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Abstract
Multimodal Multi-hop question answering re-
quires integrating information from diverse
sources, such as images and texts, to derive
answers. Existing methods typically rely on
sequential retrieval and reasoning, where each
step builds on the previous output. However,
this single-path paradigm makes them vulner-
able to errors due to misleading intermediate
steps. Moreover, developing multimodal mod-
els can be computationally expensive, often re-
quiring extensive training. To address these lim-
itations, we propose a training-free framework
guided by an Adaptive Planning Graph, which
consists of planning, retrieval and reasoning
modules. The planning module analyzes the
current state of the Adaptive Planning Graph,
determines the next action and where to expand
the graph, which enables dynamic and flexi-
ble exploration of reasoning paths. To handle
retrieval of text to unspecified target modali-
ties, we devise modality-specific strategies that
dynamically adapt to distinct data types. Our
approach preserves the characteristics of multi-
modal information without costly task-specific
training, enabling seamless integration with up-
to-date models. Finally, the experiments on
MultimodalQA and WebQA show that our ap-
proach matches or outperforms existing models
that rely on training.

1 Introduction

The field of question answering(QA) has gained
significant attention and is increasingly applied
across various domains, including customer sup-
port, healthcare, and education, particularly with
the rapid advancements driven by large language
models (LLMs) (Su et al., 2019; Lu et al., 2022;
Wei et al., 2022; Shao et al., 2023; He et al., 2024).
These models have demonstrated strong perfor-
mance in single-hop QA. However, multimodal
multi-hop QA (Talmor et al., 2021; Chang et al.,
2022) presents a greater challenge, as it requires in-
tegrating diverse sources. As illustrated in Figure 1,

Figure 1: An example of multimodal multi-hop QA. It
requires identifying relevant information (bounded by
green box) from diverse sources to generate answers.

relevant information must be identified across mul-
tiple sources with different modalities to generate
answers. In these settings, only a subset of sources
is relevant, while others introduce noise. Solving
this task requires approaches that effectively inte-
grate both retrieval and reasoning capabilities.

Current research in this area centers around two
main paradigms. The first approach adopts a two-
stage framework (Yu et al., 2023; Liu et al., 2023;
Lim et al., 2024). It retrieves all potentially rele-
vant information in a single step, followed by an-
swer generation based on the retrieved information.
The two stages are trained independently with dis-
tinct objectives, which can lead to a misalignment.
Specifically, the reasoning stage implicitly assumes
that the retrieved sources are complete and accu-
rate, introducing fragility as early retrieval failures
cannot be rectified during generation. For example,
in Figure 2, the retrieval results linked to animated
TV show and yellow gloves involve multiple false
positives, and overlook the correct poster. In the
next stage, the system is forced to reason from the
incorrect contexts, leading to inaccurate answer.

The second mainstream method employs an it-
erative approach (Trivedi et al., 2022; Yang et al.,
2023a; Zhang et al., 2024), which offers greater
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Figure 2: A representative case illustrating how each framework handles deviations in the reasoning process to
reach the correct answer. We prompt the LLM to operate following the paradigm of each framework, comparing
how structural differences affect reasoning under the same conditions.

flexibility as it has no restrictions on the number
of steps, allowing for the integration of additional
sources as needed. The structure of these meth-
ods follow a single-path paradigm, where actions
proceed in a fixed pattern. This design introduces
cascading error propagation, which relies on the
model’s inherent reasoning ability to correctify. For
instance, in Figure 2, if an initial retrieval incor-
rectly identifies details about the TV show Poké-
mon, this mistake could mislead the next subques-
tion, ultimately leading to an incorrect result along
a single-path with flaw. The challenge is further am-
plified in multimodal settings, where the modality
involved in each step is often unknown. To handle
different types of sources, SKURG (Yang et al.,
2023a) fuses image and text embeddings to create
an entity-centered representation, which relies on
extensive training of existing models. ETG (Zhang
et al., 2024) retrieves evidences by converting im-
ages into texts during preprocessing, which may re-
sult in information loss. and omit relevant contexts.
These limitations highlight the need for developing
methods that can dynamically adapt to multimodal
sources.

To address these issues, we introduce a training-
free Adaptive Planning Graph-guided approach. As
illustrated in Figure 2, both the two-stage and it-
erative framework rely on a single-path paradigm,
where each step strictly depends on the previous
one. Consequently, errors in earlier steps can prop-
agate and affect the final answers. In our frame-
work, we adopt a Adaptive Planning Graph, where
each node represents a thought or a result gener-
ated by module, and edges denote the dependencies
between nodes. It presents a more flexible flow, al-

lowing the new steps to be dynamically generated
from any relevant node in the Adaptive Planning
Graph. The proposed method consists of planning,
retrieval and reasoning modules. At each step, The
planning module generates a plan for one action on-
the-fly. It continuously analyzing the current state
to determine the next move. To facilitate search of
contexts across multiple modalities, existing works
either convert images into texts which may result in
incomplete captions, or rely on resource-intensive
pretraining. To address these limitations, our mod-
ule constructs separate knowledge bases and uses
modality-specific strategies to collect relevant in-
formation. It enables effective retrieval while pre-
serving modality details and avoiding additional
computational costs. The main contributions of our
paper are presented as follows:

1. We introduce a novel framework, MMAPG
(Multimodal Multi-hop Adaptive Planning
Graph), that offers enhanced flexibility for
tackling multimodal multi-hop QA. By con-
structing the Adaptive Planning Graph step-
by-step, our approach facilitates dynamic ex-
ploration of different sources and supports a
graph-based reasoning flow. To the best of our
knowledge, this is the first work using graph-
based planning for multimodal multi-hop QA.

2. We address multimodality with a training-free
framework by employing distinct off-the-shelf
within specialized modules. Our proposed
modules preserve the details of each modal-
ity while leveraging the generated rationale
to support the construction of the Adaptive
Planning Graph.
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3. We conduct experiments on MultimodalQA
and WebQA datasets. The results demonstrate
that our model performs comparably or better
than trained models.

2 Related Works

2.1 Multimodal Multi-hop QA

The first mainstream approach to solve multimodal
multi-hop QA is the two-stage framework. For in-
stance, Solar (Yu et al., 2023) and UniRAG (Lim
et al., 2024) both unify multimodal sources into
texts, retrieve top-k results and employ language
models to generate the final response. To han-
dle multimodality, AutoRouting and ImplicitDe-
comp (Talmor et al., 2021) fine-tune models to
answer questions depending on modality identi-
fied by a classifier. Meanwhile, PERQA (Yang
et al., 2023b) employs an iterative evidence selec-
tion process and incorporates multimodal reason-
ing during the generation phase. In contrast to the
methods previously discussed, which all involve
training or fine-tuning, MMHQA-ICL (Liu et al.,
2023) represents a training-free paradigm, which
autonomously generates prompts for in-context
learning.

The second approach focuses on an itera-
tive framework, which is widely used in single-
modality QA (Trivedi et al., 2022). However, its ap-
plication in multimodal multi-hop QA is less com-
mon. A notable example is SKURG (Yang et al.,
2023a), which introduces a unified retrieval and
generation module that iteratively integrates mul-
timodal information. A recent work, ETG (Zhang
et al., 2024), proposes a mixture-of-experts ap-
proach to combine retrieval and generation, with
reasoning represented through an entailment tree.

2.2 Chain of thought

The chain of thought (CoT) reasoning has signifi-
cantly improved LLMs’ reasoning abilities. It in-
spires approaches that prompt LLMs to generate
full reasoning at once (Kojima et al., 2022) or in-
crementally (Xu et al., 2023; Shen et al., 2024).
While these methods follow a single-path paradigm,
multi-path approaches like CoT-SC (Wang et al.,
2022), Tree-of-Thought (ToT) (Yao et al., 2024),
and Graph-of-Thought (GoT) (Besta et al., 2024)
explore multiple reasoning paths and decision-
making processes. Notably, GoT requires users to
manually define the execution plan, making it less
flexible for QA tasks that require adaptive plans for

different questions.
Despite these advances, these reasoning methods

might overlook the integration of external knowl-
edge sources into the reasoning process. To address
this limitation, recent research has proposed incor-
porating diverse knowledge sources into reason-
ing pipelines (Tan et al., 2025a; Sun et al., 2023;
Sarmah et al., 2024; Tan et al., 2025b; Su et al.,
2023; Ma et al., 2023).

2.3 Multimodal Retrieval

Retrieval across various modalities has been exten-
sively researched, usually with fixed source and
target modalities, such as text-to-image, image-to-
text, or image-text pair to image retrieval. However,
retrieval without predefined target modalities has
received less attention. Previous research (Mayil-
vahanan et al., 2023) has demonstrated that sim-
ilarity scores between intra-modalities and inter-
modalities exhibit different distributions, present-
ing inherent challenges in this area. MuRAG (Chen
et al., 2022) pretrains a multimodal retrieval model,
but requires collecting a large number of samples.
REVEAL (Hu et al., 2023) involves pretraining and
developing gating score to select dataset. These
approaches illustrate that facilitating multi-modal
retrieval often relies on costly resources. Other
works (Yu et al., 2023; Liu et al., 2023) attempts
to convert all the images into texts to address the
challenges of multimodal retrieval. However, ques-
tions can focus on various details within an image,
and these critical information may not be preserved
when converting to texts.

3 Methods

We present our motivation for graph-guided frame-
work in Section 3.1. Then we depict the main
modules in our framework MMAPG, including
knowledge base construction (Section 3.2), plan-
ning module (Section 3.3) and retrieval module
(Section 3.4). The overall workflow is detailed in
Appendix A.2. Since the reasoning module is sim-
ply implemented by calling an off-the-shelf model
to generate the answer, we omit its discussion here,
where its details can be found in Figure 3.

3.1 MMAPG Overview

In this section, we demonstrate how our graph-
guided framework alleviates the limitations of two-
stage and iterative framework based methods. To
establish the framework, we prompt the LLM to
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Figure 3: An overview of our framework MMAPG, which consists of four parts: (a) Knowledge Base Construction:
precomputes embeddings for given sources; (b) Planning Module: determines the next action in the Adaptive
Planning Graph and which module to call; (c) Retrieval Module: retrieve relevant sources and find key information;
(d) Reasoning Module: derives the answer based on the provided instruction.

analyze the current graph and generate instructions
for next steps, as shown in Figure 2. Each step
in the reasoning process is represented as a node,
and we explicitly allow the new nodes to be created
based on any existing node. This capability ensures
that even if one path proves ineffective, the frame-
work can still identify alternative paths based on the
current nodes. In the example, when the retrieval
of animated TV shows featuring two yellow gloves
is unsuccessful, the system can combine existing
nodes to explore other paths for retrieving relevant
TV shows within a limited range. Compared to
previous approaches, our paradigm enhances the
flexibility and allows for a more adaptive process.

3.2 Knowledge Based Construction

Given a set of sources S = {S1, · · · , Sn}. Each
source Si may have associated text-based compo-
nents Ti, (e.g., Ti = {T title

i , T caption
i }). We main-

tain separate knowledge base for text and images,
denoted as KBtext and KBimg.

Specifically, the text knowledge space consists
of embedding derived from textual sources and
text-based image information, including image ti-
tles and image captions. Since different types
of text-based information vary in length and con-
textual detail, which can impact the retrieval per-
formance (Wang et al., 2024), to ensure consis-
tent granularity, we decompose Si into relational
triplets Ti = {τi1 · · · , τimi}. Here, we employ a
few-shot prompting method (Zhang and Soh, 2024)
to extract triplets from Si, and compute the embed-
ding:

Ti =M(Ptri ⊕Ftri ⊕ Si), (1)

etextij = ftext(τij), (2)

where M represents the LLM used; Ptri is the
prompt; Ftri is the few-shot examples; ⊕ means
concatenation; ftext is the model to generate text
embedding; etextij is the computed embedding for
triplet τij . For short components, such as titles,
we directly compute their embeddings. Finally,
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we construct the text knowledge base KBtext by
storing all the text embeddings {etext1 , · · · , etextN }.

To construct image knowledge base KBimg, em-
beddings are directly computed as follows:

eimg
i = fimg(Si), (3)

where fimg is the multimodal model to generate
image embedding. Similarly, KBimg stores all the
image embeddings {eimg

1 , · · · , eimg
M }.

3.3 Planning Module

In this section, we introduce the planning module,
the core component for constructing the Adaptive
Planning Graph, denoted as G = (V,E). The
node v ∈ V represents the action at each stage,
and directed edges e ∈ E represent dependencies
between nodes. Specifically, e = (vi, vj) indicates
that node vj is built upon vi, which reflects the
logical flow of global reasoning. The Adaptive
Planning Graph is built by adding new nodes along
with their corresponding edges on the fly, where the
generation of these nodes and edges are informed
by the planning module at each step.

To harness the reasoning capability of LLMs for
global planning, we design the prompt that serves
two functions: analyzing the current state of the
Adaptive Planning Graph as it evolves to answer
the question and determining the next appropri-
ate action. For the first function, we provide both
an overall plan outlining the essential information
needed and a summary of the current graph that
reflects the progress made so far. Together, they
offer the model a clear perspective of the infor-
mation already gathered and what remains to be
explored. For the second function, we present a
set of options for expanding the graph. It allows
the model to decide the most appropriate node to
generate based on its prior analysis. To facilitate
these processes, our prompts consists of four com-
ponents: (1) Overall plan, denoted as Pplan. Given
that many LLMs exhibit limitations in handling
long-term planning, we generate a high-level guide,
which outlines the key components and possible
global plans. It serves as a reference for expanding
the Adaptive Planning Graph G. (2) Graph State
Description, presented as Pstate(G). It displays
the current state of the Adaptive Planning Graph by
describing the content of existing nodes and their
dependencies. (3) Parent Node Selection Instruc-
tion, represented as Pparent. It instructs the system
to select parent nodes from all nodes in the graph

G. (4) Node Type Selection Instruction, denoted
as PC . It provides a set of node types to select.
We concatenate these components to build prompts
that are fed into LLMM:

IC , Iparent, Iinstr =M(Pplan ⊕ Pstate(G)

⊕ Pparent ⊕ PC),
(4)

where IC , Iparent, Iinstr are the type, parent
nodes, and instruction for generating the con-
tent of the new node. The type of new node
Ci ∈ {Question,Answer,Retrieval, Stop} is
informed by IC . It signifies the system of the next
action to take. We present the instructions and
actions according to each node type as follows:

• Question: The instruction is a direct question.
Since no further processing is required, this
question is taken as the new node content.

• Answer: The instruction specifies which ques-
tion to be answered. The instruction and par-
ent nodes are passed into the reasoning mod-
ule to generate the corresponding answer. The
answer is then added as the new node content.

• Retrieval: The instruction outlines the infor-
mation to be retrieved. The instruction and
parent nodes are passed to the retrieval mod-
ule. If relevant information is found, it is
added as the new node content. However, if
no relevant information is retrieved, a node is
created to indicate that no results were found.

• Stop: The action with this node is to termi-
nate the process. It uses the content of the
last answer node as the final answer. If an
answer has not yet been generated, the LLM
will generate one based on the overall graph.

The graph is then expanded by adding the new node
along with the corresponding edges, which are de-
termined by Iparent. For instance, if Iparent =
{vj}, a directed edge eij = {vj , vi} will be added
to the Adaptive Planning Graph, to indicate vi is
derived from the thought of vj . The planning mod-
ule will continuously plan the next step to update
the graph until a stop node is generated or the max-
imum number of iteration is reached.

3.4 Retrieval Module
The retrieval module is responsible for extracting
relevant information based on the given instruction
and parent nodes. To eliminate training costs and
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enhance generalizability, we leverage off-the-shelf
models to handle multimodality. However, retrieval
across different source types can exhibit inherently
different similarity score distributions, as we show
in detail in Appendix A.1. To address this, we pro-
pose tailored strategies for different modalities. We
firstly utilizes LLM to decompose the instruction
into text-related and image-related components:

Itextinstr, Iimg
instr =M(Pdecomp ⊕ Iparent ⊕ Iinstr),

(5)

where Pdecomp is the prompt for decomposition.
Next, we apply different methods to extract key
elements from text-related and image-related parts.

For the text-related part, we employ few-shot
examples mined from the dataset to identify key
phrase. The queries utilized for text retrieval are
generated as follows:

Qtext =M(Pextract ⊕Ftext ⊕ Itextinstr), (6)

where Pextract is the prompt for key phrase ex-
traction, and Ftext represents the set of few-shot
examples to identify key phrases or words.

For the image-related part, the type of image
retrieval is identified from Iimg

instr firstly, which de-
termines the action to be taken next. There are
two types of image retrieval defined. The first one
is targeted image retrieval. It occurs when the in-
struction Itextinstr mentions specific identifiers of a
particular image, such as title. We expect these
identifiers to be extracted and used to search the
text knowledge base KBtext. The query Q′

text is
generated by LLM as follows:

Q′
text, Iimg

tgt =M(Ptgt ⊕Ftgt ⊕ Iimg
instr), (7)

where Ptgt and Ftarge are the prompt and few-shot
examples for targeted image retrieval. The gen-
erated Iimg

tgt will be used in later steps for candi-
date examination. The final query to search in text
knowledge base KBtext is then the combination of
Qtext and Q′

text:

Qtext = Qtext ⊕Q′
text. (8)

The other type is descriptive image retrieval,
which is utilized when a description about the im-
age content is provided. In this case, the image-
related part instruction Iimg

instr usually contains de-
scriptive text to guide the system in locating images
that best match the description in KBimg. The

queries are generated as follows:

Qimg, Iimg
descr =M(Pdescr ⊕Fdescr ⊕ Iimg

instr),
(9)

where Pdescr, Fdescr are the prompt and few-shot
examples for descriptive image retrieval.

Next, we generate the corresponding embed-
dings for extracted queries. These embeddings
are then searched in the corresponding knowledge
base to identify matches within a defined radius rt
and ri for KBtext and KBimg respectively. For
example, when searching within the text knowl-
edge base, we first compute the embedding for the
extracted phrase qtexti as follows:

etexti = ftext(q
text
i ). (10)

Next, we identify the candidates from KBtext that
are within the defined radius rt from etexti :

Ctext = {ej ∈ KBtext | ∥ej − etexti ∥ ≤ rt}.
(11)

Then, we could derive k candidates as Ctext =
{ctext1 , · · · , ctextk }.

While retrieval based solely on similarity score
may introduce many outliers, a more refined ex-
amination is conducted using off-the-shelf models.
These models assist in verifying whether the con-
tent of the candidates is relevant to the instruction.
For text-related parts, we directly instruct LLM to
extract useful information Otext

i from ctexti :

Otext
i =M(Ptext

exam ⊕ Itextinstr ⊕ ctexti ), (12)

where Ptext
exam is the prompt used for examining tex-

tual candidates. For image-related part, we instruct
vision-language modelMvl to examine the image:

Oimg
j =Mvl(P img

exam ⊕ Iimg
p ⊕ cimg

j ). (13)

where p ∈ {descr, target}. Finally, all the exam-
ination results O = {Otext

1 , · · · , Oimg
1 , · · · } will

be collected together. These compiled information,
along with Iinstr, is fed into the LLM for informa-
tion extraction:

R =M(Pretr ⊕ Iinstr ⊕O). (14)

The final results R are then served as the content
of the new retrieval node.
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Methods Trained Models
Single-Modal Multi-Modal Overall

F1 EM F1 EM F1 EM
Fine-tuned

AutoRouting (Talmor et al., 2021) RoBERTa, ViLBERT 58.5 51.7 40.2 34.2 51.1 44.7
ImplicitDecomp (Talmor et al., 2021) RoBERTa, ViLBERT 58.8 51.1 51.7 46.5 55.9 49.3
Solar (Yu et al., 2023) BERT, T5 74.8 69.7 65.4 55.5 66.1 59.8
PERQA (Yang et al., 2023b) BERT, ViT+Llama+Lora 74.1 69.7 60.3 54.7 67.8 62.8
SKURG (Yang et al., 2023a) OFA,BART 69.7 66.1 57.2 52.5 64.0 59.8
ETG (Zhang et al., 2024) T5(MoE) 74.9 69.8 65.7 64.7 66.5 68.2

W/o fine-tuning
MMHQA-ICL (Liu et al., 2023) - 72.9 60.5 55.5 46.2 65.8 54.8
MMAPG (ours) - 75.4 65.2 65.0 51.9 70.6 59.1

Table 1: The comparison of different methods on MultimodalQA dataset. We report the F1 and EM scores for
single-modal, multi-modal and overall questions. The trained models used for each model are also presented.

4 Experiments

4.1 Experimental Setup

We utilize MultimodalQA (Talmor et al., 2021) and
WebQA (Chang et al., 2022) datasets for multi-
modal multi-hop QA evaluation. MultimodalQA is
a dataset designed for question answering across
text, tables, and images, where each question is
accompanied by a set of distractors. The answers
are evaluated using the F1 and exact match (EM)
scores. WebQA consists of QA pairs along with
images or text snippets, including distractors. The
evaluation metrics for WebQA involve QA-Acc,
keyword-based accuracy and QA-FL, which as-
sesses fluency using BARTScore. The implemen-
tation details of our framework can be found in
Appendix A.5.

Methods QA-Acc QA-FL
Fine-tuned
Solar 58.9 60.9
MuRAG 54.6 55.7
SKURG 63.4 47.8
PERQA 63.9 61.7

W/o fine-tuning
MMAPG (ours) 65.9 56.4

Table 2: The performance comparison on WebQA.

4.2 Main Results

We present our results on the MultimodalQA in
Table 1. Compared to baseline models, our method
achieves the highest F1 scores in the overall eval-
uation. However, our exact match scores fall
short of the current state-of-the-art. This disparity
arises since our approach operates without fine-
tuning, and thus, does not align precisely with
the ground-truth labels provided by the dataset
(See Appendix A.9 for more details). Our single-
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Figure 4: The F1 scores of our method and SKURG
across different numbers of supporting documents.

modality F1 score surpasses existing methods, al-
though the multimodal F1 result remains slightly
below that of fine-tuned models.

It is likely due to the the inherent challenges
of image reasoning. Without fine-tuning, vision-
language models may exhibit greater variability
in performance, affecting their ability to precisely
match reference answers. Despite this, our ap-
proach maintains comparable performance of exist-
ing fine-tuned model.

Table 2 presents the results of WebQA dataset.
We observe that our method achieves accuracy
comparable to that of other fine-tuned approaches.
However, in terms of fluency, our method yields
lower scores. Similar to the exact match scores,
without fine-tuning, the paraphrased answers strug-
gle to closely match the ground truth.

To assess our method in long-range reasoning,
we compare its performance with an iterative frame-
work, SKURG in Figure 4, which shows the F1
score across varying numbers of required support-
ing contexts in MultimodalQA. As the number of
supporting contexts increases, requiring more steps,
SKURG’s performance drops significantly, espe-
cially beyond five contexts. In contrast, our model
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Methods Single-hop Multi-hop Overall

F1 EM F1 EM F1 EM

MMAPG 75.3 65.7 70.4 57.6 73.7 63.9
w/o graph-guided planning 72.4 61.2 58.6 45.1 65.3 53.0
w/o triplet conversion 68.1 56.1 57.6 46.3 63.9 52.2
w/o retrieval module 54.0 44.9 45.8 33.3 49.8 39.1

Table 3: The ablation studies on graph-guided planning and retrieval module. We present the F1 and EM score for
single-hop, multi-hop and overall questions.

Figure 5: Case study of a multimodal multi-hop QA where MMAPG answers correctly while SKURG fails. The
question, retrieval and answer nodes are presented in blue, green and yellow boxes respectively. The instruction is
displayed in red. The SKURG result is shown in a purple box.

maintains stable performance, which shows its ro-
bustness in complex reasoning scenarios.

4.3 Ablation Study

We present the ablation studies for Adaptive Plan-
ning Graph-guided planning , triplet conversion
and retrieval module on MultimodalQA. For single-
hop tasks, removing graph-guided mechanism re-
sults in minor performance decline. However, for
multi-hop questions, it leads to a substantial drop of
over 10 points in both F1 and exact match scores.
It demonstrates that our planning module has a
critical role in handling questions that require long-
range inference steps. Eliminating triplet conver-
sion during knowledge base construction results
in consistent drops across all metrics, demonstrat-

ing its role in aligning data granularity. For the
retrieval module, we observe a more significant
performance drop without our modality-specific
strategies, as incorrect retrieval intensifies hallu-
cination for both reasoning and global planning.
It validates that our retrieval module improve the
performance even without additional training.

4.4 Case Study

We show a case study in Figure 5, which presents
how the Adaptive Planning Graph is constructed.
At the initial few steps, the system attempted to re-
trieve information about Television of Tyler Alvarez.
However, it incorrectly shifted the focus to the TV
show Veronica Mars. Upon recognizing that this
show did not align with the poster description in
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the question, the system redirected its reasoning to-
ward Bailee Madison and relevant TV shows about
the poster. The case study highlights that, even
when the graph temporarily deviates, the system
is capable of recovering and producing accurate
results.

5 Conclusion

In this paper, we introduce a Adaptive Planning
Graph-guided framework for multimodal multi-hop
QA. It comprises planning, retrieval, and reason-
ing modules, which leverage off-the-shelf mod-
els without fine-tuning. Compared to existing ap-
proaches, the proposed method enables flexible rea-
soning path exploration and plug-and-play model
integration. Experimental results show that our
method achieves competitive performance against
fine-tuned models even without additional training.

6 Limitations

Despite the effectiveness of MMAPG, the absence
of fine-tuning leads to lower exact match and flu-
ency scores. Additionally, frequent model calls
increases inference costs. The flexibility of our
Adaptive Planning Graph leads to longer explo-
ration times and additional steps. Future work will
focus on improving module efficiency and reducing
computational costs during inference.
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A Appendices

A.1 Challenges of Modality-Agnostic
Retrieval

In this section, we examine the limitations of
modality-agnostic retrieval when using textual
queries, using 100 random selected image-caption
pairs from the MSCOCO dataset. Figure 7 shows a
3D projection of CLIP embeddings for both images
and their corresponding captions. The embeddings
exhibit a clear separation by modality, which high-
lights the modality gap in the shared representation
space. Furthermore, Figure 6 presents the similar-
ity distributions for text-text and text-image pairs
derived from same set of samples, which reveals a
distribution shift between text-text and text-image
similarity scores.
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Figure 6: Comparison of similarity score distributions.

Figure 7: Projection of image and text embeddings.

A.2 Overall Workflow

We introduce the overall workflow in Algorithm 1.
For simplicity, we denote the prompts used for plan-
ning, retrieval and reasoning modules as Pplanning,
Pretrieval and Preason. Initially, separate knowl-
edge bases are constructed for text and image
modalities (line 1), and a graph is initialized with
the given question (line 2). Following this, the
graph construction procedure begins (line 3-22).
At each step, the planning module provides several
instructions for the generation of new node (line
4). Depending on the new node type Ci, the system
decides which module to invoke and executes the
action (Line 7-17). During this step, the content of
the new node is determined and the edges are added
to update the Adaptive Planning Graph. This pro-
cess continues until either a stopping condition is
met or the maximum number of turns k is reached.
Once the graph construction phase is completed, if
the final node is not of the answer type, an answer

will be generated based on the current state of the
graph (line 24). Otherwise, the last answer node
will be returned as the final output (line 26).

A.3 Detailed Prompts
We include the prompts from the planning module
mentioned in Section 3.3 in Table 5. Since the
overall plan Pplan is generated based on the given
question, we provide the prompt for generating the
plan as Pplan_gen instead. The prompts from the
retrieval module in Section 3.4 are listed in Table 6.

The few-shot examples of Ftgt and Fdescr in
Section 3.4 are displayed in Table 8 and Table 7.
We provide Example 6 as a case to deal with mis-
classification. For example, if Iimg

instr corresponds
to descriptive image retrieval and does not contain
a specific target, after inputting into Eq.7, its Q′

text

should be returned as an empty list.

A.4 Time Complexity
In this section, we analyze the time complexity
of our framework. Here we denote the time for a
single LLM operation be tL, a VLM operation be
tV , a text embedding computation be tTE , a image
embedding computation be tIE . Assume there are
n sources. During knowledge based construction,
since we utilize sklearn.BallTree to establish the
search space, the complexity will be:

O(n · (tTE + tIE)) +O(n log n). (15)

Assume q queries are generated, a single retrieval
step takes

tL +O(q · log n) +O(n · (tL + tV )). (16)

A reasoning step includes a single LLM operation,
therefore it takes tL.

Let the total number of nodes be c, including
cretr retrieval steps and creason reasoning steps.
The planning stages would take c · tL in total. The
overall time complexity is displayed as following:

O(n · (tTE + tIE)) +O(n log n)

+ cretr · (tL +O(q · log n) +O(n · (tL + tV )))

+ creason · tL + c · tL.
(17)

A.5 Implementation
In our training-free framework, models can be eas-
ily incorporated as required, without the need for
fine-tuning. Here, we utilize Llama3-70B-Instruct
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Algorithm 1 Overall workflow of the proposed framework

Require: Question Q, Sources {S1, S2, · · · , Sn}, A set of prompt templates P , max_iteration k.
1: KBtext,KBimg ← KnowledgeBaseConstruction({S1, S2, . . . , Sn})
2: V ← {Q}, E ← {}, G← (V,E) ▷ Initialize the Adaptive Planning Graph
3: for i = 0 to k do
4: Iinstr, IC , Iparent ← PlanningModule(G,Pplanning) ▷ Invoke Planning Module
5: Ci ← Decompose(IC)
6: vp1, · · · , vpl ← Iparent
7: if Ci is Question then
8: V ← V ∪ {vi}
9: else if Ci is Answer then

10: vi ← ReasoningModule(Preason, Iinstr, Iparent) ▷ Invoke Reasoning module
11: V ← V ∪ {vi}
12: else if Ci is Retrieval then
13: vi ← RetrievalModule(Iinstr, Iparent,KBtext,KBimg, Pretrieval) ▷ Invoke Retrieval

Module
14: V ← V ∪ {vi}
15: else if Ci is Stop then
16: break ▷ Terminate the process
17: end if
18: for j = 1 to l do
19: E ← E ∪ {(vpj , vi)}
20: end for
21: Update the Adaptive Planning Graph G from (V,E)
22: end for
23: if the type of last node Ck is not Answer then
24: A← ReasoningModule(Preason, Iinstr, Iparent, G)
25: else
26: A← the content of the last answer node
27: end if
28: return A
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Figure 8: Comparison of similarity score distributions
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Figure 9: The error analysis of cases where the EM
score is zero.

as the LLM and LLaVA-13B as the visual-language
model. As outlined in Section 3.2, the text knowl-
edge base supports search within a text embedding
space, while the image knowledge base expects
cross-modal retrieval between text queries and im-
ages. To facilitate these retrieval processes, we em-
ploy CLIP to generate embeddings for both texts
and images. During knowledge base construction,
we utilize sklearn.BallTree structure to efficiently
store and organize the embeddings. To retrieve can-
didates, we employ query_radius method, which
returns all neighbors within a predefined distance
threshold. We choose this method over top-k re-
trieval as top-k assumes a fixed number of relevant
items, which is unsuitable for multimodal multi-
hop question answering tasks, where the number
of relevant sources can vary depending on the ques-
tion.

For datasets that include the table modality, we
preprocess tables by converting the structured data
from each row into a sentence. They are then
treated similarly to text modality for subsequent
processing.

A.6 Dataset Statistics

In this section, we present the statistics of the
datasets used. WebQA dataset comprises 34K train-
ing samples, 5K development samples and 7.5K
test samples. MultimodalQA dataset includes 23K
training samples, 2.4K development samples and
3.6K test samples.

A.7 Ablation Study Setup

Firstly, to evaluate the performance without plan-
ning module, we modify the framework by omit-
ting the Adaptive Planning Graph construction. In
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Category Description

Incorrect The prediction does not match with ground truth answer at all.

Mostly Correct The prediction has the same meaning as the ground truth answer but receives a zero
EM score due to minor discrepancies such as number formatting, date representation,
or the use of symbols.

Incomplete The prediction provides a partial response, failing to fully capture the complete
content of the ground truth answer.

Abbreviation The prediction reflects the same meaning as the ground truth answer but is presented
in an abbreviated form.

Overlap The prediction partially aligns with the ground truth, sharing some overlapping
content but lacking a complete match.

Redundant The prediction includes the complete ground truth answer but is characterized by the
presence of extraneous or redundant components.

Table 4: Descriptions of the categories in error analysis.

this setting, the actions are planned in a sequen-
tial manner, where each step is built directly upon
previous one, similar to an iterative framework.
Consequently, the system is constrained to a single-
path approach, alternating between retrieval and
reasoning without the flexibility to explore other
paths. Secondly, we evaluated the performance
without our retrieval module by replacing it with a
simplified version. It retrieves information based
solely on similarity score between the embeddings
of instruction queries and sources. The key com-
ponents of our retrieval design, including query
construction and candidate examination, are elimi-
nated.

A.8 Case Study

We demonstrate an example for failure cases in
Figure 8. The potential failure points arise because
nodes continue providing seemingly relevant in-
formation at starting point, leading the system to
follow this path even though it does not capture
the truely relevant sources. It repeatedly extracts
the same context, mistakenly believing it may con-
tain the necessary details. Additionally, the graph
state summary gradually becomes too long, mak-
ing it harder for the LLM to produce the correct
action, as handling long contexts remains a chal-
lenge for LLMs. The complexity of such questions
also applies to the baseline method (Yang et al.,
2023a), highlighting the inherent challenges posed
by indistinguishable distractors.

A.9 Error analysis

To gain a deeper understanding of the causes of
errors, we conduct an error analysis by randomly
sampling instances from the results where the ex-

act match (EM) score is zero. We categorize the
reasons for these errors into six distinct categories,
with detailed descriptions provided in Table 4. As
depicted in Figure 9, we observe that 27% of the
results, despite being mostly correct, were classi-
fied as inaccurate due to the strict criteria of the
exact match metric. Another significant source of
error was the presence of redundant results, which
generate more outputs than expected.
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Notation Prompt Template

Pplan_gen Given a multi-hop question, break the question into key components to identify all
necessary information.

Pparent Specify which existing node(s) will be used as the foundation for generating a new
node, ensuring a clear and logical progression in the reasoning process.

PC Please analyze the content of existing nodes step by step, and then decide what new
node to generate. Here are some options:

1. Stop: when the answer to question Q is already found given the current nodes.

2. Retrieval: to retrieve candidates and extract useful information from candidates
based on existing nodes.

3. Answer: to produce the instruction to generate an answer based on an existing
question and other nodes.

Pstate(G) Here is the graph: ...
Your task is to determine the next step in deriving the final answer of Q based on
provided input. Please think step by step and consider the current reasoning graph
and overall plan.

Table 5: Prompts for Planning Module.

Notation Prompt Template

Pdecomp Given the following instruction, your task is to identify and extract the text-related
part and the image-related part for retrieval. The instruction may contain references
to both textual and visual content. For image-related parts, determine if the task is
Targeted Image Retrieval (specific images named) or Descriptive Image Retrieval
(search based on description).

Pextract Given the following text, your task is to extract the keywords. The keywords should
be specific and helpful for retrieval.

Ptgt For targeted image retrieval, please list specific image if mentioned, and craft a
precise question based on the image-related request to guide the assistant on what to
identify or analyze in the image.

Pdescr For descriptive image retrieval, please extract descriptive phrase, and craft a precise
question based on the image-related request to guide the assistant on what to identify
or analyze in the image.

Ptext
exam Your task is to analyze the input text and check if it is related to the instruction: ...

P img
exam Given the image, provide a brief description of its content and answer the question

based on the provided instruction: ...

Pretr These are the instruction and retrieval results: ...
Please extract only the relevant information from the result and rephrase into valid
description as the corresponding answer to the instruction for later analysis.

Table 6: Prompts for Retrieval Module.
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Notation Few-shot Examples

Ftext Example 1:
Instruction: Retrieve the NHL team played against the Pittsburgh Penguins in the
playoff series.
Key Phrase:["NHL team played against the Pittsburgh Penguins in the playoff series"]
Example 2:
Instruction: Retrieve the 1977 Seattle Seahawks Kingdome regular season opponent
that has the most Super Bowl losses in NFL history.
Key Phrase: ["1977 Seattle Seahawks Kingdome opponent", "Super Bowl losses in
NFL history"]
Example 3:
Instruction: Retrieve the role Peppe Lanzetta played in the 2009 film.
Key Phrase: ["role Peppe Lanzetta played in the 2009 film"]
Example 4:
Instruction: Retrieve the Magazine that had Caroline Miller as Editor in Chief and
the year it won a National Magazine Award.
Key Phrase: ["Magazine that had Caroline Miller as Editor", "year of Magazine won
a National Magazine Award"]
Example 5:
Instruction: Retrieve the song performed in episode 3 of season 1 of The Clash on
July 14.
Key Phrase: ["song performed in The Clash on July 14", "episode 3 of season 1 of
The Clash on July 14"].

Table 7: Few-shot examples for Ftext.
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Notation Few-shot Examples

Ftgt Example 1:
Instruction: Retrieve the structure at the top of the Stockport County F.C.’s logo.
Question: What is the structure at the top of logo?
Target: ["the Stockport County F.C.’s logo"]
Example 2:
Instruction: Retrieve the colors that make up the flag for Denmark.
Question: What are the colors that make up the flag?
Target: ["flag for Denmark"]
Example 3:
Instruction: Retrieve the number of leaves are on the clover of the Celtic F.C.’s logo.
Question: How many leaves are on the clover of the logo?
Target: ["Celtic F.C.’s logo"]
Example 4:
Instruction: Retrieve the hair style of the man in blue in American football.
Question: What hair style does the man in blue have in American football?
Target: ["American football"]
Example 5:
Instruction: Retrieve whether there is a fence around the outside of the Cotton Bowl
(stadium).
Question: Is there a fence around the outside of the Cotton Bowl?
Target: ["the Cotton Bowl (stadium)"]
Example 6:
Instruction: Retrieve the movie poster that has a woman with a green dress on it.
Question: Is there a woman with a green dress on it?
Target: []

Fdescr Example 1:
Instruction: Retrieve the team whose logo has a bird on it.
Question: Is there a bird in the logo?
Key Phrase: ["logo with a bird"]
Example 2:
Instruction: Retrieve the movie poster that has a woman with a green dress on it.
Question: Is there a woman with a green dress on it?
Key Phrase: ["movie poster that has a woman with a green dress"]
Example 3:
Instruction: Retrieve the television title with a car on its poster.
Question: Is there a car on the poster?
Key Phrase: ["television poster with a car on it"]
Example 4:
Instruction: Retrieve opponent that has a football helmet on its logo.
Question: Is there a football helmet on the logo?
Key Phrase: ["logo with a football helmet"]
Example 5:
Instruction: Retrieve the poster that has a man reaching out with his hand.
Question: Is there a man reaching out with his hand?
Key Phrase: ["poster with a man reaching out with his hand."]
Example 6:
Instruction: Retrieve the number of leaves are on the clover of the Celtic F.C.’s logo.
Question: How many leaves are on the clover of the logo?
Key Phrase: []

Table 8: Few-shot examples for Ftgt and Fdescr.
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