Think and Recall: Layer-Level Prompting for Lifelong Model Editing

Jinke Wang!, Zenan Ying!, Qi Liu', Wei Chen!,
Tong Xu'*, Huijun Hou?, Zhi Zheng""

"University of Science and Technology of China
2NIO
{wjk1008, znying, liuqilq, chenweicw } @mail.ustc.edu.cn
{tongxu, zhengzhi97} @ustc.edu.cn
huijun.hou@nio.com

Abstract

Lifelong model editing aims to dynamically ad-
just a model’s output concerning specific facts,
knowledge items, or behaviors, enabling the
model to adapt to the evolving demands of real-
world applications. While some retrieval-based
methods have demonstrated potential in life-
long editing scenarios by storing edited knowl-
edge in external memory, they often suffer
from limitations in usability, such as requir-
ing additional training corpora or lacking sup-
port for reversible and detachable edits. To ad-
dress these issues, we propose a plug-and-play
method for knowledge retrieval and injection,
i.e., Layer-Level Prompting (LLP), which
enables seamless and efficient lifelong model
editing. In our LLP framework, the reasoning
process of LLMs is divided into two stages,
respectively, knowledge retrieval (Thinking)
and knowledge injection (Recalling). Specif-
ically, the knowledge retrieval process is per-
formed in the early layers of the model, using
layer outputs as thinking clues. And access
the updated knowledge from memory in the
subsequent layer to complete the knowledge
injection process. Experimental results demon-
strate that our method consistently outperforms
existing techniques on lifelong model editing
tasks, achieving superior performance on ques-
tion answering and hallucination benchmarks
across different LLMs. Our code is available
at: https://github.com/wjkwjkwjkwjk/LLP.

1 Introduction

Large Language Models (LLMs) (Jiang et al., 2023;
OpenAl, 2023; Bai et al., 2023; Touvron et al.,
2023a) pre-trained on large-scale datasets have
demonstrated remarkable performance across a
wide range of tasks (Hoffmann et al., 2022; Brown
et al., 2020; Wu et al., 2024; Zheng et al., 2024;
Ye et al., 2025). However, inherent limitations

* Corresponding author.

such as hallucinations (Ji et al., 2023) and biases
(Ferrara, 2023) continue to hinder their broader
applicability and reliability. Additionally, as time
passes, the factual knowledge encoded within these
models becomes increasingly outdated (Yao et al.,
2023). These issues typically do not involve the
core reasoning abilities of the model, yet they arise
frequently due to the dynamic nature of real-world
information and user needs. Consequently, sim-
ple retraining is not only resource-intensive (Tou-
vron et al., 2023b) but also insufficient in address-
ing these challenges (Lin et al., 2022; Lee et al.,
2020; Huang et al., 2023). To overcome this, the
concept of lifelong model editing was introduced
(Hartvigsen et al., 2023), aiming to enable efficient
updates to a model’s knowledge over time.

Most existing model editing methods primarily
focus on single editing or batch editing, such as
ROME (Meng et al., 2022), MEMIT (Meng et al.,
2023), and MEND (Mitchell et al., 2022a). As Fig-
ure 1 shows, while effective in one-off edits, these
approaches often fall short in lifelong editing set-
tings that require continuous modifications as time
progresses. A key limitation lies in their inability
to separate newly edited knowledge from the pre-
existing knowledge of models, which originates
from the LLM’s intrinsic parameters or prior edits.

In contrast, retrieval-based methods, which de-
couple new knowledge from the model and prior
edited knowledge, have demonstrated strong per-
formance in the lifelong editing scenario. However,
these methods may rely on auxiliary pretrained
models to perform retrieval or external training cor-
pora to train the editing model, which increases the
method’s dependency on additional components
(Han et al., 2023; Jiang et al., 2024; Chen et al.,
2024). Moreover, they often lack support for re-
versible and detachable edits (Hartvigsen et al.,
2023; Wang et al., 2024).

To address these challenges, we propose a model
editing method based on layer-level prompts with

14487

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 14487-14502
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/wjkwjkwjkwjk/LLP

datal datal
o v
single [[Y batch @
editing Qv editing

datal data2 data3 eece
lifelong i TN l i
editing @H Q)j‘—> — oo
L

% time line

Figure 1: Differences between lifelong editing and
other editing methods. Compared to single editing
and batch editing, lifelong editing enables continuous,
incremental updates over time.

a vector memory, which performs knowledge re-
trieval and injection by leveraging and influencing
the model’s hidden states. This mechanism is sim-
ilar to the human process of updating knowledge
and reasoning, which first analyzes the problem and
then recalls relevant recent information. For exam-
ple, when asked, “Who is the current president of
the United States?”, a person first understands the
question and then recalls the most recent presiden-
tial election(e.g., that Donald Trump won the 2024
U.S. election) to arrive at the correct answer. In our
method, the earlier layers of the model are treated
as the "thinking" stage, responsible for processing
the input and triggering a retrieval mechanism. In
these layers, the outputs are directly used as think-
ing clues to perform retrieval in our key memory.
Based on the retrieval results, we extract the corre-
sponding knowledge from the value memory and
concatenate it in a prompt-like format to the input
of the later "recalling" layer, thereby injecting the
edited knowledge into the model. This process can
be completely independent of the original model
inference, as all knowledge update operations are
performed on the external key-value memory, mak-
ing the method easily usable as a plugin. Moreover,
as each key-value item location is explicitly known,
any single piece of edited knowledge remains fully
traceable and can be easily modified or deleted
when necessary.
Our main contributions are as follows:

1. We propose LLP, a lifelong editing method
which divides the model’s reasoning process
into two stages: thinking and recalling.

2. Our method has minimal dependencies, requir-
ing neither additional models nor additional
training data. It utilizes and influences the

model’s hidden states to perform knowledge
retrieval and knowledge injection, making it
adaptable to a wide range of applications.

3. We validate the effectiveness of LLP across
multiple backbones and editing datasets for
lifelong model editing.

2 Related Work

2.1 Model editing

Model editing aims to modify the output of a pre-
trained model with minimal cost (Feng et al., 2023;
Zhang et al., 2024; Yao et al., 2023; Li et al., 2024).
A wide range of approaches has been proposed in
this area, which can be broadly classified into the
following categories:

Constrained Fine-tuning Methods leverage re-
stricted supervised training strategies to guide the
model toward meeting specific editing objectives
without extensively altering its overall behavior
(Sinitsin et al., 2020; Zhu et al., 2020).

Locate and Edit Methods first locate the target
knowledge within the model and then edit it. For
instance, ROME (Meng et al., 2022) identifies the
location of factual knowledge via causal tracing
and applies the rank-one model editing to a specific
FFN layer. MEMIT (Meng et al., 2023) extends
ROME by addressing its limitation in handling
batch editing. Wilke (Hu et al., 2024) further in-
vestigates dynamic knowledge localization. LLM-
Eraser (Zhang et al., 2025) explores both score-
based and mask-based techniques for knowledge
localization, and subsequently prunes a portion of
the model parameters to achieve memory erasure.
Meta-learning Methods leverage auxiliary hyper-
networks to learn generalized patterns for model
editing. MEND (Mitchell et al., 2022a) learns
to transform gradients obtained via standard fine-
tuning into effective model updates by applying
a low-rank decomposition to the gradient. MAL-
MEN (Tan et al., 2024) further advances this idea
by formulating the aggregation of parameter shifts
as a least squares optimization problem, and subse-
quently updates the language model’s parameters
using the normal equation.

The above three categories of methods fail to
effectively decouple the edited knowledge from the
model’s internal parameters, thereby limiting their
scalability in the lifelong editing task.
Retrieval-based Methods aim to store edited
knowledge externally instead of directly modify-
ing the internal parameters of the model. SERAC

14488

(Mitchell et al., 2022b) trains a counterfactual
model to store newly introduced knowledge and
a scope classifier to determine whether a given
input query should invoke the edited knowledge.
GRACE (Hartvigsen et al., 2023) employs a dis-
crete key-value codebook to store edited knowl-
edge and directly replaces the output of a specific
layer. LTE (Jiang et al., 2024) trains LLMs to apply
updated knowledge by fine-tuning them on meticu-
lously curated parallel data and retrieves relevant
edit descriptors from a stored memory during infer-
ence. RECIPE (Chen et al., 2024) trains two sep-
arate encoders, one for encoding new knowledge
and another for producing keys used in the memory.
The above retrieval-based methods fail to achieve
all desirable editing properties with high efficiency,
and most of them rely on additional training data or
pre-trained models, making them difficult to adapt
to real-world editing scenarios.

2.2 Prompt Tuning

Prompt Tuning is a specialized and parameter-
efficient approach to adapting large language mod-
els, typically categorized into two types: discrete
prompts and continuous prompts (Liu et al., 2023).
Discrete Prompts operate within a discrete search
space, often corresponding to natural language
phrases. These methods typically construct
prompts either by retrieving and composing them
from large-scale text corpora (Jiang et al., 2020), or
by employing gradient-based techniques to search
for discrete tokens that steer the model toward gen-
erating the desired output (Wallace et al., 2019;
Shin et al., 2020).

Continuous Prompts utilize trainable word em-
bedding vectors as prompts. For example, Prefix
Tuning (Li and Liang, 2021) guides model behav-
ior by prepending a sequence of continuous, task-
specific vectors to the hidden states at each layer
of the language model. Similarly, Prompt Tuning
(Lester et al., 2021) introduces trainable embed-
dings at the input layer. Building on these ideas,
P-Tuning (Liu et al., 2024) further extends the con-
cept by injecting trainable prompts into multiple
layers of the model.

3 Methods

3.1 Prelimimaries

We focus on the task of lifelong model editing
(Huang et al., 2023; Hartvigsen et al., 2023), aim-
ing to ensure the model can not only meet the re-

quirements of successive modifications but also
maintain its original performance after multiple
edits. Let Fj denote the original model without
any edits and F denote the model after T knowl-
edge editing. Assuming the model has L layers, F
denotes the i-th layer of model F, h* denotes the
input embedding of the i-th layer, and d denotes
the hidden size. Given a model editing dataset
D. = {(X€7 Yo)|(z1, 1), (22, y2), s (2T, yT)}
that represents the knowledge that needs to be up-
dated over time by the model, our task can then be
formally defined by Equation 1.

Fr = Editor(Fr_1,x7,y7),

st. Fp(z) = {yev ifreXe, D
FO(‘T)a fogéXe

3.2 Think and Recall: Layer-Level Prompting
for Lifelong Model Editing

Figure 2 shows the overview of LLP. Our main
method consists of two main components: knowl-
edge retrieval and knowledge injection.

3.21

Knowledge Retrieval The knowledge retrieval is
designed to leverage the intermediate layer outputs
of the LLM as cues for identifying the most relevant
piece of newly stored knowledge corresponding to
the input query. Specifically, we pre-define a set
of retrieval layers R = [ry, 79, ..., 7], primarily
located in the early stage of the model. This de-
sign enables the model to complete the retrieval
phase as early as possible, allowing for efficient
and timely knowledge retrieval. At each designated
layer r;, we extract its output token embeddings
of length [as a query Q; = [q}, ¢?, ..., ¢] which is
then matched against a corresponding key-memory
store K = [K1, Ko, ..., Ky,], respectively. Each
K; = [k}, k2, ..., k¢] contains the e keys associated

Model Inference with Memory

E
with newly edited knowledge:
sim; = Cos(Q, K;), 2)
H; = Topk(sim; > tiayer), 3)

where Cos(+) is the cosine similarity function to
calculate the similarity between each token embed-
ding in query Q; and each key in K;, Topk(-) is
the function used to select the knowledge positions
corresponding to the top-k similarities, and ;e
is the threshold for layer retrieval.

We apply a voting mechanism that aggregates
the retrieval results H; from all selected layers to

14489

Before Retrieval Retrieval Stage
A

[=2]

£

5

3

<% o}

o 1S

> S

e

g z

2 £

Q

o

c

[

S

R

€ 5 5

3 | £ £

O o o

2 g §
5 E

Injection Stage

After Injection

transformer

transformer
transformer

Figure 2: Overview of LLP. The upper part of the figure represents the update process of the LLP Memory, and
the lower part represents inference with LLP Memory. 1) Similarity computation between retrieval layers’ output
embeddings and the key memory. 2) Getting the retrieval result with a voting mechanism. 3) knowledge injection
by concatenating the value item with the input embedding of the injection layer. 4) Contrastive loss for training new
keys. 5) Key memory updating after training new keys. 6) Cross-entropy loss for training the new value. 7) Value

memory updating after training the new value.

enhance robustness and accuracy. This consensus-
based approach determines the most relevant piece
of stored knowledge, which then guides the subse-
quent knowledge injection process:

H=H | H|Hs.. ||Hy,, 4)
u = arg max Count(z, H), (5)
reH

Count(u,H) > tyote,

U
w=< '’ (6)
0, Count(u,H) < tyote,
where || is the function to to merge lists, C'ount(-)
is the function to count the number of elements in a
set and £, 1s the threshold for the voting process.

Knowledge Injection In the pre-defined injec-
tion layer z, we perform knowledge injection based
on w. If a corresponding knowledge item is suc-
cessfully matched in K, we extract the associ-
ated value from the value-memory store V' =
[v1,v2...vc], which has e value items correspond-
ing to those in Kj;. Each value v; in the memory
storage is formatted as a prompt-like structure, con-
sisting of b continuous tokens, each with dimension

d, resulting in a prompt embedding of shape b * d.
This prompt is then concatenated with the input
hidden embedding h, of layer z, thereby achieving
knowledge injection into the model. Specifically:

F*(vy @ hy),
F*(h,),

w # 0,

w = 0.

Fz(hz) = { (7)

In general, the injection layer is typically set to
be the immediate next layer after the retrieval lay-
ers, as this allows the injection operation to be
applied earlier in the network, thereby influencing
more subsequent layers and having a deeper im-
pact on the model’s reasoning process, similar to
the prompt engineering. However, our empirical
results suggest that this may not always be the case.
Detailed results are shown in Section 4.3.2.

3.2.2 Construction of key-memory storage

The key-memory storage K is designed to facilitate
the retrieval of knowledge relevant to a given query.
Based on prior research (Meng et al., 2022), we
assume that the semantic information of a subject is
primarily aggregated into its last token. For exam-
ple, in the question “Who is the current President
of the United States?”, the subject (United States)

14490

Methods Lifelong Retrievable Detachable No Other Pre-trained Models No Training Data Reliability Generalization Locality
FT X X X v v v v X
ROME X X X v v v v X
MEMIT X X X v v v v X
SERAC v X X v X v X v
MEND X X X v X 4 X X
RECIPE 4 v v X X v v v
GRACE 4 v X 4 v v X v
WISE 4 v X 4 v v 4 v
LLP v v 4 4 4 v 4 v

Table 1: Comparison of current model editing methods.

information is primarily aggregated in the final to-
ken of "United States". Accordingly, we utilize the
last subject token embedding as the target repre-
sentation for our retrieval process. Given a series
of new knowledge {(z;,y;)}¢_, related to the sub-
ject s, we generate a set of m keys [k1, ka, ..., k]
for each retrieval layer, we first extract the embed-
ding of the last subject token in each retrieval layer,
which serves as the foundation for key generation:

a

> FYi(p@w)),s). (8)

j=1

0; = Last_To/’{:(1

a
Similar to ROME (Meng et al., 2022), p is a ran-
domly generated prefix designed to enhance the
generalization of the collected hidden embeddings,
and Last_Tok(-) is the function used to get the
last token embedding of s in hidden embeddings.
Under the guidance of this last subject token em-
bedding o;, we generate the key k;. To ensure
that the newly generated key does not interfere
with existing keys in the key-memory storage K,
we adopt a contrastive learning approach that en-
courages maximal dissimilarity between k; and all
pre-existing keys in K;. Specifically, we leverage
the InfoNCE (van den Oord et al., 2018) loss to
optimize this objective:

exp(Cos(ki, 0;/T))
> exp(Cos(ki, k=)/T)’

k—eK;

L = —log 9)

where 7 is the temperature in order to adjust the
sharpness of the similarity distribution in con-
trastive learning, influencing the model’s ability
to distinguish between positive and negative sam-
ples. Afterward, we integrate the newly generated
keys into the corresponding key-memory storage:

3.2.3 Construction of value-memory storage

The value-memory storage V' is designed to ensure
that the generated prompts satisfy the requirements
for effective model editing. We adopt a prompt-like

format for knowledge injection because it aligns
more naturally with the pre-training paradigm of
LLMs. Furthermore, since our approach requires
training only a small number of continuous tokens
to encode the updated knowledge, both the time
and memory consumption can be kept within a
manageable range, making the method efficient
and scalable in practice. Given a series of new
knowledge {(z;,)}, related to the subject s.
We train continuous tokens v to ensure they com-
prehensively encode all the necessary knowledge
updates related to the subject s. The training loss
is formulated as follows:

a

1
Ledit = o Z; —logF (yilp ® x;),
1=

(11)

where F#(h,) = F*(v@® h,) to concatenate v with
input embedding 5, of the injection layer. The
training loss is designed to ensure the effectiveness
and reliability of model editing. Similar to the pro-
cess used in constructing the key-memory storage,
we incorporate randomly generated prefixes p to
improve the generalization capability of generated
continuous tokens.

3.3 Comparison between LLP and
mainstream editing methods

Table 1 presents a comparison between mainstream
editing methods in terms of lifelong capability, flex-
ibility, dependency, and editing effectiveness. LLP
effectively addresses lifelong editing challenges
without relying on additional resources, as all op-
erations are conducted based on the model’s inter-
nal embeddings. Moreover, each key-value pair
in LLP is explicitly stored, enabling straightfor-
ward replacement, modification, and deletion of
knowledge. This design makes the method broadly
applicable across a wide range of scenarios.

14491

QA

Method

T=1 T =10 T =100 T = 1000
Rel. Gen. Loc. Avg. | Rel. Gen. Loc. Avg. ‘ Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.
LLaMA-3.1-8B
FT-L 5260 5640 7775 6225|3485 3244 39.62 3564 | 1647 13.66 3.54 1122|1651 1403 135 10.63
ROME 99.50 9721 9577 9749 | 96.06 93.12 7407 87.75| 920 951 269 713 | 275 242 127 215
MEMIT 90.14 8843 9834 9230 | 7343 69.58 77.21 7340 | 13.62 1437 843 1224 | 314 214 189 239
AlphaEdit 98.78 90.57 99.66 9634 | 99.29 91.96 9852 96.59 | 99.09 91.24 92.64 9432 | 89.72 83.56 4559 7296
GRACE 99.89 24.83 100.00 7491 | 42.04 24.80 100.00 55.61 | 39.12 24.82 100.00 54.65 | 38.38 24.83 100.00 54.40
RECIPE 93.68 93.44 100.00 9571 | 93.20 93.07 100.00 9542 | 93.14 93.03 100.00 9539 | 92.88 92.76 99.94 95.19
WISE 90.26 85.80 100.00 92.02 | 80.47 6434 100.00 81.60 | 62.80 56.66 100.00 73.15 | 58.57 5494 100.00 71.17
LLP 99.95 98.64 100.00 99.53 | 99.87 98.43 100.00 99.43 | 99.77 98.12 100.00 99.30 99.22 98.00 99.95 99.06
Mistral-7B
FT-L 57.12 41.07 99.54 6591 | 49.80 40.54 9736 62.57 | 43.40 40.08 93.16 58.88 | 44.43 4085 7577 53.68
ROME 87.86 83.16 98.35 89.79 | 80.49 8024 8221 8098 | 7.94 626 152 524 | 018 0.5 006 0.3
MEMIT 88.67 86.03 99.43 9138 |78.04 74.90 7737 7697 |10.17 868 448 778 | 349 349 176 291
AlphaEdit 93.82 8432 99.73 92.62 | 91.37 80.04 97.33 89.58 | 89.41 77.46 88.15 8501 | 8132 7328 30.15 61.58
GRACE 99.47 33.06 100.00 77.51 | 47.12 33.13 100.00 60.08 | 4449 32.13 100.00 5887 | 44.12 31.40 100.00 5851
RECIPE 9621 95.80 100.00 97.34 | 95.44 9474 100.00 96.73 | 94.11 93.67 100.00 9593 | 93.92 93.44 99.97 95.78
WISE 9552 91.79 100.00 9577 | 90.72 84.10 99.96 91.59 | 86.18 79.70 99.92 88.60 | 70.22 67.41 99.83 79.15
LLP 99.51 9852 100.00 99.34 | 99.32 9855 100.00 99.29 | 99.11 98.52 9998 99.20 9841 9740 9957 98.46
Table 2: Main editing results for QA setting (ZsRE dataset). 7: Num Edits.
4 Experiments
Rel. = 1(Fr(ze) = Ye),
4.1 Experimental Settings and Evaluation Gen. = 1(Fr(zg) = ve), (12)

Metrics

Datasets and Metrics We conduct evaluations
using LLaMA-3.1-8B (Team., 2024) and Mistral-
7B-v0.3 (Jiang et al., 2023), along with two bench-
marks: ZsRE (Levy et al., 2017) and SelfCheck-
GPT (Manakul et al., 2023). ZsRE is a closed-book
question answering (QA) dataset derived from zero-
shot relation extraction. We preprocess ZsRE to
ensure each knowledge fact appears only once in
the dataset, to avoid evaluation inaccuracies in the
lifelong editing setting. SelfCheckGPT is a hal-
lucination correction dataset designed to assess a
model’s capability to rectify factual inconsistencies.
Due to the imprecise labeling of the subject in the
dataset, we revise the imprecise samples.

For the QA setting, each sample contains an edit
knowledge {x., y. }, a paraphrased prompt x4, and
an unrelated prompt z;,.. We adopt three primary
evaluation metrics: Reliability (Rel.), Generality
(Gen.), and Locality (Loc.) (Zhang et al., 2024).
These metrics respectively assess: (1) Rel. eval-
uates the accuracy rate of the model editing. (2)
Gen. evaluates the generalization ability of the
edit to paraphrased queries, and (3) Loc. evaluates
the extent to which the edit preserves the original
behavior of the model on unrelated inputs. The
formal definitions of each metric are provided:

Loc. = 1(Fr(zioc) = Fo(xioc))-

For the hallucination setting, each sample con-
tains an edit knowledge {x., y.} and an unrelated
question z;,.. We primarily use two metrics: Per-
plexity (PPL) and Locality (Loc.), where PPL mea-
sures the residual hallucination after editing and
Loc. is similar to the QA setting. Unlike previ-
ous settings, there is no proper metric to measure
generalization ability.

Details of the datasets and our processing are
provided in Appendix B.1.

Baselines We compare our approach against sev-
eral effective model editing methods, including: FT-
L (Zhu et al., 2020), which additionally imposes a
parameter-space L., norm constraint on weight
changes; ROME (Meng et al., 2022), MEMIT
(Meng et al., 2023), and AlphaEdit (Fang et al.,
2024), which employ causal tracing followed by
targeted editing; and GRACE (Hartvigsen et al.,
2023), RECIPE (Chen et al., 2024), WISE (Wang
et al., 2024), which represent retrieval-based ap-
proaches. Details of the baselines and experiments
are found in Appendix B.2.

4.2 Main Results

Our main results are summarized in Table 2 and
Table 3, which report the performance of LLP com-

14492

Hallucination

Method

LLaMA-3.1-8B Mistral-7B
T=1 T=10 T =100 T = 600 T=1 T =10 T =100 T = 600
PPL(}) Loc.(?) | PPL(}) Loc.(1) | PPL(}) Loc.(1) | PPL(}) Loc. | PPL(}) Loc.(1) | PPL(}) Loc.() | PPL(}) Loc.(1) | PPL({) Loc.(1)
FT.L 597 9147 | 2906 6265 | 17552 2003 |3785.17 621 | 801 99.65 | 883 3849 | 90.82 3256 | 34255 847
ROME 185 9718 | 17.83 7092 | 647.74 104 | 148956 186 | 195 9822 | 236 9140 | 74832 352 | 213258 025
MEMIT 174 8793 | 1632 6858 |47282 225 | 94598 125 | 172 99.15 | 1057 80.62 | 184.65 2.83 | 68431 092
AlphaEdit 1.60 9970 | 182 9891 | 387 9454 | 527 4628 | 158 9975 | 195 9822 | 355 9556 | 643 44.12
GRACE 120 100.00 | 921 100.00 | 1548 100.00 | 1843 100.00 | 141 100.00 | 1033 100.00 | 10.67 100.00 | 20.15 100.00
RECIPE - - - - - - - - - - - - - - - -
WISE 160 10000 | 238 9978 | 331 9975 | 1085 97.62 | 152 9980 | 244 9714 | 262 9695 | 517 9241
LLP 103 10000 | 1.08 100.00 | 115 99.92 139 9956 | 1.05 100.00 | 1.07 100.00 | 117 100.00 | 138 99.97

Table 3: Main editing results for hallucination setting (SelfCheckGPT dataset). 7: Num Edits. Due to the lack
of entries for evaluating generality in the SelfCheckGPT dataset, which are required by the training module of the
RECIPE method, we are unable to report its performance under the hallucination setting.

pared to baseline methods under the QA and hal-
lucination settings, respectively. The results re-
veal several observations: 1) LLP consistently out-
performs existing methods in model editing tasks,
achieving superior results across the reliability, gen-
erality, and locality metrics, while also demonstrat-
ing substantial improvements in hallucination cor-
rection. 2) In the lifelong editing setting, as the
number of edits increases, LLP maintains stable
performance without significant degradation. In
contrast, parameter-editing approaches such as FT-
L, ROME, and MEMIT rapidly deteriorate after
multiple edits. AlphaEdit effectively mitigates dis-
ruption to the original model parameters by project-
ing weight updates into a knowledge-preserving
null space, however, it is essentially still a batch
editing method. As the number of edits increases
(e.g., T'=1000), AlphaEdit struggles to maintain
locality. Although lifelong methods are generally
more resilient to repeated edits, approaches like
GRACE and WISE also suffer from noticeable per-
formance degradation when the number of edits
becomes large (e.g., 7' = 1000).

4.3 Further Analysis
4.3.1 Analysis of Retrieval

To illustrate the effectiveness of key memory, we
analyze the behavior of the generated keys, as
shown in Figure 3. On the ZsRE dataset with T’
= 1000 as an example, orange points denote the
similarity between the generated key and the last
subject token of the unseen paraphrased prompt.
Blue points indicate the average similarity between
the generated key and other keys stored in the key
memory. Yellow points represent the average simi-
larity between those other keys and the last subject
token of the paraphrased prompt. These results
demonstrate that our generated keys align well with

1.0
0.8
2
0.6
g
k=
0.4
021
0 200 400 600 800 1000
Sample

Figure 3: Effectiveness of the generated keys. Dataset:
ZsRE. T": 1000. Retrieval layer: 8-th layer of LLaMA-
3.1-8B.

previously unseen paraphrased prompts, as the sim-
ilarity for most orange points exceeds 0.8. At the
same time, they remain sufficiently distinct from
one another, with all yellow and blue points below
0.5, thereby reducing the likelihood of collisions
during retrieval.

Then we evaluate the retrieval performance at
each individual layer of the 32-layer Transformer
model LLaMA-3.1-8B and the 32-layer Trans-
former model Mistral-7B. In our experiments, we
set T'opk in Equation 3 to T'op1 and fix #;4¢, at 0.7.
As Figure 4 shows, retrieval performance generally
declines as the layer depth increases. This trend
aligns with previous findings, which suggest that
earlier layers primarily capture lower-level seman-
tic features, such as parts of speech, while deeper
layers encode more complex linguistic phenom-
ena, including anaphora and coreference resolution
(Jawahar et al., 2019; Otmakhova et al., 2022; Ten-
ney et al., 2019; Deng et al., 2025). In deeper lay-
ers, hidden representations become semantically
richer but less aligned with surface entities, thus

14493

1000

900

800

Hit Count

700

LLaMA-3.1-8B \
—— Mistral-7B

600

0 5 10 15 20 25 30
Layer

Figure 4: Localization Analysis of Retrieval. The solid
lines represent the hit count using multi-layer voting.
Dataset: ZsRE. T": 1000.

complicating retrieval operation. Furthermore, we
compare the accuracy of multi-layer voting against
single-layer retrieval. Our results indicate that
multi-layer voting consistently yields higher and
more stable retrieval accuracy, validating its robust-
ness.

4.3.2 Analysis of Injection

We next investigate how the choice of injection
layer affects model editing performance. In the
experiments, we directly concatenate the generated
value with the input of the injection layer to evalu-
ate the effect of the values. The experimental setup
follows that of Table 2, using LLaMA-3.1-8B with
T = 1000, except that the retrieval operation was
omitted. The results are presented in Table 4. In
summary, layer-level prompts prove to be effective
for model editing, as injections at different layers
lead to minimal variation in reliability and general-
ity metrics. However, a significant degradation in
locality was observed when edits were applied to
middle layers of the model (e.g., layer = 16 and 20).
This decline aligns closely with the same layers
where the hit count also decreases substantially in
Figure 4. Prior interpretability studies suggest that
middle layers in LLMs play a critical role in seman-
tic understanding and transition (Meng et al., 2022;
Biran et al., 2024). We thus posit that injecting
knowledge at these layers interferes with seman-
tic processing, making it particularly disruptive to
locality.

4.3.3 Larger-Scale Lifelong Editing

We evaluate the large-scale lifelong editing per-
formance of LLP, with detailed results presented

Layer | Rel. Gen. Loc. Avg.
4 99.88 99.89 40.44 80.07
8 99.65 99.47 42774 80.62
1219991 99.67 47.09 82.22
16 | 99.98 99.82 14.78 71.53
20 1 99.82 99.71 33.00 77.51
24 19993 99.57 42.68 80.73
28 1 99.66 99.29 48.27 82.41
32 199.67 9938 46.19 81.76

Table 4: Localization Analysis of Injection. Dataset:
ZsRE. T": 1000. Model: LLaMA-3.1-8B.

in Table 5. As the number of edits scales up sub-
stantially, LLP consistently maintains stable per-
formance across all evaluation metrics. Notably,
there is no observable degradation in effectiveness,
and LLP obviously outperforms all baseline meth-
ods reported in Table 2. These results underscore
LLP’s capability in tackling lifelong editing tasks.

T Rel. Gen. Loc. Avg.
2000 | 99.03 97.52 99.46 98.67
3000 | 98.75 97.56 99.45 98.59
5000 | 98.57 97.25 98.55 98.12
8000 | 98.50 97.08 98.41 98.00
10000 | 97.92 97.01 98.37 97.77

Table 5: Scaling to larger lifelong edits. Dataset:
ZsRE. Model: LLaMA-3.1-8B.

4.3.4 Time Cost

15 value updating after editing
key updating before editing
10
| ;
5. N
£1
o TP T YR T | itk oA A
0 0 ‘200 ‘ 400 600 8007 ‘ 1000
Sample

Figure 5: Time Cost of LLP. Dataset: ZsRE. T": 1000.
Model: LLaMA-3.1-8B.

We evaluate the runtime efficiency of the pro-
posed LLP method on the NVIDIA A6000 GPUs.
Specifically, we measure the time required to gen-
erate keys (m = 8) and the corresponding value for
each sample, as well as the model’s forward pass
time before and after the editing. For each edit, the

14494

time required to update the value memory was con-
sistently under 8 seconds, with an average time of
4.27 seconds. The time to update the key memory
remained below 0.7 seconds, with an average of
0.32 seconds. Since we set the upper limit for neg-
ative sampling to 1000 (Equation 9), all available
keys are used, leading to increased computation in
key updating. With a further increase in the number
of edits, this time cost tends to stabilize. After in-
tegrating an LLP memory containing 1000 entries,
the inference time of LLaMA-3.1-8B increased by
an average of 74 milliseconds. Overall, the runtime
overhead of LLP is well within a reasonable range.

Conclusion

In this paper, we propose LLP, a lifelong editing
method that operates through a Layer-Level Prompt
mechanism. LLP enables model editing purely
through manipulation and influencing of the inter-
nal token embeddings of LLMs, without relying on
auxiliary models or external training data. More-
over, the explicitly stored memory mechanism sup-
ports efficient modification and deletion of edited
knowledge. Experimental results validate the effec-
tiveness of LLP in the lifelong editing scenario, ex-
hibiting no significant degradation in performance
even as the number of edits scales.

Acknowledgments

This work was supported in part by the grants from
National Natural Science Foundation of China
(No0.62222213, U22B2059), in part by the Post-
doctoral Fellowship Program and China Postdoc-
toral Science Foundation under Grant Number
BX20250387. This work was also supported by
USTC-NIO Smart Electric Vehicle Joint Lab.

Limitations

LLP presents several limitations. First, as a
retrieval-based approach, while each edit results
in only a marginal increase in memory usage, the
total memory consumption grows linearly with the
number of edits. When the number of edits exceeds
a certain threshold—e.g., beyond 5,000—the asso-
ciated memory overhead becomes non-negligible.
Additionally, because retrieval in our framework is
based on the last subject token, an advantage is that
multiple knowledge updates related to the same
subject can be consolidated into a single key-value
pair. However, this design choice also introduces a
limitation in flexibility.

References

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, and 29 others. 2023. Qwen technical
report. CoRR, abs/2309.16609.

Eden Biran, Daniela Gottesman, Sohee Yang, Mor Geva,
and Amir Globerson. 2024. Hopping too late: Ex-
ploring the limitations of large language models on
multi-hop queries. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, EMNLP 2024, Miami, FL, USA, Novem-
ber 12-16, 2024, pages 14113-14130. Association
for Computational Linguistics.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Language
models are few-shot learners. In Advances in Neural
Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020,
NeurlIPS 2020, December 6-12, 2020, virtual.

Qizhou Chen, Taolin Zhang, Xiaofeng He, Dongyang Li,
Chengyu Wang, Longtao Huang, and Hui Xue’. 2024.
Lifelong knowledge editing for 1lms with retrieval-
augmented continuous prompt learning. In Proceed-
ings of the 2024 Conference on Empirical Methods
in Natural Language Processing, EMNLP 2024, Mi-
ami, FL, USA, November 12-16, 2024, pages 13565—
13580. Association for Computational Linguistics.

Jingcheng Deng, Zihao Wei, Liang Pang, Hanxing Ding,
Huawei Shen, and Xueqi Cheng. 2025. Everything is
editable: Extend knowledge editing to unstructured
data in large language models. In The Thirteenth In-
ternational Conference on Learning Representations,
ICLR 2025, Singapore, April 24-28, 2025. OpenRe-
view.net.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan
Ma, Xiang Wang, Xiangnan He, and Tat-Seng Chua.
2024. Alphaedit: Null-space constrained knowledge
editing for language models. CoRR, abs/2410.02355.

Zhangyin Feng, Weitao Ma, Weijiang Yu, Lei Huang,
Haotian Wang, Qianglong Chen, Weihua Peng, Xi-
aocheng Feng, Bing Qin, and Ting Liu. 2023. Trends
in integration of knowledge and large language mod-
els: A survey and taxonomy of methods, benchmarks,
and applications. CoRR, abs/2311.05876.

Emilio Ferrara. 2023. Should chatgpt be biased? chal-
lenges and risks of bias in large language models.
CoRR, abs/2304.03738.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer
Levy. 2021. Transformer feed-forward layers are key-
value memories. In Proceedings of the 2021 Confer-

14495

https://doi.org/10.48550/ARXIV.2309.16609
https://doi.org/10.48550/ARXIV.2309.16609
https://aclanthology.org/2024.emnlp-main.781
https://aclanthology.org/2024.emnlp-main.781
https://aclanthology.org/2024.emnlp-main.781
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://aclanthology.org/2024.emnlp-main.751
https://aclanthology.org/2024.emnlp-main.751
https://openreview.net/forum?id=X5rO5VyTgB
https://openreview.net/forum?id=X5rO5VyTgB
https://openreview.net/forum?id=X5rO5VyTgB
https://doi.org/10.48550/ARXIV.2410.02355
https://doi.org/10.48550/ARXIV.2410.02355
https://doi.org/10.48550/ARXIV.2311.05876
https://doi.org/10.48550/ARXIV.2311.05876
https://doi.org/10.48550/ARXIV.2311.05876
https://doi.org/10.48550/ARXIV.2311.05876
https://doi.org/10.48550/ARXIV.2304.03738
https://doi.org/10.48550/ARXIV.2304.03738
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.446
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.446

ence on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2021, Virtual Event / Punta Cana,
Dominican Republic, 7-11 November, 2021, pages
5484-5495. Association for Computational Linguis-
tics.

Xiaoqi Han, Ru Li, Hongye Tan, Yuanlong Wang,
Qinghua Chai, and Jeff Z. Pan. 2023. Improving
sequential model editing with fact retrieval. In Find-
ings of the Association for Computational Linguis-
tics: EMNLP 2023, Singapore, December 6-10, 2023,
pages 11209-11224. Association for Computational
Linguistics.

Tom Hartvigsen, Swami Sankaranarayanan, Hamid
Palangi, Yoon Kim, and Marzyeh Ghassemi. 2023.
Aging with GRACE: lifelong model editing with dis-
crete key-value adaptors. In Advances in Neural
Information Processing Systems 36: Annual Confer-
ence on Neural Information Processing Systems 2023,
NeurlPS 2023, New Orleans, LA, USA, December 10
- 16, 2023.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,
Diego de Las Casas, Lisa Anne Hendricks, Johannes
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,
Katie Millican, George van den Driessche, Bogdan
Damoc, Aurelia Guy, Simon Osindero, Karen Si-
monyan, Erich Elsen, and 3 others. 2022. Train-
ing compute-optimal large language models. CoRR,
abs/2203.15556.

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and
Jun Zhao. 2024. Wilke: Wise-layer knowledge ed-
itor for lifelong knowledge editing. In Findings of
the Association for Computational Linguistics, ACL
2024, Bangkok, Thailand and virtual meeting, Au-
gust 11-16, 2024, pages 3476-3503. Association for
Computational Linguistics.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou,
Wenge Rong, and Zhang Xiong. 2023. Transformer-
patcher: One mistake worth one neuron. In The
Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May I-5,
2023. OpenReview.net.

Ganesh Jawahar, Benoit Sagot, and Djamé Seddah.
2019. What does BERT learn about the structure of
language? In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 3651-3657. Association
for Computational Linguistics.

Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu,
Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, Andrea
Madotto, and Pascale Fung. 2023. Survey of halluci-
nation in natural language generation. ACM Comput.
Surv., 55(12):248:1-248:38.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de Las Casas, Florian Bressand, Gianna Lengyel,

Guillaume Lample, Lucile Saulnier, Lélio Re-
nard Lavaud, Marie-Anne Lachaux, Pierre Stock,
Teven Le Scao, Thibaut Lavril, Thomas Wang, Timo-
thée Lacroix, and William El Sayed. 2023. Mistral
7b. CoRR, abs/2310.06825.

Yuxin Jiang, Yufei Wang, Chuhan Wu, Wanjun Zhong,
Xingshan Zeng, Jiahui Gao, Liangyou Li, Xin Jiang,
Lifeng Shang, Ruiming Tang, Qun Liu, and Wei
Wang. 2024. Learning to edit: Aligning llms with
knowledge editing. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), ACL 2024,
Bangkok, Thailand, August 11-16, 2024, pages 4689—
4705. Association for Computational Linguistics.

Zhengbao Jiang, Frank F. Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know. Trans. Assoc. Comput. Linguistics,
8:423-438.

Cheolhyoung Lee, Kyunghyun Cho, and Wanmo Kang.
2020. Mixout: Effective regularization to finetune
large-scale pretrained language models. In 8th Inter-
national Conference on Learning Representations,
ICLR 2020, Addis Ababa, Ethiopia, April 26-30,
2020. OpenReview.net.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2021, Virtual Event / Punta Cana, Domini-
can Republic, 7-11 November, 2021, pages 3045—
3059. Association for Computational Linguistics.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettle-
moyer. 2017. Zero-shot relation extraction via read-
ing comprehension. In Proceedings of the 21st Con-
ference on Computational Natural Language Learn-
ing (CoNLL 2017), Vancouver, Canada, August 3-4,
2017, pages 333-342. Association for Computational
Linguistics.

Shuaiyi Li, Yang Deng, Deng Cai, Hongyuan Lu, Liang
Chen, and Wai Lam. 2024. Consecutive batch model
editing with hook layers. In Proceedings of the 2024
Conference on Empirical Methods in Natural Lan-
guage Processing, EMNLP 2024, Miami, FL, USA,
November 12-16, 2024, pages 13817-13833. Associ-
ation for Computational Linguistics.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Asso-
ciation for Computational Linguistics and the 11th
International Joint Conference on Natural Language
Processing, ACL/IJCNLP 2021, (Volume 1: Long
Papers), Virtual Event, August 1-6, 2021, pages 4582—
4597. Association for Computational Linguistics.

Bill Yuchen Lin, Sida Wang, Xi Victoria Lin, Robin Jia,
Lin Xiao, Xiang Ren, and Scott Yih. 2022. On con-
tinual model refinement in out-of-distribution data
streams. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics

14496

https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.749
https://doi.org/10.18653/V1/2023.FINDINGS-EMNLP.749
http://papers.nips.cc/paper_files/paper/2023/hash/95b6e2ff961580e03c0a662a63a71812-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/95b6e2ff961580e03c0a662a63a71812-Abstract-Conference.html
https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.48550/ARXIV.2203.15556
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.207
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.207
https://openreview.net/forum?id=4oYUGeGBPm
https://openreview.net/forum?id=4oYUGeGBPm
https://doi.org/10.18653/V1/P19-1356
https://doi.org/10.18653/V1/P19-1356
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.48550/ARXIV.2310.06825
https://doi.org/10.18653/V1/2024.ACL-LONG.258
https://doi.org/10.18653/V1/2024.ACL-LONG.258
https://doi.org/10.1162/TACL_A_00324
https://doi.org/10.1162/TACL_A_00324
https://openreview.net/forum?id=HkgaETNtDB
https://openreview.net/forum?id=HkgaETNtDB
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.18653/V1/2021.EMNLP-MAIN.243
https://doi.org/10.18653/V1/K17-1034
https://doi.org/10.18653/V1/K17-1034
https://aclanthology.org/2024.emnlp-main.765
https://aclanthology.org/2024.emnlp-main.765
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2021.ACL-LONG.353
https://doi.org/10.18653/V1/2022.ACL-LONG.223
https://doi.org/10.18653/V1/2022.ACL-LONG.223
https://doi.org/10.18653/V1/2022.ACL-LONG.223

(Volume 1: Long Papers), ACL 2022, Dublin, Ireland,
May 22-27, 2022, pages 3128-3139. Association for
Computational Linguistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2023. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
ACM Comput. Surv., 55(9):195:1-195:35.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2024. GPT
understands, too. Al Open, 5:208-215.

Potsawee Manakul, Adian Liusie, and Mark J. F. Gales.
2023. Selfcheckgpt: Zero-resource black-box hal-
lucination detection for generative large language
models. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Process-
ing, EMNLP 2023, Singapore, December 6-10, 2023,
pages 9004-9017. Association for Computational
Linguistics.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual associ-
ations in GPT. In Advances in Neural Information
Processing Systems 35: Annual Conference on Neu-
ral Information Processing Systems 2022, NeurlPS
2022, New Orleans, LA, USA, November 28 - Decem-
ber 9, 2022.

Kevin Meng, Arnab Sen Sharma, Alex J. Andonian,
Yonatan Belinkov, and David Bau. 2023. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2022a. Fast
model editing at scale. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christo-
pher D. Manning, and Chelsea Finn. 2022b. Memory-
based model editing at scale. In International Con-
ference on Machine Learning, ICML 2022, 17-23
July 2022, Baltimore, Maryland, USA, volume 162 of
Proceedings of Machine Learning Research, pages
15817-15831. PMLR.

OpenAl. 2023.
abs/2303.08774.

GPT-4 technical report. CoRR,

Julia Otmakhova, Karin Verspoor, and Jey Han Lau.
2022. Cross-linguistic comparison of linguistic fea-
ture encoding in bert models for typologically differ-
ent languages. In Proceedings of the 4th Workshop
on Research in Computational Linguistic Typology
and Multilingual NLP, pages 27-35.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In Proceedings of the

2020 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2020, Online, Novem-
ber 16-20, 2020, pages 4222-4235. Association for
Computational Linguistics.

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry V.
Pyrkin, Sergei Popov, and Artem Babenko. 2020.
Editable neural networks. In 8th International Con-
ference on Learning Representations, ICLR 2020,
Addis Ababa, Ethiopia, April 26-30, 2020. OpenRe-
view.net.

Chenmien Tan, Ge Zhang, and Jie Fu. 2024. Massive
editing for large language models via meta learning.
In The Twelfth International Conference on Learning
Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net.

Meta LLaMA Team. 2024. Introducing meta llama 3:
The most capable openly available 1lm to date.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. 2019.
BERT rediscovers the classical NLP pipeline. In
Proceedings of the 57th Conference of the Associa-
tion for Computational Linguistics, ACL 2019, Flo-
rence, Italy, July 28- August 2, 2019, Volume 1: Long
Papers, pages 4593—4601. Association for Computa-
tional Linguistics.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, Aurélien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. 2023a. Llama: Open
and efficient foundation language models. CoRR,
abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton-
Ferrer, Moya Chen, Guillem Cucurull, David Esiobu,
Jude Fernandes, Jeremy Fu, Wenyin Fu, and 49 oth-
ers. 2023b. Llama 2: Open foundation and fine-tuned
chat models. CoRR, abs/2307.09288.

Adron van den Oord, Yazhe Li, and Oriol Vinyals. 2018.
Representation learning with contrastive predictive
coding. CoRR, abs/1807.03748.

Eric Wallace, Shi Feng, Nikhil Kandpal, Matt Gard-
ner, and Sameer Singh. 2019. Universal adversarial
triggers for attacking and analyzing NLP. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, Hong Kong, China,
November 3-7, 2019, pages 2153-2162. Association
for Computational Linguistics.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi
Yao, Yong Jiang, Pengjun Xie, Fei Huang, and Hua-
jun Chen. 2024. WISE: rethinking the knowledge
memory for lifelong model editing of large language
models. In Advances in Neural Information Pro-
cessing Systems 38: Annual Conference on Neural

14497

https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1145/3560815
https://doi.org/10.1016/J.AIOPEN.2023.08.012
https://doi.org/10.1016/J.AIOPEN.2023.08.012
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.557
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/6f1d43d5a82a37e89b0665b33bf3a182-Abstract-Conference.html
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=MkbcAHIYgyS
https://openreview.net/forum?id=0DcZxeWfOPt
https://openreview.net/forum?id=0DcZxeWfOPt
https://proceedings.mlr.press/v162/mitchell22a.html
https://proceedings.mlr.press/v162/mitchell22a.html
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.346
https://openreview.net/forum?id=HJedXaEtvS
https://openreview.net/forum?id=L6L1CJQ2PE
https://openreview.net/forum?id=L6L1CJQ2PE
https://ai.meta.com/blog/meta-llama-3/, 2024.
https://ai.meta.com/blog/meta-llama-3/, 2024.
https://doi.org/10.18653/V1/P19-1452
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2302.13971
https://doi.org/10.48550/ARXIV.2307.09288
https://doi.org/10.48550/ARXIV.2307.09288
https://arxiv.org/abs/1807.03748
https://arxiv.org/abs/1807.03748
https://doi.org/10.18653/V1/D19-1221
https://doi.org/10.18653/V1/D19-1221
http://papers.nips.cc/paper_files/paper/2024/hash/60960ad78868fce5c165295fbd895060-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/60960ad78868fce5c165295fbd895060-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2024/hash/60960ad78868fce5c165295fbd895060-Abstract-Conference.html

Information Processing Systems 2024, NeurlPS 2024,
Vancouver, BC, Canada, December 10 - 15, 2024.

Peng Wang, Ningyu Zhang, Bozhong Tian, Zekun Xi,
Yunzhi Yao, Ziwen Xu, Mengru Wang, Shengyu
Mao, Xiaohan Wang, Siyuan Cheng, Kangwei Liu,
Yuansheng Ni, Guozhou Zheng, and Huajun Chen.
2023. Easyedit: An easy-to-use knowledge edit-
ing framework for large language models. CoRR,
abs/2308.07269.

Likang Wu, Zhi Zheng, Zhaopeng Qiu, Hao Wang,
Hongchao Gu, Tingjia Shen, Chuan Qin, Chen Zhu,
Hengshu Zhu, Qi Liu, Hui Xiong, and Enhong Chen.
2024. A survey on large language models for recom-
mendation. World Wide Web (WWW), 27(5):60.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng,
Zhoubo Li, Shumin Deng, Huajun Chen, and Ningyu
Zhang. 2023. Editing large language models: Prob-
lems, methods, and opportunities. In Proceedings
of the 2023 Conference on Empirical Methods in
Natural Language Processing, EMNLP 2023, Sin-
gapore, December 6-10, 2023, pages 10222—-10240.
Association for Computational Linguistics.

Yuyang Ye, Zhi Zheng, Yishan Shen, Tianshu Wang,
Hengruo Zhang, Peijun Zhu, Runlong Yu, Kai Zhang,
and Hui Xiong. 2025. Harnessing multimodal large
language models for multimodal sequential recom-
mendation. In AAAI-25, Sponsored by the Associ-
ation for the Advancement of Artificial Intelligence,
February 25 - March 4, 2025, Philadelphia, PA, USA,
pages 13069-13077. AAAI Press.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng
Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan
Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu, Yong Jiang,
Pengjun Xie, Fei Huang, Lei Liang, Zhigiang Zhang,
and 3 others. 2024. A comprehensive study of
knowledge editing for large language models. CoRR,
abs/2401.01286.

Shengming Zhang, Le Zhang, Jingbo Zhou, Zhi Zheng,
and Hui Xiong. 2025. Llm-eraser: Optimizing large
language model unlearning through selective pruning.
In Proceedings of the 31st ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining V. 1,
pages 1960-1971.

Zhi Zheng, Wenshuo Chao, Zhaopeng Qiu, Hengshu
Zhu, and Hui Xiong. 2024. Harnessing large lan-
guage models for text-rich sequential recommenda-
tion. In Proceedings of the ACM Web Conference
2024, pages 3207-3216.

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Srinadh
Bhojanapalli, Daliang Li, Felix X. Yu, and Sanjiv
Kumar. 2020. Modifying memories in transformer
models. CoRR, abs/2012.00363.

Algorithm 1 Updating of LLP Memory

1: Input: LLM to be edited F', knowledge pairs
{(xi, yi) }_, related to the subject s, key mem-
ory K = [Ky, Ko, ..., Ky,], value memory V/,
retrieval layers R = [rq,ro, ..., 7], injection
layer z and length of prompt value b.
function UPDATE KEY
for i < 1 to m do:
get o; using Equation 8 with x;
initialize k; using o;
sample £~ from K;
train k; using Equation 9
append k; to K;
end for
end function
: function UPDATE KEY
initialize v using last b token embedding of
{zi ® it
13: train v using Equation 11
14: append v to V
15: end function

D A N

_ = =
D

Algorithm 2 Inference of LLM Equipped with LLP

1: Input: LLM to be edited F', number of F' layer
L, embedding layer Emb, input prompt x, key
memory K = [K1, Ko, ..., K], value mem-
ory V, retrieval layers R = [rq, rg, ..., 7y,], and
injection layer z.

2: hy = Emb(z)

3: for: < 1to L do:

4: if i = z then

5: get w using Equation 6 with {H; };”:1
6: if » # () then

7 h; = vy ® h;

8: end if

9: end if
10: hiv1 = Fz(hz)
11 if 7 in R then
12: get Hj; using Equation 3 with h; 1
13: end if
14: end for

14498

https://doi.org/10.48550/ARXIV.2308.07269
https://doi.org/10.48550/ARXIV.2308.07269
https://doi.org/10.1007/S11280-024-01291-2
https://doi.org/10.1007/S11280-024-01291-2
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.632
https://doi.org/10.18653/V1/2023.EMNLP-MAIN.632
https://doi.org/10.1609/AAAI.V39I12.33426
https://doi.org/10.1609/AAAI.V39I12.33426
https://doi.org/10.1609/AAAI.V39I12.33426
https://doi.org/10.48550/ARXIV.2401.01286
https://doi.org/10.48550/ARXIV.2401.01286
https://arxiv.org/abs/2012.00363
https://arxiv.org/abs/2012.00363

A Algorithms of LLP

The updating of LLP-memory and Inference with
LLP-memory are detailed in Algorithm 1 and Al-
gorithm 2, respectively

B Details of Experiments

B.1 Datasets

QA setting The dataset used in our question an-
swering task is ZsRE (Levy et al., 2017), which de-
rived from zero-shot relation extraction. It contains
162,555 training samples and 19,009 testing sam-
ples. Each instance consists of an editing prompt
T, a paraphrased prompt x4, an editing target y,
and a locality question x;,.. However, the dataset
includes numerous redundant edits targeting the
same piece of knowledge, introducing undesirable
noise for evaluating lifelong model editing. An
example of which is provided in the accompanying
table 6. To address this, we re-filtered the dataset
and selected 10,668 unique samples.

Table 6: Two samples illustrating why the original ZsRE
dataset is not suitable for evaluating lifelong model edit-
ing. Sample 1) and sample 2) In fact edit the same
factual knowledge, but have different editing targets,
which can affect the evaluation results during testing.

1) Which person is the architect of Lahti
Town Hall?

2) Which designer was responsible for
Lahti Town Hall?

1) Willem Marinus Dudok.
2) Aimee Teegarden.

Xe

Ye

1) Who was the architect of Lahti Town
Hall?

2) What was the name of the architect
who worked on Lahti Town Hall?

1) Who plays alec ramsay in the black
stallion?

2) Who are the judges on do you think
you can dance?

Xloc

Hallucination setting The dataset used for the
Hallucination setting is SelfCheckGPT (Manakul
et al., 2023), which contains a large number of
hallucinated passages generated by GPT-3 (Brown
et al., 2020), with the hallucinated content replaced
by corresponding sentences from actual Wikipedia
entries. The examples in this dataset are signifi-
cantly longer than those in other datasets, making

them more representative of real-world scenarios.
At the same time, this also increases the challenge
of the dataset. Our experimental setup follows
WISE (Wang et al., 2024), including 306 training
samples and 600 testing samples. Each sample
contains an editing question x., an editing target
Ye, and a locality question xj,.. A representative
example is shown in the table 7. In addition, due
to the imprecise subject labeling in parts of the
dataset, we manually corrected several subject la-
bels. Examples of such samples are shown in Table
8.

B.2 Baselines

FT-L. FT-L (Zhu et al., 2020) is a variant of FT
that incorporates an additional [, norm term into
the loss function to strengthen the evidence sup-
porting modified facts.

ROME ROME (Meng et al., 2022) locates fac-
tual knowledge within the MLP layers of the Trans-
former architecture via causal tracing, and per-
forms targeted knowledge editing under the as-
sumption that MLP layers function as key-value
memory modules (Geva et al., 2021).

MEMIT MEMIT (Meng et al., 2023) extends
ROME from single-editing to batch-editing, en-
abling the simultaneous updating of hundreds of
facts. Unlike ROME, which confines edits to a
single layer, MEMIT updates multiple layers.

AlphaEdit AlphaEdit (Fang et al., 2024) ad-
dresses the substantial performance degradation
observed in ROME and MEMIT after repeated
edits. It mitigates interference with unrelated pa-
rameters by projecting updates into the null space
of MLP layers, thereby maintaining model perfor-
mance even after hundreds of edits.

GRACE GRACE (Hartvigsen et al., 2023)
adopts a retrieval-based strategy that edits knowl-
edge through a discrete key-value codebook. When
a relevant key is retrieved, its corresponding value
is directly replaced with the output of a model layer
to perform the edit.

RECIPE RECIPE (Chen et al., 2024) trains the
model to generate continuous prompt tokens for
editing and corresponding keys for retrieval. Once
trained, each new edit can be performed via simple
model inference, significantly reducing the per-edit
time.

14499

Table 7: A sample of SelfCheckGPT dataset.

This is a Wikipedia passage about carole gist. Carole Gist (born April 28, 1969)
is an American beauty pageant titleholder from Detroit, Michigan who was
crowned Miss USA 1990. She was the first African-American woman to win
X, the Miss USA title. Gist represented the United States at the Miss Universe
1990 pageant held in Los Angeles, California, where she placed first runner-up
to Mona Grudt of Norway. Gist was the first African-American woman to place

in the Miss Universe pageant.

She was also the first contestant from Michigan to win Miss USA, and broke

Yo the five-year streak of winners from Texas.
Description Map of South America.
X0 This map has a small scratch near the centerfold in the right part of the map.

Looking for an antique map, historica

Table 8: Several examples of corrected subject labels.

Original subject Corrected label

john holman chemist
joe brown utility player
danny smith coach

john holman
joe brown
danny smith

WISE WISE (Wang et al., 2024) isolates editable
knowledge within a newly introduced side memory
FFN layer, ensuring that the primary model mem-
ory remains unaffected. Knowledge is randomly
assigned to this side memory, and the model dynam-
ically routes between the main and side memories
to determine when to apply edited content.

Our experiments were conducted on four
NVIDIA A6000 GPUs and two NVIDIA A100
GPUs. Since our experimental setting focuses on
lifelong model editing, we set the batch size to 1
for batch-editing methods such as MEMIT (Meng
et al., 2023) and AlphaEdit (Fang et al., 2024). Ex-
cept for RECIPE (Chen et al., 2024), we follow the
same training and evaluation settings as described
in EasyEdit (Wang et al., 2023). For RECIPE, we
adopt the same setup and train on each dataset sep-
arately with a batch size of 8 for at least 150,000
iterations.

B3 LLP

We evaluate LLP on two NVIDIA A6000 GPUs.
The hyperparameters for ZsRE and SelfCheck-
GPT are identical. We set the retrieval layers as
[0,1,2,3,4,5,6,7], and the injection layer is 10. The
parameters vygye,r and vyoe Used for the retrieval
operation are set to 0.7 and 4. The learning rate for

training v is Se-2, and the learning rate for training
k is Se-3.

C More Results and Analyse

The analysis of Mistral-7B under higher edit counts
and time consumption can be found in Table 10 and
Figure 6. For Mistral-7B, the effectiveness of edit-
ing remains well-preserved even with a significant
increase in the number of edits.

15

value updating after editing

key updating

o sl bkl

M'WW‘WWWWMJ&\MMWM(\WM

before editing

Ll

0 200 400 600 800
Sample

1000

Figure 6: Time Cost of LLP. Using 1000 samples of
ZsRE with Mistral-7B.

Both the editing time and inference time are kept
within a reasonable range.

D Case Study

D.1 Failure Cases of Retrieval Operations

We select several failed retrieval cases, as shown
in the Table 11. We observe that these failures
mainly involve examples with relatively unusual
last subject tokens, such as ’)’. This is because such
tokens carry limited semantic information, making
it difficult to retrieve the correct key even when
some surrounding semantic context is captured.

14500

Table 9: Dataset statistics for main results.

SETTING EDITING DATA. T edit prompts((LLaMA/Mistral) paraphrased prompts((LLaMA/Mistral)
QA ZsRE 1000 25.85/33.94 24.82/33.13
Hallucination SelfCheckGPT 600 33.04/33.13 -/-

Table 10: Scaling to larger lifelong edits. Dataset: ZsRE,
Model: Mistral-7B

T Rel. Gen. Loc. Avg.
2000 | 98.25 97.31 99.68 98.41
3000 | 97.94 97.19 99.47 98.20
5000 | 97.63 96.94 98.10 97.56
8000 | 97.47 96.44 97.59 97.17
10000 | 97.02 96.10 97.34 96.82

D.2 Failure Cases of Injection Operations

Most of the failures in knowledge injection can be
attributed to imperfections in the operation itself
in Table 12. However, we also identify some inter-
esting cases caused by inaccuracies in the dataset.
For example, in response to the question “Is Bao
Yixin a man or woman?”, the output“man” is actu-
ally more appropriate than the editing target "male".
This case also demonstrates, to some extent, that
the LLP method possesses a certain degree of gen-
eralization and reasoning ability, rather than merely
overfitting to the editing target.

14501

Table 11: Failure Cases of Retrieval Opeartions

Editing Prompt Paraphrased Prompt

Which is the manufacturer of USS Leedstown What manufacturer of USS Leedstown (APA-56)
(APA-56)? is it?

What type of aquatic unit is USS Baltimore (SSN- What type of submarine was USS Baltimore
704)? (SSN-704) classified as?

What artist created Halle Berry (She’s Fine)? What artist has Halle Berry (She’s Fine) created?
What type of submarine was USS Kete (SS-369) Which water unit is USS Kete (SS-369)?
classified as?

Table 12: Failure Cases of Injection Operations

Paraphrased Prompt Editing Target Output

What is the label of Automatic Midnight? Myrrh Records The rrh \n

What’s the label of You’ll See? Epic Records Album Records

What kind of maritime vessel was SM UB-103? German Type UB German Sub UB III
III destroyer destroyer

Which year was 503 Evelyn discovered? 17 503 17th 503

Is Bao Yixin a man or woman? male man

