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Abstract

Retrieval-augmented generation (RAG) en-
hances large language models (LLMs) by in-
corporating external knowledge. Current hy-
brid RAG system retrieves evidence from both
knowledge graphs (KGs) and text documents
to support LLM reasoning. However, it faces
challenges like handling multi-hop reasoning,
multi-entity questions, multi-source verifica-
tion, and effective graph utilization. To ad-
dress these limitations, we present HydraRAG,
a training-free framework that unifies graph
topology, document semantics, and source re-
liability to support deep, faithful reasoning
in LLMs. HydraRAG handles multi-hop and
multi-entity problems through agent-driven ex-
ploration that combines structured and un-
structured retrieval, increasing both diversity
and precision of evidence. To tackle multi-
source verification, HydraRAG uses a tri-factor
cross-source verification (source trustworthi-
ness assessment, cross-source corroboration,
and entity-path alignment), to balance topic
relevance with cross-modal agreement. By
leveraging graph structure, HydraRAG fuses
heterogeneous sources, guides efficient explo-
ration, and prunes noise early. Comprehensive
experiments on seven benchmark datasets show
that HydraRAG achieves overall state-of-the-
art results on all benchmarks with GPT-3.5,
outperforming the strong hybrid baseline ToG-
2 by an average of 20.3% and up to 30.1%.
Furthermore, HydraRAG enables smaller mod-
els (e.g., Llama-3.1-8B) to achieve reason-
ing performance comparable to that of GPT-4-
Turbo. The source code is available on https:
//stevetantan.github.io/HydraRAG/.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable performance by scaling to billions of
parameters and pre-training on vast and diverse
corpora (Brown, 2020; Chowdhery et al., 2023).

∗Corresponding author.

However, the prohibitive expense of full-model
training for LLMs makes continual retraining in-
feasible, causing static parametric knowledge to
quickly become obsolete and resulting in factual
gaps and hallucinations (Besta et al., 2024; Touvron
et al., 2023). This issue is alleviated by retrieval-
augmented generation (RAG), which fetches exter-
nal evidence at inference time. (Gao et al., 2023).

Many RAG systems rely on vector retrieval over
text, embedding question and documents into a
dense space and selecting semantically similar pas-
sages (Baek et al., 2023; Jiang et al., 2023; Huang
et al., 2024a,b). While effective for measuring text
similarity, such approaches struggle with complex
reasoning that requires integrating heterogeneous
clues across multiple documents (Ma et al., 2025b).
Specifically, (i) different passages may reference
distinct entities that share the same underlying con-
cept, such as, Evolar and Evolar AB in Figure 1(a)
refer to the same start-up company; (ii) a single pas-
sage often covers only one facet of an entity, omit-
ting other critical attributes found in other texts or
documents. In Figure 1(a), with the real-time web
information implementation, the naive RAG could
find the answer to the first part of the question, but
could not relate this entity to other text corpora.

To address these challenges, incorporating ex-
ternal knowledge sources, like Knowledge Graphs
(KGs), is promising as KGs offer abundant factual
knowledge in a structured format, serving as a re-
liable source to improve LLM capabilities (Sun
et al., 2024; Tan et al., 2025). KG-based RAG ap-
proaches prompt LLMs with retrieved KG triples
or paths relevant to the question, and their effective-
ness in dealing with complex reasoning tasks has
been demonstrated by researchers (Tan et al., 2025).
Although they benefit from the structural and fac-
tual nature of KGs, they inherently suffer from
inner incompleteness, lack of information beyond
their ontology, and high cost of updating (Ma et al.,
2025b). For example, as shown in Figure 1(b), the
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Title:  Uppsala University sets new world record for CIGS
Snippet:  US-based First Solar has acquired Evolar AB...

Question: In May 2023, First Solar acquired which start‑up that spun out of Uppsala University, and what certified
efficiency record is touted in the acquisition press release?

Title: First Solar buys Swedish solar firm Evolar - News
Snippet: Uppsala University is the new world record holder for electrical...

Title:     First Solar's unit, Uppsala University present CIGS 
Snippet:  The new solar cell achieved a maximum power conversion efficiency...
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     Yes, the answer is (Evolar AB,23.6%).  The start‑up is Evolar AB, and
the press release highlights a certified 23.6 % CIGS efficiency record.

... ...
       Sorry, I cannot answer the question. The given Knowledge triplets are not
sufficient to  answer the start-up and certified record in acquisition press release.

       The start-up was EvolarAB (snippet2), but none of them explicitly says that
a certified record in the acquisition press release, details are missing.
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�Figure 1: Representative workflow of four LLM reasoning paradigms.

KG search is limited by being unable to provide
further information about “Renewable Energy” and
“First Solar”. Some recent works focus on integrat-
ing text and KG as a hybrid RAG system (Li et al.,
2024c; Ma et al., 2025b).
Limitations of existing methods. Current ap-
proaches typically follow a simple retrieve-
and-select routine. For instance, CoK alternates
between different Knowledge Bases (KBs), choos-
ing one source at each step and retrieving an answer
directly (Li et al., 2024c). ToG-2, shown in Figure
1(c), simultaneously queries text and KG, extract-
ing one-hop triples for each question keyword and
using an LLM to select the best answer (Ma et al.,
2025b). This strategy suffers from four limitations:
Multi-source verification. When faced with multi-
ple sources, many approaches simply concatenate
evidence and let the LLM decide. This over-relies
on the LLM’s semantics without accounting for
source reliability or cross-source consistency, lead-
ing to both under- and over-pruning of evidence.
Multi-hop reasoning. Existing methods typically
retrieve only one-hop relations in text and KG per
step and rely on LLMs for semantically relevant
candidates pruning. This greedy, local strategy may
prune the correct multi-hop path prematurely and
fail to consider the global reasoning structure.
Multi-entity questions. Typical pipelines explore
each topic entity independently. For questions in-

volving several entities, this produces large candi-
date sets containing paths unrelated to the other
entities, reducing precision and introducing noise.
Graph structure utilization. Current methods fetch
triples from each source and pass them to the LLM
without merging them into a single graph. Lacking
this global structure, the LLM cannot perform ef-
ficient graph-based exploration or pruning, so all
direct neighbors from KGs and text remain, adding
substantial noise.
Contributions. We present HydraRAG, shown
in Figure 1(d), a structured source-aware retrieval-
augmented framework that brings together graph
topology, document semantics, and source reliabil-
ity signals to support deep, faithful reasoning in
LLMs. Unlike methods that treat KG triples and
text passages as separate evidence, HydraRAG ex-
tracts joint KG–text reasoning paths that cover ev-
ery topic entity and trace multi-hop relations across
heterogeneous sources. These paths form inter-
pretable chains of thought, revealing both answers
and their cross-source support.
To address multi-source verification, HydraRAG
computes a tri-factor score, combining source trust-
worthiness, cross-source corroboration, and entity-
to-evidence alignment. Low-scoring branches are
discarded before LLM calls, reducing token usage
and preventing source-specific noise.
To address multi-hop reasoning, HydraRAG gen-
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erates an indicator in the question analysis stage
that predicts the relationship depth between each
topic entity and the answer. Guided by it, the sys-
tem retrieves multi-hop paths from a predicted
depth in the KG, enabling dynamic structured
search. The same path requirement guides unstruc-
tured retrieval to connect related text chains across
documents. Unlike approaches that restart retrieval
at every step, HydraRAG enhances LLMs to follow
coherent reasoning paths that lead to the answer.
To address multi-entity questions, HydraRAG us-
es a three-phase exploration process over the ques-
tion subgraph, documents, and web results. All
paths must include every topic entity in the order
given by the skyline indicator. In structured re-
trieval, the paths are logical and faithful; in unstruc-
tured retrieval, keywords and their connections are
searched across text. Each path yields one answer
candidate and serves as an interpretable reasoning
chain, leveraging both LLM and KG knowledge.
To address graph-structure under-utilization, Hy-
draRAG forms a question subgraph by expanding
topic entities to their maximal-depth neighbors and
merging subgraphs from multiple KGs. We ap-
ply node clustering and graph reduction to cut the
search costs and inject high-confidence text edges
to dynamically fill KG gaps. During evidence ex-
ploration, a semantics-gated, multi-source-verified,
bidirectional BFS prunes low-confidence branches
early. Inspired by GoT (Besta et al., 2024), Hy-
draRAG prompts the LLM to summarize the top-
Wmax paths before answer evaluation to further
reduce hallucinations. In summary, the advantages
of HydraRAG can be abbreviated as:
Structured source-aware retrieval: HydraRAG
integrates heterogeneous evidence from diverse
sources into a unified structured representation, en-
abling seamless reasoning.
Multi-source verification: HydraRAG prunes can-
didate paths based on both question relevance and
cross-source corroboration before any LLM call,
generating a compact, high-confidence context that
reduces hallucinations and lowers LLM costs.
Interpretable cross-source reasoning: The ex-
tracted reasoning paths trace how facts from differ-
ent modalities converge on the answer, providing
transparent, step-by-step justification and enhanc-
ing the faithfulness of LLM outputs.
Efficiency and adaptability: a) HydraRAG is a
plug-and-play framework that can be seamlessly
applied to various LLMs, KGs, and texts. b) Hy-
draRAG is auto-refresh. New information is incor-

porated instantly via web retrieval instead of costly
LLM fine-tuning. c) HydraRAG achieves state-of-
the-art results on all the tested datasets, surpasses
the strong hybrid baseline ToG-2 by an average of
20.3% and up to 30.1%, and enables smaller mod-
els to achieve reasoning performance comparable
to GPT-4-Turbo.

2 Related Work
Text-based RAG. Early text-based RAG systems
embed queries and texts in a shared vector space
and retrieve the closest chunks (Gao et al., 2023;
Wang et al., 2025a; Ding et al., 2025). Iterative
methods such as ITERRETGEN alternate between
retrieval and generation to add context (Shao et al.,
2023), but coarse passages often mix relevant facts
with noise, weakening the signal for reasoning.
CoT prompts can guide retrieval toward deeper
clues (Wei et al., 2022), but they still rely on se-
mantic similarity and ignore the structure of rela-
tions, so long-range connections may be missed or
require many iterations to uncover.
KG-based RAG. Graphs are widely used to model
complex relationships among different entities
(Sima et al., 2025; Wang et al., 2024a,b, 2025b; Tan
et al., 2023a,b). KGs store triples, making entity
links explicit (Hu et al., 2025; Li et al., 2024b,a).
Agent-based methods let an LLM walk the graph
hop by hop. ToG asks the LLM to choose the
next neighbour at each step (Sun et al., 2024), and
StructGPT reformulates a structured query into re-
peated read-reason cycles (Jiang et al., 2023). Plan-
on-Graph and DoG run several LLM calls to rank
candidate neighbours (Chen et al., 2024b; Ma et al.,
2025a). But a walk starts from a single entity can
miss answers that involve several topic entities and
becomes fragile on long chains. Paths-over-Graph
(Tan et al., 2025) focuses on multi-hop reasoning
but relies solely on the KG, so it inherits KG gaps
and rising update costs.
Hybrid RAG. Recent work combines structured
and unstructured sources. GraphRAG builds a
document-level KG to guide passage retrieval
(Edge et al., 2024), CoK mixes multiple sources to
ground outputs (Li et al., 2024c), and HybridRAG
unifies vector and KG retrieval in a single pipeline
(Sarmah et al., 2024). Although these methods
improve coverage, they retrieve each source sepa-
rately and simply concatenate results, which can
introduce redundant or low-quality evidence. Agen-
tic approaches like ReAct interleave reasoning with
retrieval actions to reduce errors (Yao et al., 2023),
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Figure 2: Overview of the HydraRAG architecture. Evidence exploration: after initialization (detailed in Figure 3),
the model retrieves entity paths from diverse sources through three exploration phases. Evidence Pruning: Hy-
draRAG applies a three-step evidence pruning procedure after each exploration phase. Question Answering: the
pruned paths are then evaluated for question answering.

but their modules still face the same coverage and
granularity limitations. ToG-2 (Ma et al., 2025b)
queries all sources simultaneously, but it only re-
trieves one-hop neighbours and does not assess
source reliability or cross-source consistency, mak-
ing it unsuitable for multi-hop complex questions.

3 Preliminary

Consider a Knowledge Graph (KG) G(E ,R),
where E and R represent the set of entities and
relations, respectively. G(E ,R) contains abun-
dant factual knowledge in the form of triples, i.e.,
G(E ,R) = {(eh, r, et) | eh, et ∈ E , r ∈ R}.
Definition 1 (Reasoning Path). Given a KG G,
a reasoning path within G is defined as a con-
nected sequence of knowledge triples, represented
as: pathG(e1, el+1) = {(e1, r1, e2), (e2, r2, e3)
, ..., (el, rl, el+1)}, where l denotes the length of
the path, i.e., length(pathG(e1, el+1)) = l.

Definition 2 (Entity Path). Given a KG G and
an entity list liste = [e1, e2, e3, . . . , el], the en-
tity path of liste is defined as a connected se-
quence of reasoning paths, which is denoted
as pathG(liste) = {pathG(e1, e2), pathG(e2,
e3), . . . ,pathG(el−1, el)} = {(es, r, et)|(es, r, et)
∈ pathG(ei, ei+1)∧1 ≤ i < l}.

Knowledge Base Question Answering (KBQA)
is a fundamental reasoning task based on KBs.
Given a natural language question q and a KB B,
the objective is to devise a function f that predicts
answers a ∈ Answer(q) utilizing knowledge en-
capsulated in B, i.e., a = f(q,B).

4 Method

The HydraRAG framework integrates multiple
knowledge sources to ensure comprehensive and
reliable retrieval. The overview of HydraRAG is
presented in Figure 2. All sources are first de-
tected and agentically selected in Section 4.1, and
then fully retrieved and augmented in Section 4.2.
These sources include three categories. First, the
knowledge graph provides the most accurate and
structured evidence. For each question, we first
extract an evidence subgraph Gsq from every KG
source (i.e., Freebase and WikiKG) and then merge
these subgraphs into a single global evidence sub-
graph Gq. Second, wikipedia documents supply
semi-structured information1. We retrieve question-
relevant Wiki document set using the topic entity
set Topic(q), forming Wiki =

{
Doc(e) | e ∈

Topic(q)
}
. Third, web documents capture real-

time online results2. We issue an online search
result set for q, yielding Web = OnlineSearch(q),
where each search result includes a web page title,
description snippet, and URL. The faithfulness of
web evidence is later assessed in Section 4.3.

4.1 Step I: Initialization
The initialization has three main stages, i.e., avail-
able evidence detection, question analysis, and
agentic source selector. The framework is shown
in Figure 3.

1HydraRAG uses the Wikipedia page of each topic entity
e ∈ GWikiKG as the initial document.

2HydraRAG uses Google Search by SeripAPI for online
retrieval.
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evidence detection, question analysis and agentic source selector.

Available evidence detection. Given a question
q, HydraRAG first identifies candidate KBs, in-
cluding knowledge graphs, web pages, and docu-
ments. To determine which sources are relevant
to q, HydraRAG uses an LLM to extract potential
topic entities. It then applies BERT-based similarity
matching to align these entities with those in each
source (e.g., E ∈ {Gfreebase,GWikiKG}). As shown
in Figure 3, we encode the extracted entities and all
entities from a source into dense embeddings HT

and HS , and compute a cosine similarity matrix
to identify matches. For each extracted entity and
each knowledge source, entities whose similarity
exceeds a threshold form the set Topic(q). Each
source maintains its own Topic(q); if |Topic(q)| >
0, the source is marked relevant and added to the to-
tal sources list St ⊆ {KG, Wiki, Web} for further
agentic selection. The St = {Web} is considered
as the initial setting. This set underlies the con-
struction of the question-related subgraph and the
preparation of documents in later steps.

Question analysis. To reduce hallucinations, the
question analysis phase is divided into two parts
and executed within a single LLM call using an
example-based prompt (detailed in Appendix E).
First, it breaks the complex question q into sub-
questions, each linking one topic entity to the po-
tential answer; solving these sub-questions together
grounds the original query. Second, a solving sky-
line is generated, which lists all topic entities and
predicts the answer’s position in a single chain of
thought derived from q. This skyline captures the
relationships and order among the entities and the
answer, transforming the complex question into
a concise, simplified reasoning path. From this,

we compute a predicted depth Dpredict, defined as
the maximum distance between the predicted an-
swer and any topic entity. An example of question
analysis, with Dpredict = 2, is shown in Figure 3.
Agentic source selector. Most existing systems
operate on a single KG or KB. Hybrid RAG meth-
ods (Ma et al., 2025b; Li et al., 2024c) can combine
multiple information sources, but they typically
query a fixed set (usually one or two) and ignore
the question-specific trade-off between coverage
and cost. Blindly querying every possible source
greatly increases latency and computation.

To address this limitation, we introduce an
agentic source selector. Given the total evidence
source list St and question analysis result, an LLM-
selected agent analyses the incoming question and
chooses an initial source combination Sa that best
balances three factors: (i) time sensitivity, (ii)
reasoning complexity, and (iii) domain relevance.
Only the selected sources Sa ⊆ St are used in the
initial exploration stage in Section 4.2.1, reducing
cost while preserving answer quality.

4.2 Step II: Evidence Exploration
As discussed in Section 1, finding reasoning paths
that include all topic entities is essential for de-
riving accurate answers. These paths act as inter-
pretable chains of thoughts, showing both the
answer and the inference steps leading to it.

However, the evidence needed to complete such
paths is often distributed across sources. Com-
bining these heterogeneous sources is therefore as
important as path-finding itself. To discover high-
quality paths while unifying evidence in a common
format, the exploration is divided into three phases:
initial exploration, refined exploration, and pre-
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dicted exploration. In each exploration, retrievals
from different sources are processed in parallel; Af-
ter each phase, we apply path pruning and attempt
to answer the question. If a valid path is found, the
search terminates; otherwise, it proceeds to the next
phase. Due to space constraints, the pseudo-code
for exploration is provided in Appendix A.1.

4.2.1 Initial Exploration
To reduce LLM usage and narrow the search space,
HydraRAG first explores agent-selected knowledge
sources in parallel. Structured and unstructured
inputs are processed independently: structured re-
trieval captures explicit relational facts, whereas
unstructured retrieval supports more complex or
implicit reasoning.
Structured retrieval. For structured retrieval, we
first detect an evidence subgraph from KGs, then
explore topic-entity paths.
Subgraph detection. Inspired by (Tan et al., 2025),
we construct a Dmax-hop global evidence subgraph
Gq. For each topic entity, we retrieve all triples in-
volving its Dmax-hop neighbors to incorporate rele-
vant and faithful KG information into Gsq from each
knowledge source, i.e., s ∈ {Freebase, WikiKG}.
To enhance knowledge coverage, we also merge
multiple Gsq into a global graph Gq. To control infor-
mation overload and reduce computation, we apply
node and relation clustering, along with graph re-
duction techniques, to prune Gq effectively.
Tree-based path retrieval. Instead of the maximum
depth Dmax, HydraRAG performs initial explo-
ration at the predicted depth Dpredict. Given the
subgraph Gq, the ordered topic entity set Topic(q),
the skyline indicator Isky, and the depth D =
min(Dpredict, Dmax), we identify candidate reason-
ing paths that include all topic entities in order. To
avoid exhaustive search, we apply a tree-structured
bidirectional breadth-first search (BiBFS) from
each topic entity to extract a set of all potential
entity paths, defined as: PathsI = {p | |Topic(q)| ·
(D−1) < length(p) ≤ |Topic(q)| ·D}.

At each step, a cross-score (introduced in Sec-
tion 4.3) is computed between the path, the skyline
indicator, and retrieved documents to prune un-
promising branches. Only the top-W1 paths are re-
tained as seeds for further expansion. This method
enables efficient construction of high-quality candi-
date paths while maintaining interpretability. The
pseudo-code for structured retrieval is detailed in
Algorithm 1 of Appendix A.1.
Unstructured retrieval. For each document

Doc(e) associated with e ∈ Topic(q), we retrieve
text blocks, split them into smaller passages, and se-
lect the top-Wmax sentences using a dense retrieval
model (DRM). Instead of embedding the full query,
HydraRAG uses the skyline indicator to empha-
size structural relevance. Unlike ToG-2.0, which
targets only one-hop relations, ours captures more
complex reasoning, i.e., transitive multi-hop rela-
tions. The resulting sentences are used to prompt
the LLM to construct new knowledge paths, which
are summarized and added to PathsI .
Web document retrieval. When offline documents
and KGs are insufficient, HydraRAG performs on-
line retrieval by issuing the question q to a search
engine and prompting the LLM to select the top-
Wmax web results. These documents are then pro-
cessed using the same DRM-based screening and
path construction as in the offline setting. The
pseudo-code and prompting for unstructured re-
trieval are detailed in Algorithm 2 of Appendix A.1
and Appendix E.

By combining KG-based, document-based, and
web-based retrieval, HydraRAG generates a rich
and interpretable path set as evidence, which is
passed to the subsequent pruning stages.

4.2.2 Refined Exploration
Traditional KG-based reasoning typically reuses
stored facts through a complex retrieval pro-
cess. However, this approach often falls into fast-
evolving or emerging information, which may not
be adequately represented in the KG. To over-
come this limitation, HydraRAG introduces a novel
mechanism that leverages the LLM’s ability to gen-
erate follow-up questions and refine the knowledge
search. Specifically, HydraRAG prompts the LLM
to generate a follow-up question, qnew, along with
a new skyline indicator, Inew, which signals the
additional information required beyond what is cur-
rently represented in the knowledge graph. The
follow-up question qnew is designed to explicitly
target the new information or emerging concepts,
ensuring that the retrieval process captures relevant,
up-to-date data. From this exploration, all the avail-
able knowledge sources St will be utilized for re-
trieval. Using qnew, we extract Topic(qnew) and per-
form unstructured retrieval: both new and historical
documents are ranked according to Inew. For struc-
tured retrieval, we set the search depth D = Dmax

and use Inew to guide exploration within the KG.
All paths retrieved in this phase are added to the
refined entity path set PathsR for further pruning.
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4.2.3 Predict Exploration
In many RAG systems, LLMs merely rephrase
facts rather than leveraging their own implicit
knowledge. To address this, HydraRAG encour-
ages LLMs to generate predictions using their path
understanding and implicit knowledge, offering ad-
ditional valuable insights. This involves creating
new skyline indicators, IPred, for the predicted en-
tities, e ∈ Predict(q), and using text similarity to
confirm and align them with Eq ∈ Gq. An entity
list, ListP (e) = Topic(q)+e, is formed and ranked
based on Ipred to enhance reasoning effectiveness.

For structured retrieval, predicted entity paths
PathsP are extracted from Gq at a fixed depth Dmax:
PathsP = {p | length(p) ≤ |Topic(q)| · Dmax},
where p = PathGq(ListP (e)). For unstructured
retrieval, the pair (q, Ipred(q)) is used to retrieve and
score relevant sentences. The resulting paths are
added to PathsP . These paths with new indicators
are evaluated similarly to the initial exploration
and refined exploration phases. The prompting
template is shown in Appendix E.

4.3 Step III: Evidence Pruning

Multi-source verification in pruning. Traditional
LLM–QA pipelines typically perform two-step
pruning: an embedding filter narrows down the can-
didate set, followed by an LLM agent that selects
the most relevant evidence. However, this method
assumes uniform evidence sources. When the cor-
pus includes diverse modalities, such as structured
knowledge graphs, semi-structured Wiki pages,
and unstructured web content, pruning solely by
relevance can either discard crucial facts or retain
redundant information (over- or under-pruning).

The HydraRAG addresses this by adding a multi-
source verification term to the relevance score. This
term up-weights paths that are corroborated across
heterogeneous sources and down-weights isolated
claims from less reliable modalities. As a result,
pruning balances topic relevance with cross-modal
agreement, producing a compact yet reliable evi-
dence set for downstream reasoning3. Due to space
constraints, the pseudo-code for evidence pruning
is summarized in Algorithm 4 of Appendix A.2.

Formally, let C = {pi}Ni=1 as the candidate ev-
idence paths, each associated with three scores
(srel

i , sver
i , sllm

i ) ∈ [0, 1]3 denoting relevance, veri-
fication, and LLM compatibility, respectively. The

3This module is model-agnostic; we demonstrate it with
HydraRAG, but it can be inserted into any KG+RAG pipeline.

derivation of each score is described below.
Source relevance. Given a query skyline indicator
I and its topic-entity set Topic(q), we compute a
hybrid relevance score:

srel
i = λsem ·cos

(
h(I),h(pi)

)
︸ ︷︷ ︸

semantic

+ λent ·Jaccard
(
Topic(q),Ent(pi)

)
︸ ︷︷ ︸

entity overlap

,

where h(·) denotes sentence-level embeddings by
DRM, Ent(pi) extracts linked entities in pi, and
λsem + λent = 1. The top-W1 paths form a candi-
date pool C̃ for cross-source evaluation.
Cross-source verification. We estimate the re-
liability of each candidate path using three relia-
bility features: (i) source reliability, (ii) corrobo-
ration from independent sources, and (iii) consis-
tency with existing KG facts. Candidates in C̃ are
grouped by provenance into CKG, CWiki, and CWeb.
For each path pi, the supporting external sources
are: Supp(pi) = {src(pj) | Sim(pi, pj) ≥ γ},
where src(·) returns the source type, and γ is a co-
sine similarity threshold. The reliability features
inside are defined as:

f1(pi) = ρsrc(pi), ρKG > ρWiki > ρWeb,

f2(pi) =
min(|Supp(pi)|,Wmax)

Wmax
,

f3(pi) =
|Ent(pi) ∩ Eq|
|Ent(pi)|

, Eq ∈ Gq.

The verification score is computed as sver
i =∑3

k=1 αk fk(pi), where coefficients αk are non-
negative and

∑
k αk = 1. Each candidate path

in C̃ is then ranked by a cross-score that com-
bines relevance and verification: cross-score(pi) =
αcross · srel

i + (1− αcross) · sver
i . The top-W2 paths

are selected for the final LLM-driven pruning.
LLM-aware selection. At this stage, we prompt
the LLM to score and select the top-Wmax reason-
ing paths most likely to contain the correct answer.
The specific prompt used to guide LLM in the se-
lection phase can be found in Appendix E.

4.4 Step IV: Question Answering
Utilizing the pruned paths obtained in Section 4.3,
we propose a two-step question-answering strategy,
emphasizing deep thinking and slow reasoning.
Path Refinement. To ensure accurate reasoning
and mitigate hallucinations, we prompt LLMs to re-
fine the provided paths. By evaluating and selecting
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Table 1: Results of HydraRAG across all datasets, compared with the state-of-the-art (SOTA) with GPT-3.5-Turbo.
The highest scores are highlighted in bold, while the second-best results are underlined for each dataset.

Type Method LLM Multi-Hop KBQA Single-Hop KBQA Slot Filling Open-Domain QA

CWQ WebQSP AdvHotpotQA QALD10-en SimpleQA ZeroShot RE WebQuestions

LLM-only
IO prompt

GPT-3.5-Turbo
37.6 63.3 23.1 42.0 20.0 27.7 48.7

CoT (Wei et al., 2022) 38.8 62.2 30.8 42.9 20.3 28.8 48.5
SC (Wang et al., 2023) 45.4 61.1 34.4 45.3 18.9 45.4 50.3

Vanilla RAG
Web-based

GPT-3.5-Turbo
41.2 56.8 28.9 36.0 26.9 62.2 46.8

Text-based 33.8 67.9 23.7 42.4 21.4 29.5 35.8

KG-based RAG
ToG (Sun et al., 2024) GPT-3.5-Turbo 58.9 76.2 26.3 50.2 53.6 88.0 54.5
ToG (Sun et al., 2024) GPT-4 69.5 82.6 - 54.7 66.7 88.3 57.9
PoG (Tan et al., 2025) GPT-3.5-Turbo 74.7 93.9 - - 80.8 - 81.8

Hybrid RAG
CoK (Li et al., 2024c)

GPT-3.5-Turbo
- 77.6 35.4 47.1 - 75.5 -

ToG-2 (Ma et al., 2025b) - 81.1 42.9 54.1 - 91.0 -

Proposed

HydraRAG-E
Llama-3.1-70B

71.3 89.7 48.4 70.9 80.4 95.6 76.8
HydraRAG 75.6 93.0 55.2 76.0 85.9 94.2 81.4

HydraRAG-E
GPT-3.5-Turbo

76.8 94.0 51.3 81.1 81.7 96.9 85.2
HydraRAG 81.2 96.1 58.9 84.2 88.8 97.7 88.3

only relevant facts, the paths are summarized into
concise, focused evidence, suitable for subsequent
reasoning. Prompt details are in Appendix E.
CoT Answering. Following path refinement, the
LLM employs a CoT prompting method to rea-
son systematically through the refined evidence
paths. It first checks whether they answer each
subquestion and the full question. If the evaluation
is positive, LLM generates the answer using the
paths, along with the question and question anal-
ysis results as inputs, as shown in Figures 2. The
prompts for evaluation and generation are in Ap-
pendix E. If negative, another exploration round
begins. When all rounds end without a valid an-
swer, the LLM replies using the given paths and
its inherent knowledge. Additional details on the
prompts can be found in Appendix E.

5 Experiment
In this section, we evaluate HydraRAG on seven
benchmark KBQA datasets. Besides the Hy-
draRAG proposed in this paper, we introduce
HydraRAG-E, which randomly selects one rela-
tion from each edge in the clustered question sub-
graph to evaluate the impact of graph structure on
KG involved LLM reasoning. The detailed experi-
mental settings, including datasets, baselines, and
implementations, can be found in Appendix C.

5.1 Main Results

Since HydraRAG leverages external knowledge,
we first compare it against other RAG-based meth-
ods. As shown in Table 1, HydraRAG achieves
SOTA results across all datasets, outperforming
prior SOTA by an average of 10.8% and up to
30.1% on QALD10-en. Compared with ToG-2, a

strong hybrid RAG baseline, HydraRAG achieves
average improvements of 20.3%, up to 30.1% on
QALD10-en. Against Llama3.1-70B, a weaker rea-
soning model, HydraRAG shows an average gain
of 9.2% on 5 datasets, up to 21.9% on QALD10-
en compared to previous GPT-3.5-based methods,
and even surpasses the powerful GPT-4-based ToG
baseline by 14. 4% on average, up to 23.5% on
WebQuestions. This indicates HydraRAG signifi-
cantly enhances the reasoning abilities of less pow-
erful LLMs by providing faithful and interpretable
cross-source knowledge paths. Additionally, com-
pared to vanilla text/web-based RAG methods, Hy-
draRAG shows average gains of 45.5%, up to
68.2% on ZeroShot RE.

When compared to methods without external
knowledge (IO, CoT, SC), HydraRAG improves
accuracy by 41.5% on average, up to 68.5% on Sim-
pleQA. Notably, while vanilla RAG methods and
LLM-only approaches show similar performance
due to overlapping training corpora, HydraRAG
achieves superior results using the almost same
corpus, highlighting its advanced unstructured re-
trieval capability. The variant HydraRAG-E also
surpasses existing SOTA methods by 6.8% on aver-
age, up to 24.0% on QALD10-en. These findings
demonstrate HydraRAG is excellent for reasoning
tasks, particularly for complex logical reasoning.
By retrieving deeply and integrating the structural
information of the question from diverse knowl-
edge sources, it enhances the deep reasoning capa-
bilities of LLMs, leading to superior performance.

5.2 Ablation Study

How does the effectiveness of HydraRAG vary
with different LLM capabilities? We evaluated
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Table 2: Performance of the IO baseline and HydraRAG across four datasets on different backbone models. The
highest improvement is highlighted in bold, while the second-best results are underlined for each model.

Dataset Llama-3.1-8B Llama-3.1-70B DeepSeek-v3 GPT-3.5-Turbo GPT-4-Turbo

IO HydraRAG %↑ IO HydraRAG %↑ IO HydraRAG %↑ IO HydraRAG %↑ IO HydraRAG %↑
AdvHotpotQA 16.9 35.6 111 21.7 48.4 123 27.8 55.4 99.0 23.1 56.2 143 46.4 67.9 46.0
WebQSP 38.5 86.0 123 56.2 95.2 69.0 68.0 97.7 44.0 66.3 96.9 46.0 75.4 98.2 30.0
CWQ 29.8 62.4 109 35.4 83.2 135 38.7 84.5 118 39.2 84.0 114 45.3 89.7 98.0
ZeroShot RE 27.2 77.5 185 34.6 97.5 182 38.6 97.0 151 37.2 97.7 163 49.8 98.5 98.0

HydraRAG with five LLM backbones (LLama-
3.1-8B, Llama-3.1-70B, Deepseek-v3, GPT-3.5-
Turbo, GPT-4-Turbo) on three multi-hop datasets
(AdvHotpotQA, WebQSP, CWQ) and one slot-
filling dataset (ZeroShot RE). As shown in Ta-
ble 2, HydraRAG improves performance across
all models and datasets by an average of 109%.
Notably, it boosts Llama-3.1-8B by 132% on av-
erage, up to 185% on ZeroShot RE. This brings
weaker models close to and even surpasses the
direct reasoning accuracy of GPT-4-Turbo, con-
firming that HydraRAG alleviates knowledge and
comprehension bottlenecks. Stronger models also
benefit from HydraRAG. GPT-3.5-Turbo and GPT-
4-Turbo are improved on complex reasoning tasks,
although the improvement decreases slightly as
their inherent reasoning is already strong. Even so,
HydraRAG yields a 98% improvement on CWQ
and ZeroShot RE with the most capable LLMs.
Overall, HydraRAG enables deeper knowledge re-
trieval and more reliable and interpretable reason-
ing across LLMs of varying strength, rather than
relying solely on their inherent knowledge.

To further evaluate the performance of Hy-
draRAG, we conduct additional ablation studies on
search depth, agentic source selector, prompt set-
ting, and knowledge sources. The detailed results
are shown in Appendix B.1.

5.3 Effectiveness Evaluation

Effectiveness on incomplete KG. To evaluate how
HydraRAG addresses KG incompleteness and the
impact of graph quality on reasoning performance,
we constructed KGs with varying completeness
levels (0%, 30%, 50%, 80%, and 100%) on the
AdvHotpotQA and CWQ. For each completeness
level, we randomly selected a corresponding pro-
portion of triples to build a new KG, with the re-
mainder removed. Results in Figure 4 indicate that
accuracy decreases slightly, rather than dramati-
cally, as incompleteness increases. To investigate
this trend, we analyze contributions from different
KG completeness levels, with detailed analyses pre-
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Figure 4: Accuracy and answer source composition by
varying KG completeness on AdvHotpotQA and CWQ.

sented in Appendix B.3. The analysis reveals that
at lower KG completeness, answers predominantly
rely on wiki and web documents; as completeness
increases, KG-based answers become dominant.
This demonstrates that HydraRAG does not solely
depend on KG data and effectively mitigates KG
incompleteness issues, highlighting its adaptability.

To further evaluate the performance, we per-
form additional experiments, including additional
effectiveness evaluation on cross-source verifica-
tion, multi-hop reasoning, multi-entity questions,
and graph structure pruning in Appendix B.2; rea-
soning faithfulness analysis in Appendix B.3; error
analysis in Appendix B.4; efficiency analysis in
Appendix B.5; and case study on cross-verified in-
terpretable reasoning in Appendix D. A detailed
outline is shown in Appendix Outline.

6 Conclusion

In this work, we introduce HydraRAG, a struc-
tured source-aware retrieval method for faithful
and transparent LLM reasoning. HydraRAG an-
swers complex questions with agent-driven, struc-
tured and unstructured, multi-hop evidence explo-
ration, ensuring every topic entity is linked across
all knowledge corpora. Efficiency is enhanced by
a tri-factor cross-source verification, scoring, and
early pruning discards low-quality branches before
any generation step. Extensive experiments on 7
datasets show that HydraRAG outperforms exist-
ing baselines, showcasing its superior reasoning
capabilities and interoperability.
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7 Ethics Statement

In this work, we employ LLMs as the final selec-
tor through LLM-aware selection, rather than for
open-ended text generation. As a result, the ethical
risks associated with our method are expected to be
lower than using LLMs for text generation. How-
ever, recent studies indicate that CoT prompting
may introduce ethical biases (Shaikh et al., 2023).
Additionally, integrating evidence from multiple
retrieval sources may also introduce or amplify
ethical biases. In future work, we plan to systemat-
ically investigate the manifestation and impact of
these biases in our method.

8 Limitation

The primary limitation of our proposed HydraRAG
framework is its exclusive focus on character-based
knowledge sources. HydraRAG does not incorpo-
rate external modalities such as images or videos,
which can also contain substantial factual informa-
tion. Integrating visual sources alongside textual
evidence remains an important direction for future
work and could further enhance the reasoning ca-
pabilities of the framework.
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A Algorithm

A.1 Exploration
We summarize the comprehensive algorithmic pro-
cedure for evidence exploration detailed in Sec-
tion 4.2 as presented in Algorithm 1-3.

Algorithm 1: Structured_Retrieval
Input : Source KG (G), Question evidence subgraph

Gq , select source (Sc), topic entities (ListT ),
skyline indicator (I), depth (D), width (W )

Output : Reasoning KG paths (PathsKG), evidence
subgraph(Gq)

if KG ∈ Sc then1
if Gq is ∅ then2
Gq ← Subgraph_Detection(G,ListT , Dmax);3
Gq ← KG_Summary(Gq);4

PathsKG ←5
Tree_based_Path_Retrieval(Q, I,W,D,ListT ,Gq);

Return PathsKG, Gq;6

Tree_based_Path_Retrieval(Q, I,W,Dmax,ListT ,Gq)7
D ← 1; Paths← ∅; Eoutter ← ListT ;8
while D ≤ Dmax do9

Eoutter′ ← ∅;10
for each e ∈ Eoutter do11

P, outter← Expand_One_Hop(e);12
Paths← Paths ∪ P;13
Eoutter′ ← Eoutter′ ∪ outter;14

while |Paths| > W do15
Relevant_Pruning(Paths, Q, I,W );16
Eoutter′ ←17
IntersectMatchUpdate(Paths, Eoutter′);

Eoutter ← Eoutter′ ; D ← D + 1;18

Return Paths;19

Algorithm 2: Unstructured_Retrieval
Input : Select source (Sc), topic entities (Topic(q)),

question (q), skyline indicator (I), width (W )
Output : Summarized wiki structured paths (PathsWiki),

summarized web structured paths(PathsWeb)
if Web ∈ Sc then1

WebLinks← OnlineSearch(q);2
TopURLs← Promptselect(WebLinks, W, q, I);3
Docs← URLs_Process(TopURLs);4
SelectSentence← DRM(Docs, I ,W ) ;5
PathsWeb ←PromptStructuredPathGen(SelectSentence,6
Topic(q), I) ;

if Wiki ∈ Sc then7
for each e ∈ Topic(q) do Docs← Docs ∪ Doc(e);8
SelectSentence← DRM(Docs, I ,W ) ;9
PathsWiki←PromptStructuredPathGen(SelectSentence,10
Topic(q), I) ;

PromptPathSummary(PathsWiki, PathsWeb, I);11
Return PathsWiki, PathsWeb;12

Algorithm 3: Evidence_Exploration
Input : Source KG (G),question and split question

(Q = q + qsplit), agentic select source (Sa),
total available source (St), topic entities
(Topic(q)), skyline indicator (ISky), predict
depth (Dpredict), maximum depth (Dmax),
maximum width (Wmax)

Output : HydraRAG answers (a(q)), final reasoning
path (PathsF (q))

/* Initial exploration procedure */
ListT ← Reorder(Topic(q), ISky);1
Dpredict ← min(Dpredict, Dmax); Gq ← ∅;2
PathsKG,Gq← Structured_Retrieval3
(G,Gq, Sa,ListT , ISky, Dpredict,W1);
PathsWiki, PathsWeb ← Unstructured_Retrieval4
(Sa,Topic(q), q, ISky,Wmax);
PathsI ← PathsKG + PathsWiki + PathsWeb;5
PathsI ←6
Evidence_Pruning(PathsI , Q, ISky,Wmax,Topic(q),Gq);
Answer, PathsI ←7
Question_Answering(PathsI, Q, ISky);
if "{Yes}" in Answer then return Answer, PathsI ;8

/* Refined exploration procedure */
qnew, Inew ← PromptnewQ(PathsI , Q, ISky,Topic(q));9
PathsKG,Gq← Structured_Retrieval10
(G,Gq, St,ListT , Inew, Dmax,W1);
PathsWiki, PathsWeb ← Unstructured_Retrieval11
(St,Topic(qnew), qnew, Inew,Wmax);
PathsR ← PathsKG + PathsWiki + PathsWeb;12
PathsR ←13
Evidence_Pruning(PathsR, Q, ISky,Wmax,Topic(q),Gq);
Answer, PathsR ←14
Question_Answering(PathsR, Q, ISky);
if "{Yes}" in Answer then return Answer, PathsR;15

/* Predicted exploration procedure */
PathsP ← ∅;16
Predict(q)←LLMPredict(PathsI + PathsR, Q, ISky);17
for each e, IPred(e) ∈ Predict(q) do18

ListP ← Reorder (Topicq + e, IPred(e));19
PathsKG,Gq← Structured_Retrieval20
(G,Gq, St,ListP , IPred(e), Dmax,W1);
PathsWiki, PathsWeb ← Unstructured_Retrieval21
(St,ListP , q, IPred(e),Wmax);
PathsP ←22
PathsP + PathsKG + PathsWiki + PathsWeb;

PathsP ←23
Evidence_Pruning(PathsP , Q, ISky,Wmax,Topic(q),Gq);
Answer, PathsP ←24
Question_Answering(PathsP, Q, ISky);
if "{Yes}" in Answer then return Answer, PathsP ;25

PathsF ← PathsI + PathsR + PathsP ;26
PathsF ←27
Evidence_Pruning(PathsF , Q, ISky,Wmax,Topic(q),Gq);
Answer, PathsF ←28
Question_Answering(PathsF, Q, ISky);
Return Answer, PathsF ;29
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A.2 Evidence pruning
We summarize the comprehensive algorithmic pro-
cedure of evidence pruning detailed in Section 4.3
as presented in Algorithm 4.

Algorithm 4: Evidence_Pruning
Input : candidate paths (C), question and split

question (Q = q + qsplit), skyline indicator
(I), width(Wmax), topic entities (Topic(q)),
KG (Gq)

Output : Pruned candidate paths (Pathsc)

/* Step 1: Compute relevance scores */
Srel, Sver,Cross_Score← ∅;1
for each pi ∈ C do2

semantic_score← Semantic_DRM(I , pi);3
entity_overlap← Jaccard(Topic(q), Ent(pi));4
Srel[pi] ←5
λsem · semantic_score + λent·entity_overlap;

Ctilde = Select_Top_Paths(C, Srel,W1);6

/* Step 2: Compute cross-source verification
scores */
for each pi ∈ Ctilde do7

source_prior← get_source_prior(pi);8
supporting_sources←9
get_supporting_sources(pi, Ctilde);
source_agreement←10
min(|supporting_sources|,Wmax)/Wmax;
entity_alignment← |Ent(pi) ∩ Eq| / |Ent(pi)|;11
Sver[pi]← α1 · source_prior +12
α2 · source_agreement + α3 · entity_alignment;

for each pi ∈ Ctilde do13
Cross_Score[pi]←14
αcross · Srel[pi] + (1− αcross) · Sver[pi];

PathsF = Select_Top_Paths(Ctilde,Cross_Score,W2);15

/* Step 3: LLM-aware final selection */
PathsF = PromptSelectPath(PathsF ,Q, I, Wmax);16
Return PathsF ;17
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B Experiment

B.1 Addtioanl Ablation Study
Does search depth matter? As described, the
dynamic deep search in HydraRAG is limited by
the maximum depth, Dmax. To analyze how Dmax

affects performance, we conducted experiments
varying depth from 1 to 4. Results (Figures 5(a)
and (c)) show that deeper searches improve perfor-
mance, but gains diminish beyond depth 3, as exces-
sive depth increases hallucinations and complicates
path management. Figures 5(b) and (d), showing
which exploration phase the answer is generated
from, reveal that higher depths reduce the effec-
tiveness of both refined and predicted exploration.
Hence, we set Dmax = 3 for optimal balance be-
tween performance and efficiency. Notably, even
at lower depths, HydraRAG maintains strong per-
formance by effectively integrating diverse sources
and leveraging LLMs’ inherent knowledge through
the refined and predictive exploration procedures.
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Figure 5: The accuracy of HydraRAG and HydraRAG-
E among CWQ and AdvHotpotQA datasets by varying
different Dmax.

How does the agentic source selector affect per-
formance? To reduce redundant computational
cost when using multiple sources, we incorpo-
rate an agentic source selector that adaptively se-
lects sources based on the evolving needs of the
reasoning process. To assess its impact, we per-
form an ablation study comparing HydraRAG and
HydraRAG-E with and without the source selector.
We evaluate both the accuracy and the average to-
ken input during the path pruning stage. As shown
in Table 3, integrating the agentic source selector
substantially improves performance. For instance,
on the CWQ dataset, HydraRAG-E achieves a
24.0% absolute accuracy improvement, while re-
ducing token input by 36.8%. Similar trends are ob-
served across other settings. These improvements
stem from the HydraRAG ’s ability to dynamically
identify and invoke only the most relevant sources.
During initial exploration, the selector analyzes
the question intent to determine the most suitable
sources. In subsequent stages, it further distin-
guishes between sources used to expand coverage
(refined exploration) and those used to increase
depth for precise answer prediction (predicted ex-
ploration). This adaptive strategy avoids the naïve
composition of all sources and leads to more effi-
cient and effective reasoning.

Table 3: Performance comparison of HydraRAG and
HydraRAG-E with and without agentic source selector
on CWQ and WebQSP datasets.

Method Evaluation CWQ WebQSP

HydraRAG
w/ agentic source selector Accuracy 87.0 95.0

Token Input 73,240 91,097
w/o agentic source selector Accuracy 71.0 92.0

Token Input 98,748 145,411

HydraRAG-E
w/ agentic source selector Accuracy 85.0 92.2

Token Input 73,519 97,055
w/o agentic source selector Accuracy 61.0 87.0

Token Input 116,240 49,399
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Table 5: Performance comparison of HydraRAG with different knowledge sources and retrieval components across
four multi-hop datasets.

Source Setting CWQ AdvHotpotQA WebQSP QALD

w/ all sources 78.2 55.2 90.3 78.0
w/o Freebase 63.7 51.0 79.2 70.0
w/o WikiKG 70.0 54.0 86.7 69.0
w/o Web document 75.0 52.3 86.0 75.3
w/o Wiki document 74.0 50.4 84.0 68.2
w/o Freebase & WikiKG 60.4 50.1 74.0 64.0
w/o Web & Wiki document 73.6 42.4 86.0 71.7

How do path refinement prompts affect perfor-
mance? Inspired by GoT (Besta et al., 2024), we
use path refinement prompts to integrate informa-
tion from all sources, reduce LLM hallucinations
from irrelevant or lengthy paths, and decrease com-
putational costs. To assess their impact, we con-
duct an ablation study comparing HydraRAG and
HydraRAG-E with and without path refinement,
measuring both accuracy and average token input
during path pruning. As shown in Table 4, path
refinement increases accuracy by up to 11% (on
CWQ with HydraRAG-E), meanwhile reducing to-
ken input by 54%. These results indicate that path
refinement could effectively minimize LLM hallu-
cinations, improve LLM understanding of explored
paths, facilitate answer retrieval, enable earlier ter-
mination, and reduce overall cost.

Table 4: Performance comparison of HydraRAG and
HydraRAG-E with and without path refinement on
CWQ and WebQSP datasets.

Method Evaluation CWQ WebQSP

HydraRAG
w/ Path refinement Accuracy 87.0 95.0

Token Input 73,240 91,097
w/o Path refinement Accuracy 79.0 93.0

Token Input 134,554 107,516

HydraRAG-E
w/ Path refinement Accuracy 85.0 92.2

Token Input 73,519 97,055
w/o Path refinement Accuracy 74.0 90.0

Token Input 159,678 107,762

How do different knowledge sources affect the
performance of HydraRAG? To evaluate the im-
pact of different knowledge sources and retrieval
components, we conduct ablation experiments by
excluding individual sources and modules on all
multi-hop QA datasets. Results show that Free-
base contributes most to CWQ and WebQSP, while
WikiKG and wiki documents are more important
for AdvHotpotQA and QALD, likely due to vary-
ing knowledge backgrounds and overlaps in each
dataset. Notably, removing any single source or
retrieval module does not cause a dramatic drop in
performance, demonstrating the robustness of our
framework in integrating heterogeneous evidence.
HydraRAG effectively leverages complementary
information from both structured and unstructured
sources, mitigating the impact of missing compo-
nents. Even without structured retrieval (Freebase
and WikiKG), HydraRAG maintains high accu-
racy and still outperforms naive text and web-based
RAG methods using the same corpus. This high-
lights the strength of our structure-aware integra-
tion in extracting and organizing information from
unstructured evidence, bridging the gap between
text-based and structure-based approaches. Over-
all, these results underline the benefit of our uni-
fied multi-source framework, which ensures stable,
high performance by flexibly combining evidence
from diverse sources.
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B.2 Additional Effectiveness Evaluation
Effectiveness on cross-source verification. To
evaluate the effectiveness of cross-source verifi-
cation, we compare it with the standard question-
relevant approach commonly used in hybrid RAG.
For a fair comparison, we use the same embedding
model (SBERT) and beam search width W2, re-
placing only the first two evidence pruning steps
(source relevance and cross-source verification).
We report accuracy, average token input, and num-
ber of LLM calls for both pruning strategies on the
CWQ and AdvHotpotQA datasets (Table 6). Re-
sults show that cross-source verification improves
accuracy by up to 22% on CWQ and reduces token
cost by up to 41.8% on AdvHotpotQA, using the
same knowledge corpus. This improvement arises
because relevance-only pruning often retains noisy
paths and prunes correct ones, forcing extra explo-
ration and incurring higher LLM costs. These re-
sults demonstrate the effectiveness of cross-source
verification and its potential as a solution for effi-
cient multi-source RAG.

Table 6: Evaluation Results for CWQ and AdvHot-
potQA with cross-source verification and question rele-
vance pruning.

Method Evaluation CWQ AdvHotpotQA

w/ Cross-source Accuracy 84.0 60.0
verification Token Input 114,023 14,089

LLM Calls 8.0 9.0

w/ Question Accuracy 62.0 52.1
Relevant Only Token Input 157,850 24,193

LLM Calls 7.9 9.6

Effectiveness on multi-hop reasoning. To assess
HydraRAG ’s performance on multi-hop reason-
ing tasks, we analyze accuracy by grouping ques-
tions according to the length of their ground-truth
SPARQL queries. We randomly sample 1,000 ques-
tions each from the CWQ and WebQSP datasets
and determine reasoning length by counting the
number of relations in each ground-truth query
(see Figure 6). We then evaluate HydraRAG and
HydraRAG-E across varying reasoning lengths to
understand their effectiveness under varying query
complexities. As shown in Figure 7, both models
maintain high and stable accuracy across different
lengths, with HydraRAG achieving up to 98.6% ac-
curacy even at the highest length levels in WebQSP.
Notably, HydraRAG can correctly answer ques-
tions with ground-truth lengths of eight or more by
exploring novel paths and integrating LLM knowl-
edge, rather than strictly matching the ground-truth
path. These results highlight the effectiveness of
HydraRAG in handling complex multi-hop reason-
ing tasks.
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Figure 6: The lengths of the ground-truth SPARQL
queries within the CWQ and WebQSP datasets.
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Figure 7: Accuracy of HydraRAG and HydraRAG-E
on the CWQ and WebQSP datasets, categorized by the
different lengths of the ground-truth answers for each
question.
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Table 7: Average number of entities from Freebase, WikiKG, and after graph fusion and reduction for three datasets.

CWQ AdvHotpotQA QALD10-en

Ave. Entity Number from Freebase 2,289,881 1,329,012 2,753,230
Ave. Entity Number from WikiKG 160,762 128,766 389,360
Ave. Entity Number after Reduction 128,352 399,785 587,110

Table 8: Performance of HydraRAG and HydraRAG-E on multi-entity and single-entity questions of all datasets.
The symbol ‘-’ indicates no multi-entity question inside.

Question Set CWQ WebQSP AdvHotpot
QA

QALD10-
en

Simple
Questions

ZeroShot
RE

Web
Questions

HydraRAG w/ GPT-3.5-Turbo
Single-entity 71.9 96.2 56.8 83.1 89.0 97.7 88.2
Multi-entity 92.0 93.1 61.5 86.5 - 83.6 82.8

HydraRAG-E w/ GPT-3.5-Turbo
Single-entity 68.6 94.0 51.5 79.1 87.3 97.3 85.4
Multi-entity 89.7 89.7 57.1 84.2 - 80.3 82.8

Effectiveness on graph structure pruning. To
assess the effectiveness of our graph fusion and re-
duction strategy, we report the average number of
unique entities from Freebase and WikiKG before
fusion, and the total number of entities remaining
after fusion and graph reduction, as shown in Ta-
ble 7. For each dataset, we first fuse overlapping
entities from multiple knowledge sources, then ap-
ply the graph reduction method described in Sec-
tion 4.1 to remove irrelevant nodes prior to path ex-
ploration. The results demonstrate a substantial re-
duction in the number of entities across all datasets.
For example, in CWQ, the initial combined en-
tity count from Freebase and WikiKG exceeds 2.4
million, but this is reduced to only 128,352 after
fusion and pruning. Similar trends are observed for
AdvHotpotQA and QALD10-en. This reduction
indicates that a significant portion of entities are
either redundant or irrelevant to the questions un-
der consideration. By eliminating such entities be-
fore downstream reasoning, our approach improves
computational efficiency and focuses exploration
on the most relevant subgraphs. Overall, these re-
sults verify the effectiveness of combining graph
fusion and reduction for constructing compact and
informative question-specific subgraphs.

Effectiveness on multi-entity questions. Graphs
are widely used to model complex relationships
among different entities (Chen et al., 2025, 2024a,c;
Wu et al., 2024; Zhang et al., 2023, 2025). KGs
store triples, making entity links explicit (He et al.,
2023, 2025; Zhai et al., 2024, 2025; Yin et al.,
2025). Building on this foundation, we further
examine how well HydraRAG can leverage such
structural representations when dealing with ques-
tions that involve multiple entities.

To evaluate the performance of HydraRAG on
multi-entity questions, we report the accuracy on
all test sets by categorizing questions based on the
number of topic entities. The results, shown in
Table 8, demonstrate that, despite the increased
complexity of multi-entity questions compared to
single-entity ones, HydraRAG maintains excellent
accuracy, achieving up to 93.1% on the WebQSP
dataset. This underscores the effectiveness of our
structure-based model in handling complex multi-
entity queries.
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B.3 Reasoning Faithfulness Analysis

Evidence of answer exploration sources. We an-
alyze the sources of evidence supporting correct
answers on four multi-hop datasets to assess the
effectiveness of cross-verification and the distribu-
tion of knowledge supervision in HydraRAG, as
shown in Figure 8. Specifically, all generated an-
swers are classified based on the verification source:
KG-verified, Wikipedia-verified, web document-
verified, as well as combinations such as KG-Wiki,
KG-Web, Wiki-Web, and those verified by all three
sources. In addition, when the paths generated
from all external sources are insufficient to reach
the answer, and the LLM supplements the reason-
ing using its inherent knowledge, such answers
are categorized as LLM-inspired. The analysis re-
veals that over 95% of answers are supported by
external knowledge supervision, confirming that
HydraRAG primarily grounds its reasoning in veri-
fiable sources. Furthermore, up to 56% of correct
answers are jointly verified by at least two distinct
knowledge sources. This highlights the strength of
HydraRAG in leveraging multi-source evidence, an
essential for faithful and interpretable reasoning.

Among answers with only single-source support,
knowledge graph (KG) evidence dominates, ac-
counting for as much as 95.7% of sole-source su-
pervision in WebQSP. This underscores the high
reliability and factual precision of KGs compared
to other sources. Compared with previous methods
that simply combine LLM internal knowledge with
external sources (Ma et al., 2025b), HydraRAG fur-
ther enhances reliability by enabling mutual cross-
verification between all sources. This multi-source
evaluation mechanism reduces the risk of unsup-
ported or spurious answers. These results highlight
that HydraRAG is a faithful reasoning framework
that not only prioritizes evidence-based answers
but also ensures high accuracy and interpretability
by integrating and cross-validating structured and
unstructured knowledge.

Overlap ratio between explored paths and
ground-truth paths. We analysis correctly an-
swered samples from CWQ and WebQSP to ex-
amine the overlap ratio between paths P explored
by HydraRAG and ground-truth paths PG from
SPARQL queries. The overlap ratio is defined as
the proportion of shared relations to total relations
in the ground-truth SPARQL path:
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Figure 8: The proportions of answer evidence and cross
validation of HydraRAG among CWQ, WebQSP, Ad-
vHotpotQA, and QALD10-en datasets.
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Figure 9: The path overlap ratio of HydraRAG and
HydraRAG-E among CWQ, and WebQSP datasets.

Ratio(P ) =
|Relation(P ) ∩Relation(PG)|

|Relation(PG)|
,

where Relation(P ) is the set of relations in path
P . Figure 9 shows the distribution of overlap ra-
tios. For WebQSP, HydraRAG achieves the highest
proportion of fully overlapping paths (about 61%),
while HydraRAG-E shows the most paths with up
to 37% non-overlapping relations, indicating that
HydraRAG-E explores novel paths to derive the
answers. This difference is due to HydraRAG-E’s
approach of randomly selecting one related edge
from each cluster. These results highlight the effec-
tiveness of our structure-based exploration in gen-
erating both accurate and diverse reasoning paths.
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B.4 Error Analysis
To further examine the integration of LLMs with
KGs, we conduct an error analysis on the CWQ,
WebQSP, and GrailQA datasets. Errors are catego-
rized into four types: (1) answer generation errors,
(2) refusal errors, (3) format errors, and (4) other
hallucination errors. An answer generation error is
defined as the case where HydraRAG provides a
correct reasoning path, but the LLM fails to extract
the correct answer from it.

Figure 10 shows the distribution of these error
types. The results indicate that more advanced
LLMs generally reduce the incidence of "other hal-
lucination errors", "refusal errors", and "answer
generation errors", as improved reasoning capabil-
ities allow the model to make better use of the re-
trieved data. The reduction in "answer generation
errors" in particular demonstrates that advanced
LLMs can more effectively utilize the reasoning
paths generated by HydraRAG. However, we also
observe an increase in "format errors" with stronger
LLMs, which may be due to their increased creative
flexibility in generating outputs.
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Figure 10: The error instances and categories of Hy-
draRAG and HydraRAG-E in the AdvHotpotQA, CWQ,
and WebQSP datasets.

B.5 Efficiency Analysis
LLM calls cost analysis. To evaluate the cost
and efficiency of utilizing LLMs, we conducted
an analysis of LLM calls on the CWQ, WebQSP,
and AdvHotpotQA datasets. Initially, we examined
the proportion of questions answered with varying
numbers of LLM calls, as depicted in Figure 11.
The results indicate that the majority of questions
are answered within nine LLM calls across all
datasets, with approximately 60% and 70% of ques-
tions being resolved within six calls on CWQ and
WebQSP, respectively. These findings demonstrate
HydraRAG’s efficiency in minimizing LLM costs.
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Figure 11: The proportion of questions of HydraRAG
and HydraRAG-E by different LLM Calls among CWQ,
WebQSP, and AdvHotpotQA datasets.

Table 9: Efficiency analysis of different methods on
AdvHotpotQA.

Method Average Total Time API Calls Accuracy

HydraRAG 43.0 8.7 60.7
ToG-2 27.3 5.4 42.9
ToG 69.3 16.3 26.3
CoK 30.1 11.0 45.4

Efficiency analysis on AdvHotpotQA. We com-
pare the efficiency and effectiveness of differ-
ent multi-hop QA methods on the AdvHotpotQA
dataset by reporting average processing time, num-
ber of API calls per question, and answer accuracy,
as shown in Table 9. Among all methods, Hy-
draRAG achieves the highest accuracy (60.71%)
while maintaining a moderate average total process-
ing time (43 seconds) and relatively low API call
cost (8.7 per question). Compared to ToG-2 and
CoK, which exhibit lower accuracy (42.9% and
45.4%, respectively), HydraRAG offers a clear ad-
vantage in answer quality without excessive time
or API usage. While ToG-2 achieves the lowest
average time and API calls, its accuracy lags sig-
nificantly behind HydraRAG. Conversely, ToG has
the highest processing time and API usage with
the lowest accuracy among all compared meth-
ods. These results demonstrate that HydraRAG
effectively balances efficiency and answer quality,
providing a more accurate solution than previous
methods while controlling computation and LLM
call costs.
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C Experiment Details

Experiment datasets. To evaluate the capability
of HydraRAG on complex, knowledge-intensive
reasoning tasks, we evaluate it on seven KBQA
benchmarks. These include four multi-hop datasets:
ComplexWebQuestions (CWQ) (Talmor and Be-
rant, 2018), WebQSP (Yih et al., 2016), AdvHot-
potQA (Ye and Durrett, 2022), and QALD10-en
(Usbeck et al., 2024), a single-hop dataset: Sim-
ple Questions (SimpleQA) (Petrochuk and Zettle-
moyer, 2018), a slot filling dataset: ZeroShot RE
(Petroni et al., 2020), and an open-domain QA
dataset: WebQuestions (Berant et al., 2013), to
examine HydraRAG on more general tasks. For
fair comparison with strong prompt-based base-
lines, we use the same test splits reported in (Tan
et al., 2025; Sun et al., 2024; Ma et al., 2025b).

As background knowledge, we employ the full
Freebase (Bollacker et al., 2008), Wikipedia, and
Wikidata (Vrandečić and Krötzsch, 2014). Using
the complete knowledge setting, rather than a dis-
tractor subset, makes retrieval more challenging
and better evaluates each method’s reasoning abil-
ity (Ma et al., 2025b). The statistics of the datasets
utilized in this paper are detailed in Table 10. The
source code is publicly available 4.

Experiment baselines. We compare HydraRAG to
four categories of baselines under an unsupervised
setting with GPT-3.5-turbo as the LLM:

• LLM-only methods without external knowl-
edge, include standard prompting (IO), Chain-
of-Thought prompting (CoT) (Wei et al.,
2022), and Self-Consistency prompting (SC)
(Wang et al., 2023) with six in-context exam-
ples;

• Vanilla RAG, covers text-based retrieval from
entity documents and web-based retrieval
from the top three web search results (title
and snippets, same as the sample in Figure 1);

• KG-based RAG, includes Think-on-Graph
(ToG) (Sun et al., 2024) and Paths-over-Graph
(PoG) (Tan et al., 2025);

• Hybrid RAG, consists of Chain-of-
Knowledge (CoK) (Li et al., 2024c)
and Think-on-Graph-2.0 (ToG-2) (Ma et al.,
2025b), which retrieve from both Wikipedia
and Wikidata.

4https://stevetantan.github.io/HydraRAG/

For the statistics of existing SOTA, we directly refer
to their results and those of other baselines reported
in their paper for comparison. Following prior
studies (Sun et al., 2024; Ma et al., 2025b; Tan et al.,
2025; Chen et al., 2024b; Ma et al., 2025a), we use
exact match accuracy (Hits@1) as the evaluation
metric. Recall and F1 scores are not used since
knowledge sources are not limited to document
databases (Sun et al., 2024; Ma et al., 2025b; Tan
et al., 2025).

Experiment implementation. All experiments use
GPT-3.5-Turbo as the primary LLM. To demon-
strate plug-and-play flexibility, we also run Hy-
draRAG with GPT-4-Trubo, Deepseek-v3, Llama-
3.1-70B, and Llama-3.1-8B. Following ToG-2 and
PoG, we set the temperature to 0.4 during evidence
exploration (to increase diversity) and to 0 during
path pruning and answer generation (to ensure re-
producibility). We use SentenceBERT (Reimers
and Gurevych, 2019) as the dense retrieval model
(DRM). The maximum generation length is 256
tokens. We fix Wmax = 3, Dmax = 3, W1 = 100,
and W2 = 20 for evidence pruning. In evi-
dence pruning, we use λsem = 0.7, αcross = 0.7,
(ρKG, ρWiki, ρWeb) = (1.0, 0.8, 0.7), and equal
weights αk = 0.33 for each feature fk.

Table 10: Statistics and license information for the
datasets used in this paper. ∗ denotes that we utilize
the sampled tests reported by existing SOTA work for
fairly comparing (Sun et al., 2024; Tan et al., 2025; Ma
et al., 2025b).

Dataset Answer Format License Test Train

ComplexWebQuestions (CWQ)∗ Entity Apache-2.0 1,000 27,734
WebQSP Entity/Number MSR-LA 1,639 3,098

AdvHotpotQA Entity/Number CC BY-SA 4.0 308 2,312
QALD10-en Entity/Number MIT 333 –

Simple Questions∗ Entity/Number CC BY 3.0 1,000 14,894
Zero-Shot RE Entity/Number CC BY-SA 4.0 3,724 147,909
WebQuestions Entity/Number CC-BY 4.0 2,032 3,778
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D Case Study: Multi-Source Cross-Verified Interpretable Reasoning

In this section, we present Tables 11-14 to illustrate how HydraRAG combines evidence from the KG,
Wikipedia, and the Web for cross-verified reasoning. Through case studies involving questions with
multiple entities, and verification across KG-Wiki, KG-Web, and three-source combinations, we show how
HydraRAG generates transparent, faithful, and interpretable chains of facts to enhance LLM reasoning.
Paths from different sources are color-coded. Showing HydraRAG’s effectiveness in multi-entity and
multi-hop question answering by providing clear, understandable reasoning paths that support accurate
answers.

Table 11: Multi-source interpretable reasoning for “What is the nationality of the wrestler who sang on A Jingle
with Jillian?”.Paths from KG, Wiki, and Web are color-coded: KG, Wiki, Web.

Field Content

Question What is the nationality of the wrestler who sang on A Jingle with Jillian?
Answer American
Topic Entity {A Jingle with Jillian}

LLM Indicator "wrestler" – sang on – "A Jingle with Jillian" – has nationality – an-
swer(nationality)

Split Questions split_question 1: What wrestler sang on "A Jingle with Jillian"?
split_question 2: What is the nationality of the performer of "A Jingle with
Jillian"?

Source Evidence KG Path:
{A Jingle with Jillian} music.album.artist−−−−−−−−−→ {Jillian Hall}

people.person.nationality−−−−−−−−−−−−−→
{United States of America}
Web Excerpt:
"Jillian Hall was born on September 6, 1980, in Ashland, Kentucky, United States.
She holds an American nationality."
Web (converted KG-path):
{A Jingle with Jillian} music.album.artist−−−−−−−−−→ {Jillian Hall}

birthplace−−−−−→ {Ashland, Ken-

tucky, United States}
implies nationality−−−−−−−−−−→ {American}

HydraRAG Answer answer: {American}
reason: Both the knowledge graph and the web source independently support the
answer {American}. The KG path directly connects "A Jingle with Jillian" to its
artist, Jillian Hall, and further to her nationality as "United States of America".
The web source confirms this by stating her birthplace is in the United States and
she holds American nationality. After converting the web statement to a KG-style
path, both sources cross-validate the answer, strengthening its correctness and
trustworthiness.
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Table 12: Multi-source interpretable reasoning for “What movie was Logan Lerman in that was decorated by Barry
Greaves?”. Paths from KG, Wiki, and Web are color-coded: KG, Wiki, Web.

Field Content

Question What movie was Logan Lerman in that was decorated by Barry Greaves?
Answer Fury
Topic Entity {Logan Lerman, Barry Greaves}

LLM Indicator “Logan Lerman” – acted in – movie – decorated by – “Barry Greaves”
Split Questions split_question 1: What movie was Logan Lerman in?

split_question 2: Which person decorated the movie?

Source Evidence KG Path:
{Logan Lerman} film.actor.film−−−−−−−→ {Fury}

film.film.film_set_decoration_by←−−−−−−−−−−−−−−−−− {Barry
Greaves}

Wiki Excerpt:
“Lerman next starred in David Ayer’s World War II-set film, Fury; in the film,
Lerman’s character is an American soldier fighting Nazi forces.”

Wiki (converted KG-path):
{Logan Lerman} starred in−−−−−→ {Fury}
(The Wikipedia article confirms Logan Lerman’s participation in Fury. The
decoration by Barry Greaves is verified by the KG path.)

HydraRAG
Answer

answer: {Fury}
reason: Both the knowledge graph and Wikipedia independently identify
{Fury} as the movie that Logan Lerman acted in. The KG path links Logan
Lerman and Barry Greaves directly to the film, while Wikipedia supports Logan
Lerman’s involvement in the same work. Together these sources provide cross-
validated evidence for the answer.
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Table 13: Multi-source interpretable reasoning for “What member of the Republican Party fought in the Battle of
Vicksburg?”. Paths from KG, Wiki, and Web are color-coded: KG, Wiki, Web.

Field Content

Question What member of the Republican Party fought in the Battle of Vicksburg?
Answer Ulysses S. Grant
Topic Entities {Siege of Vicksburg, Republican Party}

LLM Indicator "Siege of Vicksburg" – also known as – "Battle of Vicksburg" – fought by –
answer(member) – member of – "Republican Party"

Split Questions split_question 1: What battle is also known as the "Siege of Vicksburg"?
split_question 2: What member of the "Republican Party" fought in the "Battle
of Vicksburg"?

Source Evidence KG Path:
{Siege of Vicksburg} also known as−−−−−−−→ {Battle of Vicksburg}

fought by−−−−−→ {Ulysses S.
Grant} member of−−−−−−→ {Republican Party}
Wiki Excerpt:
"The Siege of Vicksburg (May 18 – July 4, 1863) was the final major military
action in the Vicksburg campaign of the American Civil War. In a series of
maneuvers, Union Major General Ulysses S. Grant and his Army..."
Wiki (converted KG-path):
{Siege of Vicksburg} also known as−−−−−−−→ {Battle of Vicksburg}

fought by−−−−−→ {Ulysses S.
Grant}
Web Excerpt:
"The Battle of Vicksburg, or Siege of Vicksburg, was the final significant battle...
Union Maj. Gen. Ulysses S. Grant and his Army of the Tennessee crossed the
Mississippi River..."
Web (converted KG-path):
{Battle of Vicksburg}

fought by−−−−−→ {Ulysses S. Grant}

HydraRAG Answer answer: {Ulysses S. Grant}
reason: All three sources—KG, Wikipedia, and Web—support that Ulysses S.
Grant fought in the Battle (Siege) of Vicksburg. The KG path further confirms
his Republican Party membership. Wiki and Web sources confirm his role as a
military leader in the battle, and after conversion to KG-path style, all sources
consistently point to {Ulysses S. Grant} as the answer, demonstrating robust
multi-source verification.
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Table 14: Multi-source interpretable reasoning for “What team that has a mascot named Mariner Moose is in the
American League West?”. Paths from KG, Wiki, and Web are color-coded: KG, Wiki, Web.

Field Content

Question What team that has a mascot named Mariner Moose is in the American League
West?

Answer Seattle Mariners
Topic Entities {Mariner Moose, American League West}

LLM Indicator "Mariner Moose" – mascot of – team – division – answer(team) – located in –
"American League West"

Split Questions split_question 1: Which team has a mascot named "Mariner Moose"?
split_question 2: Which team is in the "American League West" division?

Source Evidence KG Path:
{Mariner Moose}

sports.mascot.team−−−−−−−−−−→ {Seattle Mariners}
baseball.baseball_team.division−−−−−−−−−−−−−−−−→ {American League West}
Wiki Excerpt:
"The Mariner Moose is the team mascot of the Seattle Mariners, a Major
League Baseball team... The Seattle Mariners are an American professional
baseball team based in Seattle. The Mariners compete in Major League Base-
ball (MLB) as a member club of the American League (AL) West Division."
Wiki (converted KG-path):
{Mariner Moose} mascot of−−−−−→ {Seattle Mariners} member of−−−−−−→ {American League
West}
Web Excerpt:
"Their mascot is the Mariner Moose. The Seattle Mariners are an American
professional baseball team based in Seattle. The Mariners compete in Major
League Baseball (MLB) as a member club of the American League (AL) West
Division."
Web (converted KG-path):
{Mariner Moose} team mascot of−−−−−−−−→ {Seattle Mariners}

compete in−−−−−−→ {American
League West}

HydraRAG Answer answer: {Seattle Mariners}
reason: All three sources—KG, Wikipedia, and Web—consistently support
that the {Seattle Mariners} have Mariner Moose as their mascot and are a
team in the American League West division. The KG path provides a direct
multi-hop link; the Wiki and Web evidence, after conversion to KG-path style,
corroborate both the team and its division membership. This provides strong
cross-source verification of the answer.
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E Prompts

In this section, we detail the prompts required for our main experimental procedures.

Question Analysis Prompt Template

You will receive a multi-hop question, which is composed of several intercon-
nected queries, along with a list of topic entities that serve as the main keywords
for the question. Your task is to break the question into simpler parts, using each
topic entity once and provide a Chain of Thought (CoT) that shows how the topic
entities are related. Note: Each simpler question should explore how one topic
entity connects to others or the answer. The goal is to systematically address each
entity to derive the final answer.

In-Context Few-shot

Q: {Query}
Topic Entity: {Topic Entity}
A:

Agentic Source Selector Prompt Template

You are a source selection agent. Your task is to decide the most appropriate
knowledge source(s) to answer a user’s question. You will be provided with up
to three sources: Local Knowledge Graph (KG) Wiki Documents (Wiki) Web
Search (Web). Follow these steps carefully:
I. Analyze the question thoroughly.
II. Prioritize KG if available: If KG alone is sufficient, select KG. If KG is
incomplete, check if Wiki can fill the missing information. If so, combine KG
with Wiki. If neither KG nor Wiki suffices, include Web search.
III. If KG is unavailable: Choose between Wiki and Web based on recency and
the likely completeness of the Wiki documents.
Clearly state your reasoning, and then indicate your decision using these actions:
action1 for KG
action2 for Wiki
action3 for Web
Noted, combinations allowed (e.g., [action1 + action2]).

In-Context Few-shot

Q: {Query}
Provided sources: {Provided sources}
Question analysis: {Question analysis}
A:

From Paragraph to Knowledge Path Prompt Template

You will receive a multi-hop question, which consists of several interrelated
queries, a list of subject entities as the main keywords of the question, three related
questions and answers returned by Google search, and three online related search
results from Google search. Your task is to summarize these search results, find
sentences that may be related to the answer, and organise them into a knowledge
graph path for each paragraph. Note that at least one path for each paragraph
should contain the main topic entities. Please answer the question directly in
the format below: [Brad Paisley - enrolled at - West Liberty State College -
transferred to - Belmont University - earned - Bachelor’s degree]

In-Context Few-shot

Q: {Query}
Topic Entity: {Topic Entity}
Paragraph 1:{Paragraph 1}
Paragraph 2:{Paragraph 2}
Paragraph 3:{Paragraph 3}
A:
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where {Skyline Indicator}, and {Split Question} are obtained in Section 4.1.
{Existing Knowledge Paths} and {Candidate Paths} denote the retrieved reasoning
paths, which are formatted as a series of structural sentences, where, i and j in r1i , r1i
represent the i-th, j-th relation from each relation edge in the clustered question subgraph.

{e0x, ..., e0z} → r1i → {e1x, ..., e1z} → . . . → rlj → {elx, ..., elz}
. . .

{e0x, ..., e0z} → r1i → {e1x, ..., e1z} → . . . → rlj → {elx, ..., elz},

Refined Exploration Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that considers
all the entities, a few split questions that you can use and finally obtain the final
answer, the associated accuracy retrieved knowledge paths from the Related_path
section, and the main topic entities Please predict the additional evidence that
needs to be found to answer the current question, then provide a suitable query for
retrieving this potential evidence. and give the possible Chains of Thought that
can lead to the predicted result in the same format below, by the given knowledge
path and your own knowledge.

In-Context Few-shot

Q: {Query}
Topic Entity: {Topic Entity}
Skyline Indicator:{Skyline Indicator}
Split Question:{Split Question}
Existing Knowledge Paths:{Existing Knowledge Paths}
A:

Predict Exploration Prompt Template

Using the main question, a possibly uncertain chain of thought generated by a
language model, some related split questions, paths from the "Related_paths"
section, and main topic entities: please first provide three predicted results, and
second offer three possible chains of thought that could lead to these results,
using the provided knowledge paths and your own knowledge. If any answers are
unclear, suggest alternative answers to fill in the gaps in the chains of thought,
following the same format as the provided examples.

In-Context Few-shot

Q: {Query}
Topic Entity: {Topic Entity}
Skyline Indicator:{Skyline Indicator}
Split Question:{Split Question}
Existing Knowledge Paths:{Existing Knowledge Paths}
A:

LLM-aware Paths Select Prompt Template

Given a main question, a LLM-generated thinking Cot that considers all the
entities, a few split questions that you can use one by one and finally obtain the
final answer, and the associated retrieved knowledge graph path, {set of entities
(with id start with "m.")} -> {set of relationships} -> {set of entities(with id start
with "m.")}, Please score and give me the top three lists from the candidate paths
set that are highly likely to be the answer to the question.

In-Context Few-shot

Q: {Query}
Skyline Indicator:{Skyline Indicator}
Split Question:{Split Question}
Candidate Paths:{Candidate Paths}
A:
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Path Refinement Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that considers
all the entities, a few split questions that you can use one by one and finally
obtain the final answer, the associated accuracy retrieved knowledge paths from
the Related paths section, and main topic entities. Your task is to summarize the
provided knowledge triple in the Related paths section and generate a chain of
thoughts by the knowledge triple related to the main topic entities of the question,
which will be used for generating the answer for the main question and splitting
the question further. You have to make sure you summarize correctly by using
the provided knowledge triple, you can only use the entity with the id from the
given path, and you can not skip steps.

In-Context Few-shot

Q: {Query}
Skyline Indicator:{Skyline Indicator}
Split Question:{Split Question}
Related Paths:{Related Paths}
A:

CoT Answering Evaluation Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that considers
all the entities, a few split questions that you can use and finally obtain the final
answer, and the associated retrieved knowledge graph path, {set of entities (with
id start with "m.")} -> {set of relationships} -> {set of entities(with id start with
"m.")}. Your task is to determine if this knowledge graph path is sufficient to
answer the given split question first then the main question. If it’s sufficient, you
need to respond {Yes} and provide the answer to the main question. If the answer
is obtained from the given knowledge path, it should be the entity name from the
path. Otherwise, you need to respond {No}, then explain the reason.

In-Context Few-shot

Q: {Query}
Skyline Indicator:{Skyline Indicator}
Split Question:{Split Question}
Existing Knowledge Paths:{Existing Knowledge Paths}
A:

CoT Answering Generation Prompt Template

Given a main question, an uncertain LLM-generated thinking Cot that considers
all the entities, a few split questions that you can use one by one and finally
obtain the final answer, and the associated retrieved knowledge graph path, {set of
entities (with id start with "m.")} -> {set of relationships} -> {set of entities(with
id start with "m.")}, Your task is to generate the answer based on the given
knowledge graph path and your own knowledge.

In-Context Few-shot

Q: {Query}
Skyline Indicator:{Skyline Indicator}
Split Question:{Split Question}
Related Paths:{Related Paths}
A:
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