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Abstract

We propose MuCAL (Multilingual Contrastive
Alignment Learning) to tackle the challenge of
Knowledge Graphs (KG)-to-Text generation
using preference learning, where reliable pref-
erence data is scarce. MuCAL is a multilin-
gual KG/Text alignment model achieving ro-
bust cross-modal retrieval across multiple lan-
guages and difficulty levels. Building on Mu-
CAL, we automatically create preference data
by ranking candidate texts from three LLMs
(Qwen2.5 , DeepSeek-v3, Llama-3). We then
apply Direct Preference Optimisation (DPO) on
these preference data, bypassing typical reward
modelling steps to directly align generation out-
puts with graph semantics. Extensive experi-
ments on KG-to-English Text generation show
two main advantages: (1) Our KG/Text align-
ment model provides a better signal for DPO
than similar existing metrics, and (2) signifi-
cantly better generalisation on out-of-domain
datasets compared to standard instruction tun-
ing. Our results highlight MuCAL’s effective-
ness in supporting preference learning for KG-
to-English Text generation and lay the founda-
tion for future multilingual extensions. Code
and data are available at https://github.
com/MeloS7/MuCAL_DPO/tree/main.

1 Introduction

Knowledge graphs (KG) and their verbalization
into natural language play a pivotal role in bridg-
ing symbolic AI with human-centric applica-
tions (Schneider et al., 2022). While KG-to-Text
generation has seen advancements through encoder-
decoder architectures (Clive et al., 2022; Castro Fer-
reira et al., 2020) and large language model (LLM)
fine-tuning (Warczyński et al., 2024; Cripwell et al.,
2023a), critical challenges persist: (1) Generaliza-
tion to unseen graphs. Fine-tuned models struggle
to generate accurate text when faced with graphs
containing properties or entities unseen at train-
ing time (Nikiforovskaya and Gardent, 2024); (2)

Figure 1: Comparing instruction tuning (IT), 3-
shot prompting and DPO-training. For all three
LLMs (Llama3.2-1B-Instruct, SmolLM2-1.7B-Instruct,
Qwen2.5-1.5B-Instruct), DPO outperforms IT and 3-
shot prompting on out of domain data (GOLD-OOD-
472)

Creating high-quality aligned (graph, text) data
is labor-expensive (Gardent et al., 2017; Shimo-
rina et al., 2019)1 and eliciting preference data for
fine-grained optimization is even more costly; (3)
Existing reference-less metrics often capture lim-
ited aspects of factual correctness and their abil-
ity to capture human preferences remains underex-
plored (Deutsch et al., 2022).

To tackle these challenges, we propose a
preference-driven framework that targets out-of-
domain data. Our key insight is that preference
learning (Im and Li, 2024) – optimizing model
outputs based on pairwise or ranked comparisons –
can significantly improve a system’s ability to han-
dle unseen data by focusing on factual correctness
rather than relying solely on fixed reference texts.
However, to leverage preference learning effec-
tively, we need a way to construct preference data
without human labeling. We address this need by
introducing MuCAL, a multilingual cross-modal

1It is also costly. The creation of the WebNLG 2017 data
cost 7K euros.
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KG/Text alignment model trained via contrastive
learning to map graphs and texts into a shared se-
mantic space. MuCAL not only provides robust
KG/Text representations but also serves as the back-
bone for our automated preference construction
pipeline, where we generate multiple candidate
texts (via diverse LLMs) and rank them based on
MuCAL’s KG/Text similarity scores.

Building on these automatically constructed pref-
erence pairs, we then apply Direct Preference Op-
timization (DPO) (Rafailov et al., 2024) to fine-
tune an LLM, directly aligning outputs with the un-
derlying graph semantics. By integrating MuCAL-
based ranking with DPO, the model better captures
factual correctness and improves out-of-domain
generalization, all without requiring manually cu-
rated preference annotations.

Our contributions can be summarised as follows.

• MuCAL for Cross-Modal Alignment. We
provide a novel multilingual KG/Text encoder
that robustly aligns Knowledge Graphs with
text across six natural languages, enabling au-
tomated preference scoring.

• Automated Preference Data Construction.
We introduce an LLM-driven pipeline that
generates preference triplets in the form of
(graph, chosen text, rejected text) from unla-
beled KGs and diverse model outputs, bypass-
ing the need for expensive human-annotated
preference data.

• Preference-Driven Optimization. We
demonstrate how DPO, fueled by MuCAL-
based preference data, significantly improves
factual accuracy and out-of-domain KG-to-
English Text generation over standard instruc-
tion tuning and few-shot prompting (cf. Fig-
ure 1).

2 Related Work

We review relevant literature from KG-to-Text Gen-
eration, Cross-Modal Alignment, and Preference
Learning for Natural Language Generation (NLG).

KG-to-Text Generation The task of generating
natural language text from knowledge graphs has
been extensively studied. Some work fine-tuned
encoder-decoder architectures, such as T5 (Raf-
fel et al., 2023) and BART (Lewis et al., 2019)
on the WebNLG dataset of aligned KG/Text pairs,
achieving state-of-the-art performance on various

KG-to-Text generation benchmarks (Cripwell et al.
2023b; Castro Ferreira et al. 2020). However, their
generalization capability across diverse datasets
and languages remains limited, primarily due to re-
liance on domain-specific fine-tuning and the diffi-
culty of obtaining large-scale, multilingual aligned
datasets (Nikiforovskaya and Gardent, 2024). In
contrast, we investigate how a KG-to-English text
model fine-tuned on silver data can be optimised
using preference learning.

Cross-Modal Alignment Researchers have ex-
plored various methods for cross-modal alignment,
with contrastive learning emerging as a promi-
nent technique (Zhang et al., 2021). In particu-
lar, in-batch contrastive learning has been effec-
tively leveraged to align features from different
modalities by bringing related pairs closer in the
embedding space and pushing unrelated pairs apart
(Tang et al., 2022). Previous work (Scao and Gar-
dent, 2023) has shown its feasibility for KG-to-Text
alignment, but only for English. We extend on this
work by training on multilingual data, improving
KG/Text retrieval and successfully employing our
model to create preference data for DPO.

Preference Learning for NLG Preference learn-
ing has gained traction in NLG, particularly
through methods like Reinforcement Learning
from Human Feedback (RLHF) (Li et al., 2023).
In various domains (including machine translation
and summarization), RLHF has been shown to im-
proving text quality by aligning model outputs with
human preferences (Lai et al., 2023). However, the
application of preference learning in KG-to-Text
generation has not been explored. A significant
challenge is the scarcity of reliable preference data,
which is crucial for training models to generate
text that faithfully represents the underlying graph
structures. We address this challenge by introduc-
ing a framework that automatically constructs high-
quality preference pairs, thereby facilitating the
application of preference learning techniques to
KG-to-Text generation.

3 Multilingual Cross-Modal Alignment
Learning

Following previous work on text/text (Reimers
and Gurevych, 2019) and text/image (Gandelsman
et al., 2024) alignment, we train bi- and cross- en-
coders that map graphs and texts to a shared se-
mantic space. Briefly, a bi-encoder is a siamese
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Figure 2: MuCAL-powered DPO training pipeline. Step 1: Multilingual augmentation. WebNLG and KELM
texts are automatically translated into five additional languages, yielding a six-language silver corpus. Step 2:
MuCAL training. We train a bi-encoder on this corpus with in-batch contrastive loss, producing the multilingual
alignment model. Step 3: Reference LLM. A base LLM (e.g. QWEN2.5-1.5B-INSTRUCT) is instruction tuned on
KELM-Q1 to obtain the reference policy πref. Step 4: Preference construction & DPO. Diverse LLMs generate
candidate texts for each graph; MuCAL ranks them and extracts (G, tC , tR) triplets, which we use to DPO-tune the
training policy πθ, yielding the final DPO-MUCAL model.

network (two encoders with tied weights) which
takes graph and text as separate input and applies
mean-pooling to create fixed sized embeddings for
each input. Similarity is the cosine score on these
embeddings. By contrast, a cross-encoder attends
to both items simultaneously and feed into a dense
layer followed by a sigmoid activation function.
This produces a matching score between 0 and 1,
representing the degree of alignment between the
text and the graph. See Appendix D for a more
detailed explanation of the difference between a
cross- and a bi-encoder.

3.1 Data

We construct our training and test sets using data
from the WebNLG (Ferreira et al., 2020) and
KELM (Agarwal et al., 2021) corpora.

Source Datasets. The WebNLG dataset consists
of manually aligned Knowledge Graphs and their
corresponding English textual descriptions. We use
both its training (WEBNLG-TRAIN, 14,878 pairs)
and its test set (WEBNLG-TEST, 1,779 pairs). The
KELM dataset is a large-scale silver dataset of
KG/English text pairs extracted from Wikidata and
Wikipedia using distant supervision and text gen-
eration. We employ two subsets: (1) KELM-Q1,
a filtered version containing 18,723 pairs based
on semantic matching, and (2) KELM-TEST, a
manually validated subset with 3,437 pairs (Niki-
forovskaya and Gardent, 2024). The creation of
KELM-Q1 is explained in detail in Appendix C.

Training Data. We merge WebNLG-Train and
KELM-Q1 to form our English training set (EN-
TRAIN). We then machine-translate the English
texts into five target languages: Arabic, Chinese,
French, Russian, and Spanish, creating the MULTI-
TRAIN-SILVER set. Appendix C explains which
Machine Translation (MT) models was selected for
each language and why.

Test Data. We create three datasets to test re-
trieval in different scenarios.

MULTI-TEST-1K. A balanced subset of 1K
KG/English text pairs sampled from the WebNLG
and KELM test sets, ensuring diversity in graph
properties and sizes (1–5 triples). All texts are
translated into five languages. Additional details
on its construction are given in Appendix F. We
use this dataset to test the ability of our models to
retrieve the correct item from a set of diverse KG/-
Text pairs with little overlap in terms of properties
and entities.

MULTI-WEBNLG-TEST. This dataset contains
the 1,779 graphs of the WebNLG test set for En-
glish with, for each graph, one of the WebNLG
English verbalisations together with its translations
into our 5 target languages. This dataset is more
challenging as the WebNLG graphs often share
multiple properties or entities making it more dif-
ficult to identify the correct KG/Text at retrieval
time.

MULTI-TEST-1K-CORR. An extension of
Multi-Test-1K designed to evaluate robustness to
KG/Text misalignments. Each original text is
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paired with its matching graph and five corrupted
graphs generated through operations such as re-
moving, adding, or swapping triples, as well as
replacing predicates or entities. As detailed in Ap-
pendix H, we use various heuristics to maintain a
high level of similarity between correct and cor-
rupted graphs. This dataset is the most challeng-
ing as it requires retrieval to distinguish between
closely related graphs.

Table 4 summarises the dataset’s statistics.

3.2 Contrastive Learning
We train our encoder models using contrastive
learning with in-batch negatives. For each graph
in a batch, we have six aligned texts in different
languages, forming multiple positive pairs. We gen-
erate all possible KG/Text pairs within the batch,
treating mismatched pairs as negatives.

Loss Function. Our contrastive loss function
is inspired by the Soft Nearest Neighbor (SNN)
Loss (Frosst et al., 2019), which accounts for mul-
tiple positive and negative samples jointly. This
approach accommodates the multilingual setting,
where aligned texts in different languages may vary
in quality and similarity. The modified contrastive
loss is defined as

l = −
∑

i∈I

log




exp
(∑

lg∈L sim(tlgi , gi)/τ
)

∑
j∈I exp

(∑
lg∈L

(
sim(tlgi , gj)/τ

))




(1)

with I the set of training instances in the batch,
L the set of target languages and tlgi the text of
instance i in language lg. For the Bi-Encoder, the
similarity function sim(·, ·) is the cosine similarity
between graph and text embeddings. For the Cross-
Encoder, it is the alignment score output by the
model. The loss also includes a temperature τ ,
which controls the sharpness of the distribution.
We discuss its choice in Appendix E.2.

Hard Negatives For the bi-encoder, we also ex-
periment with two types of hard negatives. Con-
founders are constructed from the correct graph by
corrupting a triple inside that graph either by swap-
ping arguments (inverting subject and object in a
triple) or by substituting a property for a property
different from, but related to that property. See
Section H for more details.

In practice, we pair each text with one correct
graph, several in-batch negatives, and a set of hard
negatives. This combined approach ensures that the

model is exposed to both easy and challenging neg-
ative samples during training, thereby promoting
greater robustness and discriminative capability.

Note that for the cross-encoder, we do not add
hard negatives as the self-attention mechanism,
which is applied to the concatenation of a graph
and a text, has a time- and space-complexity that is
quadratic in the length of the input, which makes
computation over large batches untractable.

3.3 Encoder Model, Variants and Baselines
We compare two encoders for multilingual graph–
text alignment: a bi- (BE-MPNet) and a cross-
encoder (CE-MPNet), both are initialised from the
multilingual MPNet2 text encoder. Implementation
and architecture details are deferred to Appendix D.

Model Variants By default the batch size is 32
(BE-MPNet). We also investigate batch size 8 (BE-
MPNet (bs8)) and 16 (BE-MPNet (bs16)). For
the bi-encoder, we experiment with 1 (BE-MPNet-
Hard1), 2 (BE-MPNet-Hard2) and 4 (BE-MPNet-
Hard4) hard negatives for each graph in a batch.

Baselines. We compare our models to five base-
lines: MPNET, the multilingual sentence embed-
ding model we use to initialise our graph-text
alignment model; BGE-M3, the current multi-
lingual SOTA embedding model for text3; ERE-
DAT, a SOTA KG/English text alignment model
on retrieval4; FACTSPOTTER, the SOTA model on
KG/English text alignment under human evalua-
tion5; and CLS-MPNET, the MPNet model trained
as a binary classifier on the same Multi-Train-Silver
data we use to train our alignement model (See Ap-
pendix G for details). This latter baseline is to
assess the impact of contrastive learning compared
to standard teacher training6.

3.4 Evaluation
We evaluate our cross-modal alignment models
through retrieval (Given a KG/text, how well can
the model identify the matching text/graph?) and
using Mean Reciprocal Rank (MRR) and Recall at

2https://huggingface.co/sentence-
transformers/paraphrase-multilingual-mpnet-base-v2

3https://huggingface.co/BAAI/bge-m3
4https://huggingface.co/teven/

bi_all_bs192_hardneg_finetuned_WebNLG2017
5https://huggingface.co/Inria-CEDAR/FactSpotter-

DeBERTaV3-Base
6We also experimented with using BGE-M3 to initialise

our alignment models, but the results were not significantly
different while the training times were much longer as BGE-
M3 is much larger (567M parameters) than MPNet (278M).

14230



one (R@1), two metrics which measure a model’s
ability to correctly rank a set of candidates.

3.5 Results

Retrieval results for all models, languages, test
sets and retrieval tasks (mono- and multi-lingual,
Graph-to-Text and Text-to-Graph) are reported in
Sections L, M and O. Here we focus on English
only as this is the language we consider for DPO
training. Table 1 summarizes the results.

Improvement over the baselines. As mentioned
in Section 3.1, the graphs in Multi-Test-1K have
limited property and entity overlap, which facil-
itates retrieval. On this dataset, the SOTA text
(BGE-M3) and KG/English Text (EREDAT) en-
coders perform competitively. However, on more
challenging test sets (Multi-WebNLG-Test, which
contains graphs with higher overlap in terms of
properties and entities, and Multi-Test-1K-Corr,
which includes deliberately corrupted graphs), our
models bring significant improvements over the
four baselines. This demonstrates the effective-
ness of our approach over simply using textual em-
beddings (BGE-M3) or a non-contrastive learning
method (CLS-MPNet). It also shows that, although
multilingual, our models outperform a state-of-the-
art monolingual KG/Text encoder optimised for
English (EREDAT).

Differences between testsets. All models follow
a similar trend: results are best on Multi-Test-1K,
second best on Multi-WebNLG-Test and third best
on Multi-Test-1K-Corr, confirming the increasing
complexity of the three datasets.

In-Batch vs. Hard Negatives. Integrating hard
negatives into the training data drastically improves
results on the hardest test set while maintaining rea-
sonable performance on the other two, the latter
likely resulting from the fact that a model trained
to detect mismatches due to corrupted graphs un-
derperforms on a test set which does not contain
any.

Number of Hard Negatives. Using 2 hard neg-
atives (rather than 1 or 4) yields the best results.
Empirically, we also found that negative graphs in-
cluding swapped arguments (inverting subject and
object in a triple) or substituted properties (substi-
tuting a property in a triple for a property different
but related to the initial property) brings best results
(See Sec. H for a more detailed exploration of this

point). We hypothesize that the other types of cor-
ruption (adding or removing a triple, substituting
an entity) need not be added as they might already
be present in the in-batch negatives: a batch may
contain a super- or a sub-graph of another graph
present in the batch; similarly it might contain two
graphs that only differ on one entity.

Batch Size. As already shown in e.g., (Qu et al.,
2021), batch size has an important impact with all
our best bi-encoder models having the maximum
batch size (32) we could explore given our compu-
tational resources.

Impact of Multilingual Training. The compar-
ison with EREDAT (a monolingual KG/English
text alignment model) suggests that training on
multilingual data helps improve results, as shown
in Fig. 3. To disentangle the effect of data size
from language coverage, we introduce the All-6-
Small setting, which matches the training size of
the English-only subset but distributes it across
all six languages. All-6-Small still significantly
outperforms English-only, showing that the gains
come from multilingual coverage rather than sim-
ply larger data volume. (Details in App. P)

Figure 3: Effect of language coverage on English
retrieval quality. Mean reciprocal rank (MRR)
on MULTI-TEST-1K-CORR for BE-MPNET-HARD2
trained with progressively larger language subsets (one
bar per subset; darker shade = more languages). All-6
denotes the full six-language mix: English (EN), Arabic
(AR), Chinese (ZH), French (FR), Spanish (ES), and
Russian (RU). All-6-Small matches the training size of
the English-only setting, but covers all six languages,
thereby controlling for data volume.

Model Selection for our DPO experiment. To
create preference data, we need a model able to
assess the quality of both good and bad texts with
respect to a graph where a bad text might diverge
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Multi-Test-1K Multi-WebNLG-Test Multi-Test-1K-Corr

Model Variants G2T T2G G2T T2G T2G

R@1 MRR R@1 MRR R@1 MRR R@1 MRR R@1 MRR

Models Selected for Preference Learning
BE-MPNet-Hard2 95.60 97.30 96.10 97.40 80.33 86.92 81.62 87.65 73.50 84.55
CE-MPNet (bs4) 96.40 97.51 96.60 97.53 85.39 90.52 86.23 91.20 24.10 55.30
Baselines
MPNet 83.20 88.98 83.20 89.16 43.28 57.17 39.91 54.67 25.00 50.25
CLS-MPNet 91.10 94.00 91.60 94.32 65.99 76.61 62.06 74.97 29.10 57.05
BGE-M3 92.90 96.09 96.00 97.77 70.49 80.55 80.04 87.69 45.90 68.53
EREDAT 95.20 97.10 96.50 98.01 76.67 84.65 82.91 89.46 41.00 66.54
FactSpotter 71.10 80.74 67.70 80.52 38.90 55.46 37.27 56.90 32.70 55.77
Batch Size Variants
BE-MPNet (bs8) 95.70 97.53 96.10 97.79 79.60 86.61 81.06 88.04 41.90 65.66
BE-MPNet (bs16) 96.60 98.14 97.60 98.69 82.18 88.37 83.08 89.50 43.40 67.38
BE-MPNet (bs32) 96.10 97.66 97.60 98.69 83.53 89.34 84.94 90.68 46.40 69.53
Hard Negative Variants
BE-MPNet-Hard1 95.00 96.99 96.70 97.90 79.26 86.33 81.84 88.05 69.90 82.75
BE-MPNet-Hard4 94.90 96.85 94.20 96.11 78.70 85.61 78.81 85.77 69.60 81.76

Table 1: Retrieval Results on monolingual Data (English Texts). BE, CE: Bi- and Cross-Encoder, G2T, T2G:
Graph-to-Text and Text-to-Graph Retrieval, R@1: Recall@1, MRR: Mean Reciprocal Rank. Unless specified
otherwise (bs8, bs16, bs32), the batch size is 4 for the cross-encoder and 32 for the bi-encoders. HardX indicates
the number (X) of hard negatives per graph.

from the graph by adding, omitting or substitut-
ing content. The above results suggest that hard
negatives are necessary for substitution cases but
that the corresponding models slightly underper-
form on the other cases. We therefore consider and
compare two models for the creation of preference
data: HARD-MUCAL, our bi-encoder variant (BE-
MPNet-Hard2) which achieves remarkable perfor-
mance (Acc=73.50, MRR=84.55) on the hardest
test set (Multi-Test-1K-Corr); and CE-MUCAL,
a cross-encoder variant (CE-MPNet (bs4)) which
excels on the challenging Multi-WebNLG-Test
(MRR=91.20), demonstrating strong disambigua-
tion capability for closely related graphs.

4 Direct Preference Optimization for
KG-to-Text Generation

We next explore how to leverage our cross-modal
alignment models to create preference data as a
signal for Direct Preference Optimization (DPO).
Unlike RLHF approaches that require explicit re-
ward modeling or policy gradients, DPO directly
optimizes the model on preference pairs of gener-
ated texts, encouraging the model to prefer higher-
scoring outputs while remaining close to a refer-
ence policy.

4.1 Creating Preference Data
To train KG-to-Text models using DPO, we need
preference data of the form (graph, good text, bad

text). We create this data by (i) generating several
texts from a graph using multiple LLMs; (ii) scor-
ing each KG/Text pair using our alignment mod-
els (HARD-MUCAL and CE-MUCAL); and (iii)
forming the required triples based on the resulting
KG/Text scores.

We compute KG/Text scores using both our mod-
els and three other KG/Text scoring metrics to com-
pare the ability of all 5 approaches to support the
creation of preference data. Figure 4 illustrates the
overall pipeline, from LLM candidate generation
to score-based ranking and final pairwise selection.

Generating candidate texts for a graph. To
create the candidate texts, we input the graphs
from KELM-Q1 to six instruction-tuned LLMs us-
ing few-shot prompting. (Prompt details are re-
ported in Appendix J.) For each graph g in KELM-
Q1, this process yields a set of candidate texts
TG = {t1, t2, ..., t7} where each ti is generated by
one of the six LLMs used or from the KELM-Q1
dataset.

Scoring Candidate Texts. We score each KG/-
Text pair using our two best KG/Text alignment
models (cf. Section 3.5) and three existing KG/Text
similarity metrics: EREDAT (Le Scao and Gar-
dent, 2023), FACTSPOTTER (Zhang et al., 2023),
and DATA QUEST-EVAL (Rebuffel et al., 2021a).

Given a chosen scoring function Score(G, t), we
rank the texts in TG from highest to lowest. Let
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Figure 4: Pipeline for constructing pairwise prefer-
ence data from a given input graph. First, LLMs
generate the verbalisations based on the graph. Next,
we compute the similarity between the graph and each
generated text and rank the texts accordingly. Finally,
we select the texts with the highest and lowest similarity
scores to create preference pairs.

tchosen ( tC) denote the top-ranked candidate and
trejected ( tR ) the bottom-ranked candidate. We then
form

(
G, tC, tR

)
triplets for DPO training. This

top-vs-bottom selection maximizes the scoring gap
between preferred and dispreferred texts, making
the preference signals more pronounced.

As we use 5 models to compute KG/Text simi-
larity scores, we create 5 preference datasets, one
for each model. This permits comparing our two
alignment models to existing KG/Text reference-
less metrics (i.e., EREDAT, FactSpotter and Data
Quest-Eval) on the downstream task of creating
preference data for DPO leaning, in effect allowing
for a downstream, task driven, evaluation.

4.2 DPO Training

To evaluate how well MuCAL preferences
drive generation, we apply DPO training to
three instruction-tuned LLMs —LLAMA3-1B-
INSTRUCT, SMOLLM2-1.7B-INSTRUCT, and
QWEN2.5-1.5B-INSTRUCT. Each LLM is
first fine-tuned on KELM-Q1 with the standard
language-model objective and teacher forcing,
yielding the reference policy πref.

Using the preference pairs (G, tC , tR) con-
structed in Section 4.1, we further train the policy

πθ with the DPO loss

LDPO = −E(tC,tR)∼Dpref log σ (β∆θ(G, tC , tR))

∆θ(G, tC , tR) = log
πθ(tC |G)

πref(tC |G)
− log

πθ(tR|G)

πref(tR|G)

Notation. G is the input graph; (tC , tR) are the
chosen and rejected texts; Dpref is the MuCAL-
derived preference set; πref is the instruction-tuned
reference model; πθ is the trainable policy; β = 0.1
scales the KL term; and σ is the sigmoid function.

4.3 KG-to-Text Evaluation

Models. We compare DPO models trained on the
preference data created using our 2 KG/Text align-
ment models with: Zero- and 3-shot prompting;
Instruction-tuning on KELM-Q1 and 3 DPO mod-
els trained on preference data created using alterna-
tive KG/Text similarity metrics. For each approach
(DPO, fine-tuning and prompting), we compare
3 LLMs (Llama3.2-1B-Instruct, SmoILM2-1.7B-
Instruct, Qwen2.5-1.5B-Instruct).

Test sets. We evaluate on three test sets. KELM-
TEST (IN-DOMAIN) is the manually validated test
set from KELM (cf. Section 3.1). Since our DPO
models are first fine-tuned on Kelm-Q1, this dataset
serves as our primary in-domain benchmark. In
contrast, the LLMs baselines may have had lim-
ited prior exposure to it as it is not publicly avail-
able. WEBNLG-TEST (PUBLIC) is the publicly
released WebNLG test set (Gardent et al., 2017),
which many LLMs might have partially seen during
pretraining7. Finally, GOLD-OOD-472 (OUT-
OF-DOMAIN) is a new dataset we created to as-
sess performance on new or infrequent properties.
We curated a set of 472 unseen Wikidata graphs,
each containing 3–10 triples and covering domains
not covered by WebNLG (e.g., from domains like
Airlines, Chemicals, and Conferences). For each
graph, we then generated English reference texts
using an LLM-based approach and having these
generated texts manually edited by native speak-
ers. This dataset is neither included in the training
nor available on the internet, thus representing a
genuine out-of-domain challenge.

Evaluation Metrics. We use 8 reference-
based metrics such as SacreBLEU (Post, 2018),
TER (Snover et al., 2006), METEOR (Baner-
jee and Lavie, 2005), ChrF++ (Popović, 2017),

7Details of WebNLG-Test are also provided in Section 3.1
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Figure 5: SacreBLEU and Meteor Scores for KG-to-Text Generation. KELM-Test is in-domain, WebNLG-Test
is OOD but seen as it is a widely used public benchmark available on the internet, and GOLD-OOD-472 is both
unseen and OOD, containing unseen graphs from Wikidata (out-of-domain). We compare various QWEN baselines
(0-shot, 3-shot, IT) against DPO models with different preference signals (DPO-{HARD-MuCAL, CE-MuCAL,
EREDAT, FCT, DQE}). Our DPO-HARD-MuCAL approach (highlighted in black) demonstrates notably stronger
generalization on unseen data than instruction-tuned QWEN and other DPO variants. Abbreviations: QWEN
denotes QWEN2.5-1.5B-Instruct; IT = Instruction Tuning; DPO-X = DPO trained with preference signal X.

BERTScore (Zhang et al., 2020), BLEURT (Sel-
lam et al., 2020), PARENT (Dhingra et al., 2019),
SEScore2 (Xu et al., 2023). We also evalu-
ate factual alignment with the input graph using
reference-less metrics like EREDAT (Scao and Gar-
dent, 2023), FactSpotter (Zhang et al., 2023), and
Data QuestEval (Rebuffel et al., 2021b). This com-
bination of in-domain, public-domain, and out-of-
domain test sets, along with both reference-based
and reference-less metrics, offers a comprehensive
view of the quality of DPO-tuned models’ genera-
tions.

Qualitative Analysis. To further assess the gen-
eration capabilities of our DPO-tuned models, we
conducted a small-scale qualitative analysis on the
most challenging test set, GOLD-OOD-472. We
compared the outputs of the best-performing DPO-
tuned model against those of the instruction-tuned
baseline. Specifically, we ranked all examples by
the absolute difference in their METEOR scores
between the two models. We then selected the top
three cases where the DPO model substantially out-
performed the instruction-tuned model, as well as
the top three cases in the opposite direction. This
procedure highlights instances where one model is
most confidently favored over the other according
to METEOR, providing insight into their respective
strengths and weaknesses.

4.4 Results and Discussion

For lack of space, we focus here on two metrics:
SacreBLEU, a widely adopted reference-based
metric that gauges surface-level similarity to gold
texts, and METEOR, which considers stemming
and synonyms and therefore handles paraphrasing
better. Full results for additional metrics are re-
ported in Section Q.

Global results for all three approaches and each
of the three LLMs are shown in Figure 1. Since
QWEN2.5-1.5B-INSTRUCT gains the largest out-
of-domain improvement from DPO among the
three LLMs, all ablations in this section are per-
formed on Qwen. Figure 5 presents the Qwen-
based results.

In addition to quantitative metrics, we present
some examples comparing DPO-tuned and
instruction-tuned outputs in Appendix R.

DPO generalises better than LLMs and Fine-
Tuned Models. A salient trend emerges on un-
seen data (GOLD-OOD-472): Although instruction
tuning (Qwen-IT) excels at matching the style of
known domains, its performance degrades substan-
tially on unseen data. In contrast, our DPO trained
model (DPO-HARD-MUCAL) maintains robust
scores on both SacreBLEU and METEOR, indi-
cating improved generalization to out-of-domain
data.

DPO paraphrases the reference. On the in-
domain or seen testsets (KELM-Test, WebNLG-
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Public), the instruction-tuned model (Qwen-IT)
achieves higher SacreBLEU than both LLMs and
DPO models indicating stronger adaptation to the
target domain. However, on this same testsets,
DPO-based models yield better METEOR scores
than both the fine-tuned and the LLM models. This
suggests that DPO learning supports the generation
of texts that paraphrase rather then memorize the
reference which again suggests a better ability to
generalise for DPO models.

Our KG/Text similarity models provide a bet-
ter signal for DPO than existing metrics. DPO
models trained on preference data generated using
EREDAT, FactSpotter and Data-QuestEval under-
perform our models on all test sets and for both
evaluation metrics (SacreBLEU and METEOR).
This indicates that our models are better at ranking
texts according to their semantic similarity with
a graph thereby demonstrating improvement over
these existing KG/Text similarity metrics.

The bi-encoder is more effective at ranking KG/-
Text pairs than the cross encoder. While our
two DPO models perform on par on in-domain
and seen data, the bi-encoder based model (DPO-
HARD-MuCAL) outperforms the cross-encoder
(DPO-CE-MuCal) on unseen, OOD data (GOLD-
OOD-472) highlighting the importance of includ-
ing hard negatives in the training data of the KG/-
Text alignment model.

5 Conclusion

We proposed novel models for KG/Text semantic
alignment and studied both their retrieval accuracy
and their ability to support the creation of prefer-
ence data for DPO training. For retrieval, we show
that our models outperform all baselines on three
benchmarks of increasing difficulty. For DPO, we
demonstrate that our models outperform existing
KG/Text similarity metrics in constructing robust
preference data. Experimental results also show
that our DPO-tuned models generalize better to out-
of-domain data compared to instruction-tuned base-
lines. Finally, our LLM-based preference construc-
tion framework can produce such datasets without
relying on manually aligned KG/Text pairs, allow-
ing for seamless extension to multilingual scenar-
ios. In future work, we plan to extend our approach
to multilingual, DPO-trained KG-to-Text genera-
tion and to explore alternative preference learn-
ing algorithms for KG-to-Text generation, aiming

to further enhance both fidelity and adaptability
across diverse domains and languages.

Limitations

While MuCAL is designed for multilingual KG/-
Text alignment, our current DPO experiments focus
solely on English KG-to-Text generation. Extend-
ing the pipeline to other languages remains a key
direction for future work.

Our approach to creating preference datasets re-
lies on high-quality texts from large LLMs (e.g.,
DeepSeek-v3 with 671B parameters), which can
be costly and potentially restrictive.

Even though MuCAL is trained on (machine-
translated) silver data and shows promising re-
trieval performance across languages, its efficacy
for guiding non-English DPO training remains to
be shown.
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A Model Size and Hardware

Table 2 summarises the parameter counts, GPU
configurations, and wall-clock training times for
every model used in our study.

Model Params Hardware Duration

MPNet 278M Pre-trained Pre-trained
BGE-M3 567M Pre-trained Pre-trained

HARD-MuCAL 278M 1×A40 (46GB) 5.0 h
CE-MuCAL 278M 1×A100 (40GB) 39.0 h

QWEN-IT 1.5B 1×L40S (48GB) 0.75 h
DPO-MuCAL 1.5B 1×A40 (46GB) 1.37 h

Table 2: Model Specifications and Training Infrastruc-
ture

B Datasets Description

We summarise the datasets, their descriptions, and
statistics in Table 4.

C Creating the Multilingual Silver Data

Kelm-Q1. (Agarwal et al., 2021) constructed
a corpus of 15M (graph, text) pairs from Wiki-
data and Wikipedia using distant supervision, fine-
tuning and generation. Since the dataset is auto-
matically generated, the alignment between graph
and text is imperfect. We therefore filter the dataset
in several steps as follows. Using the cross-modal
RDF-Text encoder from (Scao and Gardent, 2023),
we first filter out all (graph, text) pairs with cosine
similarity lower than 0.9. We balance the dataset
across graph sizes and Wikidata properties to pre-
vent skew towards frequent properties. This re-
duces the dataset to 80K (graph, text) pairs.

To further improve data quality, we apply the
Data QuestEval (DQE) metric (Rebuffel et al.,
2021a), designed for data-to-text tasks and lever-
aging question generation and question answering
models to evaluate the alignment between graphs
and texts, and retain only the top-scoring quartile
(Q1) of the filtered KELM data based on DQE
scores. This final filtering step yields 18,723 high-
quality (graph, text) pairs.

Multilingual Silver Data. To create the multilin-
gual silver data, we compared the performance of 6
MT models on the Test-1K (see Appendix F for its
creation details) and selected the best one for each
language. Specifically, we translate the Test-1K
into target languages using the MT models, and
then evaluate the translations’ quality using cross-
language semantic similarity metrics. For example,

Model Arabic Chinese French Russian Spanish

Helsinki-NLP ✓ ✓
M2M100-418M ✓
NLLB-200-600M
mBART-large-50
M2M100-1.2B ✓ ✓
NLLB-200-3.3B

Table 3: Selected Translation Models for Each Target
Language. Models are selected based on their results
on the average normalised scores over 6 metrics. Cf.
Table 9.

we evaluate our French translations with the gold
English text by computing Sim(TEN , TFR).

Table 3 shows the best Machine Translation
(MT) model for each language and Table 9 shows
the scores of all 6 MT models for all six metrics
and five languages when evaluated on the Test-1K
(graph, English text) test set using multilingual text
similarity metrics.

D Encoder Architectures

Bi-Encoder. As depicted in Figure 6, the Bi-
Encoder treats the text and graph as separate modal-
ities. Knowledge Graphs are sets of (subject, predi-
cate, object) triples. We linearize each graph into
a sequence using the format: [S] subject1 [P]
predicate1 [O] object1 [S] subject2 . . .
[O] objectn, where n is the number of triples
and [S], [P], [O] are special tokens indicating the
triple elements. The text and the linearized graph
are independently encoded using the same multi-
lingual embedding model.

Cross-Encoder. In contrast, the Cross-Encoder
(Figure 6(right)) jointly encodes the text and graph
by concatenating them with a special separator to-
ken [SEP]. The concatenated sequence is input to
the multilingual embedding model, and the output
is passed through a dense layer followed by a sig-
moid activation function. This produces a matching
score between 0 and 1, representing the degree of
alignment between the text and the graph.

E Experimental Setup

E.1 Early Stopping

We employ an early stopping strategy for both Mu-
CAL and DPO training to prevent overfitting while
ensuring stable performance.

For MuCAL, we monitor the validation Mean
Reciprocal Rank (MRR) in both the Graph-to-Text
(G2T) and Text-to-Graph (T2G) directions, stop-
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Dataset Description # KG/Text Pairs

Source Datasets (Texts are in English)
WebNLG-Train Gold 14,878
KELM-Q1 Silver 18,723
WebNLG-Test Gold 1,779
KELM-Test Gold 3,437
Training Sets
EN-Train KELM-Q1 + WebNLG-Train 33,601
Multi-Train-Silver EN-Train + Translations 201,606
Test Sets
Multi-Test-1K 1K (KELM-Test + WebNLG-Test) + Translations 6,000
Multi-WebNLG-Test WebNLG-Test + Translations 10,674
Multi-Test-1K-Corr Multi-Test-1K + Corrupted Graphs 10,800

Table 4: Datasets of KG/Text pairs. The sets with name "Multi-" include the machine translated texts in five
target languages: Arabic, Chinese, French, Russian and Spanish. In all other datasets, the texts are in English. The
knowledge graphs are from DBPedia (WebNLG) and Wikidata (KELM).

Figure 6: Overview of the Bi-Encoder architecture for multilingual KG/Text alignment. The input graph G is
first linearized into a sequence such as [S] subject1 [P] predicate1 [O] object1 [S] subject2 ... [O]
objectN . The text and graph embeddings are produced by two parameter-shared encoders and updated jointly via
backpropagation. The final similarity score Sim(T,G) is constrained to the interval [0, 1].
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ping training when the performance ceases to im-
prove.

For DPO training, we track the validation loss
throughout the process and terminate training if
no improvement is observed for five consecutive
epochs. This conservative approach helps maintain
the policy’s alignment with the reference distribu-
tion πref, while preventing unnecessary updates that
could lead to overfitting.

E.2 Temperature for MuCAL Training

The loss function 1 for MuCAL training incorpo-
rates a temperature parameter τ , which modulates
the sharpness of the similarity distribution within a
batch. Lower values of τ lead to sharper distribu-
tions that focus more on the most similar instances,
while higher values result in smoother, more uni-
form distributions.

Notably, for memory-intensive training setups
such as cross-encoder architectures, a smaller τ is
particularly beneficial when using lower-precision
computations (e.g., bfloat16), as it helps maintain
numerical stability and mitigates precision-related
artefacts. In our experiments, we set τ = 0.2.

F English Test-1K Creation

To evaluate the robustness and retrieval perfor-
mance of our multilingual KG/text representation
models, we constructed the Test-1K dataset—a bal-
anced and diverse subset of (graph, text) pairs. This
appendix details the steps taken to create Test-1K
from the WebNLG and KELM test data.

F.1 Data Source and Objectives

We utilized the WebNLG and KELM test datasets
as our data sources, comprising a total of 5,216
(graph, text) pairs with 470 unique properties from
both DBpedia and Wikidata. Our primary objec-
tives were:

• Maximizing Property Coverage: Ensure the
test set includes as many unique properties as
possible to enhance diversity.

• Balancing Graph Sizes: Maintain an equal
distribution of graph sizes ranging from 1 to
5 triples.

An overview of the test data comparison is pre-
sented in Table 5.

Test Data Graph Size Entry Num. Prop. Num. Prop. Cov.
WebNLG+KELM test 1-7 5216 470 -
Test-1K 1-5 1000 420 89.4%

Table 5: Test data comparison.

Entry Size From KELM From WebNLG Total
1 25 175 200
2 106 94 200
3 101 99 200
4 97 103 200
5 98 102 200
Sum 427 573 1000

Table 6: Test-1K source track.

F.2 Step 1: Selecting Rare Properties
To ensure diversity and maximize property cover-
age, we prioritized graphs containing rare proper-
ties:

1. Subdivision by Graph Size: We divided the
test data into five subsets based on the num-
ber of triples in each graph, corresponding to
graph sizes from 1 to 5.

2. Frequency Analysis: Within each subset, we
calculated the frequency of each property
across all test data and within the subset.

3. Identification of Rare Properties: We identi-
fied properties with the minimum frequency
within each subset. For instance, if the mini-
mum frequency in a subset was 1, we selected
properties occurring exactly once.

4. Intersection Selection: We cross-referenced
these rare properties with those in the entire
test data to select graphs containing them.

This process yielded a preliminary subset of 169
graphs covering 266 unique properties. Tables 7
and 8 present the property distribution before and
after rare property selection.

Graph size Non-Selected Num. Property Num. Seleted Num.
1 2462 225 0
2 648 213 0
3 672 229 0
4 563 293 0
5 451 298 0
Total: 4473 - 0

Table 7: Initial test data before rare property selec-
tion. "Non-Selected graphs" are graphs not yet selected
in the source data; "Selected graphs" are graphs selected
for the new test set and initially zero.
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Graph size Non-Selected Num. Property Num. Seleted Num.
1 2367 0 54
2 608 0 40
3 635 0 16
4 505 0 28
5 358 0 31
Total: 4473 0 169

Table 8: Test data after rare property selection. "Se-
lected graphs" are graphs containing rare properties.

F.3 Step 2: Random Complementation

To achieve a balanced dataset with 200 entries for
each graph size, we complemented the selected
entries with additional samples:

1. Random Selection: For each graph size sub-
set, we randomly selected additional non-
redundant entries from the remaining unse-
lected data until each subset contained 200
entries.

2. Maximizing Property Coverage: We priori-
tized entries that introduced new properties to
maximize overall property coverage.

3. Iteration for Optimization: This process
was repeated 100 times, and the iteration yield-
ing the highest property coverage was selected
as the final Test-1K dataset.

F.4 Final Composition of Test-1K

The final Test-1K dataset consists of:

• Total Entries: 1,000 (graph, text) pairs.

• Balanced Graph Sizes: 200 entries for each
graph size from 1 to 5 triples.

• Property Coverage: 420 unique properties,
achieving 89.4% coverage relative to the orig-
inal datasets.

G Non-Contrastive Baseline Details

This section supplements Sec. 3.3 by providing full
implementation details for our non-contrastive bi-
nary classification baseline (CLS-MPNet). First,
we recap the in-batch negative sampling to cre-
ate a balanced training set. Then, we describe the
two classifier architectures we explore: bi-encoder
and cross-encoder. Finally, we specify the binary
cross-entropy loss used for training. These design
choices mirror those of our contrastive model wher-
ever possible to ensure a fair ablation.

Figure 7: Training loss for Bi-Encoder Classifier.

G.1 In-Batch Negative Sampling
For strict comparability with contrastive training,
we adopt an analogous in-batch negative-sampling
strategy. Each mini-batch contains two aligned
examples (Gi, T

l
i ) with i ∈ {1, 2} and target lan-

guage l. Negatives are generated on-the-fly by
cross-pairing graphs and texts, (Gi, T

l
j) with j ̸= i.

Consequently, every batch supplies 2 × |l| posi-
tives and an equal number of negatives, ensuring a
balanced signal at no extra preprocessing cost.

G.2 Classifier Architectures
Bi-Encoder. Our first instantiation is a
lightweight bi-encoder. Instead of cosine similarity,
we concatenate graph and text embeddings
together with two interaction features—their L1
distance and Hadamard product—and feed the
resulting vector8

Ecomb =
[
ET ∥ EG ∥ ∥ET − EG∥1 ∥ ET ⊙ EG

]

to a single linear layer followed by a sigmoid acti-
vation.Although computationally efficient, the bi-
encoder fails to capture subtle misalignments; the
loss curve in Figure 7 plateaus early, indicating
under-fitting to in-batch negatives. We attribute this
to (i) information compression in the joint embed-
ding and (ii) the additional complexity introduced
by multilingual data.

Cross-Encoder. We therefore train a cross-
encoder (Figure 6, right), which jointly encodes
the concatenated graph–text sequence and predicts
alignment with a classification head. Training
proceeds smoothly, and early stopping on valida-
tion loss (Figure 8) selects the best checkpoint at
roughly 9k steps. Despite showing an advantage
to its backbone model (MPNet), the cross-encoder
classifier still lags behind our contrastive model on
all test sets (Table 1).

8∥ denotes concatenation.
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Figure 8: Validation loss for Cross-Encoder Classifier.

G.3 Loss Function
The non-contrastive model is trained with the
standard binary cross-entropy loss, implemented
as torch.nn.BCEWithLogitsLoss. Given a pre-
dicted logit z ∈ R and a gold label y ∈ {0, 1}, the
loss for a single example is

LBCE(z, y) = −
[
y log σ(z) + (1− y) log

(
1− σ(z)

)]
,

(2)

where σ(·) is the sigmoid function. Using the
logit formulation avoids numerical underflow when
|z| ≫ 0 and therefore yields more stable gradients
than applying a standalone sigmoid followed by
log.

We keep the positive-to-negative ratio balanced
within each batch (cf. §GIn-Batch Negative Sam-
pling), so the default loss weights α = β = 1 suf-
fice. At inference time, a pair (G,T ) is classified
as aligned when σ(z) ≥ 0.5.

H Graph Corruption Details

This section presents all information related to
graph, including (i) Corruption type definitions;
(ii) Hard negative selection for alignment model
training. It also shows some important experiments
and findings, such as how to construct the hard-
est negative for the alignment model and which
types of hard negatives make the model the most
vulnerable.

H.1 Type Definitions of Graph Corruption
We provide additional information on how we gen-
erate corrupted graphs for Multi-Test-1K-Corr in
this part. Each text in the test set is paired with one
correct graph and five corrupted graphs. We use
various heuristics to maintain as high a similarity
between the correct and the corrupted graphs. Our
corruption methods and the associated heuristics
(H) are as follows:

• Removed. We remove one triple at random
from a graph with at least two triples. For

single-triple graphs (i.e., 1-triple), this corrup-
tion is skipped. For example:

– Original graph: (A, _predicate1_, B), (B,
_predicate2_, C)

– After removal: (B, _predicate2_, C)

H: Since the dataset is aligned at the KG/Text
level, we assume that every triple expresses a
fact reflected in the text. Therefore, removing
any triple is expected to degrade the semantic
alignment.

• Added. We add one new triple to a given
graph, prioritizing triples that share at least
one entity with the existing graph. For in-
stance:

– Original graph: (A, _predicate1_, B)
– Added triple: (B, _predicate3_, D)
– Corrupted graph: (A, _predicate1_, B),

(B, _predicate3_, D)

H: We prioritized triples that exist in the test
set and share at least one entity with the origi-
nal graph, thereby maintaining local connec-
tivity. For instance, in the above example, the
added triple (B, predicate3, D) shares the en-
tity B with the original graph (A, predicate1,
B).

• Replace_Pred. We pick a random triple
and replace its predicate with a predicate not
present in the graph.

– Original triple: (A, _bornIn_, B)
– Replaced triple: (A, _livesIn_, B)

H: We first constructed a property space from
all test set properties. For each property, we
identified semantically similar alternatives us-
ing SBERT and filtered out those with a simi-
larity score above 0.4, to avoid trivial substi-
tutions which would result in an acceptable
graph for the initial text. We then selected the
most similar property below this threshold.

• Replace_Entity. We select a random triple
(s, p, o) and replace its object with a new en-
tity o′ ̸= o:

– Original triple: (A, _locatedIn_, CityX)
– Replaced triple: (A, _locatedIn_, CityZ)

H: To keep the corruption local, we first
gather the set N (s) = { e | (s, p′, e) ∈
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G or (e, p′, s)∈G } of entities already con-
nected to the subject s. If N (s)\{o} is non-
empty, we sample o′∼N (s) \ {o}; otherwise
we draw o′ uniformly from the global entity
pool E \ V (G). This strategy preserves graph
connectivity while introducing a fact that is
plausible yet incompatible with the original
text.

• Swapped. We swap the subject and object of
a random triple, provided they are distinct en-
tities. To account for the inherent symmetry in
certain predicates, we exclude triples involv-
ing predicates identified as Symmetrical Re-
lationships (e.g., “taxon synonym”, “partner
in business or sport”, etc.) from the swapping
process.

– Original triple: (A, _parentOf_, B)
– Swapped triple: (B, _parentOf_, A)

Corruption Distribution. Across the entire
dataset, each corruption type is applied with equal
probability, yielding five corrupted graphs per
graph. In total, we generate 5,800 corrupted graphs
for 1,000 unique graphs in Multi-Test-1K where we
skip generating Removed corrupted graphs for 200
single-triple graphs.

H.2 Hard Negatives Construction for Model
Training

To identify the ability to distinguish aligned graphs
from corrupted ones, we first conduct a robustness
evaluation on the Multi-Test-1K-Corr dataset. This
analysis reveals model-specific vulnerabilities that
directly inform our strategy for constructing chal-
lenging hard negatives.

H.2.1 Robustness Evaluation
We assess model robustness by measuring their
ability to rank correct graphs higher than corrupted
counterparts in the retrieval task. For each language
l, we proceed as follows:

1. Compute Similarity Scores: For each text
instance t

(l)
i , we compute similarity scores

between the text and:

• The correct graph gi
• Five types of corrupted graphs Gcorr

i =

{g(1)i , . . . , g
(K)
i }

2. Aggregate Similarity Scores: Collect all sim-
ilarity scores between text and graphs across
all instances.

3. Rank All Instances: Rank all graph instances
(both correct and corrupted) based on their
similarity scores in descending order.

4. Analyze Top-N Instances: Consider the top
N ranked instances and calculate the propor-
tion of each graph type within these top N
instances. For each graph type, compute:

Proportiontype =
N

top
type

N
, (3)

where:

• type contains Good and the corruptions.
• N

top
type is the number of instances of the

graph type within the top N .
• N is the total number of correct graphs.

In our evaluation, N is set to the total number of
correct graphs, reflecting the ideal scenario where
all correct graphs are ranked above corrupted ones.

Robustness Evaluation Results. We present full
results in Section N.

Findings. Both bi-encoder and cross-encoder
models exhibit pronounced vulnerability to
Swapped and Replaced_Pred corruptions in all lan-
guages. This indicates that:

• Models struggle to detect inverted subject-
object relationships, particularly for asymmet-
ric predicates.

• Predicate substitution with semantically simi-
lar alternatives creates highly confusing nega-
tives.

H.2.2 Targeted Negative Construction
Motivated by these findings, we prioritize Swapped
and Replaced_Pred corruptions for hard negative
generation, as they maximally exploit model weak-
nesses observed in the robustness analysis. The
details of these two graph corruptions are discussed
in Section H.1.

I Mono- & Multi-lingual Retrieval Setup

We assess the models’ retrieval performance in both
directions: Text-to-Graph Retrieval (Given a text,
retrieve its corresponding graph from a set of candi-
date graphs) and Graph-to-Text Retrieval (Given
a graph, retrieve its corresponding text from a set
of candidate texts). For each retrieval direction,
we consider both monolingual and multilingual
settings.

14245



Monolingual Retrieval seeks to retrieve the
matching text/graph from a monolingual corpus.
Let G = g1, g2, . . . , gN be the set of all graphs.
L be the set of target languages. For each graph
gi, let Ti = {t(l)i | l ∈ L} be the set of texts cor-
responding to gi in each language l. Then in the
monolingual setting for language l:

• Text-to-Graph: For each text t(l)i , we com-
pute similarity scores sij = sim(t

(l)
i , gj) for

all gj ∈ G, rank the graphs based on sij and
retrieve the top ranking graph.

• Graph-to-Text: For each graph gi, we com-
pute similarity scores sij = sim(gi, t

(l)
j ) for

all t(l)j , rank the texts based on sij and retrieve
the top ranking text.

Multilingual Retrieval considers all target lan-
guages simultaneously rather than treating each
language independently. As same as the monolin-
gual retrieval, we have the retrieval tasks in two
directions as follows:

• Text-to-Graph :For each text t(l)i in language
l ∈ L, compute similarity scores sij =

sim(t
(l)
i , gj) for all gj ∈ G.

Aggregate the scores for each graph gj across
all languages:

Sij =
∑

l∈L
s
(l)
ij , (4)

where s
(l)
ij is the similarity between t

(l)
i and

gj .

Rank the graphs based on the aggregated
scores Sij and record the rank ranki of the
correct graph gi.

• Graph-to-Text: For each graph gi, compute
similarity scores s

(l)
ij = sim(gi, t

(l)
j ) for all

texts t(l)j in all languages l ∈ L.

Aggregate the scores for each set of texts Tj
corresponding to graph gj :

Sij =
∑

l∈L
s
(l)
ij , (5)

where s(l)ij is the similarity between gi and t
(l)
j .

Rank the sets of texts Tj based on the aggre-
gated scores Sij and record the rank ranki of
the correct text set Ti.

J Prompting Details

J.1 Instruction-Tuned LLMs
To obtain lexically diverse candidates while avoid-
ing very low-quality generations, we query three
well-established open-source model families, re-
stricting the size to ≥7 B parameters:

• Qwen2.5—7B, 14B, and 32B-Int8 instruction
variants (Xu et al., 2025);

• DeepSeek—v3 and r1-distill-qwen-7B
(DeepSeek-AI et al., 2025);

• Llama-3—8B-INSTRUCT (Grattafiori et al.,
2024).

J.2 Few-Shot Demonstration Selection
We employ two sampling strategies:

Random sampling (Qwen / DeepSeek). Be-
cause input graphs vary in size, we randomly draw
three (graph, text) pairs from the manually vali-
dated KELM-Test set (Nikiforovskaya and Gardent,
2024), constraining their graph lengths to 1, 3, and
5 triples. This exposes the model to small, medium,
and larger structures within a single prompt.

Heuristic Sampling (LLaMA-3). We prompt
Llama-3-8B-Instruct using a property-based few-
shot strategy that maximizes overlap between the
input graph and the few-shot examples. Specifi-
cally, we maintain a pool of KG/Text pairs (from
KELM-Test) sorted by the number of properties
shared with the target graph. We select examples
from top-ranked candidates such that their proper-
ties match or closely resemble those in the input
graph. If certain properties are missing, we retrieve
the most similar ones via a k-nearest neighbors (k-
NN) search in a multilingual embedding space (e.g.,
LaBSE). This ensures that each few-shot example
is closely aligned with the structural and semantic
content of the target graph, thus providing more
relevant demonstrations.
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J.3 Prompt Templates

The following is a graph represented as
a set of triples. Each triple
provides a fact in the form '[S]
subject [P] predicate [O] object '.
Please convert this graph into
fluent and natural language text.
The output should be a concise and
coherent description , consisting of
one or a few sentences. Ensure that:

1. All facts from the graph are included
in the description.

2. The text is fluent , natural , and easy
to understand.

3. There is no repetition or missing
details.

Graph:
<Graph1 >
Text:
<Text1 >

Graph:
<Graph2 >
Text:
<Text2 >

Graph:
<Graph3 >
Text:
<Text3 >

Graph:
<Graph to verbalise >
Text:

J.4 Prompting Efficiency and Cost
Our preference pipeline relies on advanced LLMs,
but we access them through official APIs rather
than hosting models locally. This choice greatly
reduces inference time and eliminates the need for
expensive hardware. As described above, our 3-
shot prompting template is lightweight, produc-
ing a single verbalization per graph. For instance,
generating verbalizations for the entire KELM-Q1
dataset (18,723 graphs) with the DeepSeek-V3 API
incurred a cost of under $10, demonstrating that
the pipeline is both cost-effective and scalable in
practice.
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K MT Model Evaluation Results on Test-1K

Lang Model NMT_Direct NMT_Pivot NMT_Cross SBert BERTScore Cometkiwi Norm_Row_Avg

EN-ZH

Helsinki-NLP 0.634 0.754 0.590 0.8528 0.8984 0.618 0.420
M2M100-418M 0.719 0.820 0.682 0.8896 0.9039 0.634 0.799
NLLB-200-600M 0.583 0.712 0.493 0.7876 0.8886 0.591 0.000
MBart-large-50 0.695 0.784 0.625 0.8705 0.8946 0.687 0.660
M2M100-1.2B 0.749 0.844 0.695 0.8975 0.9067 0.679 0.986
NLLB-200-3.3B 0.624 0.738 0.525 0.8023 0.8906 0.665 0.270

EN-AR

Helsinki-NLP 0.658 0.732 0.583 0.7820 0.8821 0.610 0.211
M2M100-418M 0.742 0.822 0.698 0.8613 0.8995 0.598 0.874
NLLB-200-600M 0.712 0.808 0.623 0.8012 0.8886 0.651 0.539
MBart-large-50 0.691 0.786 0.622 0.8354 0.8989 0.630 0.645
M2M100-1.2B 0.607 0.688 0.569 0.8494 0.8992 0.495 0.305
NLLB-200-3.3B 0.754 0.846 0.665 0.8127 0.8911 0.710 0.775

EN-FR

Helsinki-NLP 0.885 0.963 0.891 0.9714 0.9370 0.715 0.996
M2M100-418M 0.848 0.943 0.875 0.9653 0.9372 0.638 0.679
NLLB-200-600M 0.805 0.887 0.822 0.9501 0.9291 0.612 0.055
MBart-large-50 0.833 0.915 0.848 0.9654 0.9348 0.667 0.532
M2M100-1.2B 0.860 0.951 0.884 0.9645 0.9363 0.661 0.756
NLLB-200-3.3B 0.807 0.879 0.819 0.9473 0.9284 0.631 0.035

EN-RU

Helsinki-NLP 0.618 0.748 0.649 0.8559 0.9074 0.582 0.000
M2M100-418M 0.712 0.863 0.773 0.8978 0.9190 0.631 0.735
NLLB-200-600M 0.670 0.798 0.696 0.8657 0.9094 0.601 0.259
MBart-large-50 0.712 0.844 0.738 0.9087 0.9198 0.661 0.771
M2M100-1.2B 0.756 0.892 0.802 0.9093 0.9216 0.677 1.000
NLLB-200-3.3B 0.694 0.805 0.710 0.8712 0.9102 0.648 0.421

EN-ES

Helsinki-NLP 0.884 1.016 0.906 0.9725 0.9434 0.767 1.000
M2M100-418M 0.838 0.956 0.881 0.9659 0.9422 0.682 0.539
NLLB-200-600M 0.815 0.925 0.851 0.9530 0.9362 0.662 0.094
MBart-large-50 0.794 0.912 0.837 0.9548 0.9398 0.671 0.113
M2M100-1.2B 0.853 0.972 0.894 0.9683 0.9422 0.707 0.684
NLLB-200-3.3B 0.851 0.957 0.882 0.9625 0.9389 0.723 0.527

Table 9: Results on the 1K English test set for translation models across five target languages (Arabic, Chinese,
French, Russian, Spanish). ‘Norm_Row_Avg‘ is the row-wise normalized average over the other metrics. We use
multilingual evaluation metrics to compare the generated text to the English reference.
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L Multilingual Retrieval Task Results

L.1 Multilingual T2G&G2T on Multi-Test-1K

Multi T2G Multi G2T

Model Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
MPNet 82.60 92.80 99.60 88.52 80.50 92.80 100.00 87.18
CLS-MPNet 88.10 97.10 98.90 92.73 90.60 97.10 99.70 94.09
BGE-M3 94.50 99.30 100.00 96.96 90.80 98.30 100.00 94.68
Batch Size Variants
BE-MPNet (bs8; ep2) 96.30 99.60 99.90 97.91 93.00 99.40 99.90 96.06
BE-MPNet (bs16; ep2) 97.60 99.70 100.00 98.65 95.20 99.60 100.00 97.36
BE-MPNet (bs32; ep2) 97.40 99.60 100.00 98.53 94.80 99.50 99.90 97.10
Base Model Variants
BE-MPNet 97.70 99.80 99.90 98.75 95.20 99.50 99.90 97.30
BE-BGE-M3 97.40 99.80 99.90 98.58 95.50 99.50 100.00 97.44
Hard Negative Variants
BE-MPNet-Hard1 96.60 98.80 99.40 97.83 93.60 99.20 99.50 96.24
BE-MPNet-Hard2 95.30 98.60 99.10 96.96 94.60 98.80 99.50 96.72
BE-MPNet-Hard4 93.90 97.80 99.00 95.94 93.10 98.30 99.60 95.79
BE-BGE-M3-Hard1 97.20 99.30 99.70 98.29 94.60 99.10 99.70 96.94
BE-BGE-M3-Hard2 95.50 97.90 98.60 96.79 94.30 98.00 98.60 96.26

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 92.50 98.40 99.50 95.50 90.70 98.60 99.80 94.66
CE-MPNet (bs3; ep2) 94.80 99.20 99.60 97.03 93.20 98.30 99.80 95.97
CE-MPNet (bs4; ep2) 97.10 99.60 99.90 98.39 96.20 99.00 99.80 97.75
Best CE Model
CE-MPNet 98.60 99.80 99.90 99.23 97.20 99.60 99.90 98.36

Table 10: Evaluation of models on multilingual tasks (Multi-Test-1K). We report Recall@k and MRR for both
text-to-graph (T2G) and graph-to-text (G2T) retrieval tasks. "BE" and "CE" denote bi-encoder and cross-encoder
models, respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones
for other variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size,
"HardX" = X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders
use batch size 4; they both use training epoch number 10.
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L.2 Multilingual T2G&G2T on Multi-WebNLG-Test

Model Multi T2G Multi G2T

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
MPNet 38.56 60.48 82.97 53.07 39.52 60.54 83.75 53.67
CLS-MPNet 62.06 85.67 95.78 74.97 65.99 84.37 95.39 76.61
BGE-M3 77.46 92.30 98.99 85.55 64.70 85.10 96.57 76.10
Batch Size Variants
BE-MPNet (bs8; ep2) 79.82 93.25 99.16 87.21 74.26 89.49 98.20 82.87
BE-MPNet (bs16; ep2) 81.84 94.88 99.21 88.69 76.50 91.40 98.71 84.75
BE-MPNet (bs32; ep2) 83.87 95.39 99.10 89.90 78.02 91.23 98.54 85.58
Base Model Variants
BE-MPNet 84.71 96.29 99.49 90.59 78.36 92.19 98.82 85.99
BE-BGE-M3 87.07 97.25 99.78 92.25 79.88 94.72 99.55 87.66
Hard Negative Variants
BE-MPNet-Hard1 81.17 92.69 98.03 87.57 75.49 89.77 97.86 83.57
BE-MPNet-Hard2 79.93 92.92 97.25 86.71 76.56 91.46 98.03 84.64
BE-MPNet-Hard4 78.41 91.46 96.85 85.43 74.14 89.60 97.13 82.50
BE-BGE-M3-Hard1 86.68 97.64 99.55 92.15 80.21 95.05 99.33 87.89
BE-BGE-M3-Hard2 85.95 95.78 98.26 91.01 79.82 93.65 98.82 87.17

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 67.90 89.54 98.15 79.43 66.78 88.14 97.64 78.44
CE-MPNet (bs3; ep2) 72.57 93.54 99.04 83.31 69.08 90.39 98.20 80.37
CE-MPNet (bs4; ep2) 81.34 95.45 99.21 88.62 78.64 93.20 98.82 86.50
Best CE Model
CE-MPNet 88.42 98.31 99.78 93.37 85.39 95.45 97.36 90.52

Table 11: Evaluation of models on multilingual tasks (Multi-WebNLG-Test). We report Recall@k and MRR
for both text-to-graph (T2G) and graph-to-text (G2T) retrieval tasks. "BE" and "CE" denote bi-encoder and
cross-encoder models, respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as
backbones for other variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" =
batch size, "HardX" = X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and
cross-encoders use batch size 4; they both use training epoch number 10.
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M Monolingual Retrieval Task Results

M.1 Monolingual T2G on Multi-Test-1K
M.1.1 Mono-T2G Retrieval Results for English and Chinese on Multi-Test-1K

Model EN ZH

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
MPNet 83.20 93.90 99.50 89.16 78.70 91.00 99.10 85.74
CLS-MPNet 91.60 96.50 98.80 94.32 72.60 84.70 93.70 79.91
BGE-M3 96.00 99.60 100.00 97.77 90.90 98.00 100.00 94.58
EREDAT 96.50 99.60 99.90 98.01 - - - -
FactSpotter 67.70 94.40 96.90 80.52 - - - -
Batch Size Variants
BE-MPNet (bs8; ep2) 96.10 99.80 99.90 97.79 87.90 95.20 97.90 91.90
BE-MPNet (bs16; ep2) 97.60 99.80 100 98.69 91.90 97.40 99.60 94.92
BE-MPNet (bs32; ep2) 97.60 99.80 100 98.69 93.50 98.30 99.90 96.00
Base Model Variants
BE-MPNet 97.90 99.90 99.90 98.87 93.80 98.40 99.90 96.28
BE-BGE-M3 97.40 99.80 99.90 98.59 92.40 97.50 99.30 95.10
Hard Negative Variants
BE-MPNet-Hard1 96.70 98.90 99.40 97.90 92.50 97.00 99.20 95.05
BE-MPNet-Hard2 96.10 98.70 99.30 97.40 92.30 97.00 98.90 94.83
BE-MPNet-Hard4 94.20 97.80 99.10 96.11 88.20 95.10 98.30 92.04
BE-BGE-M3-Hard1 97.20 99.30 99.80 98.29 91.70 97.10 99.00 94.58
BE-BGE-M3-Hard2 96.20 98.00 98.40 97.19 90.00 95.00 97.70 92.95

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 93.50 97.60 98.50 95.60 76.00 89.30 95.40 83.43
CE-MPNet (bs3; ep2) 93.30 98.40 98.90 95.84 84.80 95.50 98.80 90.41
CE-MPNet (bs4; ep2) 95.60 98.70 99.10 97.14 90.40 98.70 99.80 94.42
Best CE Model
CE-MPNet 96.60 98.60 98.60 97.53 92.60 98.70 99.50 95.60

Table 12: Mono-T2G Retrieval Results for English and Chinese on Multi-Test-1K. We report Recall@k and
MRR for the text-to-graph (T2G) retrieval task. "BE" and "CE" denote bi-encoder and cross-encoder models,
respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones for other
variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" =
X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch
size 4; they both use training epoch number 10.
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M.1.2 Mono-T2G Retrieval Results for French and Arabic on Multi-Test-1K

Model FR AR

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
CLS-MPNet 84.70 93.20 97.80 89.49 64.80 78.70 91.10 73.43
MPNet 82.50 93.30 99.50 88.59 73.20 86.90 98.10 81.62
BGE-M3 94.70 99.10 100.00 96.99 88.90 96.80 99.40 93.13
Batch Size Variants
BE-MPNet (bs8; ep2) 94.10 98.80 99.70 96.43 84.20 93.10 96.70 89.05
BE-MPNet (bs16; ep2) 96.10 99.00 99.90 97.71 87.20 96.30 98.90 91.99
BE-MPNet (bs32; ep2) 96.80 99.50 99.90 98.12 89.80 97.00 98.90 93.54
Base Model Variants
BE-MPNet 97.30 99.60 99.90 98.43 90.20 97.60 99.40 93.98
BE-BGE-M3 94.40 98.80 99.50 96.66 87.00 95.10 98.00 91.44
Hard Negative Variants
BE-MPNet-Hard1 96.20 98.70 99.30 97.52 89.20 95.90 98.30 92.77
BE-MPNet-Hard2 94.70 98.10 99.20 96.50 88.10 95.70 98.30 92.10
BE-MPNet-Hard4 93.30 97.10 98.70 95.43 85.00 93.00 97.40 89.60
BE-BGE-M3-Hard1 94.90 98.70 99.40 96.85 88.20 95.10 97.50 91.93
BE-BGE-M3-Hard2 93.40 96.50 98.00 95.13 86.60 93.10 96.30 90.30

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 89.40 96.00 97.20 92.82 69.90 84.40 91.00 77.87
CE-MPNet (bs3; ep2) 90.80 97.10 98.50 94.15 82.60 94.10 96.90 88.50
CE-MPNet (bs4; ep2) 94.00 98.50 99.00 96.26 88.40 96.60 98.50 92.60
Best CE Model
CE-MPNet 95.50 97.60 97.90 96.57 89.60 97.80 99.00 93.61

Table 13: Mono-T2G Retrieval Results for French and Arabic on Multi-Test-1K. We report Recall@k and
MRR for the text-to-graph (T2G) retrieval task. "BE" and "CE" denote bi-encoder and cross-encoder models,
respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones for other
variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" =
X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch
size 4; they both use training epoch number 10.
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M.1.3 Mono-T2G Retrieval Results for Spanish and Russian on Multi-Test-1K

Model ES RU

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
CLS-MPNet 86.80 94.90 97.60 91.04 75.80 87.80 93.80 82.60
MPNet 82.70 92.90 99.60 88.64 78.50 90.70 99.20 85.66
BGE-M3 95.10 99.20 100.00 97.18 90.70 97.70 100.00 94.40
Batch Size Variants
BE-MPNet (bs8; ep2) 94.90 98.70 99.40 96.86 89.00 95.10 98.40 92.46
BE-MPNet (bs16; ep2) 96.30 98.90 99.70 97.71 92.10 97.20 99.60 94.85
BE-MPNet (bs16; ep2) 97.00 99.20 99.80 98.17 92.40 97.90 99.60 95.20
Base Model Variants
BE-MPNet 97.40 99.20 99.70 98.37 92.80 98.10 99.70 95.59
BE-BGE-M3 95.80 99.00 99.60 97.37 91.40 97.50 98.90 94.48
Hard Negative Variants
BE-MPNet-Hard1 95.70 98.40 99.30 97.22 91.70 96.60 98.80 94.36
BE-MPNet-Hard2 94.80 97.90 99.30 96.50 91.20 96.60 98.90 94.07
BE-MPNet-Hard4 93.30 97.20 98.90 95.49 88.40 95.10 97.70 91.86
BE-BGE-M3-Hard1 95.90 98.90 99.50 97.43 91.60 97.40 98.60 94.60
BE-BGE-M3-Hard2 93.70 97.30 98.00 95.50 89.10 94.80 96.90 92.27

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 89.90 96.60 98.10 93.30 78.30 89.80 95.60 84.79
CE-MPNet (bs3; ep2) 90.80 97.30 98.50 94.04 86.50 95.10 98.20 91.11
CE-MPNet (bs4; ep2) 94.50 98.90 99.20 96.71 91.70 97.80 99.50 94.92
Best CE Model
CE-MPNet 94.40 97.30 97.60 95.84 91.30 98.00 98.70 94.63

Table 14: Mono-T2G Retrieval Results for Spanish and Russian on Multi-Test-1K. We report Recall@k and
MRR for the text-to-graph (T2G) retrieval task. "BE" and "CE" denote bi-encoder and cross-encoder models,
respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones for other
variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" =
X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch
size 4; they both use training epoch number 10.
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M.2 Monolingual T2G on Multi-WebNLG-Test
M.2.1 Mono-T2G Retrieval Results for English and Chinese on Multi-WebNLG-Test

Model EN ZH

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
CLS-MPNet 71.95 89.54 96.68 81.58 48.57 69.59 85.83 61.56
MPNet 39.91 62.28 85.16 54.67 34.63 55.20 79.48 48.84
BGE-M3 80.04 94.66 99.44 87.69 63.58 83.47 95.50 75.06
EREDAT 82.91 95.05 99.66 89.46 - - - -
FactSpotter 37.27 70.55 95.11 56.90 - - - -
Batch Size Variants
BE-MPNet (bs8; ep2) 81.06 93.87 99.16 88.04 68.35 85.10 95.39 78.06
BE-MPNet (bs16; ep2) 83.08 95.62 99.10 89.50 71.28 88.25 96.91 80.66
BE-MPNet (bs32; ep2) 84.94 95.78 99.16 90.68 74.09 89.49 97.30 82.79
Base Model Variants
BE-MPNet 86.17 96.18 99.66 91.40 74.09 90.22 97.70 82.86
BE-BGE-M3 88.48 97.81 99.66 93.22 78.36 91.91 98.26 85.82
Hard Negative Variants
BE-MPNet-Hard1 81.84 93.31 98.09 88.05 71.73 86.96 96.07 80.47
BE-MPNet-Hard2 81.62 93.03 97.19 87.65 71.33 87.75 95.67 80.31
BE-MPNet-Hard4 78.81 91.96 97.02 85.77 67.06 85.27 94.66 77.25
BE-BGE-M3-Hard1 88.98 97.75 99.49 93.43 78.08 92.41 98.37 85.77
BE-BGE-M3-Hard2 88.48 96.01 98.37 92.49 77.74 90.50 97.02 84.84

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 70.83 90.11 96.68 80.96 43.51 69.42 89.09 59.23
CE-MPNet (bs3; ep2) 70.66 91.40 97.64 81.60 53.01 79.26 94.38 67.82
CE-MPNet (bs4; ep2) 77.91 93.76 97.81 86.03 60.48 83.98 97.13 73.80
Best CE Model
CE-MPNet 86.23 96.23 97.53 91.20 69.25 90.78 98.88 80.76

Table 15: Mono-T2G Retrieval Results for English and Chinese on Multi-WebNLG-Test. We report Recall@k
and MRR for the text-to-graph (T2G) retrieval task. "BE" and "CE" denote bi-encoder and cross-encoder models,
respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones for other
variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" =
X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch
size 4; they both use training epoch number 10.
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M.2.2 Mono-T2G Retrieval Results for French and Arabic on Multi-WebNLG-Test

Model FR AR

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
CLS-MPNet 63.35 82.86 92.75 74.33 39.63 60.09 77.57 52.71
MPNet 39.12 61.10 83.59 53.68 31.25 50.87 76.45 45.45
BGE-M3 75.66 91.29 99.21 84.32 62.73 81.84 94.49 73.92
Batch Size Variants
BE-MPNet (bs8; ep2) 76.50 91.62 98.37 84.65 61.44 79.43 91.79 72.18
BE-MPNet (bs16; ep2) 79.93 93.54 98.65 87.13 64.70 82.97 93.99 75.29
BE-MPNet (bs32; ep2) 82.46 93.37 98.93 88.66 68.02 84.20 95.11 77.49
Base Model Variants
BE-MPNet 83.75 94.77 99.21 89.64 67.40 84.60 95.62 77.51
BE-BGE-M3 84.20 95.84 99.27 90.30 71.16 86.62 95.67 80.08
Hard Negative Variants
BE-MPNet-Hard1 80.33 91.85 97.92 86.78 65.65 82.97 94.49 75.76
BE-MPNet-Hard2 79.37 91.51 97.13 86.00 64.81 82.46 93.54 75.11
BE-MPNet-Hard4 76.90 90.78 96.51 84.34 60.93 80.04 92.30 72.11
BE-BGE-M3-Hard1 84.94 95.67 99.04 90.55 70.26 87.07 96.07 79.69
BE-BGE-M3-Hard2 84.20 93.87 97.98 89.57 69.31 85.05 94.38 78.46

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 64.31 86.85 96.35 76.43 39.91 64.76 84.43 55.05
CE-MPNet (bs3; ep2) 67.12 89.77 97.36 79.08 51.10 76.00 92.02 65.38
CE-MPNet (bs4; ep2) 73.97 91.74 97.30 83.30 57.11 80.61 94.55 70.59
Best CE Model
CE-MPNet 83.81 95.22 97.02 89.55 65.32 87.75 96.80 77.19

Table 16: Mono-T2G Retrieval Results for French and Arabic on Multi-WebNLG-Test. We report Recall@k
and MRR for the text-to-graph (T2G) retrieval task. "BE" and "CE" denote bi-encoder and cross-encoder models,
respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones for other
variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" =
X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch
size 4; they both use training epoch number 10.
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M.2.3 Mono-T2G Retrieval Results for Spanish and Russian on Multi-WebNLG-Test

Model ES RU

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
CLS-MPNet 65.21 84.32 94.04 75.90 49.97 69.31 84.20 62.06
MPNet 39.74 61.38 83.42 54.20 33.95 55.42 79.60 48.61
BGE-M3 76.50 92.41 99.21 85.08 67.34 85.83 96.29 77.72
Batch Size Variants
BE-MPNet (bs8; ep2) 79.15 93.37 98.65 86.58 68.35 83.75 94.04 77.57
BE-MPNet (bs16; ep2) 81.56 94.32 98.65 88.35 69.98 86.79 95.50 79.32
BE-MPNet (bs32; ep2) 83.47 94.88 98.82 89.41 73.07 87.13 96.46 81.32
Base Model Variants
BE-MPNet 85.33 95.62 99.21 90.66 72.63 87.97 97.41 81.37
BE-BGE-M3 85.10 96.07 99.33 90.94 76.39 90.05 97.53 84.05
Hard Negative Variants
BE-MPNet-Hard1 80.10 92.19 97.81 86.74 70.04 84.77 95.39 78.80
BE-MPNet-Hard2 80.21 92.02 96.85 86.56 69.48 84.88 95.39 78.46
BE-MPNet-Hard4 77.40 90.61 96.96 84.63 66.55 82.74 94.49 76.22
BE-BGE-M3-Hard1 86.12 96.46 99.49 91.51 75.60 89.99 97.70 83.60
BE-BGE-M3-Hard2 85.22 94.32 98.03 90.17 74.59 87.63 96.01 82.18

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 63.58 86.73 96.18 76.00 48.06 73.30 89.99 62.84
CE-MPNet (bs3; ep2) 66.10 89.04 97.53 78.42 56.27 81.45 94.10 70.20
CE-MPNet (bs4; ep2) 74.70 92.52 97.86 84.00 63.13 85.50 96.40 75.30
Best CE Model
CE-MPNet 82.63 94.83 97.30 88.84 71.73 90.95 97.86 81.87

Table 17: Mono-T2G Retrieval Results for Spanish and Russian on Multi-WebNLG-Test. We report Recall@k
and MRR for the text-to-graph (T2G) retrieval task. "BE" and "CE" denote bi-encoder and cross-encoder models,
respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones for other
variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" =
X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch
size 4; they both use training epoch number 10.
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M.3 Monolingual G2T on Multi-Test-1K
M.3.1 Mono-G2T Retrieval Results for English and Chinese on Multi-Test-1K

Model EN ZH

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
CLS-MPNet 91.20 96.60 98.70 94.05 77.30 88.50 95.60 83.91
MPNet 83.20 93.50 99.80 88.98 75.10 88.50 98.80 83.06
BGE-M3 92.90 99.50 100.00 96.09 84.20 95.00 99.80 89.36
EREDAT 95.20 98.90 99.80 97.10 - - - -
FactSpotter 71.10 87.80 99.20 80.74 - - - -
Batch Size Variants
be_ep2_bs8 95.70 99.30 99.90 97.53 87.30 95.00 98.10 91.44
be_ep2_bs16 96.60 99.80 100.00 98.14 89.90 97.00 99.60 93.64
be_ep10_bs32 96.10 99.10 100.00 97.66 89.70 96.10 99.10 93.29
Base Model Variants
BE-MPNet 96.70 99.90 99.90 98.25 92.30 98.00 99.80 95.28
BE-BGE-M3 97.20 99.70 100.00 98.49 91.50 97.30 99.00 94.52
Hard Negative Variants
BE-MPNet-Hard1 95.00 99.40 99.50 96.99 89.80 97.00 99.30 93.59
BE-MPNet-Hard2 95.60 99.10 99.50 97.30 90.70 97.50 99.10 94.20
BE-MPNet-Hard4 94.90 98.60 99.50 96.85 88.10 95.80 99.00 92.40
BE-BGE-M3-Hard1 97.40 99.40 99.70 98.45 91.20 97.40 98.80 94.40
BE-BGE-M3-Hard2 96.30 98.60 98.90 97.48 89.30 96.20 97.80 92.88

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 91.30 98.00 98.00 94.75 70.70 87.10 97.00 80.14
CE-MPNet (bs3; ep2) 92.80 98.70 99.40 95.81 75.60 92.40 98.90 84.49
CE-MPNet (bs4; ep2) 95.70 98.60 99.20 97.26 89.20 97.60 99.50 93.50
Best CE Model
CE-MPNet 96.40 98.60 98.70 97.51 90.60 98.00 99.50 94.41

Table 18: Mono-G2T Retrieval Results for English and Chinese on Multi-Test-1K. We report Recall@k and
MRR for the graph-to-text (G2T) retrieval task. "BE" and "CE" denote bi-encoder and cross-encoder models,
respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones for other
variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" =
X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch
size 4; they both use training epoch number 10.
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M.3.2 Mono-G2T Retrieval Results for French and Arabic on Multi-Test-1K

Model FR AR

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
CLS-MPNet 86.50 94.00 98.00 90.78 63.90 78.60 88.90 72.76
MPNet 82.10 91.90 99.80 87.93 70.70 85.90 97.50 79.80
BGE-M3 91.80 98.00 100.00 95.08 82.20 92.80 99.30 88.16
Batch Size Variants
be_ep2_bs8 93.30 98.50 99.70 96.01 81.80 92.30 96.40 87.50
be_ep2_bs16 95.10 99.10 99.70 97.12 86.80 95.40 98.60 91.38
be_ep2_bs32 96.00 99.10 99.80 97.63 88.10 95.90 99.10 92.28
Base Model Variants
BE-MPNet 96.20 99.50 99.90 97.81 90.00 96.50 99.30 93.59
BE-BGE-M3 95.10 99.00 99.60 97.04 88.20 95.00 98.10 91.91
Hard Negative Variants
BE-MPNet-Hard1 94.00 98.90 99.40 96.33 89.60 97.00 98.80 93.25
BE-MPNet-Hard2 94.60 98.30 99.40 96.56 88.10 96.20 98.60 92.24
BE-MPNet-Hard4 94.20 97.90 99.40 96.21 84.10 94.60 97.90 89.70
BE-BGE-M3-Hard1 94.80 98.50 99.40 96.83 88.20 95.60 97.70 92.08
BE-BGE-M3-Hard2 93.00 97.20 98.30 95.21 87.60 93.90 96.30 91.16

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 86.10 96.10 98.40 91.18 65.80 83.10 93.40 75.76
CE-MPNet (bs3; ep2) 86.00 97.90 99.30 91.79 72.20 88.30 96.10 81.11
CE-MPNet (bs4; ep2) 93.70 98.00 99.20 95.99 82.70 93.10 98.00 88.47
Best CE Model
CE-MPNet 95.20 98.00 98.60 96.66 84.80 93.80 98.60 89.75

Table 19: Mono-G2T Retrieval Results for French and Arabic on Multi-Test-1K. We report Recall@k and
MRR for the graph-to-text (G2T) retrieval task. "BE" and "CE" denote bi-encoder and cross-encoder models,
respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones for other
variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" =
X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch
size 4; they both use training epoch number 10.
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M.3.3 Mono-G2T Retrieval Results for Spanish and Russian on Multi-Test-1K

Model ES RU

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
CLS-MPNet 88.20 94.20 97.20 91.67 78.50 89.40 94.70 84.61
MPNet 82.10 93.20 99.70 88.01 77.40 89.60 98.70 84.43
BGE-M3 92.30 98.50 99.90 95.42 85.90 95.20 99.70 91.08
Batch Size Variants
be_ep2_bs8 93.70 98.20 99.40 96.11 88.80 95.70 98.60 92.33
be_ep2_bs16 95.20 98.80 99.70 97.07 89.70 96.80 99.10 93.41
be_ep2_bs32 95.70 99.30 99.80 97.49 90.50 97.50 99.60 94.11
Base Model Variants
BE-MPNet 95.60 99.20 99.60 97.41 91.70 97.30 99.50 94.82
BE-BGE-M3 95.40 98.80 99.60 97.21 90.70 96.90 98.70 94.04
Hard Negative Variants
BE-MPNet-Hard1 94.00 98.90 99.40 96.33 89.60 97.00 98.80 93.25
BE-MPNet-Hard2 94.40 98.50 99.20 96.44 90.30 96.90 99.20 93.85
BE-MPNet-Hard4 93.30 97.90 99.50 95.77 88.70 95.80 98.80 92.66
BE-BGE-M3-Hard1 95.10 99.20 99.40 97.13 90.50 96.90 98.70 93.91
BE-BGE-M3-Hard2 94.00 97.60 98.60 95.93 89.20 95.00 97.50 92.47

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 86.60 96.50 98.80 91.69 77.50 89.50 95.90 84.38
CE-MPNet (bs3; ep2) 88.10 96.80 98.70 92.54 82.00 92.80 97.90 88.08
CE-MPNet (bs4; ep2) 93.20 98.10 98.80 95.63 89.90 97.60 99.60 93.80
Best CE Model
CE-MPNet 94.80 97.30 97.50 96.06 91.30 97.60 98.60 94.45

Table 20: Mono-G2T Retrieval Results for Spanish and Russian on Multi-Test-1K. We report Recall@k and
MRR for the graph-to-text (G2T) retrieval task. "BE" and "CE" denote bi-encoder and cross-encoder models,
respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones for other
variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" =
X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch
size 4; they both use training epoch number 10.
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M.4 Monolingual G2T on Multi-WebNLG-Test
M.4.1 Mono-G2T Retrieval Results for English and Chinese on Multi-WebNLG-Test

Model EN ZH

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
CLS-MPNet 72.29 88.81 96.29 81.34 53.06 71.89 86.79 64.88
MPNet 43.28 64.87 85.27 57.17 31.37 51.26 75.32 45.43
BGE-M3 70.49 88.53 98.15 80.55 46.49 68.07 88.42 60.36
EREDAT 76.67 91.06 98.43 84.65 - - - -
FactSpotter 38.90 64.70 90.33 55.46 - - - -
Batch Size Variants
BE-MPNet (bs8; ep2) 79.60 92.36 98.37 86.61 65.09 83.42 93.76 75.46
BE-MPNet (bs16; ep2) 82.18 92.97 98.71 88.37 67.90 85.33 96.18 77.76
BE-MPNet (bs32; ep2) 83.53 93.76 98.88 89.34 69.59 86.23 96.29 79.22
Base Model Variants
BE-MPNet 83.31 94.32 99.21 89.31 71.22 87.68 96.74 80.45
BE-BGE-M3 85.72 96.74 99.61 91.48 73.86 90.33 97.53 82.95
Hard Negative Variants
BE-MPNet-Hard1 79.26 92.13 97.86 86.33 68.35 84.26 95.28 77.75
BE-MPNet-Hard2 80.33 91.91 97.81 86.92 70.15 86.68 96.35 79.44
BE-MPNet-Hard4 78.70 91.34 97.70 85.61 65.21 83.47 95.11 75.68
BE-BGE-M3-Hard1 86.40 96.91 99.44 91.70 73.92 90.44 97.41 82.94
BE-BGE-M3-Hard2 86.12 95.62 98.76 91.17 74.48 88.70 96.80 82.54

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 70.21 89.32 96.57 80.39 47.61 71.44 90.56 62.05
CE-MPNet (bs3; ep2) 69.76 90.50 97.75 80.75 49.63 76.34 92.75 64.86
CE-MPNet (bs4; ep2) 76.90 92.69 97.64 85.31 58.74 83.70 95.45 72.31
Best CE Model
CE-MPNet 85.39 95.45 97.36 90.52 67.34 87.46 97.02 78.47

Table 21: Mono-G2T Retrieval Results for English and Chinese on Multi-WebNLG-Test. We report Recall@k
and MRR for the graph-to-text (G2T) retrieval task. "BE" and "CE" denote bi-encoder and cross-encoder models,
respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones for other
variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" =
X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch
size 4; they both use training epoch number 10.
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M.4.2 Mono-G2T Retrieval Results for French and Arabic on Multi-WebNLG-Test

Model FR AR

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
CLS-MPNet 66.44 84.09 93.87 76.46 45.08 63.74 79.20 56.76
MPNet 41.60 61.44 82.80 54.90 27.15 44.35 69.70 40.58
BGE-M3 67.00 84.99 97.02 77.43 42.78 64.08 84.88 56.64
Batch Size Variants
BE-MPNet (bs8; ep2) 75.55 90.61 97.02 83.76 61.44 78.92 90.05 71.75
BE-MPNet (bs16; ep2) 78.25 91.29 97.64 85.52 64.08 81.34 93.14 74.27
BE-MPNet (bs32; ep2) 79.93 92.07 98.15 86.69 65.21 82.91 93.76 75.43
Base Model Variants
BE-MPNet 80.10 92.36 98.59 86.95 64.81 82.69 94.44 75.31
BE-BGE-M3 82.12 94.83 99.10 88.89 68.52 85.22 94.66 78.04
Hard Negative Variants
BE-MPNet-Hard1 77.57 90.95 97.58 84.92 64.08 81.39 92.92 74.28
BE-MPNet-Hard2 78.25 91.01 97.70 85.35 63.80 82.29 93.87 74.56
BE-MPNet-Hard4 74.20 89.49 96.74 82.60 58.12 77.07 92.02 69.67
BE-BGE-M3-Hard1 82.46 94.49 98.82 88.89 67.90 84.94 94.21 77.54
BE-BGE-M3-Hard2 81.45 93.48 97.92 87.86 66.39 83.59 93.65 76.29

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 64.31 83.98 95.33 75.38 43.51 65.99 85.89 57.55
CE-MPNet (bs3; ep2) 63.52 86.57 96.57 76.04 46.88 69.65 89.04 61.15
CE-MPNet (bs4; ep2) 70.43 90.33 96.91 81.05 52.56 76.50 92.02 66.49
Best CE Model
CE-MPNet 80.66 94.10 97.02 87.57 59.36 82.52 93.25 71.99

Table 22: Mono-G2T Retrieval Results for French and Arabic on Multi-WebNLG-Test. We report Recall@k
and MRR for the graph-to-text (G2T) retrieval task. "BE" and "CE" denote bi-encoder and cross-encoder models,
respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones for other
variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" =
X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch
size 4; they both use training epoch number 10.
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M.4.3 Mono-G2T Retrieval Results for Spanish and Russian on Multi-WebNLG-Test

Model ES RU

Recall@1 Recall@3 Recall@10 MRR Recall@1 Recall@3 Recall@10 MRR

BI-ENCODER
Baselines
CLS-MPNet 66.84 84.60 93.70 76.85 54.41 72.29 84.77 65.19
MPNet 41.60 61.27 83.47 55.14 34.35 53.34 76.05 47.79
BGE-M3 67.96 86.00 96.68 78.25 53.68 73.86 90.50 66.23
Batch Size Variants
BE-MPNet (bs8; ep2) 76.73 90.11 97.70 84.25 65.65 82.97 92.80 75.62
BE-MPNet (bs16; ep2) 78.92 92.07 98.48 86.11 69.03 84.04 94.66 78.05
BE-MPNet (bs32; ep2) 80.44 92.47 98.37 87.19 70.94 84.77 95.00 79.35
Base Model Variants
BE-MPNet 80.83 92.69 98.59 87.38 70.38 85.95 95.73 79.30
BE-BGE-M3 82.63 95.45 99.33 89.29 72.46 88.70 96.35 81.47
Hard Negative Variants
BE-MPNet-Hard1 77.12 90.67 97.58 84.74 67.90 83.59 94.60 77.27
BE-MPNet-Hard2 78.70 91.57 97.58 85.80 68.41 84.99 95.22 77.96
BE-MPNet-Hard4 75.32 89.21 96.80 83.26 66.16 82.80 93.99 75.95
BE-BGE-M3-Hard1 82.52 95.28 99.44 89.17 72.63 88.08 96.29 81.34
BE-BGE-M3-Hard2 82.57 94.27 98.37 88.81 72.74 86.85 95.67 81.09

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 63.97 85.33 95.95 75.81 50.42 72.74 89.32 63.90
CE-MPNet (bs3; ep2) 63.46 86.45 97.13 75.94 53.68 77.12 92.02 67.31
CE-MPNet (bs4; ep2) 72.29 91.40 96.80 82.20 60.65 83.36 94.94 73.27
Best CE Model
CE-MPNet 80.66 93.82 96.96 87.47 67.79 89.04 96.80 79.03

Table 23: Mono-G2T Retrieval Results for Spanish and Russian on Multi-WebNLG-Test. We report Recall@k
and MRR for the graph-to-text (G2T) retrieval task. "BE" and "CE" denote bi-encoder and cross-encoder models,
respectively. MPNet and BGE-M3 are pre-trained embedding models used as baselines and as backbones for other
variants; CLS-MPNet is a binary classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" =
X hard negatives per graph. Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch
size 4; they both use training epoch number 10.
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N Robustness to Corrupted Data Evaluation Results

N.1 English

Model Correct Error Types
Good Removed Added ReplP ReplE Swapped

BE-MPNet (bs8; ep2) 39.70 7.30 8.50 18.20 0.40 25.90
BE-MPNet (bs16; ep2) 41.00 6.20 6.20 17.40 0.10 29.10
BE-MPNet (bs32; ep2) 40.90 6.00 5.50 17.10 0.00 30.50
BE-MPNet (bs32; ep10) 40.90 7.00 4.10 16.70 0.00 31.30

CE-MPNet (bs2; ep2) 33.20 9.80 8.60 13.40 0.30 34.70
CE-MPNet (bs3; ep2) 30.90 9.70 8.40 19.40 1.10 30.50
CE-MPNet (bs4; ep2) 35.80 6.40 9.30 12.60 0.50 35.40
CE-MPNet (bs4; ep10) 32.40 6.50 6.70 23.60 0.40 30.40

Table 24: Top-N Type Distribution for English on Multi-Test-1K-Corr. The table reports the distribution of
correct matches ("Good") and various error types ("Removed", "Added", "Replace_Pred", "Replace_Entity", and
"Swapped") for the top 1000 retrieval results, where "Good" indicates correctly matched graphs. The results
illustrate the robustness of models against corrupted graphs. BE-MPNet (bs32; ep10) refers to the best MPNet-
based alignment model without hard negatives.

N.2 French

Model Correct Error Types
Good Removed Added ReplP ReplE Swapped

BE-MPNet (bs8; ep2) 36.60 6.70 9.30 19.30 0.50 27.60
BE-MPNet (bs16; ep2) 37.30 6.00 7.10 17.80 0.10 31.70
BE-MPNet (bs32; ep2) 38.30 5.90 6.30 17.90 0.00 31.60
BE-MPNet (bs32; ep10) 38.70 6.70 4.00 17.60 0.30 32.70

CE-MPNet (bs2; ep2) 32.60 9.50 7.40 16.90 1.10 32.50
CE-MPNet (bs3; ep2) 27.90 10.00 9.90 21.30 1.40 29.50
CE-MPNet (bs4; ep2) 23.50 9.50 15.20 23.90 4.30 23.60
CE-MPNet (bs4; ep10) 33.90 7.20 8.00 16.60 0.50 33.80

Table 25: Top-N Type Distribution for French on Multi-Test-1K-Corr. The table reports the distribution of
correct matches ("Good") and various error types ("Removed", "Added", "Replace_Pred", "Replace_Entity", and
"Swapped") for the top 1000 retrieval results, where "Good" indicates correctly matched graphs. The results
illustrate the robustness of models against corrupted graphs. BE-MPNet (bs32; ep10) refers to the best MPNet-
based alignment model without hard negatives.

14263



N.3 Spanish

Model Correct Error Types
Good Removed Added ReplP ReplE Swapped

BE-MPNet (bs8; ep2) 37.60 7.40 10.20 19.00 0.30 25.50
BE-MPNet (bs16; ep2) 39.40 6.70 7.20 18.90 0.00 27.80
BE-MPNet (bs32; ep2) 39.60 6.50 6.20 18.00 0.00 29.70
BE-MPNet (bs32; ep10) 38.20 6.30 4.80 18.40 0.20 32.10

CE-MPNet (bs2; ep2) 31.20 10.50 7.60 17.20 0.80 32.70
CE-MPNet (bs3; ep2) 27.30 11.40 9.90 21.30 1.00 29.10
CE-MPNet (bs4; ep2) 22.80 10.20 15.30 24.90 3.60 23.20
CE-MPNet (bs4; ep10) 35.60 6.80 7.80 14.90 0.30 34.60

Table 26: Top-N Type Distribution for Spanish on Multi-Test-1K-Corr. The table reports the distribution
of correct matches ("Good") and various error types ("Removed", "Added", "Replace_Pred", "Replace_Entity",
and "Swapped") for the top 1000 retrieval results, where "Good" indicates correctly matched graphs. The results
illustrate the robustness of models against corrupted graphs. BE-MPNet (bs32; ep10) refers to the best MPNet-
based alignment model without hard negatives.

N.4 Russian

Model Correct Error Types
Good Removed Added ReplP ReplE Swapped

BE-MPNet (bs8; ep2) 33.00 10.00 9.70 19.30 0.90 27.10
BE-MPNet (bs16; ep2) 33.30 8.70 6.90 18.50 0.20 32.40
BE-MPNet (bs32; ep2) 34.00 8.30 6.80 20.20 0.10 30.60
BE-MPNet (bs32; ep10) 35.80 7.80 5.70 19.10 0.10 31.50

CE-MPNet (bs2; ep2) 29.60 13.70 9.20 15.80 1.50 30.20
CE-MPNet (bs3; ep2) 27.10 10.40 11.30 20.30 2.70 28.20
CE-MPNet (bs4; ep2) 23.60 8.80 18.40 19.40 5.40 24.40
CE-MPNet (bs4; ep10) 32.50 8.40 8.70 17.00 0.70 32.70

Table 27: Top-N Type Distribution for Russian on Multi-Test-1K-Corr. The table reports the distribution
of correct matches ("Good") and various error types ("Removed", "Added", "Replace_Pred", "Replace_Entity",
and "Swapped") for the top 1000 retrieval results, where "Good" indicates correctly matched graphs. The results
illustrate the robustness of models against corrupted graphs. BE-MPNet (bs32; ep10) refers to the best MPNet-
based alignment model without hard negatives.
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N.5 Arabic

Model Correct Error Types
Good Removed Added ReplP ReplE Swapped

BE-MPNet (bs8; ep2) 32.80 8.90 9.10 20.20 1.10 27.90
BE-MPNet (bs16; ep2) 32.80 7.60 7.90 19.60 0.30 31.80
BE-MPNet (bs32; ep2) 33.00 7.20 7.20 21.50 0.50 30.60
BE-MPNet (bs32; ep10) 34.20 7.30 5.70 19.00 0.90 32.90

CE-MPNet (bs2; ep2) 29.50 11.90 10.90 16.40 2.00 29.30
CE-MPNet (bs3; ep2) 27.70 9.90 11.60 20.10 2.90 27.80
CE-MPNet (bs4; ep2) 24.50 8.20 17.50 21.40 4.20 24.20
CE-MPNet (bs4; ep2) 32.90 7.70 9.90 16.80 1.10 31.60

Table 28: Top-N Type Distribution for Arabic on Multi-Test-1K-Corr. The table reports the distribution of
correct matches ("Good") and various error types ("Removed", "Added", "Replace_Pred", "Replace_Entity", and
"Swapped") for the top 1000 retrieval results, where "Good" indicates correctly matched graphs. The results
illustrate the robustness of models against corrupted graphs. BE-MPNet (bs32; ep10) refers to the best MPNet-
based alignment model without hard negatives.

N.6 Chinese

Model Correct Error Types
Good Removed Added ReplP ReplE Swapped

BE-MPNet (bs8; ep2) 32.20 9.10 10.30 18.70 0.60 29.10
BE-MPNet (bs16; ep2) 33.50 8.60 7.70 18.00 0.40 31.80
BE-MPNet (bs32; ep2) 33.70 7.90 7.80 19.30 0.30 31.00
BE-MPNet (bs32; ep10) 32.90 8.50 6.90 20.10 0.50 31.10

CE-MPNet (bs2; ep2) 28.90 13.20 9.60 16.20 2.20 29.90
CE-MPNet (bs3; ep2) 26.90 11.70 10.50 19.80 3.00 28.10
CE-MPNet (bs4; ep2) 23.70 8.40 16.40 20.80 5.50 25.20
CE-MPNet (bs4; ep10) 25.80 8.20 11.00 26.70 1.80 26.50

Table 29: Top-N Type Distribution for Chinese on Multi-Test-1K-Corr. The table reports the distribution
of correct matches ("Good") and various error types ("Removed", "Added", "Replace_Pred", "Replace_Entity",
and "Swapped") for the top 1000 retrieval results, where "Good" indicates correctly matched graphs. The results
illustrate the robustness of models against corrupted graphs. BE-MPNet (bs32; ep10) refers to the best MPNet-
based alignment model without hard negatives.
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O Multi-Test-1K-Corr Retrieval Result

Model Overall EN AR ES FR RU ZH
MRR Acc. MRR Acc. MRR Acc. MRR Acc. MRR Acc. MRR Acc. MRR Acc.

BI-ENCODER
Baselines
MPNet 46.96 22.20 50.25 25.00 42.21 19.10 48.45 22.70 48.51 22.80 46.23 21.90 46.11 21.70
CLS_MPNet 47.61 22.68 57.05 29.10 36.91 15.90 52.52 25.40 50.86 23.80 45.65 22.10 42.63 19.80
BGE-M3 66.27 44.50 68.53 45.90 63.48 42.70 69.06 47.50 68.47 46.40 64.94 43.30 63.11 41.20
EREDAT - - 66.54 41.00 - - - - - - - - - -
FactSpotter - - 55.77 32.70 - - - - - - - - - -
Batch Size Variants
BE-MPNet (bs8; ep2) 60.09 36.70 65.66 41.90 54.57 32.70 64.23 40.90 62.81 38.40 57.40 33.80 55.84 32.50
BE-MPNet (bs16; ep2) 61.72 37.27 67.38 43.40 56.79 33.30 64.49 39.80 64.27 39.50 57.89 32.40 59.52 35.20
BE-MPNet (bs32; ep2) 63.75 39.57 69.53 46.40 58.57 34.70 66.64 42.50 65.27 40.20 60.93 36.50 61.54 37.10
Base Model Variants
BE-MPNet 64.44 40.22 69.79 47.30 58.74 34.00 67.33 43.10 66.48 42.40 61.31 36.00 63.00 38.50
BE-BGE-M3 63.15 40.22 68.71 46.40 57.52 34.20 66.50 43.90 65.75 43.70 59.87 36.50 60.56 36.60
Hard Negative Variants
BE-MPNet-Hard1 76.06 60.33 82.75 69.90 70.35 53.40 78.69 63.40 79.22 64.00 72.00 54.70 73.34 56.60
BE-MPNet-Hard2 (ALL-6) 78.67 64.92 84.55 73.50 72.12 56.30 81.92 69.40 81.57 68.90 75.06 59.60 76.80 61.80
BE-MPNet-Hard4 76.19 62.37 81.76 69.60 69.32 53.50 79.42 66.10 79.57 66.60 73.59 59.30 73.48 59.10
BE-BGE-M3-Hard1 75.74 59.43 82.63 68.90 68.26 49.50 78.83 63.10 78.69 63.60 73.24 56.40 72.77 55.10
BE-BGE-M3-Hard2 77.69 64.00 83.24 70.70 72.01 57.40 80.87 68.00 79.61 66.10 75.48 62.00 74.90 59.80
Languages Variants With 2 Hard Negatives
BE-MPNet-Hard2-EN 49.39 26.40 58.10 34.00 42.66 22.70 54.17 29.70 52.77 28.00 45.36 23.00 43.27 21.00
BE-MPNet-Hard2-EN-FR 64.55 45.35 75.84 58.30 52.30 33.00 71.55 52.80 72.79 54.10 58.59 37.90 56.24 36.00
BE-MPNet-Hard2-EN-ES 59.81 39.57 69.97 49.60 48.81 29.90 67.45 46.80 65.68 44.40 55.43 34.70 51.52 32.00
BE-MPNet-Hard2-EN-FR-ES 68.86 51.33 78.88 63.70 57.23 38.40 75.86 59.00 75.49 59.00 64.80 46.60 60.93 41.30
BE-MPNet-Hard2-EN-RU 65.92 45.80 73.75 54.30 57.93 37.90 69.84 49.70 68.82 47.90 64.61 44.50 61.00 40.50
BE-MPNet-Hard2-EN-ZH 69.20 50.98 77.30 61.60 60.53 41.00 70.79 51.80 72.69 54.90 65.27 46.90 68.62 49.70
BE-MPNet-Hard2-EN-AR 66.08 46.33 75.50 58.30 62.38 42.40 67.08 47.10 68.41 48.40 62.72 42.40 60.41 39.40
BE-MPNet-Hard2-EN-RU-ZH-AR 74.17 57.92 80.48 66.20 68.01 50.80 76.00 59.60 76.33 60.00 71.76 55.70 72.43 55.20
BE-MPNet-Hard2-ALL-6-Small 60.58 32.95 63.20 34.20 57.12 30.30 61.96 33.20 62.31 34.40 59.03 32.30 59.90 33.30

CROSS-ENCODER
Batch Size Variants
CE-MPNet (bs2; ep2) 48.90 22.73 56.98 28.30 42.07 19.90 52.58 24.10 51.36 22.40 46.11 21.50 44.30 20.20
CE-MPNet (bs3; ep2) 50.35 22.80 55.45 26.70 48.19 22.30 50.90 22.40 51.08 22.00 47.66 20.50 48.83 22.90
CE-MPNet (bs4; ep2) 44.41 17.03 47.63 17.90 42.04 16.70 44.99 16.10 45.52 16.60 44.32 18.50 41.93 16.40
Best CE Model
CE-MPNet 49.64 19.43 55.30 24.10 43.97 13.80 52.24 21.80 52.43 22.40 46.78 17.00 47.12 17.50

Table 30: Performance of various models in terms of Mean Reciprocal Rank (MRR) and Accuracy (Acc.)
across different languages on the complex retrieval task. Overall results represent aggregated metrics across
all languages. "BE" and "CE" denote bi-encoder and cross-encoder models, respectively. MPNet and BGE-M3
are pre-trained embedding models used as baselines and as backbones for other variants; CLS-MPNet is a binary
classification baseline. Abbreviations: "ep" = epochs, "bs" = batch size, "HardX" = X hard negatives per graph.
Unless otherwise specified, bi-encoders use batch size 32 and cross-encoders use batch size 4; they both use training
epoch number 10.
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P Impact of Multilingual Training on English Alignment

P.1 All-6-Small Set Creation
To disentangle the effect of data size from language coverage, we construct the All-6-Small training set,
which matches the overall size of the English-only subset while distributing it across six languages. The
subset is extracted from EN-Train using the same procedure as for the English Test-1K (see App. F),
i.e., maximizing property coverage while maintaining balance across graph sizes. Specifically, we select
5,600 (Graph, English Text) pairs from EN-Train, covering 74.76% of the properties in the original set.
This subset is then translated into the other five target languages following the same procedure as for
Multi-Train-Silver, resulting in All-6-Small with 33,600 (Graph, Text) pairs across six languages (5,600 per
language). Table 31 compares All-6-Small with other training sets, and Table 32 details the composition
of the All-6-Small subset by graph size and source.

Training Sets Description Languages #(KG, Text) Pairs #Property
EN-Train KELM-Q1 + WebNLG-Train En 33,601 4,188
Multi-Train-Silver (All-6) EN-Train + Translation En, Fr, Es, Ru, Zh, Ar 201,606 4,188
EN-Train-Subset Subset of EN-Train En 5,600 3,131
All-6-Small EN-Train-Subset + Translation En, Fr, Es, Ru, Zh, Ar 33,600 3,131

Table 31: Statistics of training datasets. All-6-Small matches the size of EN-Train but covers six languages.

Graph Size KELM-Q1 WebNLG-Train Total
1 589 531 1,120
2 1,117 3 1,120
3 1,027 93 1,120
4 611 509 1,120
5 648 472 1,120

Total 3,992 1,608 5,600

Table 32: Composition of the All-6-Small subset by graph size and source dataset.

P.2 Full Results on English Retrieval Tasks
Table 33 reports the full results of alignment models trained on different training settings. We observe a
consistent improvement in English retrieval performance as additional languages are added to the training
data. Notably, the All-6-Small variant—which controls for training size by matching the English-only
subset—achieves substantially better results than the English-only model, and even surpasses or closely
matches the full All-6 model on the two test sets without graph corruptions (Multi-Test-1K and Multi-
WebNLG-Test). This confirms that the benefit arises from multilingual coverage rather than data volume.
On the other hand, All-6-Small underperforms on Multi-Test-1K-Corr. A likely explanation is that the
reduced training subset leads to weaker property and entity coverage, resulting in corrupted graphs that
diverge more significantly from the original ones, thus hurting robustness under corruption.
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Multi-Test-1K Multi-WebNLG-Test Multi-Test-1K-Corr

Model Variants G2T T2G G2T T2G T2G

R@1 MRR R@1 MRR R@1 MRR R@1 MRR R@1 MRR

Languages Variants
BE-MPNet-Hard2-EN 90.70 94.33 91.60 94.89 66.55 77.15 67.90 78.78 34.00 58.10
BE-MPNet-Hard2-EN-FR 94.40 96.32 94.50 96.18 74.76 82.48 76.17 83.58 58.30 75.84
BE-MPNet-Hard2-EN-ES 91.70 95.24 93.90 96.25 69.93 79.65 75.38 83.80 49.60 69.97
BE-MPNet-Hard2-EN-FR-ES 94.70 96.67 94.60 96.39 76.50 84.46 77.85 85.34 63.70 78.88
BE-MPNet-Hard2-EN-RU 93.70 96.06 94.60 96.53 74.48 82.73 76.11 84.13 54.30 73.75
BE-MPNet-Hard2-EN-ZH 92.90 95.13 93.30 95.23 74.20 81.84 76.17 83.20 61.60 77.33
BE-MPNet-Hard2-EN-AR 93.90 95.91 94.10 96.19 75.89 83.19 77.23 84.21 58.30 75.50
BE-MPNet-Hard2-EN-RU-ZH-AR 94.30 96.42 96.30 97.48 76.90 84.58 79.88 86.72 66.20 80.48
BE-MPNet-Hard2-All-6 95.60 97.30 96.10 97.40 80.33 86.92 81.62 87.65 73.50 84.55
BE-MPNet-Hard2-All-6-Small 96.30 97.96 97.40 98.59 78.98 86.34 81.17 88.23 34.20 63.18

Table 33: Model Performance Comparison on Test Sets for monolingual tasks (English). BE: Bi-Encoder, CE:
Cross-Encoder, G2T: Graph-to-Text Retrieval, T2G: Text-to-Graph Retrieval, Recall@1 (R@1), Mean Reciprocal
Rank (MRR). The batch size for all BE models is 32 unless it is explicitly stated. All-6 denotes the full six-language
mix: English (EN), Arabic (AR), Chinese (ZH), French (FR), Spanish (ES), and Russian (RU). All-6-Small matches
the size of the English-only set but covers six languages.
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Q DPO Evaluation Result

Q.1 KELM Test

Model BLEU Meteor ChrF TER BertScore Bleurt EREDAT Facts Parent Quest-Eval Sescore2

Prompting Baselines
QWEN-0-shot 22.89 36.75 16.84 91.40 93.64 75.22 84.69 67.27 34.25 69.10 -6.33
QWEN-3-shot 32.33 40.23 65.89 54.49 95.04 78.95 88.72 82.22 45.09 71.85 -3.24
Instrution Tuning
QWEN-IT 40.91 42.55 69.77 42.99 95.77 81.67 90.40 56.93 50.72 71.64 -1.69
QWEN DPO Variants
DPO-HARD-MuCAL 36.60 43.37 69.83 54.35 95.14 78.27 92.38 91.70 52.18 71.65 -2.70
DPO-CE-MuCAL 39.56 43.24 69.87 46.00 95.53 79.26 91.22 90.09 53.03 72.19 -2.10
DPO-EREDAT 30.62 37.99 59.76 100.06 93.92 76.20 92.59 91.89 49.51 71.72 -2.70
DPO-FactSpotter 15.23 23.85 11.30 772.00 90.10 64.45 80.06 96.71 36.01 68.69 -12.90
DPO-DQE 28.71 26.41 37.60 351.48 92.65 78.52 88.57 94.05 55.42 74.58 -7.16

Table 34: Performance of different models on the KELM Test set across reference-based and graph-based evaluation
metrics. Abbreviations: QWEN refers to QWEN2.5-1.5B-Instruct, IT stands for Instruction Tuning, and DPO-X
denotes DPO training applied on preference data where the preference signals are provided by X.

Q.2 WebNLG Test

Model BLEU Meteor ChrF TER BertScore Bleurt EREDAT Facts Parent Quest-Eval Sescore2

Prompting Baselines
QWEN-0-shot 36.23 37.41 57.23 61.98 94.09 75.40 84.05 90.18 49.69 69.87 -6.58
QWEN-3-shot 42.43 38.48 63.44 51.87 94.80 77.56 85.59 91.55 55.52 71.63 -4.69
Instrution Tuning
QWEN-IT 45.39 39.06 64.63 47.22 95.25 78.28 86.37 90.68 59.17 71.84 -3.62
QWEN DPO Variants
DPO-HARD-MuCAL 42.82 39.76 65.56 51.35 94.85 77.91 89.56 95.80 61.53 74.61 -4.12
DPO-CE-MuCAL 44.51 39.67 65.15 48.32 95.04 78.12 88.50 93.40 59.23 73.43 -3.95
DPO-EREDAT 37.23 36.13 31.38 60.49 93.72 76.97 90.38 97.32 59.36 74.81 -6.21
DPO-FactSpotter 21.19 26.19 12.26 96.70 90.20 68.41 78.97 97.69 44.28 70.56 -13.75
DPO-DQE 23.72 23.92 35.08 88.21 89.98 76.37 82.38 95.56 59.90 75.79 -12.67

Table 35: Performance of different models on the WebNLG Test set across reference-based and graph-based
evaluation metrics. Abbreviations: QWEN refers to QWEN2.5-1.5B-Instruct, IT stands for Instruction Tuning, and
DPO-X denotes DPO training applied on preference data where the preference signals are provided by X.

Q.3 GOLD-OOD-472

Model BLEU Meteor ChrF TER BertScore Bleurt EREDAT Facts Parent Quest-Eval Sescore2

Prompting Baselines
QWEN-0-shot 26.57 34.81 31.52 96.69 93.37 72.81 79.36 83.97 41.67 59.88 -9.39
QWEN-3-shot 32.95 34.67 57.39 61.30 94.35 75.49 80.73 85.11 48.98 61.81 -6.97
Instrution Tuning
QWEN-IT 30.46 31.17 53.65 60.53 93.88 74.63 79.81 81.01 47.08 61.95 -6.32
QWEN DPO Variants
DPO-HARD-MuCAL 35.23 41.12 63.40 59.02 94.88 77.34 84.92 93.86 54.93 64.85 -5.55
DPO-CE-MuCAL 34.45 38.52 60.21 59.35 94.71 76.25 83.07 89.18 53.82 63.22 -5.63
DPO-EREDAT 31.67 38.58 59.51 93.57 93.98 75.30 85.35 94.99 54.04 65.23 -7.23
DPO-FactSpotter 24.52 33.46 17.37 307.95 91.58 69.74 78.89 96.86 45.08 62.14 -11.29
DPO-DQE 21.27 28.12 40.04 306.22 90.17 74.90 79.81 92.81 53.71 65.02 -13.80

Table 36: Performance of different models on the GOLD-OOD-472 set across reference-based and graph-based
evaluation metrics. Abbreviations: QWEN refers to QWEN2.5-1.5B-Instruct, IT stands for Instruction Tuning, and
DPO-X denotes DPO training applied on preference data where the preference signals are provided by X.
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R Qualitative Analysis Results

R.1 QWEN-IT better than DPO-HARD-MuCAL by METEOR

Graph QWEN-IT (Text / METEOR) DPO-HARD-MuCAL (Text /
METEOR)

Gap Human Observation

Ex1 [2009 UK Championship |
sport | snooker]

The 2009 UK Championship was
a snooker tournament.
(95.79)

The 2009 UK Championship took
place in snooker.
(34.65)

+61.14 Both are factually correct, but IT out-
put is more fluent and natural, while
DPO sounds awkward.

Ex2 [1997 British Open | tourna-
ment type | ranking tourna-
ment]

The 1997 British Open was a rank-
ing tournament.
(100.00)

The 1997 British Open has the
tournament type of ranking tour-
nament.
(45.19)

+54.81 Both outputs are correct, but IT is
more concise and idiomatic; DPO is
grammatical yet less natural.

Ex3 [Sweden | Happy Planet In-
dex score | 50.5]

Sweden has a happy planet index
score of 50.5.
(100.00)

The happy planet index score for
Sweden is 50.5.
(46.87)

+53.13 Both are factually correct; IT output
is simpler and reads more naturally,
whereas DPO is verbose.

Table 37: Qualitative examples where IT outperforms DPO (IT > DPO). We show model outputs with their
METEOR scores, the score gap (IT–DPO), and human observations.

R.2 DPO-HARD-MuCAL better than QWEN-IT by METEOR

Graph QWEN-IT (Text / METEOR) DPO-HARD-MuCAL (Text / METEOR) Gap Human Observation

Ex1 [calcitriol | has use | medication;
calcitriol | ATC code | D05AX03;
calcitriol | canonical SMILES | C
C(CCCC(C)(C)O)C1CCC2C1(CCC
C2=CC=C3CC(CC(C3=C)O)O)C;
calcitriol | InChI | InChI=1S/C27
H44O3/c1-18(8-6-14-26(3,4)
30)23-12-13-24-20(9-7-15-2
7(23,24)5)10-11-21-16-22(2
8)17-25(29)19(21)2/h10-11,
18,22-25,28-30H,2,6-9,12-1
7H2,1,3-5H3/b20-10+,21-11-
/t18-,22-,23-,24+,25+,27-/
m1/s1; calcitriol | chemical
formula | C27H44O3]

Calcitriol (D05AX03) has a molecular
formula of C27H44O3. It is used as a
medication.
(3.15)

Calcitriol has the use of medication and its ATC
code is D05AX03. Its canonical SMILES is CC(C
CCC(C)(C)O)C1CCC2C1(CCCC2=CC=C3CC(CC(C3
=C)O)O)C and its InChI is InChI=1S/C27H44O3/
c1-18(8-6-14-26(3,4)30)23-12-13-24-20(9
-7-15-27(23,24)5)10-11-21-16-22(28)17-2
5(29)19(21)2/h10-11,18,22-25,28-30H,2,6
-9,12-17H2,1,3-5H3/b20-10+,21-11-/t18-,
22-,23-,24+,25+,27-/m1/s1 and its chemical
formula is C27H44O3.
(59.40)

−56.25 DPO is markedly better by explicitly
covering ATC code, SMILES, and
InChI, whereas IT omits most
identifiers.

Ex2 [Antigua and Barbuda | official
language | English]

English is an official language of Antigua
and Barbuda.
(46.53)

The official language of Antigua and Barbuda is
English.
(100.00)

−53.47 Both are correct; DPO is preferable
due to precise wording the official
language while IT uses an official
language, introducing ambiguity.

Ex3 [valsartan | has use | medication;
valsartan | canonical SMILES | C
CCCC(=O)N(CC1=CC=C(C=C1)C2
=CC=CC=C2C3=NNN=N3)C(C(C)C
)C(=O)O; valsartan | InChI | InC
hI=1S/C24H29N5O3/c1-4-5-10-
21(30)29(22(16(2)3)24(31)3
2)15-17-11-13-18(14-12-17)
19-8-6-7-9-20(19)23-25-27-
28-26-23/h6-9,11-14,16,22H,
4-5,10,15H2,1-3H3,(H,31,32
)(H,25,26,27,28)/t22-/m0/s
1; valsartan | chemical formula |
C24H29N5O3]

The molecular formula for valsartan is
C24H29N5O3. It is used as an
anti-hypertensive drug. Its SMILES code
is: CC(C1=C(NCCC[C@H](https://ww
w.notion.so/CN)=O)C2=C1NC3=C(NC
=CC=C3)C=C1)C(O)OC(C)OC.
(12.36)

The valsartan has a use for medication and its
canonical SMILES is CCCCC(=O)N(CC1=CC=C(C
=C1)C2=CC=CC=C2C3=NNN=N3)C(C(C)C)C(=O)O.
Its InChI is InChI=1S/C24H29N5O3/c1-4-5-10-
21(30)29(22(16(2)3)24(31)32)15-17-11-13
-18(14-12-17)19-8-6-7-9-20(19)23-25-27-
28-26-23/h6-9,11-14,16,22H,4-5,10,15H2,
1-3H3,(H,31,32)(H,25,26,27,28). Its
chemical formula is C24H29N5O3.
(57.62)

−45.26 IT includes extraneous/incorrect
SMILES content; DPO is more
accurate and complete with correct
canonical SMILES and InChI.
Overall, DPO is preferred.

Table 38: Qualitative examples where DPO outperforms IT (DPO > IT). Colored highlights mark key facts
generated by DPO but omitted or weaker in IT: ATC code (blue), SMILES (red, monospaced) and InChI (green,
monospaced). We show model outputs with their METEOR scores, the score gap (IT–DPO; negative means DPO
higher), and human observations.
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