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Abstract

Link Prediction (LP) aims to predict missing
triple information within a Knowledge Graph
(KG). Existing LP methods have sought to
improve the performance by integrating struc-
tural and textual information. However, for
lexico-semantic KGs designed to document
fine-grained sense distinctions, these types of
information may not be sufficient to support ef-
fective LP. From a linguistic perspective, word
senses within lexico-semantic relations usu-
ally show systematic differences in their se-
memic components. In light of this, we are
motivated to enhance LP with sememe knowl-
edge. We first construct a Sememe Prediction
(SP) dataset, SememeDef, for learning such
knowledge, and two Chinese datasets, HN7 and
CWNS5, for LP evaluation; Then, we propose
a method, SememeLP, to leverage this knowl-
edge for LP fully. It consistently and signif-
icantly improves the LP performance in both
English and Chinese, achieving SOTA MRR
of 75.1%, 80.5%, and 77.1% on WNI18RR,
HN7, and CWNS5, respectively; Finally, an
in-depth analysis is conducted, making clear
how sememic components can benefit LP for
lexico-semantic KGs, which provides promis-
ing progress for the completion of them'.

1 Introduction

Link Prediction (LP) aims to predict missing (head,
relation, tail) triples within a Knowledge Graph
(KG) (Dettmers et al., 2018). KGs, whether con-
structed manually or automatically, often suffer
from incomplete knowledge and potential inaccu-
racies that limit their utility. LP plays a crucial role
in addressing these problems across various types
of KGs, including lexico-semantic KGs.

Existing LP methods fall into two main cat-
egories: embedding-based and Pre-trained Lan-
guage Model (PLM)-based. Embedding-based
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methods (Bordes et al., 2013; Dettmers et al., 2018;
Balazevic et al., 2019; Chen et al., 2021) optimize
concept and relation embeddings using structural
information, with various scoring functions to pre-
dict missing triples. In contrast, PLM-based meth-
ods (Yao et al., 2019; Wang et al., 2022a; Lin et al.,
2024; Li et al., 2024) focus on using PLMs to en-
code available textual descriptions for prediction.
However, for lexico-semantic KGs designed to doc-
ument fine-grained sense distinctions (Choi et al.,
2024), structural or textual information may not be
sufficient to support effective LP. Thus, it is neces-
sary to explore more fine-grained lexico-semantic
knowledge, like sememic components, to further
improve the performance.

In lexico-semantic KGs, word senses often
serve as the vertices. While treating them as
atomic units, current LP methods overlook the
effectiveness of internal semantic composition.
From a linguistic perspective, word senses can be
broken down into smaller units through compo-
nential analysis (Lounsbury, 1956; Goodenough,
1956; Lyons, 1968; Leech, 1974), and the mini-
mal indivisible sememic components are called
sememes (Bloomfield, 1926). Some linguists pro-
pose that word senses in any language can be com-
posed of a finite set of sememes (Dong, 1988;
Wierzbicka, 1996). For instance, the primary sense
of boy can be represented by a combination of
sememes: {human, male, immature}. This decom-
position potentially provides a systematic frame-
work for representing lexico-semantic relations, for
example: Antonymy can be formalized through
single-component negation while preserving oth-
ers (e.g., boy: {human, male, immature} — girl:
{human, female, immature}); Also, hypernymy
can be formalized through subset containment (e.g.,
boy: {human, male, immature} — child: {human,
immature}). In light of this, the sememe informa-
tion of word senses may offer potential to improve
LP for lexico-semantic KGs.
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At the same time, practical challenges exist in
leveraging sememe information for LP. Nowaday’s
lexico-semantic KGs seemingly lack deployment
of such information, while manual sememe an-
notation for them would be prohibitively labor-
intensive and time-consuming. Moreover, not all
word senses in them can acquire sememe informa-
tion from existing sememe knowledge bases (KBs)
like HowNet (Dong et al., 2010). Thus, the in-
troduction of Sememe Prediction (SP) (Xie et al.,
2017), aiming to assign suitable sememes for word
senses from a pre-defined set, provides a promising
approach to tackle these issues, while the relatively
low accuracy of SP (Li et al., 2018; Du et al., 2020;
Qi et al., 2020, 2022) may largely hinder effective
utilization of sememe information.

Considering the potential value of sememic com-
ponents and practical application issues, in this
paper, we are motivated to explore the application
of such knowledge to benefit LP. We first construct
SememeDef, an SP dataset containing a substan-
tial amount of word sense definitions with sememe
annotations; Then, SememeLP, by incorporating
embedding-formatted sememe knowledge repre-
sentations learned from SememeDef into BERT-
based models, is designed for LP in KGs; We fi-
nally evaluate the method on the English dataset
WNI18RR (Dettmers et al., 2018), along with HN7
and CWNS5, our newly constructed Chinese ones.
Experimental results show that SememeLP consis-
tently and significantly improves LP performance
across both languages. Further analysis reveals that
our sememe knowledge representations generalize
well to word senses unseen in SememeDef, facil-
itating the model to leverage sememe differences
between related senses for more accurate predic-
tions, which demonstrates the effectiveness and
robustness of the method.

In summary, the main contributions we have
achieved are as follows:

(1) We provide the SememeDef dataset for SP,
along with two Chinese datasets, HN7 and CWNS,
for LP, aiming to alleviate the scarcity of both SP
and Chinese LP resources;

(2) We propose the SememeLLP method to lever-
age fine-grained sememe knowledge for enhancing
LP in lexico-semantic KGs, achieving SOTA MRR
of 75.1%, 80.5%, and 77.1% on WN18RR, HN7
and CWNS, respectively;

(3) We make clear how sememic components
can benefit LP for lexico-semantic KGs, providing
promising progress for the completion of such KGs,

facilitating downstream tasks enriched by them.

(4) We tackle the challenges of leveraging se-
meme information in annotation-scarce scenarios
and present a potentially generalizable method to
utilize such information to benefit more lexico-
semantic tasks.

2 Related Work

2.1 Link Prediction

Resources: In English, WN18RR (Dettmers et al.,
2018), built upon WordNet (Miller et al., 1990),
is the widely-used lexico-semantic dataset for LP.
In contrast, while some influential lexico-semantic
KBs exist in Chinese, such as HowNet (Dong et al.,
2010) and Chinese WordNet (CWN) (Huang et al.,
2010), there remains an obvious lack of standard-
ized lexico-semantic LP datasets. This limitation
impedes the progress of LP for this language.
Methods: Existing LP methods can be broadly
categorized into embedding-based and PLM-based
methods. Embedding-based methods (Bordes et al.,
2013; Trouillon et al., 2016; Dettmers et al., 2018;
Sun et al., 2019; Balazevic et al., 2019; Vashishth
et al., 2020; Chen et al., 2021; Liu et al., 2022)
focus on leveraging structural information in KGs
to learn concept/relation representations, while of-
ten neglecting textual descriptions. In contrast,
PLM-based methods (Yao et al., 2019; Kim et al.,
2020; Wang et al., 2021a; Chen et al., 2022) in-
corporate textual descriptions into PLMs to ob-
tain representations for prediction. Through ef-
fective negative sampling strategies (Wang et al.,
2022a; Qiao et al., 2023; Lin et al., 2024) and fur-
ther integration of structural information (Chen
et al., 2023; Li et al., 2024), PLM-based meth-
ods outperform embedding-based on several LP
benchmarks like WN18RR (Dettmers et al., 2018),
FB15K-237 (Toutanova and Chen, 2015), and Wiki-
dataSM (Wang et al., 2021b).

From the perspective of information utilization,
the above-mentioned methods mainly rely on struc-
tural and textual information common across dif-
ferent types of KGs. For lexico-semantic KGs with
fine-grained sense distinctions, these types of infor-
mation may not be sufficient.

2.2 Sememe Prediction

Resources: HowNet (Dong et al., 2010), the most
comprehensive sememe KB, provides the founda-
tion for SP research. It comprises 237,974 English
and Chinese lexicons annotated with 2,540 expert-
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defined sememes (Qi et al., 2019). In HowNet,
each word sense is defined by a series of relevant se-
memes, with the first one as the main sememe repre-
senting its core semantic category. For example, the
sense institution dedicated to education of school
is annotated with sememes: institutePlacel’
T, educationl# F, studyl®:>], and teachl#.
Whereas, HowNet lacks textual definitions for
word senses, which are necessary information for
many SP methods (Li et al., 2018; Du et al., 2020;
Qi et al., 2022). SememeBabel (Qi et al., 2020),
built upon HowNet and a multilingual KB Babel-
Net (Navigli and Ponzetto, 2010), is another se-
meme annotation resource specifically built for SP.
It contains 15,461 synsets with both textual defini-
tions and sememe annotations, helping to address
the issue of definition absence in HowNet for SP
training. Nevertheless, while 70,645 English (def-
inition, sememes) pairs are extracted, only 8,555
Chinese ones are obtained. The relative scarcity of
data may greatly affect the performance of SP in
Chinese.

Methods: Existing methods have explored incorpo-
rating different types of information into SP models
for boosting the performance (Qi et al., 2021), in-
cluding word sense definitions (Li et al., 2018; Du
et al., 2020; Qi et al., 2022), lexico-semantic rela-
tions (Qi et al., 2020), multilingual synonyms (Qi
et al., 2018, 2022), and even visual information (Qi
et al., 2022). Among these, definitions are well-
suited for SP as they often align with sememe an-
notations. For example, the words in the sense a
young male person of boy directly map to its se-
memes: immature, male, and human. They are
also generally more accessible than multilingual
and multimodal information in common lexico-
semantic KB scenarios.

3 Resources

Considering the scarcity of SP and LP resources
for Chinese, we aim to construct a series of datasets
to alleviate these issues: We first provide the Se-
memeDef dataset for SP, and then build HN7 and
CWNS5 for Chinese LP.

3.1 SP Dataset

To address the scarcity of Chinese SP resources?,

we attempt to obtain more (definition, sememes)

2We do not adopt LLM-generated sememe annotations,
given that it is significantly challenging for LLMs to identify
appropriate sememes from over 2,000 candidates.

pairs through Word Sense Alignment (WSA) be-
tween HowNet and the Contemporary Chinese Dic-
tionary (CCD)?. Due to different sense granularities
across resources (Matuschek and Gurevych, 2014),
rigorous WSA needs to consider various mapping
scenarios (e.g., one-to-one, one-to-many, many-to-
one, and many-to-many). This complexity poses
challenges for existing automated methods (Ji et al.,
1998; Matuschek and Gurevych, 2013; Pilehvar and
Navigli, 2014; Yao et al., 2021).

Considering the practical demand for data ex-
pansion of SP, we focus on identifying seman-
tically consistent (i.e., one-to-one) word sense
pairs across HowNet and CCD. To assess this
consistency, inspired by recent advances in Entity
Alignment (EA) (Jiang et al., 2024; Chen et al.,
2024a,b), we employ three Large Language Mod-
els (LLMs): Qwen2.5-72B-Instruct (Qwen et al.,
2024), DeepSeek-V3 (DeepSeek-Al et al., 2024),
and Yi-Lightning (Wake et al., 2024)*. These
LLMs score each sense pair on a 5-point scale
(1: low consistency to 5: high consistency) based
on the information from both resources. Detailed
configurations are provided in Appendix A.

After manually checking the LLM outputs, we
select sense pairs scored at least 4 by all the LLMs
to expand the Chinese SP data. And we also con-
duct human evaluation (detailed in Appendix B) to
further validate the reliability of these LLM-scored
pairs. Results show that there is substantial annota-
tion consistency between LLLMs and human anno-
tators, as evidenced by comparable pairwise agree-
ments (i.e., human-human: 0.935-0.960; human-
LLM: 0.930-0.975).

The resulting dataset, named SememeDef, con-
tains 70,645 English samples and 43,163 Chinese
ones, covering 2,042 and 1,762 sememes, respec-
tively. Table 1 shows the examples from each lan-
guage.

3.2 Chinese Lexico-Semantic LP Datasets

To facilitate LP evaluation in Chinese, two datasets,
HN7 and CWNS5, are built upon HowNet and CWN,
respectively. Considering the existing research
progress (Wang et al., 2025) in sense definition
similarity computation, it is relatively less chal-
lenging to mine the synonymy relation compared
with other relation types. Therefore, following

3The most authoritative and influential Chinese dictionary,
published by the Commercial Press.

*The selection of these models balances their performance
in Chinese understanding with API costs.

14656



Word Sense Definition Sememes

Main Sememe

a person whose job is teaching

humanl A\, occupationl8R{7, educationlZ{H, teachlZX humanl A

B ATHE I

(institution dedicated to education) teachlZ{

institutePlacel3% FT, educationl# &, studyl®: >), institutePlacel3%fT

Table 1: Examples from SememeDef, our newly constructed SP dataset, where English and Chinese word sense
definitions are shown with their corresponding sememe information.

Dataset Head Synset Relation Tail Synset

{#h, b (R34, &
HN7 (young)} antonymy (0ld))

{184, A, {T.BA
CWN5 (woman)) antonymy (man)}

Table 2: Examples from HN7 and CWNS5, our newly
constructed LP datasets for Chinese.

WNI18RR, synsets are set as the vertices in KGs.

For HN7, we construct synsets and extract
relations following the instructions of Open-
HowNet (Qi et al., 2019). The resulting dataset
contains 10,939 synsets and 25,672 triples across 7
relation types. For each synset, GPT-40 (OpenAl
et al., 2024) is utilized to generate a unified defini-
tion based on sememe information and associated
definitions from CCD (detailed in Appendix C).
The generated definitions are manually checked to
ensure quality.

For CWNS5, we directly extract the synsets and
relations in CWN. It contains 3,149 synsets and
5,395 triples across 5 relation types.

Table 2 shows examples of antonymy from HN7
and CWNS5. More examples and details about these
datasets are provided in Appendix D.

4 Methodology

4.1 Task Formulation

A lexico-semantic KG is a directed graph, where
the vertices V are word senses (typically grouped
into synsets) linked by various lexico-semantic re-
lations. Each edge in the KG can be denoted by a
triple (h,r,t), where h, r, and ¢ represent the head
vertice, relation, and tail vertice, respectively.

In this paper, LP aims to predict missing triples
in a lexico-semantic KG. It is made up of two sub-
tasks: tail and head prediction. Under the widely
adopted evaluation protocol (Wang et al., 2022a),
tail prediction (h, r, 7) requires ranking all vertices
given h and r, similarly for head prediction(?, r, t).
Following previous research (Wang et al., 2022a;
Lin et al., 2024; Li et al., 2024), for each (h, r, 1),

we need to add (¢,7~1, h), where 7~! denotes the
inverse relation of . This allows unified handling
of both types of prediction through tail ranking.

4.2 SememeLP: Enhance LP by Leveraging
Sememe Knowledge

We propose SememeLP, a novel method that lever-
ages sememe knowledge to enhance LP for lexico-
semantic KGs. SememeLP utilizes a three-stage
fusion module to combine sememe features with
other features for more robust knowledge represen-
tations. In this subsection, we first introduce the
overall architecture of SememeLP, then detail the
acquisition of sememe knowledge needed by it, and
finally present optimization strategies for further
improving the training effectiveness and prediction
performance.

4.2.1 Overall Architecture

The overall architecture of SememeLP is shown
in Figure 1. Specifically, for a candidate triple
(h,r,t), we incorporate textual descriptions (i.e.,
word sense definitions) of (h, ) and ¢ into separate
BERT-based encoders, Ey, and E;, respectively.
The vanilla representations, 7" and r!, € R/, are
obtained by pooling the last hidden states.

To derive sememe features of vertices without se-
meme annotations, a BERT encoder F, finetuned
on SememeDef, is utilized to obtain two types of
sememe knowledge representations from their defi-
nitions: all-sememe representation r, € R’ encod-
ing all sememes and main-sememe representation
rm € R encoding the main sememe.

Subsequently, these two types of sememe repre-
sentations are fused with the vanilla representation.
However, there may exist potential challenges in
integrating them: First, the main-sememe and all-
sememe representations might contain noise due
to potential inaccuracies of SP, which degrades the
effectiveness of the final representations; Second,
the contribution of main-sememe and all-sememe
representations for LP may dynamically change
due to their own effectiveness or different relation
types, while the assignment of static weights usu-
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Figure 1: Illustration of the proposed SememeLP. By employing a three-stage fusion module to combine sememe
features with other features, SememeLP can generate more robust representations to enhance LP.

ally fails to deal with such variations; Third, se-
meme features are complementary to others, and
their relative importance varies across different LP
scenarios. Therefore, it is necessary to assess their
importance for more robust final representations
dynamically.

To address these challenges, we design a three-
stage fusion module:
Independent Gated Fusion (IGF) judges the ef-
fectiveness of main-sememe and all-sememe rep-
resentations, and uses vanilla representations to
refine them. Formally, two gates with the same
architecture are used to fuse r,, with each sememe
representation:

hi:giQTU"i'(l_gi)@r& (1)

where g; € R = o(MLP([r,;74])), and 7, €
{ra, Tm}, with [;] denoting concatenation, and o
denoting a sigmoid function. The outputs for r,
and r,, are denoted as h, and h,,, respectively.
Weighting Fusion (WF) performs a weighted fu-
sion of main-sememe and all-sememe representa-
tions for the final sememe knowledge representa-
tion. Formally, a weighting layer is employed for
combining h, and h,,

hy, = whg +wn by, (2)

where [wg, wy,] = softmax(MLP([hg; hy))).
Final Gated Fusion (FGF) combines sememe fea-
tures with other features for the final head-relation
and tail representations. Formally, a gate is used
for the final fusion of r, with h,,:

rr=g;OTy+(1—-g5) O hy, )

where g € R! = o(MLP([ry; hy; ha; hin)).
Through different fusion modules, we combine
hr with the sememe knowledge representations
of h, and r! with those of ¢. Despite sharing the

same architecture, these modules are designed for
different functions: the (h,r) module learns more
accurate mapping to the representation of gold tail,
while the ¢ module enriches the representation of £.

Subsequently, the prediction score of (h,r,t) is

computed as the cosine similarity of r’}r and 'rgc:
hr
Ty Ty
f(h,yrt) = “)
P31 - %l

4.2.2 Encoder for Sememe Knowledge
Representation

To obtain sememe knowledge representations, we
leverage definitions in the task of SP, as they often
align with sememe annotations for word senses. A
BERT-based model is used as the sememe knowl-
edge encoder E;, and fine-tuned on two SP tasks:
All-Sememe Prediction (ASP), for predicting all
sememes of a word sense, and Main-Sememe Pre-
diction (MSP), for predicting its main sememe.

Given a word sense definition d, we design an
input template with soft prompts (Hambardzumyan
et al., 2021; Qin and Eisner, 2021; Wang et al.,
2022b): "[CLS] [A1] [A2] ... [AL] [ASP] [M1]
[M2] ... [ML] [MSP] d [SEP]", where [A1]-[ML]
are learnable template tokens, with [ASP] and
[MSP] as classification tokens for ASP and MSP,
respectively. The last hidden states of [ASP] and
[MSP], denoted by h[asp; and h[uspj, are used
as the all-sememe representation r, and main-
sememe representation 7.

For ASP, we employ a multi-label classifier:

Pasp = U(Wasph'[ASP] + basp)a (5
where W, is a weight matrix, and b, is a bias
vector. The obtained p,, € R!S! contains predic-
tion scores for sememes in a pre-defined sememe
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set S. The loss function for ASP is:

1
Losw = ~Tg7 > logps+ Y log(1—ps) |,
SESy S%Sd
6)

where pj is the prediction score of s from p,,, and
Sy denotes the ground-truth sememe set.
For MSP, a multi-class classifier is used:

Dmsp = SOftmaX(Wmsph[MSP] + bmsp), @)

where W5, is a weight matrix, and b,y is a
bias vector. The obtained p,,,, € RIS contains
prediction scores for all sememes in S. The loss
function for MSP is:

['msp = —log pms, (8)

where p,,s is the prediction score for the ground-
truth main sememe ms.
The final loss function for SP is formulated as:

Esp = O‘*Casp + (1 - O‘)'Cmspa )

where « € [0, 1] controls the task weighting.

For analysis convenience, we also describe how
to obtain sememe labels predicted by FE as de-
tailed in Appendix E, while these labels are not
directly used by SememeLP.

4.2.3 Optimization by Previous LP Methods

Previous studies have demonstrated that effective
contrastive learning and further integration of struc-
tural information are crucial for the capability
improvement of PLM-based LP methods. En-
lightened by this insight, we enhance SememeL.P
with strategies from two top-performing models:
SimKGC (Wang et al., 2022a) and MoCoKGC (Li
et al., 2024). From SimKGC, we adopt: (1) three
negative sampling strategies (in-batch, pre-batch,
and self-negatives) for effective contrastive learn-
ing; (2) graph-based re-ranking to leverage struc-
tural information. From MoCoKGC, we adopt:
(1) momentum tail encoder and tail queue for
negative sampling; (2) neighborhood prompts to
incorporate structural information; (3) relation
prompts to enhance the inferential capabilities of
E},.. The two variants are named SememelPg;,,,
and SememeLPyoco-

For LP training, we use InfoNCE (Oord et al.,
2018) loss with additive margin (Yang et al., 2019):

e(f(hvrvt* ) _’Y)/T

e hri) =) /7 4 SOV () /77
(10)

Ly, = —log

WN1SRR
Method MRR Hits@1 Hits@3 Hits@10
TransE® 24.3 43 44.1 53.2
ConvE! 45.6 41.9 47.0 53.1
RotatE® 476 428 492 57.1
CompGCN 479 443 494 54.6
HittER 50.3 46.2 51.6 584
KG-BERT 21.6 4.1 30.2 524
StAR 40.1 243 491 70.9
CSProm-KG 57.5 522 59.6 67.8
SimKGC 67.1 58.5 73.1 81.7
StructKGC 69.6 623 74.1 82.7
MoCoKGC 74.2 66.5 79.2 88.1
SememeLPsim  68.2 (+1.6) 60.3 (+3.1) 73.3 (+0.0) 82.1 (+0.5)
SememelLPyvioco|75.1 (+1.2) 67.6 (+1.7) 79.8 (+0.5) 88.5 (+0.5)

Table 3: Main results (%) on WN18RR, where T denotes
the results from Wang et al. (2021a), and ® from Chen
et al. (2023). The overall best results are shown in bold,
with the best results in each category underscored. For
SememeLPg;y,, and SememeLPy;,co, the percentage im-
provements over SimKGC and MoCoKGC, respectively,
are shown in parentheses, with darker colors indicating
larger performance gains.

where v > 0 is the margin coefficient that encour-
ages higher scores for the correct triple (h, r,t*),
7 € [0, 1] is a learnable temperature parameter, and
N is the negative sample set.

S Experiments

5.1 Experimental Settings

Datasets: In the SP task, we separately split Chi-
nese and English SememeDef data into training
and validation sets by 19:1. In LP, three bench-
mark datasets, WN18RR, HN7, and CWNS35, are
utilized. For WNI18RR, textual information is
obtained from Yao et al. (2019). For HN7 and
CWNS5, following WN18RR, inverse relation test
leakage (Dettmers et al., 2018) is prevented by se-
lecting one relation type from each inverse pair
(e.g., either hypernymy or hyponymy). Despite
removing some relation types, the addition of 7!
for head prediction ensures that the resulting data
still covers all of them. The data is then split into
training, validation, and test sets by 8:1:1. Detailed
statistics are shown in Appendix F.

Baselines: On WN18RR, SememelP is com-
pared against two types of methods, including
embedding-based TransE (Bordes et al., 2013),
ConvE (Dettmers et al., 2018), RotatE (Sun et al.,
2019), CompGCN (Vashishth et al., 2020), Hit-
tER (Chen et al., 2021), and PLM-based KG-
BERT (Yao et al., 2019), StAR (Wang et al., 2021a),
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Method HN7 CWNS5

MRR Hits@1 Hits@3 Hits@10| MRR Hits@1 Hits@3 Hits@10
CompGCN 40.4 352 42.0 454 40.2 339 42.7 49.8
HittER 48.3 41.5 50.2 58.0 42.0 34.7 46.5 50.0
CSProm-KG 68.6 66.5 70.5 72.2 49.7 47.5 50.9 53.1
SimKGC 77.4 72.4 80.2 86.9 73.3 66.8 76.9 85.7
StructKGC 77.3 71.4 80.9 88.0 75.6 69.2 80.0 87.7
MoCoKGC 76.5 70.0 80.6 88.7 75.7 68.3 81.7 89.4
SememelPsim  |78.8 (+1.8) 74.3 (+2.6) 80.6 (+0.5) 87.1 -0.)[75.0 (+2.3) 69.1 (+3.4) 78.5 +2.1) 86.3 (-0.7)
SememeLPpioco [80.5 (+5.2) 74.6 (+6.6) 84.0 (+4.2) 91.8 (+3.5)|77.1 (+1.8) 69.2 (+1.3) 82.5 (+1.0) 90.6 (+1.3)

Table 4: Main results (%) on HN7 and CWNS5. The notations follow Table 3.

CSProm-KG (Chen et al., 2023), SimKGC (Wang
et al., 2022a), StructKGC (Lin et al., 2024), Mo-
CoKGC (Li et al., 2024). On HN7 and CWNS5,
we select top-performing methods on WN18RR as
baselines.

Evaluation Metrics: Following previous research,
we adopt the commonly used evaluation metrics,
including MRR, Hits@1, Hits@3, and Hits@10.
They are reported under the filtered setting (Bordes
et al., 2013), and computed by averaging over two
directions, head prediction and tail prediction.
Experimental Configuration: We fine-tune se-
meme knowledge encoders on SememeDef, select-
ing the best checkpoints to enhance LP based on
validation results®. During LP fine-tuning, to rea-
sonably evaluate the contribution of sememe knowl-
edge, the optimal parameter setup for SimKGC and
MoCoKGC is first searched for and determined.
Then, SememeLPg;,, and SememelPyioc adopt
the same settings of overlapping hyperparameters
as SimKGC and MoCoKGC, respectively. For fur-
ther details, please refer to Appendix G.

5.2 Main Results

The main test results are shown in Table 3 and 4.
From them, we have the following observations:
(1) From the overall results, SememeLPs;,, and
Sememel.Pyjoco achieve consistent improvements
on all datasets over SimKGC and MoCKGC, re-
spectively. Notably, SememeLPyj,co achieves the
best performance across all evaluation metrics,
with significant improvements of 0.9, 3.1, and 1.4
MRR points on WN18RR, HN7, and CWNS5, re-
spectively. This significant performance largely
benefits from sememe knowledge, which provides
a systematic framework for representing lexico-
semantic relations and helps learn more accurate
The best checkpoint for English achieves 68.2% MAP on

ASP and 64.4% F1 on MSP, while the Chinese one achieves
74.1% and 67.9%.

head-to-tail mappings across different relations;

(2) Among different evaluation metrics, our
method shows larger improvements in Hits@1 com-
pared to Hits@3 and Hits@10 (e.g., 1.7 vs. 0.8 and
0.5 on WN18RR for SememeLPyioco). This indi-
cates that the incorporation of more fine-grained
lexico-semantic knowledge particularly enhances
the model’s ability to make more precise predic-
tions among semantically similar candidates;

(3) Among different datasets, our method
achieves larger improvements on HN7 compared
to the others (e.g., 5.2 vs. 1.2 and 1.8 on MRR
for SememelLPyioco). This is because relations be-
tween word senses in HowNet are extracted based
on their sememe information. This intrinsic re-
lationship enables the model to leverage sememe
differences between related word senses more ef-
fectively for performance improvement.

6 Analysis

The significant performance of SememeLP demon-
strates that sememe knowledge largely benefits LP
for lexico-semantic KGs. To further investigate the
effectiveness and underlying mechanisms of the
method, detailed analyses are conducted to address
the following questions: (1) How does Sememel.P
perform on LP across different relation types? (2)
How robust are the sememe knowledge representa-
tions? (3) Why does the incorporation of sememe
knowledge enhance LP? (4) What is the contribu-
tion of different components in Sememel.P?

6.1 Analysis on the Effectiveness Across
Different Relation Types

To better understand the overall performance, we
conduct a fine-grained analysis on the results across
different relation types. As shown in Table 5, Se-
memeL.P shows improvement trends across all re-
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Dataset [Method |Anto. Hype. Hypo. Holo. Mero. Othr.

MoCoKGC| - 64.1 597 64.6 602 90.5
WleRRSememeLP‘ - 656 60.6 640 60.4 914
N7 [MoCoKGC| 925 820 39.7 787 40.0 558

SememeLP| 95.3 86.2 551 743 458 57.9
cwNs [MoCoKGC| 855 78.0 677 467 320 -

SememeLP| 919 767 648 57.3 347 -

Table 5: MRR results (%) across subsets for different
relation types. Anto., Hype., Hypo., Holo., Mero., and
Othr. are abbreviations of antonymy, hypernymy, hy-
ponymy, holonymy, meronymy, and others, respectively.
SememeLLP denotes SememeLPyoco.

Dataset [Method TT TF FT FF

|
MoCoKGC| 71.2 71.3 76.2 75.2
WNISRR SememeLP‘72.3 +1571.6 0977.1 +12)75.9 ¢+0.9)
HN7 MoCoKGC| 78.3 78.4 734 77.6
SememelLP|83.4 (+6.5)82.9 (+5.7)76.6 (+4.4) 80.5 (+3.7)
CWNS5 MoCoKGC| 68.4 67.2 65.8 _ 82.5
SememeLP|71.0 (+3.8)67.8 (+0.9)66.9 (+1.7)83.5 (+1.2)

Table 6: MRR results (%) across different definition
similarity scenarios. In column headers, the first T/F
denotes whether the head definition is highly similar to
some definition in SememeDef, and the second for the
tail. SememeLP denotes SememeLPyoco.

lation types®, while slight decreases are observed
in specific subsets on certain datasets. We further
discuss these cases by error analysis in Appendix I.

Notably, hypernym and holonym prediction
outperform hyponym and meronym prediction
across all datasets. This is due to hypernyms and
holonyms usually having unique answers, while
hyponyms and meronyms often involve many plau-
sible answers that would confuse the model.

6.2 Analysis on the Robustness of Sememe
Knowledge Representations

Considering that synset definitions in KGs may ap-
pear in the training set of SememeDef, we further
analyze the robustness of sememe knowledge rep-
resentations across different definition similarity
scenarios. Specifically, test triples are divided into
four groups according to whether their head/tail
definitions are highly similar (Jaccard Similarity >
0.5) to some definitions from SememeDef.

As shown in Table 6, SememeL Py, achieves
larger performance gains over MoCoKGC in TT,
attributed to more accurate sememe knowledge rep-

®Relations in WN18RR are categorized for clarity. De-
tailed information is shown in Appendix H.

Dataset | Group | Anto. Hype. Hypo.

Correct - 42.1 374
WNISRR ‘ Error - 30.7 339
Correct | 27.1 646 785
HN7 ‘ Error | 19.5 400 652
Correct| 20.5 63.6 66.8
CWNS ‘ Eror | 166 412 422

Table 7: Proportions (%) of samples satisfying sememe
difference patterns summarized by us. Correct/Error
denotes the group of samples where SememeLPy,co
ranks the ground-truth tail first or not.

resentations due to higher similarity with the train-
ing data. While the gains in other groups are rel-
atively smaller, SememeLPyjoc, still outperforms
MoCoKGC. The consistent improvements validate
the robustness of our method when confronted with
the lack of sememe annotations in KGs.

6.3 Analysis on Why Sememe Knowledge
Enhances LP

Word senses within lexico-semantic relations usu-
ally show systematic differences in the sememe
composition. Given the finite nature of sememes,
these compositional differences can be captured,
learned, and generalized feasibly. Intuitively, incor-
porating sememe knowledge can help models learn
more accurate head-to-tail mappings.

To verify this hypothesis, we analyze test sam-
ples with different top-1 predictions by MoCoKGC
and SememelLPyi,co, and divide them into two
groups based on the correctness. We then exam-
ine whether the predicted sememes for the head
and gold tail conform to the following difference
patterns: (1) For word senses within antonymy rela-
tion, there exists only one pair of sememes within
antonymy relation in their sememe annotations,
while the other sememes are identical; (2) For word
senses within hypernymy/hyponymy relation, the
sememes of hypernym are contained within the se-
memes of hyponym. As shown in Table 7, the Cor-
rect group consistently exhibits higher percentages
of samples satisfying these patterns than the Error
group. This indicates that the performance gains of
our method primarily stem from samples satisfying
systematic sememe differences, indirectly demon-
strating that by introducing such knowledge, the
model can learn to leverage these differences to
make reasonable predictions. To further illustrate
the contribution of sememe knowledge, we also
conduct case studies in Appendix I.
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Method \WNISRR HN7 CWNS5
SememeLPnioco W/0 all 74.4 79.1 75.8
SememeLPyioco W/0 main 74.7 803 77.1
SememeLPyioco 75.1 80.5 77.1

Table 8: MRR (%) results of ablation studies for se-
meme knowledge representations.

Method \ALL TT TF FT FF
BERT 746 72.5 71.0 76.8 75.3
SememelL.P w/ MLP fusion | 74.1 71.8 70.2 76.5 75.0
SememeLP w/o IGF 743 71.8 712 76.5 749
SememelL.P w/o WF 749 724 71.8 77.0 75.7
SememeLP w/o FGF 749 720 71.5 76.8 75.9
Sememel.P 75.1 723 71.6 77.1 75.9

Table 9: MRR (%) results on WN18RR for various
fusion methods across different definition similarity sce-
narios (similar to Section 6.2). In column headers, the
first T/F denotes whether the head definition is highly
similar to some definition in SememeDef, and the sec-
ond for the tail. SememeLLP denotes SememeLPyioco.

6.4 Ablation Studies

Sememe Knowledge Representations: To inves-
tigate the effectiveness of all-sememe and main-
sememe representations, we conduct ablation stud-
ies by removing each individually. As shown in
Table 8, both of them enhance the LP performance,
with the all-sememe representation contributing to
more significant improvements across all datasets.
This can be attributed to its ability to capture com-
prehensive features that help discriminate among
semantically similar candidates. In contrast, the
main-sememe representation can only provide ben-
eficial category constraints on predictions.

Fusion Module: To evaluate the necessity of the
three-stage fusion module, we compare it against
the following baselines: (1) a BERT-based one that
jointly feeds sememe tokens and definitions into
BERT; (2) replacing the three-stage fusion module
with an MLP-based one. Additionally, we attempt
to simplify the three-stage fusion by removing each
submodule, respectively, with the specific modifi-
cations as follows: a) removing IGF; b) removing
WF and adopting equal weights; c) removing FGF
and directly summing up the sememe and vanilla
representation.

As shown in Table 9, all these simpler meth-
ods show inferior overall performance compared
to the three-stage fusion, demonstrating that our fu-
sion strategy effectively combines complementary
features for performance improvement. Notably,

three baselines lacking IGF show significant perfor-
mance drops in the FF subset, where sememe fea-
tures tend to be less accurate than in other subsets.
This is because SememelLP occasionally fails to
filter out the noise in features without IGF, thereby
degrading the effectiveness of final representations.
This further demonstrates that our fusion strategy
helps enhance the model’s robustness.

7 Conclusions

This paper is dedicated to revealing how sememic
components can benefit LP for lexico-semantic
KGs. We first construct an SP dataset, SememeDef,
for learning such knowledge, and two Chinese
benchmarks, HN7 and CWNS5, for LP evaluation.
Then, we propose a method, SememeLP, to fully
leverage this knowledge for LP. It consistently and
significantly improves the performance across both
English and Chinese, achieving SOTA MRR of
75.1%, 80.5%, and 77.1% on WN18RR, HN7, and
CWNS5, respectively. Finally, an in-depth analysis
is conducted, revealing that SememeLP can lever-
age systematic sememic component differences be-
tween related word senses to improve prediction
accuracy. Our work provides promising progress
for the completion of lexico-semantic KGs, facili-
tating downstream tasks enriched by them.

In the near future, we will explore more ap-
proaches to utilize sememe knowledge for en-
hancing LP and investigate how this kind of
knowledge can benefit more lexico-semantic tasks,
such as Lexical Relation Classification (Ushio
et al., 2021; Pitarch et al., 2023), Lexical Entail-
ment (Moskvoretskii et al., 2024a,b), and Word
Sense Disambiguation (Hou et al., 2020; Wang
et al., 2024), particularly in annotation-scarce sce-
narios.

Limitations

Despite achieving significant results on LP, there
remain some limitations of our method as follows:
(1) The performance of SememeLP is limited by
the effectiveness of sememe knowledge represen-
tations. This is demonstrated by the evaluation re-
sults for LP, where SememeLP shows more signifi-
cant improvements on Chinese datasets compared
to English, attributed to the better performance
of Chinese SP than English. In low-resource lan-
guages, the sememe knowledge encoder may be
less accurate for modeling such knowledge, thereby
weakening the effectiveness of SememeLP;
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(2) The inconsistencies of taxonomy between
the lexico-semantic KG and sememe KB may also
affect the performance. This is demonstrated by the
results on the hypernymy and hyponymy subsets of
CWNS35, where SememelLP makes reasonable but
incorrect predictions due to the influence of the
HowNet taxonomy (detailed in Appendix I). Con-
sequently, in other benchmarks whose taxonomies
differ somewhat from HowNet, while SememelLP
makes reasonable predictions, its advantages may
not be clearly reflected in the evaluation metrics.
More appropriate evaluation metrics remain to be
explored and developed;

(3) Regarding the efficiency of training, Se-
memeLP requires fine-tuning an additional PLM to
represent sememe knowledge and relies on a fusion
module to integrate such representation with other
representations. This leads to more training time
and memory consumption compared to baseline
methods (detailed in Appendix J).

(4) SememeLP focuses on applying sememe
knowledge to enhance LP for lexico-semantic
KGs, while the effectiveness in factual KGs (e.g.,
biomedical KGs) remains underexplored. How-
ever, there are some gaps between the two types of
KGs, which may weaken SememeLP’s applicabil-
ity: In lexico-semantic KGs, nodes (word senses)
can be directly decomposed into sememes. In con-
trast, nodes in factual KGs often represent senses of
compound words or phrases (e.g., gene mutation),
which may require a multi-step decomposition (first
into word senses, and then sememes). Considering
this gap, it is necessary to incorporate a multi-step
semantic decomposition into SememeLP to further
boost its applicability in such domains.
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A Configuration for WSA

Table 10 presents the prompt template for WSA.
This prompt guides LLMs to identify semantic
consistency based on the information from both
resources: parts-of-speech (PoS), sememe annota-
tions, relations, and examples from HowNet, along
with PoS, definitions, and examples from CCD.
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FA1FZE R B HowNetFl (BUACTUE A #L) (CCD) Z [AHE L —E /) LIx - ERR FKIPAE, EIRANGE
TAIAA PR AT SRR AR I 2 8] A8 SCFRALLRE B« (We need to identify semantically consistent sense pairs between
HowNet and the Contemporary Chinese Dictionary. Please act as an expert evaluator to assess the semantic consistency
between the two senses for the given word from the two sources.)

45 17 {Word}, HFEHowNet 1) I {HowNet_ID}, FECCDHY X I{CCD_ID}:
HowNet sense {HowNet_ID} and CCD sense {CCD_ID}:)

(Given the word {Word}, its

{HowNet_ID}fE&.: (The information of {HowNet_ID}:)

1. 7AZEE R (PoS information:) {HowNet_PoS}

2. FEMMEE B (Sememe annotation information:) {Sememe_Annotation}
3. MR A(ER: (Lexico-semantic relation information:) {Relation}

4. FIEIE R, (Example information:) {HowNet_Example}

{CCD_ID}MEB.: (The information of {CCD_ID}:)

1. 1AEME B (PoS information:) {CCD_PoS}

2. BEXMFE.: (Definition information:) {Definition}

3. BRI B (Example information:) {CCD_Example}

TV A XIEE LR . (Please assess the semantic consistency between the two senses:)

PESFRIE [1-5]: (Rating scale [1-5]):

1 FEHAR - BT TR P& 5E & AN, (1: Very low - The two senses denote completely different concepts;)

2: fi% - B XIR RIS — 80, BRGA RIS E AR

denote obviously different concepts;)

3: B - NIER 2 ESE, ERERREER,
significant differences;)

4 1 - B SOTHA OB E AR, UEARER;

with subtle differences;)

(2: Low - The two senses show weak consistency but

(3: Medium - The two senses have partial overlap but show

(4: High - The two senses basically denote the same concepts

5. FEHE - B XIRR PR SE MR FIES (50 Very high - The two senses denote exactly the same concept.)

RBP4y (Your Rating Score:)

Table 10: Prompt template for identifying semantically consistent sense pairs between HowNet and CCD.

\humanl human2 human3 LLMs

humanl - 96.0 93.5 93.0
human2 | 96.0 - 95.5 94.0
human3| 93.5 95.5 - 97.5
LLMs 93.0 94.0 97.5 -

Table 11: Inter-annotator agreement (%) metrics among
LLMs and human annotators for WSA.

Each LLM is configured with a sampling temper-
ature of 0.6 and a top-p value of 0.95 to generate
three responses. We compute the mean of scores in
these responses as the final score from each LLM.

B Human Evaluation for WSA

To validate the reliability of LLM-scored sense
pairs, we randomly sample 200 ones and ask three
linguistics researchers to perform binary judgments
on their semantic consistency.

Table 11 shows that identifying semantically con-
sistent sense pairs is a relatively straightforward
task: there is substantial annotation consistency be-
tween LLMs and human annotators, as evidenced
by comparable pairwise agreements (i.e., human-

human: 0.935-0.960; human-LLM: 0.930-0.975).
We also check samples where human annotators
disagree with LLMs, finding that most errors are at-
tributed to issues of sense granularity. For example,
for the Chinese word "f&", HowNet defines it as
"a switchable mechanism on a device", while CCD
specifies "a switchable mechanism on a firearm".
In this case, LLMs mistakenly categorize these two
senses as semantically consistent. However, given
the low frequency of such errors, their impact on
overall performance is relatively limited.

C Configuration for Definition
Generation

We use GPT-40 (OpenAl et al., 2024) to generate
definitions for HowNet synsets with a temperature
of 0.6 and a top-p value of 0.95. The prompt tem-
plate is shown in Table 12.

D Details of HN7 and CWNS5

For orthographic consistency with other Chinese
datasets, we convert the data in CWNS from tradi-
tional Chinese to simplified Chinese by OpenCC’.

"https://github.com/BY Void/OpenCC
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28 € [F] 3L & {Synset_IDY}, 1B IRVIZE SOAEIR A — M Gr— R Sk, %08 OB RERS VERRIE TS BT S 1778 3t

Il B HIRZ LT L

core semantics shared by all words in this synset.)

A A FHBE XIS B (Available semantic information:)
1. B IEFRE X . (Definitions for each word:) {Definitions}
2. MEMMEE B (Sememe annotation information:) {Sememe_Annotation}

TESAERJEN: (Definition Generation Principles:)

1. B ORI SCREFL 22 [R] ST 48 7 BB 1A 8 mO 3L [R1E SC, ANES OUB T B B R R F I

(Given the synset {Synset_ID}, please provide a unified definition that accurately summarizes the

(Ensure that the

definition covers the common semantics of all words in the synset, without including special usages that belong only to
some words;)

2. B NREITEH T, #EEHIE10-20N N EFEZIH];

Chinese characters;)

3. G A R SR B AIRNESRAERE H B - (Avoid using words in the synset to explain itself.)

PRERE SCHA

(Your Definition:)

(Ensure that the definition is concise, typically between 10-20

Table 12: Prompt template for generating the definitions of synsets in HowNet.

Dataset Antonymy Hypernymy Hyponymy Holonymy Meronymy Material Product ALL

HN7
CWNS5

8,386
1,103

7,253
1,974

7,253
1,974

1,186
172

1,186
172

204

N/A

204
N/A

25,672
5,395

Table 13: Statistics for the number of triples in HN7 and CWNS across different relation types.

Dataset Head Synset Head Definition Relation  Tail Synset Tail Definition
{4, 2 (young)} TN, REM antonymy {37, & (old)} FYARE; FRKM
(young; immature) (old; aged)
{BZE (classroom)} RN FHEATH2ETE hypenymy (BT, FHE (room)} FEREIF 4L AE (£
BHI 1A (@ room in B BRI (a
a school where lessons building space enclosed
take place) by walls for habitation
HN7 or use)
(B, BE¥ (paragraph)) MRIESLENZL ST H holonymy  {IE3L (text)} ZAERIARIL (the main
FEXT ML HIER 4 (rel- body of a written work)
atively independent sec-
tions divided according
to the content)
(R (building) ) ANTLEERMEAANTAE material — (Fe3k < #% (brick)} AR L EH KA
75 EIERIAPT (man- TEFEF AR (rectangu-
made premises for pro- lar blocks of baked clay
duction and living) used for building)
(87, LN (woman)} 5 X F (a female antonymy {71, H N (man)) BB T (@ male
adulr) adulr)
(75 H 4= (highschool TR 2EMZ4E (high hypernymy {4, 24 (student)} TEZERNZESIHIAN (a
student)} school student) person who is studying
CWN5 at a school)
{FFF, BT (leaf)) Y #E 3F 48 B Z holonymy {1, 1 (plann)} ¥ HiTHIESF7. B

—, £FHTFL (one
of the organs of veg-
etation, growing from
stems)

NEEBHHED - (a
living organism that can
produce nutrients by its
own, and lack the power
of locomotion)

Table 14: Examples from HN7 and CWNS5 across different relation types.
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Dataset # Synset # Relation # Train # Valid # Test

WN18RR 40,943 11 86,835 3,034 3,134
HN7 10,939 4 13,624 1,702 1,703
CWNS5 3,149 3 2,600 324 325

Table 15: Statistics of three benchmark datasets,
WNI18RR, HN7, and CWNS, including the number
of synsets (# Synset), relation types (# Relation), and
triples in training (# Train), validation (# Valid), and test
(# Test) sets.

Table 13 shows the number of triples in HN7 and
CWNS5 across different relation types. Table 14
shows the examples from HN7 and CWNS across
different relation types.

E Acquisition of Sememe Labels

Formally, for the word sense definition d, the pre-
dicted sememe set S, is defined as:
Sa={s € Slps > 8}, (1D
where p; is the prediction score of s from p,, as
defined in Equation 5, and 4 is the prediction score
threshold.
The predicted main sememe s is defined as:

msq = arg maxpmsp[8]7 (12)

seS
where p,, ., [s] denotes the MSP score of s.
To maintain prediction consistency between ASP
and MSP tasks, we add msy into S;. The value
of § is determined by the mean of Fl-scores on

ASP and MSP in the validation set of SememeDef,
finally set to 0.45 for Chinese and 0.48 for English.

F Statistics for LP Benchmark Datasets

Table 15 shows the detailed statistics of the bench-
mark datasets. Following previous research, the
reported number of triples does not include those
with the removed relation types.

G Experimental Configuration

We adopt bert-base-uncased (Devlin et al., 2018) as
the base model for English SP and LP, while using
chinese-bert-base-wwm-ext (Cui et al., 2020) for
Chinese. All of these BERT models consist of 12
layers with 768 hidden units.

For the SP task, we employ negative sampling
during training to prevent excessive zero labels
from affecting learning effectiveness. The hyper-
parameters are shown in Table 16. The models are

Hyperparameter Value
epochs 50
learning rate Se-5
optimizer AdamW
task weight o 0.5
batch size 256
# negative samples 50
max # of tokens 64
soft prompt length 5

Table 16: The shared hyperparameters of the SP models
for English and Chinese.

evaluated every 250 steps on the validation set, with
the best checkpoint® selected for LP enhancement.

For the LP task, we adopt consistent configu-
rations across our models, setting the epochs to
30, learning rate to Se-5, initial temperature 7
to 0.05, InfoNCE margin + to 0.02, max num-
ber of tokens to 64, with the mean pooling and
AdamW (Loshchilov and Hutter, 2017) optimizer.
The number of hidden layers for each MLP in the
three-stage fusion module is set to 1, with the di-
mension set to double the input dimension. The
model-specific hyperparameters for SememeLPgi;y,
and Sememel.Pyjoco are aligned with SimKGC
and MoCoKGC, respectively. Specifically, we
first search for the best combination of hyper-
parameters for SimKGC and MocoKGC follow-
ing their original papers. Then, SememeLPg;,,
and SememeLPy;oc, adopt the same settings of
overlapping hyperparameters as SimKGC and
MoCoKGC, respectively. Detailed hyperparame-
ters for SImKGC and SememelLPs;,, are shown
in Table 17, while those for MoCoKGC and
Sememel.Py,c, are presented in Table 18. The
models are evaluated after each epoch on the val-
idation set, with the best-performing checkpoint
selected for the final evaluation on the test set. For
the other baselines, the hyperparameters shared
with SememeLLP are aligned consistently to ensure
a fair comparison, with the others following the
settings described in their original papers.

All experiments are conducted with the deep
learning framework PyTorch (Paszke et al., 2019)
on a single NVIDIA A100 GPU (80GB memory).

H Relation Type Categorization in
WNI18RR

In Subsection 6.1, the relations in WN18RR are cat-
egorized to facilitate parallel comparison with the

8The best checkpoint is determined by the mean of MAP
on ASP and F1 on MSP.
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Hyperparameter WNI18RR HN7 CWN5
batch size 1,024 1,024 512
negative sampling strategies IB IB, PB, SN 1B, PB, SN
weight for re-ranking 0.05 0.05 0.05
n-hop for re-ranking 5 3 3
pre-batch 0 2 2

Table 17: The shared hyperparameters of SImKGC and SememeLPg;,,, across different datasets. IB, PB, SN denote
in-batch, pre-batch, and self-negatives sampling strategies, respectively.

Hyperparameter WNI18RR HN7 CWNS
batch size 1,024 512 128
warmup 400 50 10
additional negatives 512 256 64
neighborhood sampling size 16 4 4
tail queue size 16,384 4,000 750
relation prompt length 4 4 4

Table 18: The shared hyperparameters of MoCoKGC
and SememeLPy;,c, across different datasets.

Relation in WN18RR Relation  # Triple
hypernym, instance_hypernym hypernymy 1,373
hypernym %, hyponymy 1,373

instance_hypernym !

has_part ™!, holonymy 425
member_meronym !

has_part, member_meronym meronymy 425
derivationally_related_form, others 2,672

verb_group, similar_to,
synset_domain_topic_of,
member_of_domain_usage,
member_of_domain_region,
also_see, and their inverse
relations

Table 19: Mapping of relations in WN18RR to the rela-
tion types. The notation ~! denotes the inverse opera-
tion of a relation type.

other two datasets. Detailed mapping information
is provided in Table 19.

I Case Studies

Sememel P achieves significant performance by
incorporating sememe knowledge. To better un-
derstand the value of such knowledge for LP,
we further illustrate this through case studies.
Examples of predictions from MocoKGC and
SememelPyjoco are shown in Table 20. From
them, we have the following observations:

(1) Lexico-semantic relations are reflected by
the differences of sememes. For example, the
antonymy relation between % it (unqualified arti-
ficial product) and 1E i (qualified artificial prod-

uct) is reflected by unqualified| N & #% and
qualified|& #%; the hypernym-hyponym rela-
tion between 7 2% (a utensil used for holding
articles) and 5%+ (a small shallow vessel for
holding food) is reflected by artifact| A\ L%
and edible| & %J; The holonym-meronym rela-
tion between Germany and Bonn is reflected by
country|[EZ and city| 7. By incorporating se-
meme knowledge, Sememel.Py;,c, makes more
reasonable predictions in these cases than Mo-
coKGC;

(2) The finite set of sememes enables these dif-
ferences to be generalized feasibly. For example,
in the training set of WN18RR, synsets within
holonym-meronym relations, such as {[lraly}-
{Rome} and { China}-{ Hangzhou} show systematic
differences in their sememes (i.e. country | [EZ
and city| 7). SememeLPy;,c, can thus transfer
this mapping to the meronym prediction for { Ger-
many}, and provide a more reasonable answer than
MoCoKGC;

(3) Sememe information highlights the core ele-
ments of word senses, which helps to alleviate the
problems of definitions. For instance, MoCoKGC
incorrectly predicts {Volgograd} as a part of {Ger-
many}, possibly due to the appearance of the word
German in its definition a city in the European part
of Russia on the Volga; site of German defeat in
World War 11 in the winter of 1942-43.

However, SememeLP fails to achieve perfor-
mance gains on some subsets of the datasets. We
further conduct an error analysis to discuss these
cases.

For the hypernymy and hyponymy subsets of
CWNS5, we observe that SememelLPyj,c, makes
some reasonable but incorrect predictions due to
the inconsistencies of taxonomy between CWN and
HowNet. As shown in Table 21, #4% (a teacher
who teaches at universities) is categorized as a type
of occupation in CWN, while it is viewed as a type
of human in HowNet. This stems from different
sense facet perspectives. It also indicates that con-
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({Germany}, meronymy, ?) from WN18RR

Head {Germany}
Definition: a republic in central Europe; split into East Germany and West Germany after World
War II and reunited in 1990
Sememes: {place |} 77, Europe|BX ¥, country|E &K, politics|E(, Germany|fZ [E,
properName | %}

Relation meronymy

{Bonn}

Definition: a city in western Germany on the Rhine River; was the capital of West Germany between
1949 and 1989

Sememes: {place|Hi /7, city |7, Germany | f2[E, properName| %'}

{Volgograd}

Definition: a city in the European part of Russia on the Volga; site of German defeat in World War
II in the winter of 1942-43

Sememes: {place|i /7, city |, Russia| % 7, properName| %'}

{Wiesbaden}
Definition: a city in western Germany; a spa since Roman times
Sememes: {place|H /7, city| T, Germany | %2 E, properName | %}

({J& {1}, antonymy, ?) from HN7

{J& i (waste product)}
Definition: /A% FIA TH#ll & (unqualified artificial product)
Sememes: {artifact| AT#), unqualified| NE#%))

Ground-Truth

MocoKGC

SememeLPyioco

Head

Relation antonymy

{1E & (qualified product)}
Definition: 7 & MEM A Tl 5 (qualified artificial product)
Sememes: {artifact| AL#), qualified|&#%})

{¥5 & (refined product)}
Definition: = i 5t 9N Tl 5 (high-quality artificial product)
Sememes: {artifact| AL#), refined|f§})

1E#h (qualified product)}

SememeL.Pytoco Definition: 7 & FRER A L 5 (qualified artificial product)

Sememes: {artifact| A T4, qualified| &/%))
({#%-F}, hypernymy, ?) from CWN5
{BEF (small plate)}

Ground-Truth

MocoKGC

Head Definition: B S0/ NRIEES L (a small shallow vessel for holding food)
Sememes: {tool | HE, put | &, edible| &)
Relation hypernymy

{28 (container)}
Definition: F3 225 i 25 B (a utensil used for holding articles)
Sememes: {tool | &, put |IXE, artifact| AT#)}

{FF, FRF (cup)}

Ground-Truth

MocoKGC Definition: Y BIFIRESIL (a cylindrical vessel for drinking)
Sememes: {tool|HH, put | &, drink | M, drinks |75
SememeLPoce (4%%% (container)}

Definition: T3 2250 i 28 B (a utensil used for holding articles)
Sememes: {tool|FHE, put |IXE, artifact| AT#)}

Table 20: Examples of top-1 prediction results from MocoKGC and SememeLPy,c, across different datasets. The
sememe information is predicted by our sememe knowledge encoder, with the first sememe denoting the main
sememe for the word sense.
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({waterfall}, holonymy, ?) from WN18RR

Head {waterfall}
Definition: a steep descent of the water of a river
Sememes: {waters|7KIg, flow| i}

Relation holonymy
{river}

Ground-Truth

Definition: a large natural stream of water (larger than a creek)

Sememes: {waters|/KIH, linear|%%)}

watercourse
SememeLPyioco { }

Definition: a natural body of running water flowing on or under the earth

Sememes: {waters|7KIm, flow| i, water|7K}

({#4%}, hypernymy, ?) from CWN5

Head {#BU% (professor)}
Definition: T8 TF K2EFIET (a teacher who teaches at universities)
Sememes: {human| A, occupation|HRf7, teach|#, education| (&}
Relation hypernymy

Ground-Truth {17, B, TIE (occupation)}

Definition: 7E1t% FETHHAERIHRSS (a role taken in society)

Sememes: {occupation|JR{L, affairs|ZE55, human| A, status| 54}

SememeLPyioco {5, A (employee)}

Definition: M\ 55 E TAERIA (a person who performs a specific job)

Sememes: {human| A, occupation|JR{iL, employ|/EH}

Table 21: Examples of incorrect top-1 predictions from SememeLPy;,c, across different datasets. The sememe
information is predicted by our sememe knowledge encoder, with the first sememe denoting the main sememe for

the word sense.

Dataset  Training Params Sememe Knowledge Params Training Time per Epoch MRR (%)
MoCoKGC WNI18RR 424M oM 8.6 min 74.2
SememeLPyioco WNISRR 552M 63M 8.9 min 75.1
MoCoKGC HN7 402M oM 1.0 min 76.5
SememelPnioco HN7 530M 17M 1.0 min 80.5

Table 22: Comparisons of model efficiency between MoCoKGC and SememeL.Pyco-

ventional evaluation metrics may not appropriately
assess the results in such cases.

For the holonymy subset of both WN18RR and
HN7, SememeLPy;,c, underperforms due to inac-
curacies of SP. Table 21 shows that for {waterfall},
SP fails to identify water|7K as the ground-truth
main sememe. This prevents SememeL Py, from
leveraging the meronym-holonym relation between
water|7K and waters | 7KI5, for correct prediction.

J Cost-Benefit Analysis

We quantify and compare the computational costs
of SememeLP and MoCoKGC under the same ex-
perimental condition (NVIDIA A100 GPU), as
shown in Table 22.

Due to employing additional fusion modules,
the training parameters of our method increase
by 128M. Additionally, SememeLP requires extra

memory consumption (63M for WN18RR and 17M
for HN7) to store the sememe features of nodes in
KGs. However, the training time per epoch does
not increase significantly (8.6min vs. 8.9 min for
WN18RR and 1.0min vs. 1.0 min for HN7), and
SememeLP achieves significant improvements of
0.9 and 4.0 MRR points on WN18RR and HN7,
respectively. In knowledge-intensive NLP tasks,
it is worthwhile to pay such a relatively limited
computational investment for introducing sememe
knowledge to benefit LP.

It should also be noted that our method re-
quires fine-tuning an additional sememe knowl-
edge encoder, with quantifiable training time:
2.5 min/epoch x 50 epochs for English and 1.6
min/epoch x 50 epochs for Chinese. However, this
is a once-for-all effort and is inappropriate to be di-
rectly counted as the fine-tuning cost for a specific
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LP dataset. We also find that introducing sememe
knowledge helps to accelerate convergence, as sup-
ported by validation performance trends at training
time, where SememeLP achieves the best perfor-
mance at the 14th epoch on WN18RR and 18th
epoch on HN7 compared to MoCoKGC’s 22nd and
23rd epoch. This offsets the time cost of training
the sememe knowledge encoder to a certain extent.
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