
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 14291–14305
November 4-9, 2025 ©2025 Association for Computational Linguistics

Thought calibration:
Efficient and confident test-time scaling

Menghua Wu, Cai Zhou, Stephen Bates, Tommi Jaakkola
Department of Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02319

Abstract
Reasoning large language models achieve im-
pressive test-time scaling by thinking for longer,
but this performance gain comes at significant
compute cost. Directly limiting test-time bud-
get hurts overall performance, but not all prob-
lems are equally difficult. We propose thought
calibration to decide dynamically when think-
ing can be terminated. To calibrate our decision
rule, we view a language model’s growing body
of thoughts as a nested sequence of reasoning
trees, where the goal is to identify the point
at which novel reasoning plateaus. We realize
this framework through lightweight probes that
operate on top of the language model’s hidden
representations, which are informative of both
the reasoning structure and overall consistency
of response. Based on three reasoning language
models and four datasets, thought calibration
preserves model performance with up to a 60%
reduction in thinking tokens on in-distribution
data, and up to 20% in out-of-distribution data.1

1 Introduction

Test-time scaling presents a new paradigm for im-
proving language model reasoning by expending
large amounts of compute during inference (Ka-
plan et al., 2020; Wei et al., 2022). Though the
strategies for eliciting reasoning vary – from large-
scale reinforcement learning (Guo et al., 2025a)
to explicit tree search (Zhang et al., 2024b,a) – a
common effect is that language models improve
by sampling substantially more tokens. This may
result in wasted compute on easy problems (Chen
et al., 2024; Sui et al., 2025), but naively limiting
the generation length leads to pronounced drops
in accuracy (Muennighoff et al., 2025). This moti-
vates early stopping strategies that reduce the infer-
ence budget without significantly degrading perfor-
mance, and control the extent of impact, if perfor-
mance must be compromised.

1Code and data are available at: https://github.com/
rmwu/thought-calibration

Numerous methods have been proposed for
teaching language models to be economical with
their token budgets (Han et al., 2024; Arora and
Zanette, 2025; Sui et al., 2025), or for identify-
ing opportune stopping points (Yang et al., 2025;
Zhang et al., 2025). While these methods demon-
strate strong empirical performance, they lack strict
statistical guarantees about when they could fail. In
an orthogonal direction, conformal prediction has
been adapted to equip language models with cali-
brated confidences about the quality or consistency
of their generations (Mohri and Hashimoto, 2024;
Quach et al., 2024; Rubin-Toles et al., 2025a,b;
Cherian et al., 2024). However, most of these al-
gorithms operate through post-hoc filtering and
require external LLM-based validation for scoring
intermediate steps – rendering them unsuitable for
actively terminating generation.

In this work, we jointly pursue an effective and
calibrated decision rule to determine when a lan-
guage model can stop “thinking.” To do so, we
introduce the notion of a reasoning tree, where at
each step of sampling, a language model either
adds a new leaf, walks along the tree, or backtracks
to a previous step. Notably, identifying when the
thoughts have converged is equivalent to detecting
when this reasoning tree stops growing. Inspired by
this concept, we approach early stopping as multi-
ple hypothesis testing problem. At each generation
step, we test whether the current tree is expected
to change, based on the predictions of lightweight
probes over the language model’s hidden represen-
tations. Our algorithm is based on the Learn then
Test framework (Angelopoulos et al., 2021), which
provides finite-sample, distribution-free guarantees
for controlling the risk of our decisions.

We evaluate this strategy, thought calibration,
based on its ability to guide efficient reasoning,
and whether its decisions are well-calibrated. Our
experiments consider two empirical settings: we
may or may not have access to training and cali-

14291

https://github.com/rmwu/thought-calibration
https://github.com/rmwu/thought-calibration

bration data from the true test distribution. In the
first setting, we train variants of thought calibration
using three reasoning lanugage models (DeepSeek-
R1 distilled Qwen 32B and Llama 70B (Guo et al.,
2025a; Yang et al., 2024; Grattafiori et al., 2024),
QwQ 32B (Team, 2025)), evaluated on a helf-out
split of s1K-1.1 (Muennighoff et al., 2025). Here,
we are able to halve the number of thinking tokens
across accuracy levels, with a maximum reduc-
tion of 60%. Then we evaluate Qwen 32B-based
thought calibration on three test datasets: AIME
24, GPQA Diamond (Rein et al., 2024), MATH-
500 (Lightman et al., 2023)). Though these datasets
vary in format and difficult, thought calibration is
still able to reach up to a 20% reduction in think-
ing tokens, and in the worst case, is always as ef-
ficient as naive budget constraints. In summary,
this work has three main contributions.

1. We interpret LLM reasoning through the lens
of an abstract reasoning tree, where the prob-
lem of early exiting is equivalent to identify-
ing when this tree stops growing.

2. This view allows us to calibrate the decision
rule for actively terminating generation.

3. Based on multiple language models and rea-
soning benchmarks, we provide empirical evi-
dence that thought calibration is effective for
efficient test-time scaling.

2 Background

2.1 Test-time scaling

Efficient inference Since current reasoning mod-
els are post-trained through reinforcement learn-
ing (Guo et al., 2025a), a number of works address
the overthinking problem (Sui et al., 2025) as part
of the reinforcement learning process (Han et al.,
2024; Arora and Zanette, 2025; Hou et al., 2025).
Other works focus on the inference-time problem
of predicting when a language model should stop
generating (Yang et al., 2025; Zhang et al., 2025;
Ma et al., 2025). This papers falls under the latter
category, which on a whole, is compatible with
methods that reduce a language model’s verbosity
during post-training. Finally, another option is to
achieve efficiency in terms of model architecture.
Some works dynamically adapt compute cost (Lei,
2021; Leviathan et al., 2023), while others employ
only a subset of all modules during sampling (Kim
and Cho, 2021; Liu et al., 2022; Schuster et al.,

2022). While these strategies operate over the
Transformer stack, rather than the generation se-
quence length, many high-level ideas are broadly
applicable to early exiting in our situation.

Self-consistency Self-consistency has been
widely used to provide a self-supervised form of
confidence during the sampling process (Wang
et al., 2022). These methods aim to improve the
quality of generated samples, often in situations
where multiple samples may be sequentially
generated (Mitchell et al., 2022; Madaan et al.,
2023; Shi et al., 2023; Weng et al., 2023; Guo
et al., 2025b). Consistency can also provide
feedback for reasoning-focused reinforcement
learning (Wang et al., 2024b). Several recent
works have observed that confidence scores can be
probed and calibrated from internal representations,
to prioritize reasoning trajectories for subsequent
runs (Li et al., 2024; Huang et al., 2025; Xie
et al., 2024) or for early exiting, similar to this
work (Zhang et al., 2025). Our key departure is
that we calibrate the decision rule to terminate
generation, rather than the probabilistic outputs of
a probe. This reflects the online setting, where a
probe is used to actively guide generation, rather
than to filter trajectories post-hoc.

2.2 Conformal prediction and risk control

Conformal prediction quantifies the uncertainty in
machine learning models by generating set-valued
predictions (Shafer and Vovk, 2008; Angelopoulos
and Bates, 2021). These methods are distribution-
free and valid under finite samples, which makes
them particularly attractive in real-world applica-
tions. Specifically, for an input x, a candidate out-
put space Y , and a predetermined error level ϵ,
conformal prediction tests each potential outcome
y ∈ Y by evaluating the null hypothesis: “output
y corresponds to input x.” The final prediction set
consists of the outputs y for which this null hypoth-
esis fails to be rejected, where the test statistic is
known as a nonconformity score. Split conformal
prediction leverages a separate training set to learn
this nonconformity score (Vovk et al., 2005; Pa-
padopoulos, 2008). The true outcome is included
with probability at least 1− ϵ, with guarantees that
are typically marginal over draws of the test set and
an exchangeable calibration set.

In the context of language modeling, conformal
prediction has been adapted to calibrate the factu-
ality (Mohri and Hashimoto, 2024; Cherian et al.,

14292

2024), reasoning consistency (Rubin-Toles et al.,
2025a), and quality of generations (Quach et al.,
2024; Qiu and Miikkulainen, 2024). Here, x may
represent an input sequence of text, while y may be
a language model output. Of these works, Rubin-
Toles et al. (2025a) also introduces the idea of rea-
soning as coherency over a graph structure, based
on logical deducibility. However, this and other
methods are primarily designed for post-processing
text that has already been generated, and they rely
on external language models as scoring functions.
As a result, these approaches are not calibrated
to be used as decision rules for iterative testing,
and the latency required to compute nonconformity
scores renders them unsuitable for early exiting.

More recently, the Learn then Test (LTT) frame-
work (Angelopoulos et al., 2021) extends the ideas
in conformal prediction to control the risk of arbi-
trary loss functions, with guarantees over draws
of the calibration set. One application of LTT
is to convert model outputs into a calibrated de-
cision rule, by viewing hyperparameter selection
(e.g. discretization thresholds) as multiple hypothe-
sis testing. Our method and several works in early
exiting are built atop the LTT framework. Quach
et al. (2024) calibrates a language model’s sam-
pling of output sets, similar to this work. Their
goal is to generate sufficient outputs y until cer-
tain admissibility criteria have been fulfilled, e.g.
correctness and diversity of information. However,
the sampling process in Quach et al. (2024) is in-
teractive, in the sense that each step requires an
external verifier, and text may be added or removed
at any point. As a result, this strategy is unsuit-
able for providing online decisions about when to
stop. Schuster et al. (2022) also leverages LTT
to calibrate a stopping rule to exit from a Trans-
former stack. Their method operates on individual
tokens, similar in spirit to applications like specu-
lative decoding (Leviathan et al., 2023). Our focus
is on large, coherent thoughts for reasoning, where
token-level uncertainties are less informative.

3 Thought Calibration

Thought calibration aims to efficiently utilize test-
time compute by identifying when a language
model’s reasoning has converged. Section 3.1 intro-
duces the theoretical framework through which we
approach this problem (Figure 1), and Section 3.2
builds upon these abstractions to calibrate an online
stopping rule for generation. Sections 3.3 and 3.4

describe three strategies for implementing thought
calibration in practice, from both the modeling and
data perspectives (Figure 2).

3.1 Problem setting

Given an input x ∈ X , a reasoning language model
generates a series of thoughts y ∈ Y , before syn-
thesizing the final output z ∈ Z . For example, x
may represent a math question; y is a sequence of
reasoning steps; and z is the model’s attempt at
solving the question (Figure 1A). Manipulating the
budget allocated to generating y directly impacts
the quality of z (Muennighoff et al., 2025), but as
the length of y increases, so too does the cost of
inference. Our goal is to identify the point at which
growing y no longer improves z.

To formalize these ideas, we introduce the no-
tion of an abstract reasoning graph G, where nodes
represent thoughts and directed edges represent en-
tailment relationships (MacCartney and Manning,
2014). This graph is rooted at x, the input question.
Nodes can be serialized into textual descriptions,
and different paraphrases of the same idea repre-
sent a single node. Where it is clear, we refer to
the abstract node and its textual representation in-
terchangeably.

Definition 3.1. A reasoning trajectory z is a root-
to-leaf walk in the reasoning graph G.

An arbitrary z need not be “complete” or “cor-
rect” with respect to the original question x. We
use z∗ to denote a walk that starts at x and ends
at the right answer, which we assume to be incon-
trovertible. G uniquely determines the set of all
root-to-leaf walks {z}, and thus, whether a lan-
guage model has any chance of being correct in its
final attempt.

Definition 3.2. A set of thoughts y is a walk, rooted
at x, on the augmented graph G′ in which every
node is connected to each of its ancestors.

At each stage of sampling, a large language
model either adds a leaf to G (novel thought), or
takes one step in G′ (backtracking or redundant
generation). Let Gt be the reasoning graph at time
t. If a language model terminates thinking at this
point, it is expected to answer correctly if there
exists a path in Gt that yields z∗. Thus, it would be
ideal we could calibrate the language model such
that with high probability,

P (E [1[z∗ ̸∈ Gt] ≤ δ]) ≥ 1− ϵ (1)

14293

Input x
Given a rational number, write it as a fraction in lowest
terms and calculate the product of the resulting
numerator and denominator. For how many rational
numbers between 0 and 1 will 20! be the result?

Thoughts y

First, a rational number between 0 and 1 can be
written as a fraction a / b where 0 < a < b and a and b
are coprime positive integers.

Reasoning step y(1)

The number with a < b is half of the total pairs, so
256/2 =128. Hence 128 such numbers. Therefore, The
answer is 128, corresponding to 128.

Reasoning step y(T)

…

Output z
The prime factors of 20! are 2, 3, 5, 7, 11, 13, 17, and 19. These
are 8 distinct primes. For ab = 20! and gcd(a, b) = 1, each
prime factor of 20! must be entirely to either a or b. This
results in 2^8 = 256 coprime pairs (a, b). Each pair (a, b)
and (b, a) are distinct. To find pairs where a < b, we divide
the total number of pairs by 2s. The number of coprime
pairs (a, b) with a < b is 256/2 = 128.

x

y(1)

y(2)

Reasoning tree GT where T=4

a and b are coprime

20! has 8 distinct
prime factors.

2^8 = 256 y(4)

x

y(1)

y(2)

y(t)

…
y(3)

(A) Reasoning language models scale at test
time through longer chains of thought, at
significant compute cost.

(B) Terminating too early hurts model
performance due to under exploration.

20! is a fixed
number, but
how is a
related to b?

The answer is 256.

Potential reasoning trajectories:
z1 = [y(1), y(2), y(3)]
z2 = [y(1), y(2), y(4)]

<think>

</think>

Thoughts
y = [y(1), y(2), y(3), y(4)]

y(3)

y(t-1)

When is E(risk of stopping now) < ẟ)?

256 / 2 = 128

P(stop at t) = 0.8

2^8 = 256

P(stop at t-1) = 0.4 Wait…

P(stop at t+1) = 0.85

Yes, 128.

P(stop at T) = 0.9

(C) Our goal is to confidently decide when
yt will be consistent with yT , based on when
the reasoning graph stops changing.

…

20! has 8
distinct …

P(stop at 2) = 0.2

Reasoning tree GT

(Up to max budget)

Figure 1: Overview of the problem and our goal. Illustrated example based on s1K-1.1 (Muennighoff et al., 2025).

for some risk tolerance δ and error level ϵ ∈ (0, 1).
In principle, a language model could enumerate the
space of graphs in a combinatorial search. How-
ever, it is far from guaranteed that this graph can
be tractably found. Instead, we focus on the consis-
tency between reasoning graphs.

Definition 3.3. Thoughts y and y′ are consistent if
they can be represented by the reasoning graph G.

In particular, if a language model repeatedly
revisits a step to arrive at the same conclusion,
or traverses the same ideas in a different order,
the resultant graph does not change (Figure 1C).
Let yt := [y(i) . . . y(t)] and Gt be the in-progress
thoughts and reasoning graph after t steps, and
let T be the maximum inference budget (token or
model limit). Instead of enforcing that Gt contains
z∗, it is more reasonable to guarantee that

P (E [1[Gt ̸= GT] ≤ δ]) ≥ 1− ϵ. (2)

Due to the sequential nature of generation, Gt is
always a (not necessarily strict) subset of GT .

3.2 Calibrating the stopping rule
Suppose we have a calibration dataset Dcal, which
contains exchangeable points {(xi, yi)}ni=1. Given
a new example x, let yt denote the language
model’s thoughts after t sampling steps, and let
yT denote the maximum set of thoughts. Our goal
is to find the smallest t that fulfills Equations 1 or
2, based on the distribution of Dcal. During the
sampling process, however, we do not know z∗

or GT , so we must estimate the quantities inside
the expectation using a surrogate function f . Here,
Dcal serves to calibrate f such that

P (E [R(yt) ≤ δ | Dcal]) ≥ 1− ϵ (3)

where R is a bounded risk function associated with
f . For example, f may be a linear probe on the
hidden representations of thought steps y(i), and
its output may be a binary prediction. A potential
decision rule could take the form of a threshold λ,
where if f(y(t)) ≥ λ, we terminate thinking.

Similar to Schuster et al. (2022) and Quach et al.
(2024), we follow the Learn then Test framework to
select a valid set of λs that provide our desired guar-
antees (Angelopoulos et al., 2021). On a high level,
hyperparameter selection is viewed as a multiple
hypothesis testing problem. Let Λ be a finite set
of configurations, where each λj ∈ Λ is associated
with the null hypothesis,

Hj : E[R(yt) > δ]. (4)

The set of valid Λvalid ⊆ Λ is the set of λj for which
we fail to reject Hj . In particular, selecting the
earliest stopping time is equivalent to identifying
the smallest λ ∈ Λvalid.

Theorem 3.4 (Adapted from theorem 1 in (An-
gelopoulos et al., 2021)). Suppose pj is super-
uniform under Hj for all j. Let A be a family-wise
error rate (FWER) controlling algorithm at level ϵ.
Then Λvalid = A(p1, . . . , pm) satisfies Equation 3.

14294

…

Step 1
Step 2

Step T

1. Sample reasoning trajectory. At
each step: save last layer
embeddings, force LLM to answer,
check consistency with final answer.

LLM

❌
❌

✅

…

h1
h2

hT

Probe

2. Train probe to predict
consistency with final answer,
based on step embeddings.

0.0
0.1

0.8

h1
h2

hT

3. Calibrate probe on exchangeable
dataset via learn then test, yielding
thresholds for predefined error levels.

❌
❌
❌
❌

0.1
0.2
0.6
0.8

❌
✅
✅
✅

0.85
0.95
0.99
0.99

Continue
Stop

P(stop)labelembedding embedding

Step T

4. At inference time, run probe as
additional head. Stop based on
calibrated thresholds.

P(stop)

LLM

Probe
P(x)

If P(stop) > λ, emit </think>

Figure 2: High level overview of the algorithm.

Theorem 3.4 specifies that any FWER-
controlling algorithm A can be used with an
appropriate p-value to identify Λvalid. Angelopou-
los et al. (2021) describes several algorithms to
search over Λ, and we follow the fixed sequence
testing method, since in principle, our risks are
expected to be monotonic (Gt ⊆ GT).

Specifically, let Λ = {λ1, . . . , λm} be a de-
scending grid of parameters. Intuitively, larger λ
correspond to more permissive thresholds, e.g. al-
lowing a language model to generate for longer.

1. For each j, we compute a valid p-value pj ,
e.g. the binomial tail bound p-value, follow-
ing (Quach et al., 2024):

pBT
λ := P(Binom(n, ϵ) ≤ nR̂n(λ)). (5)

2. If pj ≤ ϵ, we reject Hj and continue. Oth-
erwise, we return λj−1 as the smallest valid
threshold for error rate ϵ.

This process yields the binarization threshold for
f , where we stop generating when f(yt) ≥ λj−1.

3.3 Estimating empirical risk
On a high level, the surrogate function f should
reflect the consistency of yt with expected future
generations. Ideally, we would be able to access the
graphical structure of Gt, as any repetitions or re-
dundant walks in yt would be immediately evident.
However, since autoregressive language models
generate left-to-right, without explicitly conform-
ing to any higher-level structure, we cannot operate
directly over G. Instead, we introduce three ap-
proaches for designing f in practice.

We first briefly consider the simple case sug-
gested by Equation 1: if we terminate thinking
now, is the language model able to answer cor-
rectly? That is, we could define

fcorrect(yt) := P(LLM is correct based on yt) (6)

Rcorrect(yt) := 1{LLM is correct} · (1− fcorrect(yt))

+ 1{LLM is wrong} · fcorrect(yt). (7)

However, there are several drawbacks of this imple-
mentation. By construction, the calibration dataset
only contain questions that can eventually be an-
swered, which is not true in general. Though the
space of graphs is countable, it is unlikely that a
language model can efficiently explore the entire
space. In other words, the language model may
realistically never answer correctly. Thus, setting
λ = 1 is not guaranteed to be risk controlling. With
this definition of Rcorrect(y), calibrating based on
correctness also requires supervised labels. While
this is not an issue on standard benchmarks, it is
harder to obtain labels (user feedback) in practice.

To address these challenges, we introduce two
additional strategies for estimating graph consis-
tency. First, a language model’s final attempt z can
be viewed as a distillation of its overall reasoning
structure. Thus, we compare the language model’s
attempt zt after t steps, to the eventual attempt zT
at the maximum reasoning budget. This yields

fconsistent(yt) := P(zt is the same as zT) (8)

Rconsistent(yt) := 1{consistent} · (1− fconsistent(yt))

+ 1{inconsistent} · fconsistent(yt) (9)

These values can be determined even for intractable
problems, as long as the extended reasoning pro-
duces no new insights, and does not require labels
of correctness.

Finally, any particular z only represents a single
walk through G. Due to stochasticity, two differing
attempts could be sampled from the same graph,
which is no longer changing. Towards this end,
we observed that language models often reiterate
redundant information, after having reached the
correct answer or the extent of its abilities. Prob-
ing for novelty should suffice to capture this phe-
nomena. In practice, however, we found that the
following formulation was easier for our verifier to
implement, as checking for novelty involves long
context reasoning over all previous thoughts, which

14295

can be challenging (Wang et al., 2024a).

fnovel leaf(yt) := P(y(t)is leaf) · (1− P(y(t)is novel))
(10)

Rnovel leaf(yt) := 1{LLM inconsistent} · fnovel leaf(yt)

+ 1{LLM consistent} · (1− fnovel leaf(yt)). (11)

We reuse the labels for consistency due to ease of
verification compared to novelty.

3.4 Implementation details

Overview Given any language model and a set
of relevant prompts, we first sample maximum-
budget reasoning trajectories. These trajectories
are truncated at intermediate reasoning steps, and
we force the same model to produce a final attempt
at each step. We train lightweight probes to predict
whether the intermediate answers are consistent
with the original, maximum-budget answer. These
probes are calibrated on a separate, exchangeable
calibration set: given a predefined error level ϵ, the
procedure returns a corresponding probe threshold
λ, which is used for the test-time decision rule.
Figure 2 illustrates the overall workflow.

Reasoning steps To separate a reasoning trajec-
tory y into individual steps {y(i)}, we use sections
delimited by \n\n, which also contain wait or but.
We observed that individual tokens representations
vary significantly. Thus, each step uses the mean
last-layer representation of its tokens, followed by
dimensionality reduction via PCA to d = 256.

Probes To estimate each of quantities in Equa-
tions (6) to (11), we train linear probes on these
step-level representations. The final probabilities
are averaged over a window of 10 steps for smooth-
ness, before calibration. For evaluation, we use
a grid of ϵ ranging from 0.05 to 0.5, with pre-
cise thresholds selected to roughly match the token
range of baselines. During development, we ex-
perimented with more complex architectures, e.g.
Transformer to predict leaves as a sequence la-
beling task (Appendix B.1). However, to avoid
overfitting on our limited training set, we chose to
focus on simple and efficient linear probes. Con-
current work (Zhang et al., 2025) also finds that
model confidence can often be extracted linearly.
In our experiments, we use three reasoning models:
DeepSeek-R1 distilled Qwen 2.5 32B and Llama
3.3 70B (Guo et al., 2025a; Grattafiori et al., 2024;
Yang et al., 2024), and QwQ 32B (Team, 2025).

The ground truth labels for these probes are ob-
tained by prompting a separate language model
(Qwen 3 32B). Correct: We truncate thinking tra-
jectories to desired lengths, append the <\think>
token, and prompt the language model for the
final answer, which is compared to the ground
truth (Muennighoff et al., 2025). Consistent: The
same outputs can be used to check whether Gt is
consistent with GT , by comparing intermediate at-
tempts zt to maximum budget attempt zT . Leaf:
We annotate whether each step y(i) is a leaf in G
by asking a separate language model to identify
whether it makes an attempt to answer the origi-
nal question x, regardless of correctness. Novel:
We provide a separate language model with all pre-
vious thoughts y(1) . . . y(i−1) and ask whether the
new step y(i) provides additional information. All
prompts can be found in Appendix A and were run
on 4 A6000 GPUs using vLLM (Kwon et al., 2023)
and lmdeploy (Contributors, 2023).

Evaluation We evaluate the correctness of all fi-
nal attempts using the GPT 4.1 API, between April
15, 2025 and May 15, 2025. For datasets with no
ambiguity (multiple choice, numeric answers), we
trimmed the final attempts to 200 characters, to pre-
vent the LLM from “cheating” by using additional
thinking budget after the </think> token.

4 Experiments

4.1 Settings

Datasets Our experiments focus on efficient lan-
guage model reasoning across tasks which vary in
content, format, and difficulty. In particular, we
leverage the following datasets.

s1K-1.1 (Muennighoff et al., 2025) is a curated
training set for distilling reasoning abilities through
data. This dataset contains 1000 difficult math and
science questions, along with thought trajectories
generated by DeepSeek-R1 (Guo et al., 2025a). As
a proof of concept, we split the s1K-1.1 dataset into
training, testing, and calibration (500, 50, 450, in
dataset order). We use the training set to develop
our probes, which are calibrated on the calibration
set and evaluated on the testing set.

We also consider three common reasoning
benchmarks solely for testing. AIME-24 is the
2024 iteration of the American Invitational Mathe-
matics Examination.2 This dataset contains math
questions whose answers take on integers be-

2https://maa.org/maa-invitational-competitions/

14296

200000 400000
Tokens

0.3

0.5

0.7
A

cc
ur

ac
y

DeepSeek Distilled Qwen 32B

200000 400000
Tokens

0.3

0.5

0.7
DeepSeek Distilled Llama 70B

200000 400000
Tokens

0.3

0.5

0.7
QwQ 32B

0.5 1.0
1-

0.2

0.4

0.6

0.8

1.0

%
 o

f F
ul

l A
cc

ur
ac

y

Calibration

Full
Crop
Supervised
Consistent
Leaf Novelty

Figure 3: On in-distribution data (held-out test split on s1K), variants of thought calibration achieve up to a 60%
reduction in thinking tokens while maintaining full performance. Top right point: Complete DeepSeek-R1 thought
trajectory from (Muennighoff et al., 2025). Crop: Fix thinking budget at 512, 1024, 2048, 4096, and 8192 tokens.
Supervised: exit based on predicted likelihood of correctness. Consistent, and Leaf Novelty: exit based on predicted
consistency of answer or graph. Supervised is over confident, since the test set contains unsolvable problems.

100000 150000 200000
Tokens

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

AIME 24

250000 500000 750000
Tokens

0.50

0.55

0.60

0.65

GPQA Diamond

0.5 1.0
Tokens 1e6

0.75

0.80

0.85

0.90

0.95
MATH 500

0.5 1.0
1-

0.2

0.4

0.6

0.8

1.0

%
 o

f F
ul

l A
cc

ur
ac

y

Calibration

Full
Crop
Supervised
Consistent

Figure 4: We applied thought calibration probes for DeepSeek-distilled Qwen-2.5 32B on standard math and science
benchmarks, which may be out-of-distribution compared to the training and calibration sets, drawn from s1K. We
achieve up to a 20% reduction in thinking tokens. While Consistent generally remains below the predetermined
error rates, Supervised is overconfident (as expected).

tween 0 and 999. GPQA Diamond (Rein et al.,
2024) is a PhD-level math and science reasoning
benchmark with multiple choice answers. MATH
500 (Hendrycks et al., 2021; Lightman et al., 2023)
is a curated subset of the MATH dataset, which
competition math questions of various levels. Note
that while s1K-1.1 contains examples of both math-
ematical and scientific questions, the format and
subsequent reasoning patterns may vary. For ex-
ample, while s1K-1.1 is open-ended, the various
choices in GPQA must be compared. Thus, we
view these three datasets as “out of distribution”
from s1K-1.1, which is itself diverse.

Models We evaluate the three variants of thought
calibration: the supervised probe for correctness
(Equation 6, Supervised); the consistency probe
(Equation 8, Consistent); and the lack of novelty
probe (Equation 10, Novel Leaf). To contextualize
our experimental results, we also consider a naive
budget-forcing baseline (Crop). Specifically, we
set a fixed token budget for thinking (ranging from
1024 to the full trajectory). Once the language
model reaches this budget, thinking is immediately
terminated and the model is prompted for a final
answer. This reflects both the practical use case
of setting a limit on maximum generation tokens,

and the strategy employed by Muennighoff et al.
(2025). Finally, concurrent work has also observed
that probes for correctness (Zhang et al., 2025)
are effective for early exiting. While this design
may not be valid for risk control in practice (LLMs
are not guaranteed to ever answer correctly), the
Supervised baseline is similar to this work.

4.2 In-distribution setting

We start with the case where we have access to sam-
ples x that are drawn from the same distribution
as our eventual application. For example, a model
provider may possess typical examples of user data.
Our goals are to lower the overall test-time bud-
get while maintaining accuracy, and to control any
necessary drops in performance based on our pre-
determined error levels. In Figure 3, we observe
that these probes are able to reduce the number of
thinking tokens by over half for all three mod-
els, with minimal impact to overall performance.
With respect to calibration, the Supervised probe
is quite poorly calibrated, especially at lower val-
ues of ϵ. All other probes are well calibrated at
ϵ < 0.1, though variance is higher outside of this
range. This may be due to distribution shift, result-
ing from the small test split (to maximize training
and calibration data for subsequent evaluations).

14297

4.3 Generalization setting

Next, we consider the case in which the data we
have is related, but not drawn from the same dis-
tribution as our eventual application. To emulate
this setting, we apply the supervised and consis-
tent Qwen 32B probes, developed on the s1K-1.1
dataset, to common reasoning benchmarks (Rein
et al., 2024; Lightman et al., 2023). Overall, we
are able to improve (AIME 24, GPQA) or match
(MATH 500) the efficiency of the budget forcing
baseline – even achieving slight gains in perfor-
mance on AIME 24, perhaps by trimming dis-
tracting thoughts (Figure 4). Notably, even though
the Supervised probe had access to more informa-
tion (ground truth answers), the Consistent probe
consistently generalizes better, both in terms of
efficiency and calibration. Here, the Consistent
probe fulfills the theoretical guarantees, while the
Supervised probe remains over-confident.

4.4 Additional analysis

Figure 5 illustrates that thought calibration probes
prioritizes the termination of problems which can-
not be solved, even at full budget – perhaps hint-
ing that the language model may have been stuck
in a cycle of reasoning, without novel progress.
Compared to the naive cropping strategy, thought
calibration’s input-dependent decision also demon-
strate significant variance in the amount of tokens
across different problems.

We also examine a specific instance from our
s1K-1.1 testing split in Figure 6 (s1K is a distil-
lation dataset, so this diagram does not leak real
test examples). The language model reaches the
correct answer after 38 steps (out of 48 steps). As
the model backtracks, the predicted consistency
(with the expected final answer) drops; and as
the model returns to the answer, confidence in-
creases, higher than before. This reaffirms that
self-consistency is indeed a powerful indication of
correctness, both distilled into a predictive model,
and over the course of sampling.

5 Discussion

Since inference costs scale directly with model
usage, reasoning efficiency has become a criti-
cal aspect of deploying language models in prac-
tice. This paper introduced thought calibration, a
framework that enables efficient and controllable
inference-time scaling. Thought calibration pro-
duces lightweight probes, designed to be run during

generation, that identify when a language model
has reached a consistent answer. As a decoding
strategy, this work is complementary to methods
that aim to train more efficient models. In addition,
the probes described here can be used as classi-
fiers, to identify examples of efficient reasoning for
further distillation. Finally, while this paper only
addresses the problem of exiting early from reason-
ing, the broader question of how to calibrate the
steering of reasoning models remains unanswered,
and is an interesting area for further research.

6 Limitations

There are several limitations of our work. Since
our method is built atop the Learn then Test frame-
work (Angelopoulos et al., 2021), our theoretical
guarantees are only valid over draws of the calibra-
tion set. In practice, this means that the calibration
data must be sufficiently similar to the actual appli-
cation. Furthermore, due to our small training and
calibration datasets, we implement our framework
primarily through linear probes. In Appendix B.1,
we found that more complex architectures may lead
to slightly better performance in some cases, and
the gap is expected to be larger if more training data
can be gathered. We leave further investigations
regarding the probe architecture to future work.

Acknowledgements

This material is based upon work supported by the
National Science Foundation Graduate Research
Fellowship under Grant No. 1745302. We would
like to acknowledge support from the Machine
Learning for Pharmaceutical Discovery and Syn-
thesis (MLPDS) consortium, and the Abdul Latif
Jameel Clinic for Machine Learning in Health.

14298

2048 4096 6144 8192
Max Original Tokens

0

50

100

Pe
rc

en
t C

ro
pp

ed

Budget=6144

2048 4096 6144 8192
Max Original Tokens

0

50

100
Budget=4096

2048 4096 6144 8192
Max Original Tokens

0

50

100
Budget=2048

2048 4096 6144 8192
Max Original Tokens

0

50

100
Budget=1024

Original Score
0
1

Strategy: Crop

2048 4096 6144 8192
Max Original Tokens

0

50

100

Pe
rc

en
t C

ro
pp

ed

=0.05

2048 4096 6144 8192
Max Original Tokens

0

50

100
=0.1

2048 4096 6144 8192
Max Original Tokens

0

50

100
=0.2

2048 4096 6144 8192
Max Original Tokens

0

50

100
=0.3

Original Score
0
1

Strategy: Consistent

Figure 5: Proportion of prompt tokens removed, for different thresholds, stratified by full thought length and
whether the original model was able to solve the problem. Top: Naive max token thresholding. Bottom: Consistency
calibration, DeepSeek-R1 distilled Qwen 32B, over GPQA Diamond. Cropping reduces token lengths uniformly,
regardless of the input characteristics. Thought calibration has a preference for first trimming longer thoughts and
cases where the language model tries but fails to make progress.

Okay, so I need to solve this problem: We have an increasing sequence: 3, 15, 24, 48, ... which
are positive multiples of 3 that are one less than a perfect square. I need to find the remainder
when the 1994th term of this sequence is divided by 1000.

Step 1 (0.104)

Hmm. Let me parse this. The terms are multiples of 3, and each term is one less than a perfect
square [...] n must be either 1 or 2 mod 3. That means terms in the sequence correspond to n
where n ≡ 1 or 2 mod 3.

Step 2 (0.067)

But computing 29922 mod 1000 is equivalent to [...] but since
2992 = 2000 + 992 = 2000 + 992, but modulo 1000, 2992 ≡ 992 mod 1000, so 9922 − 1
mod 1000.

Step 37 (0.342)

Wait, first compute 9922 mod 1000, then subtract 1, then take mod 1000 again. [...]
subtract 1: 64− 1 = 63. Therefore, 9922− 1 mod 1000 = 63. Therefore the remainder is 63.
So answer is 63.

Step 38 (0.717)

But let me confirm because that seems straightforward. Wait: [...] Step 39 (0.646)

Wait: n(k) = (3k)/2 + 1 for even k. For even k = 1994, [...] Then term = 29922− 1. Then
mod 1000 is (29922− 1) mod 1000.

Step 40 (0.479)

But 2992 mod 1000 = 992, so 2992 ≡ −8 mod 1000. Then (−8)2 = 64, then
64− 1 = 63. Therefore mod 1000: 63. [...] Then (−8)2 = 64, then 64− 1 = 63. Therefore
mod 1000: 63. Hence remainder is 63.

Step 41 (0.985)

Figure 6: DeepSeek-R1 distilled Llama 70B Consistency probe on s1K-1.1 example from our test split, where
color intensity is proportional to P(consistent). The language model first reaches the correct answer in Step 38,
backtracks with lower confidence, and returns to the answer in Step 41.

14299

References
Anastasios N Angelopoulos and Stephen Bates. 2021.

A gentle introduction to conformal prediction and
distribution-free uncertainty quantification. arXiv
preprint arXiv:2107.07511.

Anastasios N Angelopoulos, Stephen Bates, Em-
manuel J Candès, Michael I Jordan, and Lihua Lei.
2021. Learn then Test: Calibrating predictive al-
gorithms to achieve risk control. arXiv preprint
arXiv:2110.01052.

Daman Arora and Andrea Zanette. 2025. Training lan-
guage models to reason efficiently. arXiv preprint
arXiv:2502.04463.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He,
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, and 1 others.
2024. Do not think that much for 2+ 3=? on
the overthinking of o1-like LLMs. arXiv preprint
arXiv:2412.21187.

John Cherian, Isaac Gibbs, and Emmanuel Candes.
2024. Large language model validity via enhanced
conformal prediction methods. Advances in Neural
Information Processing Systems, 37:114812–114842.

LMDeploy Contributors. 2023. Lmdeploy: A toolkit
for compressing, deploying, and serving llm. https:
//github.com/InternLM/lmdeploy.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong
Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025a.
DeepSeek-R1: Incentivizing reasoning capability in
LLMs via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Jiacheng Guo, Yue Wu, Jiahao Qiu, Kaixuan Huang,
Xinzhe Juan, Ling Yang, and Mengdi Wang. 2025b.
Temporal consistency for llm reasoning process error
identification. arXiv preprint arXiv:2503.14495.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu
Zhao, Shiqing Ma, and Zhenyu Chen. 2024. Token-
budget-aware LLM reasoning. arXiv preprint
arXiv:2412.18547.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi
Qian, Jacob Andreas, and Shiyu Chang. 2025.
ThinkPrune: Pruning long chain-of-thought of
LLMs via reinforcement learning. arXiv preprint
arXiv:2504.01296.

Chengsong Huang, Langlin Huang, Jixuan Leng, Ji-
acheng Liu, and Jiaxin Huang. 2025. Efficient test-
time scaling via self-calibration. arXiv preprint
arXiv:2503.00031.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B
Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.
Scaling laws for neural language models. arXiv
preprint arXiv:2001.08361.

Gyuwan Kim and Kyunghyun Cho. 2021. Length-
adaptive transformer: Train once with length drop,
use anytime with search. In Joint Conference of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing, ACL-
IJCNLP 2021, pages 6501–6511. Association for
Computational Linguistics (ACL).

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Tao Lei. 2021. When attention meets fast recurrence:
Training language models with reduced compute. In
Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Yaniv Leviathan, Matan Kalman, and Yossi Matias.
2023. Fast inference from transformers via spec-
ulative decoding. In International Conference on
Machine Learning, pages 19274–19286. PMLR.

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan,
Xinglin Wang, Bin Sun, Heda Wang, and Kan Li.
2024. Escape sky-high cost: Early-stopping self-
consistency for multi-step reasoning. In The Twelfth
International Conference on Learning Representa-
tions.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Zhuang Liu, Zhiqiu Xu, Hung-Ju Wang, Trevor Dar-
rell, and Evan Shelhamer. 2022. Anytime dense pre-
diction with confidence adaptivity. In International
Conference on Learning Representations.

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs,
Sewon Min, and Matei Zaharia. 2025. Reasoning
models can be effective without thinking. arXiv
preprint arXiv:2504.09858.

Bill MacCartney and Christopher D Manning. 2014.
Natural logic and natural language inference. In Com-
puting Meaning: Volume 4, pages 129–147. Springer.

14300

https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
and 1 others. 2023. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information
Processing Systems, 36:46534–46594.

Eric Mitchell, Joseph Noh, Siyan Li, Will Armstrong,
Ananth Agarwal, Patrick Liu, Chelsea Finn, and
Christopher D Manning. 2022. Enhancing self-
consistency and performance of pre-trained language
models through natural language inference. In Pro-
ceedings of the 2022 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1754–
1768.

Christopher Mohri and Tatsunori Hashimoto. 2024.
Language models with conformal factuality guaran-
tees. In Proceedings of the 41st International Con-
ference on Machine Learning, ICML’24. JMLR.org.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candès, and
Tatsunori Hashimoto. 2025. s1: Simple test-time
scaling. arXiv preprint arXiv:2501.19393.

Harris Papadopoulos. 2008. Inductive conformal pre-
diction: Theory and application to neural networks.
In Tools in artificial intelligence. Citeseer.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch-
esnay. 2011. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825–2830.

Xin Qiu and Risto Miikkulainen. 2024. Semantic den-
sity: Uncertainty quantification for large language
models through confidence measurement in semantic
space. In Advances in Neural Information Processing
Systems, volume 37, pages 134507–134533.

Victor Quach, Adam Fisch, Tal Schuster, Adam Yala,
Jae Ho Sohn, Tommi S Jaakkola, and Regina Barzi-
lay. 2024. Conformal language modeling. In The
Twelfth International Conference on Learning Repre-
sentations.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-
lian Michael, and Samuel R Bowman. 2024. GPQA:
A graduate-level Google-proof Q&A benchmark. In
First Conference on Language Modeling.

Maxon Rubin-Toles, Maya Gambhir, Keshav Ramji,
Aaron Roth, and Surbhi Goel. 2025a. Conformal lan-
guage model reasoning with coherent factuality. In
The Thirteenth International Conference on Learning
Representations.

Maxon Rubin-Toles, Maya Gambhir, Keshav Ramji,
Aaron Roth, and Surbhi Goel. 2025b. Conformal lan-
guage model reasoning with coherent factuality. In

The Thirteenth International Conference on Learning
Representations.

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.
2022. Confident adaptive language modeling. Ad-
vances in Neural Information Processing Systems,
35:17456–17472.

Glenn Shafer and Vladimir Vovk. 2008. A tutorial on
conformal prediction. Journal of Machine Learning
Research, 9(3).

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan
Scales, David Dohan, Ed H Chi, Nathanael Schärli,
and Denny Zhou. 2023. Large language models can
be easily distracted by irrelevant context. In Inter-
national Conference on Machine Learning, pages
31210–31227. PMLR.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An-
drew Wen, Shaochen Zhong, Hanjie Chen, and 1
others. 2025. Stop overthinking: A survey on ef-
ficient reasoning for large language models. arXiv
preprint arXiv:2503.16419.

Qwen Team. 2025. QwQ-32B: Embracing the power of
reinforcement learning.

Vladimir Vovk, Alexander Gammerman, and Glenn
Shafer. 2005. Algorithmic learning in a random
world, volume 29. Springer.

Minzheng Wang, Longze Chen, Cheng Fu, Shengyi
Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu, Nan
Xu, Lei Zhang, Run Luo, and 1 others. 2024a. Leave
no document behind: Benchmarking long-context
LLMs with extended multi-doc QA. CoRR.

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.
2024b. Math-shepherd: Verify and reinforce llms
step-by-step without human annotations. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 9426–9439.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. 2022. Self-consistency improves chain
of thought reasoning in language models. arXiv
preprint arXiv:2203.11171.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.
2023. Large language models are better reasoners
with self-verification. In Findings of the Association
for Computational Linguistics: EMNLP 2023, pages
2550–2575.

14301

https://openreview.net/forum?id=AJpUZd8Clb
https://openreview.net/forum?id=AJpUZd8Clb
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/

Zhihui Xie, Jizhou Guo, Tong Yu, and Shuai Li. 2024.
Calibrating reasoning in language models with inter-
nal consistency. arXiv preprint arXiv:2405.18711.

An Yang, Baosong Yang, Beichen Zhang, Binyuan
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Day-
iheng Liu, Fei Huang, Haoran Wei, and 1 others.
2024. Qwen2.5 technical report. arXiv preprint
arXiv:2412.15115.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu,
Chenyu Zhu, Zheng Lin, Li Cao, and Weiping Wang.
2025. Dynamic early exit in reasoning models. arXiv
preprint arXiv:2504.15895.

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Au-
rojit Panda, Jinyang Li, and He He. 2025. Rea-
soning models know when they’re right: Probing
hidden states for self-verification. arXiv preprint
arXiv:2504.05419.

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue,
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm
self-training via process reward guided tree search.
Advances in Neural Information Processing Systems,
37:64735–64772.

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang
Li, and Wanli Ouyang. 2024b. Accessing gpt-4
level mathematical olympiad solutions via monte
carlo tree self-refine with llama-3 8b. arXiv preprint
arXiv:2406.07394.

14302

A Prompts

The following prompt was used to force the model (DeepSeek-R1 distilled Qwen 32B and Llama 70B,
QwQ 32B) to produce an answer after a fixed number of thinking steps. Following the recommendation
of Guo et al. (2025a) and Team (2025), we do not include a system prompt. We apply the chat template to
user prompt before concatenating the “in-progress” thoughts. Adapted from (Muennighoff et al., 2025).
<bos><User>

{question}
Please reason step by step, and put your final answer within \\boxed{{}}.
<Assistant>
<think>
{thoughts}
</think>
Final Answer:

The following prompt was used to obtain labels for P(correct) (Equation 6) using Qwen 3 32B. This
prompt was also used to evaluate answers using GPT 4.1. Adapted from (Muennighoff et al., 2025).
You are an AI assistant for grading a science problem. The user will provide you with the question itself, the correct answer, and the
student’s attempt. Your job is to judge whether the attempt is correct by comparing it with the correct answer. If the correct answer
is a number or choice, there should be no ambiguity, and you should directly compare the answer and the final result. If the attempt is
incomplete, you should mark it as wrong. If the correct answer involves going through the entire reasoning process, you should judge the
result based on whether the reasoning process is correct, compared to correct answer.

Do NOT try to solve the problem yourself. Only grade the attempt based on the correct answer.
The user will provide the attempt and the correct answer in the following format:
Problem
{problem}
Correct answer
{solution}
Student attempt
{attempt}
Explain your reasoning concisely, and end your response on a new line with only "Yes" or "No" (without quotes).

The following prompt was used to obtain labels for P(consistent) (Equation 8) using Qwen 3 32B.
You are an AI assistant for grading a science problem. The user will provide you with the question itself and two student attempts. Your
job is to judge whether the two students arrive at the same answer. If question asks for a single numerical answer, there should be no
ambiguity, and you should directly compare the two answers. If the question asks for multiple parts, the two attempts are identical if only
if all of the parts arrive at the same conclusion.

Do NOT try to solve the problem yourself. Only grade whether the two attempts are the same.
The user will provide the problem and two attempts in the following format:
Problem
{problem}
Attempt 1
{attempt1}
Attempt 2
{attempt2}
Explain your reasoning concisely, and end your response on a new line with only "Yes" or "No" (without quotes).

The following prompt was used to obtain labels for P(leaf) (Equation 10) using Qwen 3 32B.
You are an AI assistant for parsing LLM outputs. The user will provide you with the question and an intermediate reasoning step. Your
job is to judge whether the given step contains an attempt at a final answer.

Do NOT attempt to solve the problem yourself. It does not matter if the answer is correct. Only comment on whether an attempt has
been made.

The user will provide the problem and reasoning steps in the following format:
Problem
{problem}
Reasoning step
{reasoning step}
Explain your reasoning, and end your response on a new line with only "Yes" or "No" indicating whether or the given step makes an

attempt at providing the final answer.

The following prompt was used to obtain labels for P(novel) (Equation 10) using Qwen 3 32B.
You are an AI assistant for assessing the quality of logical reasoning. The user will provide you with the question and an incomplete
attempt, consisting of a series of reasoning steps. Your job is to judge whether current step appears to provide additional information,
compared to the previous steps. If the current step is correct and novel, it is useful. If the current step is wrong or redundant, then it is
not useful.

Do NOT try to solve the problem yourself. It does not matter if the attempt is not complete. Only comment on whether the current
step is useful.

The user will provide the problem and reasoning steps in the following format:
Problem

14303

{problem}
Reasoning
step 1
{reasoning step 1}
step 2
{reasoning step 2}
...
step k
{reasoning step k}
...
current step
{current reasoning step}
Explain your reasoning, and end your response on a new line with only "Yes" if the current step provides new information or "No"

otherwise (without quotes).

B Implementation details

B.1 Design and implementation of model probes

We tried several architectures, before deciding upon linear probes for simplicity and to avoid overfitting.
The differences in performance are not always consistent and the generalization gap is quite large (Table 1).
Since our main focus is on calibration, and it requires significant compute to produce and evaluate scaling
curves, we consider more exhaustive exploration of alternate architectures as future work.

MLP The input is a single representation h(t) corresponding to single reasoning step y(t), and the output
is a binary label ∈ {0, 1}. We train until AUC fails to improve for 10 epochs on 10% of the training set
(randomly sampled). We report the best calibration set performance of the following hyperparameters.
We use the sklearn defaults otherwise (Pedregosa et al., 2011).

• Layers: 1, 2

• FFN dimension: 32, 64, 128

Transformer The input is a sequence of representations, h(1) . . . h(t) corresponding to thoughts yt =
y(1) . . . y(t). The output is either a binary label ∈ {0, 1} for P(correct) and P(consistent), or a sequence
of labels ∈ {0, 1}t for P(novel) and P(leaf). For the former, we treat the embeddings as a set (i.e. if any
representation is sufficient to answer correctly, or be consistent). For the latter, we apply a left-to-right
causal attention mask during training, and we use sinusoidal positional encodings to encode the index of
each reasoning step. We report the best calibration set performance of the following hyperparameters. In
contrast to the linear and MLP models, we find that the Transformer performs best if we do not apply
PCA and instead operate over the original model dimension.

• Layers: 1, 2

• Model dimension: 16, 32, 64

• FFN dimension: 64, 128

• Number of heads: 4, 8

• Epochs: 5, 10

B.2 LLM experiments

We ran DeepSeek-R1 distilled Qwen 2.5 32B and Llama 70B, and QwQ 32B using lmdeploy (Contributors,
2023) with recommended defaults for each model. lmdeploy natively supports the saving of last layer
representations, so it was used for almost all experiments. We ran Qwen 3 32B using vLLM (Kwon et al.,
2023) due to early support. Due to computational constraints, we report the mean over a single run.

We downloaded all model weights from transformers between April 1, 2025 and May 1, 2025.

14304

Table 1: Probe architecture performance on s1K-1.1 train and calibration splits. Metric: Binary AUROC.

Linear MLP Transformer

Model Quantity Train Cal Train Cal Train Cal

DeepSeek-R1
distilled Qwen
2.5 32B

P(correct) 0.936 0.788 0.990 0.779 0.994 0.760
P(consistent) 0.919 0.788 0.994 0.747 0.991 0.773
P(leaf) 0.868 0.839 0.936 0.815 0.933 0.852
P(novel) 0.874 0.686 0.980 0.692 0.896 0.774

DeepSeek-R1
distilled Llama
3.3 70B

P(correct) 0.937 0.765 0.987 0.746 0.991 0.803
P(consistent) 0.921 0.745 0.994 0.743 0.993 0.748
P(leaf) 0.864 0.819 0.970 0.802 0.923 0.848
P(novel) 0.872 0.686 0.981 0.702 0.915 0.774

QwQ 32B

P(correct) 0.943 0.848 0.986 0.838 0.948 0.848
P(consistent) 0.950 0.699 0.988 0.704 0.939 0.756
P(leaf) 0.869 0.840 0.942 0.822 0.913 0.857
P(novel) 0.876 0.677 0.952 0.690 0.895 0.792

C Additional analysis

Figure 7 illustrates the early exit probabilities for each of the three probes. The supervised (“correct”)
probe reaches high exit probabilities the fastest, but it is also the most overconfident (Figure 3D).

0 50 100 150
Reasoning steps

0.0

0.5

1.0
P(correct)

0 50 100 150
Reasoning steps

0.5

1.0
P(consistent)

0 50 100 150
Reasoning steps

0.00

0.01

0.02

0.03

P(no novel leaves)

Figure 7: Likelihoods of thought calibration probes over s1K-1.1 test set (10 examples). The “No Leaf” variant is
the least monotonic. This could potentially indicate that after reaching the answer, the language model explores new
knowledge that is irrelevant to the task.

14305

