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Abstract

The deployment of large language models
(LLMs) faces considerable challenges con-
cerning resource constraints and inference ef-
ficiency. Recent research has increasingly
focused on smaller, task-specific models en-
hanced by distilling knowledge from LLMs.
However, prior studies have often overlooked
the diversity and quality of knowledge, es-
pecially the untapped potential of negative
knowledge. Constructing effective negative
knowledge remains severely understudied. In
this paper, we introduce a novel framework
called quality-guided contrastive rationale dis-
tillation aimed at enhancing reasoning capa-
bilities through contrastive knowledge learn-
ing. For positive knowledge, we enrich its di-
versity through temperature sampling and em-
ploy self-consistency for further denoising and
refinement. For negative knowledge, we pro-
pose an innovative self-adversarial approach
that generates low-quality rationales by sam-
pling previous iterations of smaller language
models, embracing the idea that one can learn
from one’s own weaknesses. A contrastive loss
is developed to distill both positive and neg-
ative knowledge into smaller language mod-
els, where an online-updating discriminator
is integrated to assess qualities of rationales
and assign them appropriate weights, optimiz-
ing the training process. Through extensive
experiments across multiple reasoning tasks,
we demonstrate that our method consistently
outperforms existing distillation techniques,
yielding higher-quality rationales. The code
will be released in https://github.com/
wwangweii/QCRD_example.git.

1 Introduction

The reasoning capabilities of large language mod-
els (LLMs) have been observed to scale their model
sizes, while necessitating substantial memory and
computing resources (Chowdhery et al., 2023; Wei
et al., 2022a). As such, efficient model compres-

Figure 1: Comparison between previous methods and
our proposed method, where circle points denote ra-
tionales, and colors of the circle points correspond to
rationale types, and shades of darker indicate higher
qualities. The "align" means minimizing the distance
between rationales, while the "repel" means maximizing
the distance.

sion is crucial in the deployment of LLMs, espe-
cially on resource-limited devices or platforms.
Knowledge distillation from an LLM (teacher)
to a smaller, more manageable language model
(student) has recently emerged as a powerful and
promising technique for model compression (Hin-
ton et al., 2015; Phuong and Lampert, 2019). How-
ever, it is still open how to best reduce the perfor-
mance gap between the teacher and the student on
complex reasoning tasks (Zelikman et al., 2022).

In this regard, it has more recently been shown
that adding explanation-augmented prompts, espe-
cially, Chain-of-Thought (CoT) (Wei et al., 2022b),
can enable LLMs to generate reasonable explana-
tions (also referred to as rationales) to justify the
reasoning outcomes (Li et al., 2022). Distilling
these rationales into smaller language models has
been demonstrated to effectively improve the over-
all performance (Hsieh et al., 2023; Li et al., 2022).
For example, distilling Step-by-Step (DSS) (Hsieh
et al., 2023) was proposed as an innovative CoT dis-
tillation approach, which employed rationales from
an LLM to guide a smaller language model under
a multi-task learning setting. It involved training
the smaller language model simultaneously on both
label prediction and rationale generation tasks, ef-
fectively leveraging their mutual benefits.
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The essence of such distilling rationales is to
guide the model in learning additional knowledge
related to the labels. Knowledge can be generally
concluded into two classes: positive and negative.
Previous works on rationale distillation, although
effective, still suffer from certain drawbacks. On
the one hand, positive knowledge for distillation
may be limited and noisy. Methods (Fu et al., 2023;
Hsieh et al., 2023; Magister et al., 2022; Chen et al.,
2024b) treated rationales generated by LLMs as
golden answers and aimed to minimize the gap
between these rationales and those generated by
smaller language models. However, despite LLMs’
powerful zero-shot/few-shot abilities, they may oc-
casionally produce incorrect reasoning steps, lead-
ing to erroneous rationales/answers. Such erro-
neous rationales may degrade the reasoning perfor-
mance of the distilled smaller language models. On
the other hand, generating negative rationales and
incorporating them into CoT distillation remain
understudied, while negative knowledge has early
proved constructive and effective for models.

To this end, we propose a general method, named
Quality-guided Contrastive Rationale Distillation
(QCRD), to guide the knowledge distillation to
smaller language models from a contrastive learn-
ing perspective. The comparison between the previ-
ous methods and our proposed QCRD is illustrated
in Fig. 1. Specifically, the previous methods fo-
cus on the alignment between the rationale of the
student model and the corresponding one of the
teacher model, while our proposed QCRD aligns
the student’s distribution and contrastive knowl-
edge distribution with various sampled rationales.
The core design of QCRD is to generate a diverse
set of contrastive rationales and efficiently distill
them into student models. For the positive part, to
ensure the quality and variety of positive rationales,
we prompt the LLM and sample the output to gen-
erate multi-round rationales for each input question.
We then apply the self-consistency to denoise the
rationale set and split it into positive rationales and
negative rationales. For the negative part, we em-
ploy a self-adversarial strategy inspired by (Silver
et al., 2018) during training to generate low-quality
rationales from previous iterations of smaller lan-
guage models with a high sampling temperature
and treat them as negative rationales. Finally, for
better knowledge learning, we present a contrastive
loss to distill both positive and negative rationales
into smaller language models. A discriminator is
adopted to assess the qualities of the rationales and

assign them appropriate weights to optimize the
training process across the datasets.

To demonstrate the superiority of QCRD, we
conduct comprehensive experiments with two
smaller types of T5 models (Raffel et al., 2020), i.e.,
T5-base (220M parameters) and T5-small (60M pa-
rameters), on four popular datasets, followed by
detailed analysis and discussion. Our main contri-
butions of this paper can be summarized below.

• We first develop a general CoT distillation ap-
proach (i.e., QCRD) from a contrastive learn-
ing perspective, aiming to guide the student
model to learn both positive and negative
knowledge from rationales.

• We explore a contrastive distillation loss to
facilitate effective distillation of the generated
positive and negative rationales, where the
qualities of the rationales judged by a discrim-
inator are considered to optimize the training
process across the whole datasets.

• Experimental results across multiple datasets
show that QCRD outperforms existing meth-
ods and can be widely applied, demonstrating
its efficiency in utilizing contrastive reasoning
knowledge for smaller language models.

2 Related Work

Knowledge distillation from LLMs. Knowledge
distillation (KD) is a highly effective technique for
transferring knowledge from larger teacher models
to smaller student models that are more suitable for
practical applications (Fu et al., 2023; Hsieh et al.,
2023; Magister et al., 2022; Chen et al., 2024b;
Wang et al., 2023). The KD technique can be gen-
erally classified into two different categories: (1)
Black-box KD: only the teacher’s predictions are
accessible; (2) White-box KD: it provides access
to the teacher’s parameters. Both of them have
shown promising potential in fine-tuning smaller
models on the prompt response pairs generated by
LLMs (Zhu et al., 2023). In this paper, we hypoth-
esize that only the predictions (predict labels and
rationales) generated by LLMs are accessible.
Multi-task learning with LLM generated ra-
tionales. Current LLMs have already exhibited
their capabilities to generate high-quality reason-
ing steps, resulting in rationales of their predic-
tions (Kojima et al., 2022), and these rationales
have been found to be valuable additional knowl-
edge for fine-tuning smaller models (Hsieh et al.,
2023). A multi-task learning framework is com-
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Figure 2: Illustration of the proposed quality-guided contrastive rationale distillation for distilling contrastive
knowledge from teacher models into the student model. Fig.a represents our multi-task framework, i.e., the main
prediction label task and additional rationale task. Fig.b represents generation of contrastive rationales for distillation.
Fig.c represents details about the quality-guided contrastive rationale loss, and CE denotes the cross-entropy.

monly employed that enforces smaller models to
output corresponding rationales, while maintain-
ing their original functionality. However, previous
studies only focused on aligning the output of the
smaller model with that of the LLM with a single
loss form (Hsieh et al., 2023; Magister et al., 2022).
Self-consistency of LLMs. The self-consistency
of LLMs refers to the capacity to maintain coher-
ent and rational reasoning during input processing.
Based on the intuition that complex reasoning tasks
typically admit multiple reasoning paths that reach
a correct answer, the self-consistency can improve
the LLMs’ reasoning performance by integratedly
sampling CoT outputs several times and choosing
the most consistent predict answer (Stanovich and
West, 1991; Wang et al., 2022).
Contrastive learning for LLMs. Contrastive
learning has demonstrated its efficiency across di-
verse domains, e.g., computer vision, natural lan-
guage processing (Jaiswal et al., 2020; Le-Khac
et al., 2020). Notably, the application of con-
trastive learning to LLMs has recently emerged,
highlighting the effectiveness of incorporating neg-
ative knowledge implicitly in model’s inputs and
showing promising outcomes (Li et al., 2024; Chen
et al., 2024a). However, to the best of our knowl-
edge, the application of contrastive learning in CoT
rationale distillation has not been explored thus far.

3 Methodology

In this paper, we first propose a general contrastive
CoT distillation approach, called quality-guided

contrastive rationale distillation (QCRD), for train-
ing smaller models by distilling contrastive knowl-
edge from teacher models. As illustrated in Fig. 2,
our approach consists of the following three parts.
(1) Following the method developed in (Hsieh et al.,
2023), we apply a multi-task learning framework
for the supervised training of the student model,
i.e., the main prediction label task and additional
rationale generation task; see Fig. 2a. (2) As dis-
played in Fig. 2b, we design a general approach
to generate contrastive knowledge from LLMs and
student model itself for rationale distillation. (3)
As shown in Fig. 2c, for better knowledge learning
from rationales, we design a quality-guided con-
trastive learning strategy, where a contrastive loss
is applied with the guidance of an online-updated
discriminator to distinguish between positive and
negative rationales and assign them quality scores.

3.1 Multi-task learning framework for the
student model

Previous works have already demonstrated the ad-
vantages of the multi-task learning framework (Fu
et al., 2023; Hsieh et al., 2023; Magister et al.,
2022). Accordingly, as shown in Fig. 2a, we apply
the label prediction task and the rationale genera-
tion task to the training of smaller language models.
Specifically, we use different prefixes to enforce
smaller language models to generate different types
of output. Given an input question, for the label
prediction task, the smaller language model outputs
the prediction label with input prefix < Predict >,
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while for the rationale generation task, it outputs
the corresponding explanation with input prefix
< Explain >. These outputs are then aligned to
the corresponding ground truth and rationales using
autoregressive loss, respectively.

3.2 Generation of contrastive knowledge

We use CoT prompting (Wei et al., 2022b) to elicit
and extract rationales from LLMs. As illustrated
in Fig. 3, the LLM is provided with few examples
to follow the output format. Instead of only gen-
erating one output for each input, we replace the
“greedy decode” in CoT prompting with sampling
from the language model’s decoder to generate a
diverse set of reasoning paths (Wang et al., 2022).
We apply temperature sampling (Renze and Guven,
2024) to the LLM K times, where a temperature
value τ can control the diversity of the generated
output. Therefore, for each input, there are K pairs
of rationales and corresponding labels.

Figure 3: A case of the prompt and rationale output.

3.2.1 Build positive and negative rationale sets
Language models are not infallible reasoners; they
can produce incorrect reasoning paths or mistakes
in individual steps. Research indicates that correct
reasoning processes, despite their diversity, gener-
ally yield more consistent final answers than incor-
rect ones (Wang et al., 2022). Thus, we select the
rationales with the most consistent labels across all
outputs of the LLM as positive rationales, while the
remaining ones are classified as negative rationales.
The number of sampling times primarily affects
the ratio of positive to negative samples (with neg-
ative samples typically being fewer, as detailed in
Appendix A.1), as well as the associated time and
storage costs. Moreover, negative rationales from
LLMs are likely to be positive for smaller language
models, which may limit their effectiveness.

To deal with this issue, we conduct a self-
adversarial mechanism that the student model gen-
erates its own negative rationales by sampling from

its previous iterations with a high temperature value
during training (we illustrate its rationality in Sec-
tion 5.3 and demonstrate its superiority in Ap-
pendix A.2), and we regard these low-quality ratio-
nales as negative ones based on the hypothesis that
the rationale quality of LLMs is higher than that of
smaller models. As a result, for each input question
x = [x1, x2, ..., xn], we collect a positive rationale
set Spos = {rpos1 , rpos2 , ..., rposm } and a negative ra-
tionale set Sneg = {rneg1 , rneg2 , ..., rnegk }.

3.3 Contrastive knowledge distillation

In this subsection, we present our designed quality-
guided contrastive rationale distillation for better
knowledge learning.

3.3.1 Train a discriminator to judge rationales
The quality of rationales for the same question still
differs. Moreover, as the training epoch increases,
the rationales generated by the above self-play may
become gradually closer to the positive rationales,
and then viewing them as negative ones is no longer
reasonable. Therefore, there is a need to train a
discriminator D that can effectively judge the posi-
tive and negative rationales and output a score that
represents the quality of each rationale. The in-
put of the discriminator D is the question and the
rationale, and we take an encoder architecture to
measure the score, i.e.,

sposj = D
(
x, rposj

)
or sneg

j = D
(
x, rneg

j

)
. (1)

We pretrain the D with the positive and negative
rationales from the LLM, and during training, the
discriminator D is updated at regular epoch inter-
vals (details can be seen in Appendix A.3). The
loss function can be formulated as

LD = Ex

[
− log

∑m
j=1 exp(s

pos
j )

∑k
j=1 exp(s

neg
j )

]
. (2)

3.3.2 Quality-guided contrastive distillation
As mentioned in sec. 3.2.1, there is a diverse set
of positive rationales. In addition, the negative ra-
tionales are of significance, which can enforce the
smaller model away from their distribution. Since
some of the negative samples are generated by
the previous-iteration smaller model, the smaller
model can further refine its reasoning capability
through playing against instances of itself and pro-
mote the generated rationales closer to golden ratio-
nales of the LLM. Therefore, we propose a many-
to-one contrastive distillation loss, while previous
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studies typically utilize a single rationale for each
question and distill it into the smaller model, i.e.,

Lcl =
1

N

N∑

i=1

[l(f(xi), S
i
pos)− β · l(f(xi), S

i
neg)], (3)

where xi denotes the i-th question, Si
pos and Si

neg

denote the corresponding positive and negative ra-
tionale sets, respectively, N is the number of ques-
tions, and β > 0 is a tunable hyper-parameter. The
function l(·) denotes the cross-entropy loss and
f(·) denotes the rationale generation for its given
input. In (3),

l(f(xi), S
i
pos) = min

r
pos,i
j ∈Si

pos

{
l
(
f(xi), r

pos,i
j

)}
, (4)

l(f(xi), S
i
neg) = max

r
neg,i
j ∈Si

neg

{
l
(
f(xi), r

neg,i
j

)}
, (5)

which are designed to learn both the most rele-
vant positive knowledge and the least-disturbed
negative knowledge from teacher models. More-
over, we set a margin δ for the negative ratio-
nales to filter out cases that are too simplistic, i.e.,
l(f(x), rnegj ) = min(l(f(x), rnegj )− δ, 0) with re-
spect to the j-th negative rationale for an input
question x. Let us rethink the effectiveness of neg-
ative rationales generated by the previous-iteration
smaller model, which enforces the smaller model
to break out of local optima and yield a golden
rationale that is closer to the output of the LLM.
However, when the smaller model comes to con-
verging, the previous-iteration smaller model is
likely to output the rationales that are similar to
those of the LLM, and then regarding them as neg-
ative samples is inaccurate. To address this issue,
we introduce the quality-guided distillation to op-
timize the training process and redefine the loss
formulas in (4) and (5) as, respectively,

l(f(xi), S
i
pos) = spos,i · min

r
pos,i
j ∈Si

pos

{
l
(
f(xi), r

pos,i
j

)}
,

(6)
l(f(xi), S

i
neg) = (1−sneg,i)· max

r
neg,i
j ∈Si

neg

{
l
(
f(xi), r

neg,i
j

)}
,

(7)

where spos,i and sneg,i are the corresponding qual-
ity scores obtained by the discriminator D. By
(6) and (7), the positive rationales of higher qual-
ity should have larger weights across the datasets,
while for the negative rationales of higher quality,
it is on the contradiction. In the latter sec. 5.1,
we will further discuss different schemes for the
many-to-one distillation.

3.3.3 Training loss
The final training loss is given by

Ltotal = α1Lpred + α2Lcl + α3LD, (8)

where {αi}3i=1 > 0 are tunable hyper-parameters,
Lpred represents the cross entropy loss of the label
prediction task, Lcl is the many-to-one contrastive
distillation loss in (3), and LD is the discriminator
loss in (2).

4 Experiments

4.1 Experimental setting

Datasets. We conducted extensive experiments on
four widely-used benchmark datasets (see details
in Appendix Table 1) across three different natural
language processing tasks, including SVAMP (Pa-
tel et al., 2021) for arithmetic word problem solv-
ing, CQA (Talmor et al., 2018) for commonsense
question answering, as well as e-SNLI (Camburu
et al., 2018) and ANLI (Nie et al., 2019) for natural
language inference. The rationales we used were
generated by GPT-3.5-turbo1 and an opened code
source by (Hsieh et al., 2023) was referred.
Implementation details. Following the properties
of CoT and the comparative experimental studies
in (Hsieh et al., 2023; Chen et al., 2024b), our
QCRD utilized T5-base (220M parameters) and
T5-small (60M parameters) as the student models
to ensure a fair comparison. α1, α2, α3 were set to
0.5 empirically. α3 was multiplied by 0.9 per itera-
tion. We set β = 0.2 and δ = 3. We sampled the
LLM’s output 5 times with the temperature being
0.7, and sampled 5-iteration-before models with
the temperature being 1.5. The batchsize was 8
and learning rate was 5e-5. We trained our models
with 10000 max steps on one A100-80G about 13
hours for T5-base and 8.5 hours for T5-small. The
reported metric was accuracy.
Baselines. Four methods in learning task-specific
models were compared, i.e., (1) Finetuning, which
is the standard finetuning with the prevailing
pretrain-then-finetune paradigm that finetunes a
model with ground-truth labels via standard label
supervision (Howard and Ruder, 2018); (2) Single-
Task, where student models are distilled to predict
labels with the teacher model’s predicted labels; (3)
DSS (Hsieh et al., 2023), where student models are
distilled with both the predict labels and rationales
of the LLM; (4) Mutual information (MI) (Chen

1https://platform.openai.com/docs/models
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et al., 2024b), which is based on DSS and applies
an additional task to maximizing the mutual infor-
mation between prediction labels and rationales.

4.2 Experimental results
Experiments across four benchmarks. We con-
ducted experiments across four benchmarks with
two types of T5-model to evaluate the effectiveness
of our proposed method. In the top of Table 1, we
summarized the experimental results of the T5-base
model distilled by our method and the baselines
individually on all the four datasets. Of note, in
Single-Task, the rationale and label were combined
into a single sequence, which was then treated as
the target during the training (Hsieh et al., 2023). It
is clear that our method outperformed the baselines
on most datasets, particularly when compared to
the baseline DSS.

Table 1: CoT distillation results on the T5-base model.

Model SVAMP CQA ANLI1 ESNLI
Finetuning 63.00 62.19 43.58 88.38
Single-Task 59.00 63.11 47.90 88.77

DSS 65.50 63.23 52.80 90.09
MI 67.50 63.50 54.20 90.15

Ours 69.00 63.64 54.00 90.26

In like manner, we performed our method and
the baselines individually on the T5-small model,
and their performance on all the four datasets was
presented in Table 2. Our method consistently sur-
passed the baselines on all the four datasets.

Table 2: CoT distillation results on the T5-small model.

Model SVAMP CQA ANLI1 ESNLI
Finetuning 45.00 43.16 42.00 82.90
Single-Task 46.50 44.98 42.50 83.67

DSS 48.00 45.21 42.80 84.23
MI 47.00 45.49 42.10 83.55

Ours 50.50 46.11 44.10 85.30

Distillation with LLM labels. To evaluate the im-
pact of label qualities on CoT distillation, without
loss of generality, we conducted additional experi-
ments on the three datasets (namely, CQA, ANLI1,
and ESNLI) using the T5-base model distilled by
our method and DSS. Instead of using ground truth
labels, we employed the labels generated by GPT-
3.5-turbo to distill student models. The results were
presented in Table 3. On one hand, from the top of
Table 3, it demonstrates the effectiveness of temper-
ature sampling and self-consistency (SC), which
help denoise rationales and their corresponding la-
bels. On the other hand, the results at the bottom of

Table 3 indicate that our method outperformed DSS
on CQA and ANLI1, even when utilizing labels
generated by the LLM. Furthermore, comparing
the results of the T5-base models in Table 1 with
those of GPT-3.5 in Table 3, we observe that even
with tiny parameters, these expert models achieve
comparable performance on CQA and improved
results on ESNLI.

Table 3: CoT distillation results on the T5-base model
using predicted labels (noisy labels) from the LLM.

Model CQA ANLI1 ESNLI
GPT-3.5 66.30 78.21 66.27

GPT-3.5 with SC 69.05 80.15 67.08
DSS 59.15 44.10 74.88
MI 59.22 45.90 74.67

Ours 59.80 46.70 74.88

Distillation with smaller datasets. In addition,
to demonstrate the superiority of our method on
smaller datasets, we compared the performance of
Finetuning and our method using T5-base models
across varying sizes of each of the four datasets.
Figure 4 illustrates that our method consistently
achieved better performance, indicating the robust-
ness and generality of QCRD. Notably, a more pro-
nounced performance gain was observed on CQA
when the number of training samples was limited.
Ablation study on QCRD. Compared to previ-
ous related methods, the contrastive distillation in
our QCRD introduces several key enhancements as
follow. (1) The extension and denoising for posi-
tive knowledge (ED): we sample the outputs of the
LLM and leverage the self-consistency to denoise
rationales. (2) The distillation for negative knowl-
edge (NK): we incorporate a self-supervised mech-
anism to generate low-quality rationales as negative
rationales. (3) The guidance of the Quality Judge
(QJ): the use of discriminator helps assess ratio-
nales and optimize the training process. Additional
experiments were so conducted on SVAMP to eval-
uate the effectiveness of each module, with the
results being summarized in Table 4. The findings
demonstrated that integrating more high-quality ra-
tionales significantly improved performance, while
the inclusion of negative rationales proved effective.
The discriminator mechanism played a positive role
by considering the quality of each rationale, and we
further found that the results when using the Qual-
ity Judge were more stable. We further conducted
experiments to demonstrate the generalization ca-
pability of QCRD by applying it to other baseline
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Figure 4: Comparisons with varying sizes of training datasets on the T5-base model for four benchmarks.

and larger models, as detailed in Appendix A.4.

Table 4: Ablation study on T5-base model, where ED
denotes positive knowledge extension and denoising,
NK denotes negative knowledge, and QJ denotes using
of Quality Judge.

w/o ED w/o NK w/o QJ SVAMP
% % % 65.5
! % % 67.0
! ! % 68.5
! ! ! 69.0

5 Discussion

5.1 Different contrastive distillation schemes
In sec. 3.3.2, We defined the many-to-one distilla-
tion by taking the min loss for positive rationales
and max loss for negative rationales (i.e., Min-
Max), which imposes a relatively weak constraint
on rationale alignment. We further discuss differ-
ent schemes for the many-to-one distillation. (1)
MaxMin: we compute the max loss for positive ra-
tionales and min loss for negative rationales. This
scheme enforces the smaller model to learn hard
rationale examples. (2) Sampling: we randomly
choose a positive rationale and a negative rationale
for each input. (3) Mean: we average the loss for
all rationales. (4) Weighted mean (W-mean): we
weight the loss with quality scores and then average
the loss. The results of the T5-base model distilled
by our method on SVAMP were presented in Ta-
ble 5 with respect to the above different schemes.
One can clearly see that the MinMax achieved the
best performance. Besides, the Mean scheme had a
negative impact on the results. The reason may be
that enforcing small models align with multi-target
rationales of differences is not suitable, especially
for positive knowledge.

5.2 Influence of the sampling count
In the above experiments, we sampled the output
of the LLM five times and the output of iteration-

Table 5: Results of our method with different many-to-
one distillation schemes on SVAMP.

Model MinMax MaxMin Sampling Mean W-mean

T5-base 69.0 67.0 66.5 65.0 66.0

before model once. We further explore the influ-
ence of the sampling count. When fixing the sam-
pling counts for iteration-before models, results of
setting different sampling counts for the LLM on
SVAMP were displayed in the top of Table 6. More-
over, when fixing the sampling counts for the LLM,
results on SVAMP were displayed in the bottom
of Table 6 in terms of different numbers of gen-
erated negative samples. We found that sampling
many negative rationales had an adverse impact
on the performance, and the best performance was
achieved when k was 1. Note that when m = 1,
the performance of our method was still better than
that of other related methods, again indicating the
effectiveness of negative rationales.

Table 6: Results of our method on SVAMP with dif-
ferent sampling counts, i.e., the sampling count m for
positive rationales and k for negative rationales.

Positive sample m 1 5 10 20
T5-base 67.5 69.0 68.0 68.5

negative sample k 0 1 2 3
T5-base 67.0 69.0 68.5 66.0

5.3 Rationality for negative knowledge
Temperature sampling is a commonly used decod-
ing strategy for LLMs’ generation process. By
adjusting the temperature τ , we can modify the
probability distribution of each word before sam-
pling. The higher the temperature is, the smaller the
difference in the probability distribution of LLM’s
outputs becomes, increasing the chance of sam-
pling words with lower probabilities. In Fig 5,
we provided a case of output rationales from the
trained T5-base model with different temperature
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settings for illustrative visualization. It validated
the rationality that we generated negative rationales
by sampling the iteration-before smaller models
with a high temperature value. We further explored
the influence of the negative sampling temperature
on model performance in Appendix A.5.

Figure 5: A case study of output rationales from the
T5-base model on SVAMP at different temperatures,
with incorrect details highlighted in red.

5.4 Assessment for generated rationales

We assessed the qualities of CoT examples using
GPT-3.5-turbo. Inspired by the ranking model, we
prompted GPT-3.5-turbo to rank the rationales gen-
erated by both DSS and our QCRD, rather than
providing scores based on the qualities of the ra-
tionales. This is easier for the LLM and allows for
a more straightforward comparison. The prompt
fed to GPT-3.5-turbo was presented in Appendix
Table 4. To evaluate the rationales, we randomly
selected 50 examples from each of the four datasets
and asked GPT-3.5-turbo to determine rationales of
which our method was better. We then aggregated
the counts of "DSS is better," "Both are good," and
"QCRD is better," as shown in Table 7. From the
results, we observed that on SVAMP, CQA, and
ESNLI, the model trained using our method gen-
erated better rationales than using DSS. However,
on ANLI1, the model trained using DSS exhibited
slightly better performance.

Table 7: The quality assessment results on the T5-
base model for different sampling temperature settings,
where three numbers represent counts of "DSS is better",
"Both are good", and "QCRD is better", respectively.

SVAMP CQA ANLI1 ESNLI
τ = 0 21/0/29 19/6/25 26/1/23 17/11/22
τ = 0.7 22/0/28 20/6/24 25/1/24 14/3/33

5.5 Distribution of rationale quality scores

The probability density estimation for the sampled
rationale scores from the trained discriminator on
the SVAMP test dataset is shown in Fig 6. Specifi-
cally, we considered the quality scores of: (1) posi-
tive and negative rationales from LLM’s sampled
outputs (sampled 5 times); (2) negative rationales
from sampling a trained T5-base model with tem-
perature τ set to 1.5 and 2.0, respectively. It showed
that the trained discriminator can effectively score
different types of rationales. Scores of LLM’s pos-
itive rationales were around 0.95. For the trained
student model, scores of the sampled negative ra-
tionales sometimes exceeded 0.7 (see the orange
distribution), and it was necessary for the discrim-
inator to assign low weights to these rationales.
Furthermore, by comparing the orange distribution
and the red distribution, we can see that the sam-
pling temperature has a significant influence on the
qualities of the rationales.

Figure 6: The probability density estimation for sampled
rationale scores on the SVAMP test dataset, where ra-
tionales were from LLM’s and trained T5-base model’s
sampled outputs, and τ denotes sampling temperature.

6 Conclusion

The knowledge distillation of CoT rationales from
LLMs into smaller language models using a multi-
task learning framework has been empirically
shown to enhance performances of smaller lan-
guage models. Building upon the framework, we
introduces a general CoT distillation method, in-
corporating a contrastive learning perspective that
considers both positive and negative knowledge. To
generate positive and negative rationales, we pro-
pose an innovative approach that combines temper-
ature sampling, the self-consistency of LLMs, and
the self-adversarial of small language models them-

14341



selves. Additionally, we develop a many-to-one
contrastive distillation loss for better knowledge
learning, where an online-update discriminator is
used to judge qualities of rationales and assign
them weights for optimizing the training process
across the whole datasets. Extensive experiments
conducted on multiple reasoning tasks demonstrate
the superiority of our method over previous ones.

Limitations

Our work serves as a distillation method for de-
ployed smaller language models, paving the way
for further improvements. On one hand, as illus-
trated in Appendix A.6, it requires additional train-
ing time due to the distillation of sampled positive
and online-inferenced negative rationales. How-
ever, our proposed method enhances model per-
formance without incurring additional deployment
costs and can be applied generally. On the other
hand, the quality of knowledge for distillation is
crucial. In this paper, we prompt the LLM to gen-
erate chain-of-thought (CoT) rationales and fur-
ther classify them into positive and negative cate-
gories through self-consistency. Different types of
prompts and decoding strategies can lead the LLM
to produce various forms of positive CoT knowl-
edge and more intuitive negative CoT knowledge,
which may further improve the distillation effect.
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A Appendix

A.1 Details about Datasets
Following the setting in (Hsieh et al., 2023), we
provide detailed descriptions of the four benchmark
datasets in Table 1. To illustrate the unbalanced
proportion of positive and negative rationales from
LLMs given the ground truth, we displayed the
statistical description of the generated rationale an-
notations on training datasets for four benchmarks
in Table 2. On the one hand, the number of positive
rationales was larger than that of negative rationales
(3.87:1.13). On the other hand, for many samples
in the training dataset (more than 50%), there were
only positive rationales. Therefore, there is a need
to generate effective negative rationales in other
ways.

Table 1: Descriptions of the four benchmark datasets.

Dataset Training Validation Test
SVAMP 720 80 200

CQA 8766 975 1221
ANLI1 16946 1000 1000
ESNLI 549367 9842 9824

Table 2: Statistical descriptions of the generated ratio-
nale annotations, where r denotes rationale, and positive
r achieves correct answers.

Dataset SVAMP CQA ANLI1 ESNLI
Average pos r (total 5) 3.87 3.89 3.93 3.31

Proportion with only pos r 0.55 0.68 0.66 0.50
Proportion with only neg r 0.08 0.13 0.11 0.20

A.2 Iteration-before-models for negative
rationale generators

In this paper, we dynamically generated negative ra-
tionales using iteration-before-models through on-
line temperature sampling. We took these iteration-
before-models as negative generators, and we sam-
pled them with a relatively high temperature value
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to generate negative rationales for every batch
of datasets. As depicted in Fig. 1, to select a j-
iteration-before-model for the negative rationale
generator, we need to save a minimum of j check-
points for the model. This allows us to load the neg-
ative generator online and train the student model
end-to-end instead of using a multi-turn approach.
Additionally, as shown in Table 3, we found that the
performance of the student models was not sensi-
tive to the choice of j from {3, 5, 10}, all of which
outperformed the results obtained with a fixed neg-
ative generator (pretrained by DSS (Hsieh et al.,
2023)) or by using negative rationales derived from
the self-consistency of the LLM.

Table 3: Results on SVAMP with different negative
knowledge strategies, where the "Fixed" denotes fixing
negative generator with the pretrained model, "SC" de-
notes using negative rationales from self-consistency.

Negative source j=3 j=5 j=10 Fixed SC
T5-base 68.0 69.0 68.5 66.5 64.5

Figure 1: A case of the j-iteration-before-model for the
negative rationale generator.

Table 4: The prompt for GPT-3.5-turbo to judge ratio-
nales.

The prompt for GPT-3.5-turbo

There is an input pair of a question and an answer of
a taskname task, and we provide you two explanations.
You need judge which explanation is better. The better
explanation should be more accurate and explain the
answer better.

A.3 Details about the Quality Judge
We incorporated a discriminator into our training
process to assess the quality of rationales and as-
sign corresponding weights to the losses. To con-
struct the discriminator, we leveraged the encoder
of the T5-base model along with one maxpooling
layer and two linear layers to compute the quality
score. Prior to training, the discriminator needs
to be pretrained using the output rationales gener-
ated by LLMs with applying data augmentations to
the negative rationales. Specifically, we employed

word mask and replacement with the assistance of
StanfordNLP (Zeman et al., 2018) to balance the
proportions of positive and negative rationales. The
training objective is LD in (2). We pretrained the
discriminator 500 max steps and we ensured scores
for positive rationales close to 1 and scores for neg-
ative rationales close to 0. The discriminator was
further online-updated during training.

A.4 Generalization Capability of QCRD

Our proposed QCRD is a general method that can
be applied to other methods or models. We further
conducted experiments to validate it. Specifically,
we applied our QCRD to the baseline MI (Chen
et al., 2024b) and the larger T5 model (T5-large
with 770M parameters) on the SVAMP and ANLI1
benchmarks, which clearly demonstrate perfor-
mance gains. As shown in Table 5, our QCRD
effectively improves performance; for example,
the accuracy increased by 2.5% for MI and by
2.0% for T5-large on SVAMP. Additionally, we
fine-tuned the Qwen2.5-0.5B model (Team, 2024)
on the SVAMP benchmark, and the results urther
confirm the broader applicability for QCRD.

Table 5: Results of our QCRD applied to baselines and
base models.

Benchmark Model Baseline
w/o QCRD

✕ ✓
SVAMP T5-base MI 67.5 70.0(+2.5)
ANLI1 T5-base MI 54.2 56.0(+1.8)
SVAMP T5-large DSS 78.0 80.0(+2.0)
ANLI1 T5-large DSS 53.2 55.1(+1.9)
SVAMP Qwen2.5-0.5B DSS 72.0 76.0(+4.0)

A.5 Influence of negative sampling
temperature

The results of the T5-base model distilled by our
method on SVAMP were displayed in Table 6 in
terms of different negative sampling temperature
settings. It was observed that when no sampling
was performed (i.e., τ = 0) or a lower tempera-
ture value was used (i.e., τ = 0.7), the smaller
model exhibited relatively poorer performance and
showed larger fluctuations in accuracy. The best re-
sults were achieved when the temperature τ was set
to 1.5. The reason for this can be attributed to the
fact that when the model approaches convergence,
the output rationales with lower temperature values
tend to be similar to the golden ones. Considering
these similar outputs as negative samples can lead
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to detrimental effects.

Table 6: Results of our method on SVAMP with differ-
ent sampling temperature τ .

Temperature τ 0 0.7 1.5 2
T5-base 65.0 64.5 69.0 67.5

Table 7: The comparison for training time on T5-base
and T5-small models, where D denotes the Quality
Judge.

Method Base/small training time (h)
Finetune 2.0 / 1.25

DSS 4.0 / 2.5
MI 4.2 / 2.6

QCRD 13.0 / 8.5
QCRD (w/o D) 12.0 / 7.5

A.6 Computational cost
The training times for the T5-base and T5-small
models using each method are presented in Table 7.
Specifically, we trained the models on a single
A100-80G GPU utilizing the SVAMP benchmark.
Compared to DSS (Hsieh et al., 2023), our method
requires an additional 9 hours for T5-base and 6
hours for T5-small. This increase is attributed to
each input necessitating 5 positive rationales and
1 online-inferred negative rationale for contrastive
rationale distillation. However, we emphasize the
motivation behind our method: to enhance the per-
formance of deployed small language models to
the fullest extent, even surpassing general LLMs in
specialized fields. Our proposed QCRD effectively
improves model performance without incurring ad-
ditional parameter storage during deployment and
can be widely applied to other methods or models.
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