 13.74 29.47 18.07

MinerU 25.89 9.92 28.74 18.32 30.98 22.90

DeepSeek-V3
PyPDFLoader 25.94 10.18 29.82 17.05 31.23 23.92
GOT-OCR-2.0 25.35 9.92 28.39 18.83 30.75 22.90

MinerU 26.21 11.96 30.11 21.12 32.36 26.97

Qwen2.5-VL-7B w. MoLoRAG 34.35 23.92 39.28 32.32 39.97 31.04

0 20 40 60 80

Number of Pages

PaperTab

FetaTab

MMLongBench

LongDocURL

93.9%

83.1%

58.7%

46.1%

# Total Page

# Queried Page

Figure 6: Illustration of retrieval scalability. We
present the average number of pages queried by
MoLoRAG and the total number of pages across all
test samples for each dataset.

of queried pages decreases significantly. For in-
stance, fewer than 50% of the pages are queried for
LongDocURL, demonstrating MoLoRAG’s abil-
ity to effectively control graph traversal and focus
on relevant pages. This reduction highlights the
scalability of the method, as it maintains high re-
trieval accuracy while minimizing computational
overhead even for large documents.
Inference Efficiency After retrieval, MoLoRAG
requires only a single query to the LVLM for ques-
tion answering by providing the relevant pages,
ensuring efficiency comparable to LVLM Direct In-
ference. In contrast, the best-performing baseline,
MDocAgent (Han et al., 2025), requires five sepa-
rate queries to both LLMs and LVLMs, as it func-
tions as a unified multi-agent system. Figure 7 il-
lustrates the average inference times of MoLoRAG
(Qwen2.5-VL-7B as the backbone) and MDocA-
gent, clearly highlighting MoLoRAG’s significant
advantage in inference efficiency, making it a more
practical and scalable solution.
Total Time Costs In addition to inference time
efficiency, we present the total time (retrieval and
inference) for various methods to provide a clearer
illustration. Note that the retrieval time includes
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Figure 7: Inference time comparison between
MoLoRAG and MDocAgent (Han et al., 2025) on
the MMLongBench.

both indexing and retrieval processes. DeepSeek-
V3 and GPT-4o are invoked via APIs in a sequential
manner to ensure a fair comparison, while the re-
maining open-source LLMs are deployed locally
using vLLM on a single NVIDIA A6000-48G GPU.
For LVLM Direct, the number of pages considered
is up to 30, with times reported using 3 A6000
GPUs. All other time costs are measured on a sin-
gle A6000 GPU, except for MDocAgent, which
utilizes 2 A6000 GPUs. The results are shown in
Table 6.

For LLM with Text RAG, variations in latency
occur due to differences in invocation methods and
model architecture. The index stage that invokes
Qwen-RAG via APIs significantly affects overall
latency. In LVLM-based methods, direct inference
involves managing 30 pages, which can slow pro-
cessing. While M3DocRAG is the most efficient
method, it focuses solely on semantic relevance,
limiting retrieval accuracy. The robust baseline,
MDocAgent, employs parallel text and image re-
trieval; however, its multi-agent framework can
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Table 6: Total time costs comparison (in seconds) across different methods on LongDocURL.

Top-1 Top-5Type Model Method Retrieval Time Inference Time Total Retrieval Time Inference Time Total

LLM-based

Mistral-7B Text RAG 48.5s 2.4s 50.9s 48.5s 4.1s 52.6s
Qwen2.5-7B Text RAG 48.5s 5.1s 53.6s 48.5s 6.9s 55.4s

LLaMA3.1-8B Text RAG 48.5s 11.8s 60.3s 48.5s 18.3s 66.8s
GPT-4o Text RAG 48.5s 1.4s 49.9s 48.5s 1.5s 50.0s

DeepSeek-V3 Text RAG 48.5s 7.5s 56.0s 48.5s 21.4s 69.9s

LVLM-based

Qwen2.5-VL-3B
Direct - 34.3s 34.3s - 34.3s 34.3s

M3DocRAG 10.7s 5.7s 16.4s 10.7s 8.3s 19.0s
MoLoRAG 38.4s 5.7s 44.1s 38.4s 8.2s 46.6s

Qwen2.5-VL-7B
Direct - 47.1s 47.1s - 47.1s 47.1s

M3DocRAG 10.7s 6.8s 17.5s 10.7s 10.2s 20.9s
MoLoRAG 38.4s 6.8s 45.2s 38.4s 10.1s 48.5s

Multi-agent MDocAgent (LLaMA3.1-8B+Qwen2.5-VL-7B) 31.8s 16.8s 48.6s 31.8s 35.5s 67.3s

Question How many total available positions for actors were there across Playwrights Horizons and The Public Theater in the 2018 -19 season?

Evidence Pages  Index 49, 51 Qwen2.5-VL-7B Direct

Unanswerable

w. M3DocRAG
Retrieved Pages [62, 49, 56]
Unanswerable “The total available positions for actors 
across Playwrights Horizons and The Public Theater in the 2018-19 
season is not provided in the given text.”

MDocAgent
Retrieved Pages Text [39, 49, 62]  Image [56, 51, 48]
258 “The text mentions that Playwrights Horizons had 111 positions 
and The Public Theater had 65 positions. So, the total available 
positions for actors across Playwrights Horizons and The Public Theater 
in the 2018-19 season would be 111 + 65 = 176 positions.”

w. MoLoRAG
Retrieved Pages [39, 49, 51]
Answer 192         “The total available positions for actors across 
Playwrights Horizons and The Public Theater in the 2018-19 season is 
192 (45 + 147) .” 

Figure 8: Case study under the top-3 setting on LongDocURL involving cross-page reasoning. The given
question requires evidence from two separate pages to derive the correct answer. LVLM direct inference fails due to
its limited context capacity (e.g., processing up to 30 pages). M3DocRAG is unable to retrieve the relevant content,
leading to failure. MDocAgent relies on only one evidence page and falls into hallucination, producing an incorrect
answer. In contrast, MoLoRAG successfully retrieves both relevant pages, enabling the LVLM to leverage this
information to answer the question correctly.

hinder overall efficiency as context complexity in-
creases. Despite the associated retrieval time costs,
MoLoRAG maintains a notably fast inference stage
and scales well with larger K values, ensuring a
balance between efficiency and performance.

D.5 Case Study

We present another case involving cross-page rea-
soning, as shown in Figure 8. The question asks:
“How many total available positions for actors were
there across Playwrights Horizons and The Pub-
lic Theater in the 2018–19 season?” Answering
this requires evidence from two separate pages: the
available positions for actors at Playwrights Hori-
zons and The Public Theater.

LVLM direct inference fails due to limited con-

text capacity, as it can only process up to 30 pages,
while the evidence pages are located at indices
49 and 51. Both M3DocRAG and MDocAgent
fail to retrieve these evidence pages because they
rely solely on semantic relevance. Specifically,
MDocAgent retrieves only one evidence page, re-
sulting in hallucination and an incorrect answer.
In contrast, MoLoRAG effectively retrieves both
relevant pages, enabling the LVLM to access the
necessary information and correctly compute the
total available positions, demonstrating its superior
cross-page reasoning capability.

D.6 Ablation Study

In this subsection, we present the ablation study to
evaluate the effectiveness of individual components
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Table 7: Retrieval performance comparison of
MoLoRAGLogi and MoLoRAG+ with the same fine-
tuned retrieval engine. MoLoRAGLogi, which relies
solely on logical relevance, consistently underperforms
compared to MoLoRAG+, demonstrating the effective-
ness of combining semantic and logical relevance.

Dataset K Method Recall NDCG MRR

MMLong
1

MoLoRAGLogi 46.55 58.90 58.90
MoLoRAG+ 51.32 66.86 66.86

3
MoLoRAGLogi 60.45 58.02 64.62
MoLoRAG+ 68.87 64.49 73.50

LongDocURL
1

MoLoRAGLogi 47.65 65.56 65.56
MoLoRAG+ 50.82 70.08 70.08

3
MoLoRAGLogi 62.71 61.27 71.53
MoLoRAG+ 68.92 64.90 77.14

within MoLoRAG, focusing on two key aspects:
the combination of semantic and logical relevance,
and the graph construction process.
Combination of Semantic and Logical Rele-
vance We consider a variant of MoLoRAG that re-
lies solely on logical relevance by setting si = s

logi
i

within the framework. This variant is referred to as
MoLoRAGlogi. In this setup, the retrieval engine
is the fine-tuned Qwen2.5-VL-3B, which already
demonstrates strong task understanding. We com-
pare the retrieval performance of MoLoRAGlogi
with MoLoRAG+ in Table 7. From the results, it
becomes evident that relying solely on logical rele-
vance does not achieve optimal performance. This
is because VLMs may exhibit over-confidence and,
in some cases, fall into hallucinations when relying
exclusively on reasoning capabilities. Additionally,
logical relevance scores are discrete, often lead-
ing to multiple pages with identical scores, making
it difficult to rank and distinguish between them.
Consequently, it is more reliable to combine both
logical and semantic relevance.
Effectiveness of Graph Construction We eval-
uate another variant of MoLoRAG, named
MoLoRAGFull, in which the VLM traverses all
pages within the document for a given question,
assigning a relevance score to each page. Each
page’s relevance score is updated by combining
semantic and logical relevance scores. After traver-
sal, only the top-K pages are retained as the final
retrieval result. Unlike MoLoRAG, this variant
eliminates the graph-based indexing mechanism
and instead sequentially processes all pages in the
document for selection. We compare the retrieval
performance of this variant with MoLoRAG+ in
Table 8. While MoLoRAGFull achieves a slight
improvement due to the expanded set of queried

Table 8: Retrieval performance comparison between
MoLoRAGFull and MoLoRAG+ using the same fine-
tuned retrieval engine. MoLoRAGFull sequentially
queries each page of the entire document and com-
bines their relevance scores for final re-ranking. Al-
though this variant achieves a marginal improvement
over MoLoRAG+, it requires nearly twice the computa-
tional time (Figure 6), significantly reducing efficiency.

Dataset K Method Recall NDCG MRR

MMLong
1

MoLoRAGFull 51.63 67.21 67.21
MoLoRAG+ 51.32 66.86 66.86

3
MoLoRAGFull 73.64 64.31 75.20
MoLoRAG+ 68.87 64.49 73.50

LongDocURL
1

MoLoRAGFull 51.24 70.68 70.68
MoLoRAG+ 50.82 70.08 70.08

3
MoLoRAGFull 72.30 64.32 78.53
MoLoRAG+ 68.92 64.90 77.14

pages, it requires nearly twice the computational
time (Figure 6), significantly reducing efficiency.
Furthermore, this marginal performance difference
highlights the effectiveness of our graph construc-
tion, which provides a high-quality candidate set
for retrieval.

D.7 Fine-grained Analysis
This subsection provides a detailed performance
analysis across evidence modalities (e.g., text, ta-
bles, figures) and question contexts (e.g., single-
page and multi-page understanding). The analysis
focuses on the MMLongBench and LongDocURL
datasets, which offer official splits based on modal-
ities and locations. For MMLongBench, results
for top-1, top-3, and top-5 settings are presented
in Tables 11, 12, and 13, respectively. For Long-
DocURL, the corresponding results are shown in
Tables 14, 15, and 16. From these results, we con-
clude that LVLMs w. MoLoRAG excel across
diverse modalities. While LLMs w. Text RAG
methods perform reasonably well on text-based
modalities, they struggle significantly with non-
textual content like figures (e.g., 9.83% on Figure).
This highlights the critical need for robust multi-
modal understanding. In contrast, LVLMs inte-
grated with MoLoRAG demonstrate strong and bal-
anced performance across all modalities. For exam-
ple, Qwen2.5-VL-7B with MoLoRAG+ achieves
37.43% on Text and 36.94% on Figure (MMLong-
Bench in the top-1 setting), showing the effective-
ness of retrieval-based multi-modal reasoning.
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Table 9: Overall performance comparison (in %) under the retrieved top-1 setting. The best performance across
all methods is highlighted .

Type Model Method MMLongBench LongDocURL PaperTab FetaTab Avg.

LLM-based

Mistral-7B Text RAG 21.66 17.63 5.09 24.11 17.12
Qwen2.5-7B Text RAG 22.11 20.75 5.34 22.64 17.71

LLaMA3.1-8B Text RAG 18.70 22.57 7.12 28.25 19.16
GPT-4o Text RAG 24.07 22.84 8.65 34.15 22.43

DeepSeek-v3 Text RAG 25.94 24.32 10.18 34.55 23.75

LVLM-based

LLaVA-Next-7B

Direct 7.15 10.78 3.05 11.61 8.15
M3DocRAG 16.32 25.25 6.62 15.26 15.86
MoLoRAG 16.73 26.11 6.87 18.41 17.03

MoLoRAG+ 17.15 27.00 6.36 17.52 17.01

DeepSeek-VL-16B

Direct 8.40 14.72 6.11 16.14 11.34
M3DocRAG 26.23 42.21 16.54 48.43 33.35
MoLoRAG 27.47 44.75 20.87 56.89 37.50

MoLoRAG+ 28.98 45.17 21.88 58.27 38.58

Qwen2.5-VL-3B

Direct 26.65 24.89 25.19 51.57 32.08
M3DocRAG 26.77 39.82 19.85 45.77 33.05
MoLoRAG 29.08 41.95 21.88 54.72 36.91

MoLoRAG+ 30.03 43.17 23.16 55.41 37.94

Qwen2.5-VL-7B

Direct 32.77 26.38 29.77 64.07 38.25
M3DocRAG 32.29 43.32 19.34 50.98 36.48
MoLoRAG 34.35 46.89 23.92 61.52 41.67

MoLoRAG+ 36.37 47.86 27.48 62.50 43.55

Multi-agent MDocAgent (LLaMA3.1-8B + Qwen2.5-VL-7B) 31.73 44.42 21.63 57.78 38.89

Table 10: Overall performance comparison (in %) under the retrieved top-5 setting. The best performance
across all methods is highlighted .

Type Model Method MMLongBench LongDocURL PaperTab FetaTab Avg.

LLM-based

Mistral-7B Text RAG 23.43 26.43 13.23 48.62 27.93
Qwen2.5-7B Text RAG 26.09 31.36 16.79 49.21 30.86

LLaMA3.1-8B Text RAG 24.25 33.27 17.81 54.53 32.47
GPT-4o Text RAG 28.74 36.98 20.36 57.78 35.97

DeepSeek-v3 Text RAG 31.23 39.04 23.92 62.01 39.05

LVLM-based

LLaVA-Next-7B

Direct 7.15 10.78 3.05 11.61 8.15
M3DocRAG 10.43 12.65 4.58 12.80 10.12
MoLoRAG 9.56 12.72 4.07 14.07 10.11

MoLoRAG+ 9.19 13.59 4.33 13.09 10.05

DeepSeek-VL-16B

Direct 8.40 14.72 6.11 16.14 11.34
M3DocRAG 18.87 29.27 8.14 27.26 20.89
MoLoRAG 20.07 30.76 8.40 39.76 24.75

MoLoRAG+ 24.86 38.02 9.67 41.44 28.50

Qwen2.5-VL-3B

Direct 26.65 24.89 25.19 51.57 32.08
M3DocRAG 28.38 44.67 27.48 55.22 38.94
MoLoRAG 31.43 46.05 26.97 57.48 40.48

MoLoRAG+ 32.41 45.13 27.48 58.07 40.77

Qwen2.5-VL-7B

Direct 32.77 26.38 29.77 64.07 38.25
M3DocRAG 37.19 50.33 30.53 64.37 45.61
MoLoRAG 39.97 52.33 31.04 68.80 48.04

MoLoRAG+ 40.47 52.33 31.55 69.39 48.44

Multi-agent MDocAgent (LLaMA3.1-8B + Qwen2.5-VL-7B) 38.34 48.07 29.77 63.78 44.99
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Table 11: Fine-grained performance analysis (Accuracy in %) across evidence modality and evidence locations
on MMLongBench under the retrieved top-1 setting. “UNA” refers to unanswerable questions.

Modality Location OverallType Model Method
Text Table Figure Chart Layout Single Multiple UNA Acc EM

LLM-based

Mistral-7B Text RAG 11.32 6.60 5.20 6.97 7.21 10.54 4.26 75.78 21.66 19.96
Qwen2.5-7B Text RAG 13.31 9.56 6.65 6.18 8.01 12.09 5.41 73.09 22.11 20.61

LLaMA3.1-8B Text RAG 16.53 10.93 7.80 9.84 12.92 13.26 7.96 47.98 18.70 16.36
GPT-4o Text RAG 15.04 12.95 6.39 8.05 10.33 13.34 5.97 77.13 24.07 22.46

DeepSeek-v3 Text RAG 17.76 14.70 9.83 9.99 10.72 16.80 7.97 76.68 25.94 23.84

LVLM-based

LLaVA-Next-7B

Direct 6.54 1.53 7.38 2.12 4.38 4.17 5.07 16.59 7.15 5.73
M3DocRAG 18.04 10.47 20.03 13.35 14.76 19.93 11.26 15.70 16.32 13.03
MoLoRAG 18.12 9.71 19.68 13.57 16.57 19.80 12.13 16.14 16.73 12.94

MoLoRAG+ 18.94 9.85 21.61 13.22 15.94 22.92 10.50 13.90 17.15 13.03

DeepSeek-VL-16B

Direct 8.86 6.57 13.39 5.23 13.63 9.86 9.36 3.14 8.40 6.01
M3DocRAG 30.84 23.95 31.55 27.29 30.16 41.55 15.76 7.62 26.23 20.98
MoLoRAG 31.67 28.54 30.80 26.42 32.84 43.65 16.63 8.07 27.47 21.81

MoLoRAG+ 35.14 27.86 35.32 27.42 30.74 47.62 17.37 4.93 28.98 22.83

Qwen2.5-VL-3B

Direct 34.11 23.37 33.75 24.72 29.56 36.30 23.42 9.87 26.65 20.98
M3DocRAG 31.88 22.70 27.87 23.85 22.22 37.90 15.40 20.63 26.77 21.90
MoLoRAG 33.07 29.18 29.06 23.44 24.88 41.58 17.02 21.52 29.08 23.84

MoLoRAG+ 35.26 28.11 32.09 25.03 26.66 43.68 18.11 19.73 30.03 24.49

Qwen2.5-VL-7B

Direct 37.14 25.52 31.95 28.00 27.26 40.21 23.88 30.94 32.77 27.36
M3DocRAG 31.87 23.88 30.03 26.48 26.74 42.66 12.37 40.81 32.29 27.63
MoLoRAG 33.80 32.12 29.77 29.23 30.34 46.61 15.37 37.22 34.35 29.67

MoLoRAG+ 37.43 31.34 36.94 29.95 33.11 50.14 18.25 34.08 36.37 30.87

Multi-agent MDocAgent (LLaMA3.1-8B+Qwen2.5-VL-7B) 35.08 30.13 29.61 27.47 24.72 45.26 14.86 29.15 31.73 27.45

Table 12: Fine-grained performance analysis (Accuracy in %) across evidence modality and evidence locations
on MMLongBench under the retrieved top-3 setting. “UNA” refers to unanswerable questions.

Modality Location OverallType Model Method
Text Table Figure Chart Layout Single Multiple UNA Acc EM

LLM-based

Mistral-7B Text RAG 15.97 14.77 8.41 10.70 12.38 16.16 8.86 68.61 24.47 22.00
Qwen2.5-7B Text RAG 17.96 15.42 9.58 10.35 10.69 17.72 9.34 70.40 25.52 23.29

LLaMA3.1-8B Text RAG 20.40 20.02 10.44 15.42 13.82 18.74 13.62 45.29 22.56 19.22
GPT-4o Text RAG 19.68 19.14 10.10 13.58 12.25 20.20 10.52 70.40 27.23 24.31

DeepSeek-v3 Text RAG 25.37 22.23 13.34 19.60 17.27 24.85 13.03 69.06 29.82 26.62

LVLM-based

LLaVA-Next-7B

Direct 6.54 1.53 7.38 2.12 4.38 4.17 5.07 16.59 7.15 5.73
M3DocRAG 8.74 6.59 11.72 1.87 8.54 7.27 8.55 17.49 10.10 8.23
MoLoRAG 6.84 5.55 10.72 2.15 7.66 7.82 6.43 16.14 9.37 7.49

MoLoRAG+ 7.49 2.49 11.24 2.89 8.08 7.86 6.25 16.59 9.41 7.30

DeepSeek-VL-16B

Direct 8.86 6.57 13.39 5.23 13.63 9.86 9.36 3.14 8.40 6.01
M3DocRAG 19.75 14.31 27.55 18.38 25.02 25.91 15.84 3.59 18.12 13.49
MoLoRAG 21.57 18.79 29.00 17.55 24.54 29.60 18.15 2.69 20.43 16.27

MoLoRAG+ 27.58 23.33 34.45 21.56 32.67 39.40 18.74 4.04 25.47 19.59

Qwen2.5-VL-3B

Direct 34.11 23.37 33.75 24.72 29.56 36.30 23.42 9.87 26.65 20.98
M3DocRAG 35.11 25.58 32.23 24.04 28.06 39.62 20.62 18.83 29.11 23.66
MoLoRAG 38.94 30.48 36.05 24.33 28.73 44.29 23.52 19.28 32.11 26.16

MoLoRAG+ 38.29 29.39 35.34 26.48 33.53 45.12 23.17 19.28 32.47 26.52

Qwen2.5-VL-7B

Direct 37.14 25.52 31.95 28.00 27.26 40.21 23.88 30.94 32.77 27.36
M3DocRAG 38.83 36.24 35.83 30.46 36.56 46.85 25.29 28.70 36.18 30.96
MoLoRAG 41.67 37.89 37.56 34.15 32.44 50.07 26.12 34.98 39.28 33.18

MoLoRAG+ 42.69 38.53 40.73 33.26 38.79 52.90 27.59 35.87 41.01 34.94

Multi-agent MDocAgent (LLaMA3.1-8B+Qwen2.5-VL-7B) 43.14 38.72 37.90 32.55 31.17 53.45 23.82 28.25 38.53 33.27
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Table 13: Fine-grained performance analysis (Accuracy in %) across evidence modality and evidence locations
on MMLongBench under the retrieved top-5 setting. “UNA” refers to unanswerable questions.

Modality Location OverallType Model Method
Text Table Figure Chart Layout Single Multiple UNA Acc EM

LLM-based

Mistral-7B Text RAG 17.41 12.03 8.13 13.32 16.30 16.16 10.59 61.43 23.43 20.43
Qwen2.5-7B Text RAG 19.98 19.29 10.06 12.57 15.31 19.99 11.34 64.13 26.09 23.57

LLaMA3.1-8B Text RAG 24.61 22.71 12.21 18.42 21.49 22.60 15.74 41.26 24.25 21.07
GPT-4o Text RAG 22.38 24.50 12.30 15.42 16.17 23.37 13.54 65.47 28.74 25.51

DeepSeek-v3 Text RAG 27.54 28.33 15.53 21.39 20.44 28.90 15.67 62.33 31.23 27.54

LVLM-based

LLaVA-Next-7B

Direct 6.54 1.53 7.38 2.12 4.38 4.17 5.07 16.59 7.15 5.73
M3DocRAG 8.59 6.23 12.16 3.40 7.43 8.65 7.92 17.49 10.43 7.95
MoLoRAG 7.33 5.52 11.36 3.12 8.34 7.95 7.12 16.14 9.56 7.67

MoLoRAG+ 6.46 2.26 10.33 3.70 8.54 8.02 4.79 17.49 9.19 7.30

DeepSeek-VL-16B

Direct 8.86 6.57 13.39 5.23 13.63 9.86 9.36 3.14 8.40 6.01
M3DocRAG 22.04 15.45 28.86 15.25 23.28 26.90 15.77 4.93 18.87 14.51
MoLoRAG 22.38 18.64 28.07 13.83 23.68 29.60 16.52 4.04 20.07 15.80

MoLoRAG+ 26.61 22.98 34.82 19.32 32.11 38.27 18.58 4.04 24.86 19.41

Qwen2.5-VL-3B

Direct 34.11 23.37 33.75 24.72 29.56 36.30 23.42 9.87 26.65 20.98
M3DocRAG 35.79 26.04 32.06 24.15 29.33 39.08 22.16 14.35 28.38 22.46
MoLoRAG 38.22 31.23 32.84 27.85 30.33 43.33 23.60 17.04 31.43 25.60

MoLoRAG+ 38.38 30.99 36.04 26.00 33.94 44.82 23.67 18.83 32.41 26.52

Qwen2.5-VL-7B

Direct 37.14 25.52 31.95 28.00 27.26 40.21 23.88 30.94 32.77 27.36
M3DocRAG 40.17 34.20 36.39 35.34 31.71 48.36 24.59 31.39 37.19 32.16
MoLoRAG 43.07 38.10 38.92 35.22 35.08 51.72 27.02 33.63 39.97 34.20

MoLoRAG+ 41.57 38.31 39.08 31.64 38.62 51.16 26.96 38.57 40.47 34.57

Multi-agent MDocAgent (LLaMA3.1-8B+Qwen2.5-VL-7B) 41.92 42.00 34.02 33.45 29.77 49.97 25.25 32.29 38.34 32.99

Table 14: Fine-grained performance analysis (Accuracy in %) across evidence modality and evidence locations
on LongDocURL under the retrieved top-1 setting.

Modality Location OverallType Model Method
Text Table Figure Layout Single Multiple Acc EM

LLM-based

Mistral-7B Text RAG 26.18 11.51 14.59 12.62 16.32 18.49 17.63 15.05
Qwen2.5-7B Text RAG 29.25 14.98 20.50 16.10 20.66 20.53 20.75 17.46

LLaMA3.1-8B Text RAG 30.63 16.26 22.18 16.52 21.32 23.49 22.57 18.11
GPT-4o Text RAG 32.16 16.35 23.21 17.44 21.91 23.40 22.84 18.45

DeepSeek-V3 Text RAG 33.28 18.17 25.47 19.84 24.00 24.34 24.32 20.09

LVLM-based

LLaVA-Next-7B

Direct 16.79 5.28 12.12 7.39 7.87 13.43 10.78 9.29
M3DocRAG 33.67 17.46 31.41 22.21 24.72 25.58 25.25 17.33
MoLoRAG 34.61 18.32 32.37 24.13 24.99 26.99 26.11 17.89

MoLoRAG+ 34.87 19.99 32.83 24.47 27.09 26.80 27.00 18.28

DeepSeek-VL-16B

Direct 19.98 8.26 13.81 13.65 11.18 17.87 14.72 11.35
M3DocRAG 51.63 36.79 40.39 33.04 46.83 38.10 42.21 33.08
MoLoRAG 54.64 39.97 41.52 34.64 48.77 41.17 44.75 35.18

MoLoRAG+ 54.91 40.11 42.90 34.90 49.88 41.16 45.17 35.61

Qwen2.5-VL-3B

Direct 31.98 17.43 23.50 22.86 21.60 27.77 24.89 18.67
M3DocRAG 49.08 32.91 38.70 31.24 42.77 37.17 39.82 32.22
MoLoRAG 50.60 36.93 38.09 32.20 44.66 39.54 41.95 34.15

MoLoRAG+ 52.06 37.56 40.40 32.97 46.83 39.91 43.17 34.80

Qwen2.5-VL-7B

Direct 32.37 19.88 27.09 23.25 24.20 28.15 26.38 19.74
M3DocRAG 52.00 38.18 41.79 34.86 49.67 37.47 43.32 34.19
MoLoRAG 55.91 42.77 44.06 36.58 52.88 41.46 46.89 37.25

MoLoRAG+ 56.99 42.81 45.77 37.24 53.91 42.47 47.86 37.81

Multi-agent MDocAgent (LLaMA3.1-8B+Qwen2.5-VL-7B) 54.52 40.41 43.20 31.25 48.88 40.26 44.42 36.30
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Table 15: Fine-grained performance analysis (Accuracy in %) across evidence modality and evidence locations
on LongDocURL under the retrieved top-3 setting.

Modality Location OverallType Model Method
Text Table Figure Layout Single Multiple Acc EM

LLM-based

Mistral-7B Text RAG 33.94 17.95 21.25 18.98 23.09 26.63 25.06 19.78
Qwen2.5-7B Text RAG 36.41 20.55 25.94 23.77 26.75 28.73 27.93 21.94

LLaMA3.1-8B Text RAG 37.22 22.99 29.64 22.53 29.42 30.08 29.80 22.75
GPT-4o Text RAG 40.91 26.80 33.14 26.57 33.19 32.13 32.74 25.20

DeepSeek-V3 Text RAG 41.89 30.84 35.49 28.15 35.77 33.67 34.73 26.84

LVLM-based

LLaVA-Next-7B

Direct 16.79 5.28 12.12 7.39 7.87 13.43 10.78 9.29
M3DocRAG 20.64 7.17 16.16 10.75 11.12 16.20 13.85 10.62
MoLoRAG 20.52 6.45 15.64 10.58 10.94 15.68 13.49 10.75

MoLoRAG+ 19.94 7.32 17.11 10.64 11.17 15.73 13.58 10.49

DeepSeek-VL-16B

Direct 19.98 8.26 13.81 13.65 11.18 17.87 14.72 11.35
M3DocRAG 40.61 16.19 27.56 30.78 25.54 33.31 29.60 21.29
MoLoRAG 40.62 17.57 28.69 28.86 27.07 32.67 29.98 21.81

MoLoRAG+ 44.28 29.89 37.81 32.84 39.19 35.58 37.21 27.74

Qwen2.5-VL-3B

Direct 31.98 17.43 23.50 22.86 21.60 27.77 24.89 18.67
M3DocRAG 54.07 37.97 42.07 36.97 46.39 42.64 44.4 34.97
MoLoRAG 55.99 38.23 42.95 37.01 48.09 43.76 45.79 36.17

MoLoRAG+ 54.24 39.03 41.13 36.62 47.49 43.31 45.27 35.53

Qwen2.5-VL-7B

Direct 32.37 19.88 27.09 23.25 24.20 28.15 26.38 19.74
M3DocRAG 58.16 43.75 46.04 41.24 53.35 45.13 49.03 38.88
MoLoRAG 61.46 45.66 49.06 43.27 55.60 48.30 51.71 40.86

MoLoRAG+ 61.43 45.98 49.01 42.56 55.01 49.01 51.85 40.13

Multi-agent MDocAgent (LLaMA3.1-8B+Qwen2.5-VL-7B) 56.81 42.25 44.07 35.48 49.46 44.51 46.91 37.63

Table 16: Fine-grained performance analysis (Accuracy in %) across evidence modality and evidence locations
on LongDocURL under the retrieved top-5 setting.

Modality Location OverallType Model Method
Text Table Figure Layout Single Multiple Acc EM

LLM-based

Mistral-7B Text RAG 34.74 18.78 22.91 19.91 25.57 26.94 26.43 20.22
Qwen2.5-7B Text RAG 39.38 24.63 29.76 24.72 30.48 31.92 31.36 25.03

LLaMA3.1-8B Text RAG 40.04 26.02 32.74 26.01 32.56 33.85 33.27 25.42
GPT-4o Text RAG 44.20 31.54 40.20 29.32 37.86 36.00 36.98 28.13

DeepSeek-V3 Text RAG 45.71 34.39 41.58 31.26 40.09 38.08 39.04 29.38

LVLM-based

LLaVA-Next-7B

Direct 16.79 5.28 12.12 7.39 7.87 13.43 10.78 9.29
M3DocRAG 19.20 5.89 13.58 9.36 8.86 15.93 12.65 10.02
MoLoRAG 19.39 5.94 13.51 10.13 9.18 15.79 12.72 10.19

MoLoRAG+ 20.03 7.00 16.67 10.69 10.79 16.01 13.59 10.58

DeepSeek-VL-16B

Direct 19.98 8.26 13.81 13.65 11.18 17.87 14.72 11.35
M3DocRAG 40.54 15.44 26.41 30.35 24.50 33.62 29.27 21.03
MoLoRAG 42.08 16.97 28.58 31.09 26.40 34.76 30.76 22.19

MoLoRAG+ 46.11 29.48 38.03 34.02 39.76 36.61 38.02 28.34

Qwen2.5-VL-3B

Direct 31.98 17.43 23.50 22.86 21.60 27.77 24.89 18.67
M3DocRAG 54.76 37.06 39.66 38.47 45.49 43.95 44.67 34.84
MoLoRAG 55.29 39.68 40.79 38.88 47.07 45.25 46.05 35.74

MoLoRAG+ 53.12 39.45 40.95 37.32 47.05 43.43 45.13 35.53

Qwen2.5-VL-7B

Direct 32.37 19.88 27.09 23.25 24.20 28.15 26.38 19.74
M3DocRAG 59.52 45.01 45.25 42.82 53.14 47.71 50.33 39.23
MoLoRAG 60.70 46.99 47.95 44.74 55.23 49.65 52.33 41.76

MoLoRAG+ 60.54 46.61 48.68 45.13 54.86 50.05 52.33 40.65

Multi-agent MDocAgent (LLaMA3.1-8B+Qwen2.5-VL-7B) 57.09 44.66 45.97 35.47 50.79 45.52 48.07 38.32
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