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Abstract

Code-mixed text—where multiple languages
are used within the same utterance—is increas-
ingly common in both spoken and written com-
munication. However, it presents significant
challenges for machine learning models due to
the interplay of distinct grammatical structures,
effectively forming a hybrid language. While
fine-tuning large language models (LLMs) such
as GPT-3, or Llama-3 on code-mixed data has
led to performance improvements, these mod-
els still lag behind their monolingual counter-
parts and incur high computational costs due to
the large number of trainable parameters.

In this paper, we focus on the task of sentiment
detection in code-mixed text and propose a Hy-
brid Language Model (HLM) that combines
a multilingual encoder (e.g., mBERT) with a
lightweight decoder (e.g., Sarvam-1) (< 3B pa-
rameters). Despite having significantly fewer
trainable parameters, HLM achieves sentiment
classification performance comparable to that
of fine-tuned Large Language Models (LLMs)
(> 7B parameters). Furthermore, our results
demonstrate that HLM significantly outper-
forms models trained individually, underscor-
ing its effectiveness for low-resource, code-
mixed sentiment analysis.

1 Introduction

Code mixing—the blending of two or more lan-
guages within a sentence or conversation—is com-
mon in multilingual communities. For instance,
a Hindi-English speaker might say, “Kal cricket
match haar gaye, so full day mood off raha” (which
translates to “We lost the cricket match yesterday,
so I was in an off mood the whole day”). Natu-
ral Language Processing (NLP) systems trained on
monolingual data often struggle with such inputs,
particularly for tasks like Sentiment Analysis (SA),
due to grammatical inconsistencies, transliteration
variations, and misspellings (Dhingra et al., 2016).

Encoder-only models like BERT (Devlin et al.,
2019), RoBERTa (Liu et al., 2019), and XL-
Net (Yang et al., 2019), pretrained on large-scale
unlabeled corpora, have achieved strong results
across a range of NLP tasks. Their multilingual
variants, when fine-tuned on code-mixed datasets,
outperform traditional models but still underper-
form compared to monolingual baselines (Sharma
et al., 2023).

Meanwhile, Large Language Models (LLMs)
such as GPT-3 (Brown et al., 2020), Llama (Tou-
vron et al., 2023), and Mistral (Jiang et al., 2023)
demonstrate impressive zero-shot and few-shot per-
formance, but are primarily optimized for English.
Multilingual LLMs like BLOOM (Le Scao et al.,
2023), mGPT (Shliazhko et al., 2022), Llama-
3 (AI@Meta, 2024), and Gemma-2 (Riviere et al.,
2024) attempt to bridge this gap. However, the
high inference cost and large memory footprint of
these models limit their applicability in real-time,
resource-constrained settings.

Encoder-based models are well-suited for clas-
sification tasks due to their bidirectional context
modeling via masked language objectives, whereas
decoder-only models prioritize sequential coher-
ence through autoregressive generation. Smaller
decoder models improve deployability but often
lack the discriminative power required for senti-
ment classification.

Motivated by recent advances in modular LLM
design (Wan et al., 2024b), we introduce a low-
parameter Hybrid Language Model (HLM) tailored
for sentiment detection in code-mixed text. HLM
integrates a multilingual encoder (e.g., mBERT
or XLM-RoBERTa) with a compact decoder (e.g.,
Sarvam-1 or Llama-3.2-1B), merging their repre-
sentations via a lightweight neural layer. This fu-
sion leverages the encoder’s deep contextual un-
derstanding and the decoder’s generative priors,
offering a balanced architecture for sentiment clas-
sification in code-mixed data.
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Figure 1: Architecture of HLM

The paper presents a novel architecture,
HLM, which achieves performance comparable
to Gamma-9B, the best-performing LLM on the
task—while using only 1.5 to 3 billion parameters.
The Results and Analysis section elaborates on and
compares our approach with the Late-fusion model
(Sharma et al., 2023), the state-of-the-art encoder-
based strategy for this task, as well as with various
LLMs. Notably, HLM models with as few as 1.5 to
3 billion parameters deliver sentiment classification
results comparable to, or better than, those of LLMs
with 7 to 9 billion parameters and the Late-fusion
model (see Table 2 and Table 3). Despite hav-
ing significantly fewer trainable parameters than
conventional LLMs, HLM achieves competitive
performance on code-mixed sentiment detection
benchmarks. More importantly, its modularity and
efficiency make it ideal for real-world applications
where compute resources are limited—such as on-
device inference or deployment in multilingual re-
gions with low-resource infrastructure. Our exper-
iments demonstrate that HLM not only narrows
the gap with large-scale models but also provides a
practical path forward for scalable and accessible
code-mixed NLP.

2 Related Work

Early research on code-mixed text focused on
dataset creation and encoder-based modeling.
Benchmarks like GLUECoS (Khanuja et al., 2020)
and LINCE (Aguilar et al., 2020) established stan-
dardized evaluation tasks, while datasets from
Patwa et al. (2020) and Chakravarthi et al. (2020b)
supported sentiment analysis in English-Hindi,
English-Spanish, and Tamil-English.

Multilingual encoders such as mBERT showed
improvements over monolingual models on code-
mixed data (Fazili and Jyothi, 2022). To address
data scarcity, several works explored synthetic gen-
eration using prompting strategies with multilin-
gual LLMs (Yong et al., 2023; Kartik et al., 2024).

Architectural innovations have also emerged.

Sharma et al. (2023) proposed late fusion of model
predictions, while Das et al. (2023) introduced
modified MLM objectives and structural changes
to better handle code-switching. More recently,
Huzaifah et al. (2024) provided a thorough evalua-
tion of LLMs on code-switched translation. Wan
et al. (2024a) and Zhang et al. (2023) investi-
gated combining and analyzing multilingual LLMs
across tasks. Our work contributes to architectural
innovation while achieving improved performance.

3 Methodology

We propose a Hybrid Language Model (HLM) for
sentiment detection in code-mixed text by com-
bining a multilingual encoder with a lightweight
decoder. Figure 1 illustrates the architecture of
our approach. Given an input sentence x =
{w1, w2, . . . , wT }, we tokenize it separately for
the encoder and decoder models, producing xenc
and xdec.

The encoder (e.g., mBERT) produces contextual
embeddings Henc ∈ RT×henc , while the decoder
(e.g., Sarvam-1) outputs Hdec ∈ RT ′×hdec . We
apply mean pooling over each sequence to obtain
sentence-level representations:

zenc = MeanPool(Henc), zdec = MeanPool(Hdec)

The pooled embeddings are concatenated to
form a joint representation z = [zenc; zdec], which
is passed through a feedforward classifier (fcls)
with a softmax output layer to predict sentiment
probabilities:

ŷ = Softmax(fcls(z))

We train the model using the standard cross-
entropy loss between ŷ and the gold label y.
This hybrid formulation captures complemen-
tary strengths—contextual understanding from
the encoder and generative priors from the de-
coder—resulting in efficient and effective senti-
ment classification for code-mixed text.
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4 Experiment Setup

We evaluated our hypothesis using four code-
mixed sentiment datasets: the Romanized English-
Hindi (ENG-HIN) dataset (Patwa et al., 2020),
which is part of the LINCE benchmark (Aguilar
et al., 2020) (20K tweets scraped via Twitter
API using a curated list of 10786 Hindi word to-
kens, split into 14 K train, 3K dev, 3K test with
Positive/Negative/Neutral classes); the English-
Spanish (ENG-SPA) dataset (Aguilar et al., 2020)
(18.8K tweets from Twitter and CALCS workshop
corpora (Pratapa et al., 2018), split into 12194
train, 1859 dev, 4736 test with 31.5% Positive,
25.7% Negative, 42.8% Neutral); the English-
Telugu (ENG-TEL) dataset (Kusampudi et al.,
2021) (19.9K instances collected via Twitter API
and YouTube Comments API on movie-related
topics, split into 80–10–10 train/validation/test ra-
tio with 39.9% Positive, 38.8% Negative, 21.3%
Neutral); and the English-Malayalam (ENG-MAL)
dataset (Chakravarthi et al., 2020a) (5.9K YouTube
comments on Malayalam movie trailers, annotated
by volunteers with Krippendorff’s alpha > 0.8,
split into 4204 train, 480 dev, 1171 test with Pos-
itive/Negative/Neutral classes). Table 1 presents
the dataset statistics. The preprocessing details for
ENG-MAL are included in the Appendix A.1

Dataset Train Validation Test

ENG-HIN 14,000 3,000 3,000
ENG-SPA 12,194 1,859 4,736
ENG-MAL 4,204 480 1,171
ENG-TEL 15,893 1,987 1,986

Table 1: Data split statistics for different datasets

4.1 Baselines

Encoder-only Models. Following the fine-tuning
setup of Devlin et al. (2019), we add a linear classi-
fication head with softmax activation on top of each
encoder model. All parameters are updated during
training using the cross-entropy loss. We evaluate
two widely used encoder-only models: mBERT
and XLMR (Conneau et al., 2020). Table 3 reports
the performance results across all datasets.

Large Language Models (LLMs). We also eval-
uate decoder-only LLMs under both zero/few-shot
and fine-tuning settings. For fine-tuning, we adopt
the Q-LoRA framework (Dettmers et al., 2023),

which updates a small number of quantized low-
rank matrices, significantly reducing computational
cost. These matrices are integrated into the base
model using low-rank parameterization of the orig-
inal weight matrices. The LLMs are fine-tuned
to generate the sentiment label corresponding to a
given input sentence. Prompts used during training,
validation, and testing are listed in Appendix A.2.
Our experiments include Q-LoRA fine-tuning on
Llama-3 (8B), and Gemma-2 (9B). We also fine-
tune their instruction-tuned variants.

Late Fusion. We also compare with the Late Fu-
sion technique (Sharma et al., 2023; Colnerič and
Demšar, 2020), which combines predictions from
two encoder-only models via a neural layer to pro-
duce a unified output. We follow the experimental
configuration described in the original work to re-
implement this baseline for sentiment classification
and to facilitate a fair comparison with our pro-
posed HLM model.

Dataset LLM Models 0-shot 5-shot FT F1

ENG-HIN

Llama-3 8B 43.47 64.16 75.01
Llama-3.1 8B Instruct 37.93 66.40 74.03
Gemma-2 9B 40.41 39.97 75.49
Gemma-2 9B Instruct 43.96 68.68 74.77

ENG-SPA

Llama-3 8B 16.24 54.12 59.25
Llama-3.1 8B Instruct 41.96 51.69 56.34
Gemma-2 9B 11.77 41.05 57.03
Gemma-2 9B Instruct 21.51 47.58 59.03

ENG-MAL
Llama-3 8B 43.37 59.09 75.89
Llama-3.1 8B Instruct 41.76 58.81 75.65
Gemma-2 9B 22.78 63.65 76.21
Gemma-2 9B Instruct 27.858 59.93 75.41

ENG-TEL
Llama-3 8B 26.94 61.41 84.41
Llama-3.1 8B Instruct 23.12 56.86 84.57
Gemma-2 9B 7.52 56.09 85.34
Gemma-2 9B Instruct 29.81 59.73 85.63

Table 2: Performance comparison of LLMS for ENG-
HIN, ENG-SPA, ENG-MAL and ENG-TEL SA datasets
showing 0-shot, 5-shot and FT(Finetuned) F1 Scores.

4.2 Hybrid Language Model (HLM)

In our HLM setup, sentence representations are
extracted from the encoder and decoder models.
These representations are fused and fed into a neu-
ral network, where the initial layer consists of
zenc+zdec neurons the final output layer consists of
three neurons, each representing a sentiment class.

Training is performed using the Adam opti-
mizer (Kingma and Ba, 2017). We also sweep over
learning rate and number of training epochs, select-
ing the best configuration using validation loss.The
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Dataset Encoder Decoder Total Params Encoder F1 Decoder F1 LateFusion F1 HLM F1

ENG-HIN

mBERT
Gemma-2 2B 2.72B 68.42 73.69 68.96 74.54
Llama-3.2 3B 3.32B 68.42 69.82 68.45 73.36
Sarvam-1 2.64B 68.42 67.86 68.59 72.79

XLMR
Gemma-2 2B 2.88B 70.04 73.69 69.10 74.27
Llama-3.2 3B 3.49B 70.04 69.82 69.65 73.21
Sarvam-1 2.81B 70.04 67.86 68.73 72.44

ENG-SPA

mBERT
Llama-3.2 3B 3.32B 56.89 58.05 54.50 58.17
Llama-3.2-1B 1.35B 56.89 57.89 53.93 58.16
Gemma-2 2B 2.72B 56.89 54.91 54.56 57.01

XLMR
Llama-3.2-1B 1.51B 57.21 57.89 52.91 58.69
Llama-3.2 3B 3.49B 57.21 58.05 57.22 58.52
Gemma-2 2B 2.88B 57.21 54.91 54.81 58.04

ENG-MAL

mBERT
Llama-3.2 3B 3.32B 73.85 73.19 73.78 76.35
Sarvam-1 2.64B 73.85 73.28 74.46 74.78
Gemma-2 2B 2.72B 73.85 72.82 73.15 74.77

XLMR
Llama-3.2 3B 3.49B 70.38 73.19 72.58 75.18
Gemma-2 2B 2.88B 70.38 72.82 69.78 74.01
Sarvam-1 2.81B 70.38 73.28 70.41 73.86

ENG-TEL

mBERT
Llama-3.2 3B 3.32B 82.24 82.94 83.62 84.40
Gemma-2 2B 2.72B 82.24 83.86 83.01 83.97
Sarvam-1 2.64B 82.24 82.16 82.99 84.19

XLMR
Sarvam-1 2.81B 83.33 82.16 83.83 84.69
Llama-3.2 3B 3.49B 83.33 82.94 84.04 84.49
Gemma-2 2B 2.88B 83.33 83.86 84.13 83.90

Table 3: presents a comparative analysis of different fusion strategies across model combinations for the ENG-HIN,
ENG-SPA, ENG-MAL, and ENG-TEL datasets. For each dataset, the highest F1 score achieved by the HLM is
highlighted in bold.

weight parameters of both the models and feedfor-
ward classifier (fcls) are iteratively updated during
the optimization process. Full hyperparameter de-
tails are provided in Appendix A.3. Performance
is reported using the weighted F1 score.

5 Results and Analysis

Table 2 and Table 3 present sentiment analysis re-
sults using LLMs and fusion-based techniques, re-
spectively.

Table 2 shows that fine-tuning LLMs on task-
specific data consistently outperforms zero-shot
and few-shot settings. For instance, on the ENG-
HIN dataset, the Gemma-2 9B model achieves the
highest F1 score of 75.49 when fine-tuned. Simi-
larly, Llama-3 8B performs best on ENG-SPA with
an F1 score of 59.25, and Gemma-2 9B Instruct ob-
tains the best result on ENG-TEL with an F1 score
of 85.63. For ENG-MAL, Gemma-2 9B obtains an
F1-Score of 76.21.

Encoder-based models like mBERT typically
contain between 100 and 200 million parameters,
whereas decoder-only LLMs generally range from
7 to 9 billion parameters. To strike a balance
between performance and efficiency, we present
results using a low-parameter Hybrid Language
Model (HLM), which combines an encoder with

a lightweight decoder LLM. This design provides
a more parameter-efficient alternative to full LLM
fine-tuning while maintaining strong performance
on sentiment analysis tasks.

Table 3 reports results for our Hybrid Language
Model (HLM) across various encoder–decoder
model combinations, alongside the Late Fusion
approach (Sharma et al., 2023), which combines
predictions from two encoder-only models. The En-
coder and Decoder columns list the specific models
used in each HLM configuration and the individual
fine-tuning results in the columns Encoder F1 and
Decoder F1. Total Params indicates the combined
parameter count of the encoder and decoder. The
final column, HLM F1, reports the performance
after fusing their representations in our hybrid ar-
chitecture.

Table 3 shows that HLM consistently outper-
forms individual encoder and decoder models, as
well as the Late Fusion baseline, across most con-
figurations. On ENG-HIN, HLM achieves strong
gains with mBERT and Gemma-2 2B, and per-
forms competitively with the much larger Gemma-
2 9B, achieving an F1 score of 74.54 versus 75.49.
On ENG-SPA, HLM outperforms Late Fusion in
all cases; the XLMR + Llama-3.2 1B setup reaches
58.69 F1, slightly poorer compared to Llama-3 8B
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model’s 59.25 despite having less than a quarter
of the parameters. Sarvam-1 is omitted from this
setting due to its Indian language focus.

For ENG-MAL, HLM outperforms all individ-
ual models, with the mBERT + Llama-3.2 3B pair-
ing surpassing even Gemma-2 9B. On ENG-TEL,
HLM achieves 84.69 F1 with XLMR + Sarvam-1,
compared to Gemma-2 9B Instruct’s 85.34 while
using nearly 70% fewer parameters. HLM yields
statistically significant results compared to individ-
ual models using a paired t-test.

The HLM architecture demonstrates a signifi-
cant advancement over prior fusion techniques such
as Late Fusion (Sharma et al., 2023), which are
typically constrained to combining homogeneous
models—most commonly, dual encoder-based sys-
tems. In contrast, HLM enables the integration
of heterogeneous components, such as pairing a
encoder with a lightweight decoder, thereby offer-
ing greater architectural flexibility. As evidenced
by the results in Tables 2 and 3, large language
models (LLMs) already demonstrate superior per-
formance compared to Late Fusion. however, HLM
further elevates this performance by effectively fus-
ing sentence-level representations across diverse
architectures. This not only mitigates the parame-
ter overhead associated with scaling up LLMs but
also achieves results on par with, or superior to,
significantly larger models.

6 Conclusion

We propose a parameter-efficient Hybrid Lan-
guage Model (HLM) for sentiment analysis on
code-mixed text, combining an encoder with a
lightweight decoder. HLM consistently outper-
forms individual models and the Late Fusion base-
line, while achieving performance comparable to
large-scale LLMs. Despite using only 1.5–3 billion
parameters, HLM matches or exceeds models with
7–9 billion parameters in weighted F1 score across
multiple benchmarks. These results highlight HLM
as a practical alternative to full LLM fine-tuning,
offering competitive accuracy with significantly
lower computational cost.

7 Limitations

In this work, we focus exclusively on sentiment
analysis due to computational resource constraints.
Exploring the effectiveness of HLMs on other re-
lated tasks such as emotion or sarcasm detection is
left for future work. Additionally, extending HLMs

to handle sequence generation tasks presents an
interesting and non-trivial challenge for future ex-
ploration.

8 Ethical Considerations

Deployments of sentiment analysis systems to
code-mixed data pose deep ethical questions that
go beyond technical performance criteria. Code-
mixed groups—typically comprising marginalized
linguistic minorities—are at risk of having their cul-
tural forms commodified without their agreement
or equitable representation in training sets that over-
whelmingly sample urban, digitally engaged pop-
ulations. Our HLM design, though competitive in
performance with reduced parameters, inherits pos-
sible biases from multilingual encoders trained on
unbalanced corpora and may encode stereotypes re-
garding code-switching linguistic ability. The inter-
action of two or more languages in individual utter-
ances brings difficult privacy expectations, as users
might expect varying degrees of confidentiality de-
pending on their language options, while existing
consent channels do not recognize these multilin-
gual environments. As such systems gain a larger
role in content moderation and social media anal-
ysis, we support community-based development
practices that protect code-mixed sentiment anal-
ysis from being used to exploit the rich linguistic
communities it analyzes, with the need for constant
monitoring of bias, culturally-sensitive evaluation
metrics, and meaningful interaction with impacted
language communities throughout the system life
cycle
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A Appendix

A.1 Data Preprocessing
In the ENG-MAL dataset described in
(Chakravarthi et al., 2020a), five sentiment

14814

https://api.semanticscholar.org/CorpusID:270843326
https://api.semanticscholar.org/CorpusID:270843326
https://doi.org/10.18653/v1/2023.findings-emnlp.430
https://doi.org/10.18653/v1/2023.findings-emnlp.430
https://arxiv.org/abs/2401.10491
https://arxiv.org/abs/2401.10491
https://aclanthology.org/2023.calcs-1.5/
https://aclanthology.org/2023.calcs-1.5/
https://aclanthology.org/2023.calcs-1.5/
https://doi.org/10.18653/v1/2023.emnlp-main.774
https://doi.org/10.18653/v1/2023.emnlp-main.774


classes are defined. However, for our work, We
preprocessed the ENG-MAL dataset by filtering
out sentences labeled as not-Malayalam. The
resulting data set contains instances classified into
positive, negative and neutral sentiment classes.

A.2 Prompts for LLMs

the prompt utilized for SA training and validation
data is shown in Figure 2 and for test data is shown
in Figure 3.

Analyze the sentiment of the news headline
enclosed in square brackets. Determine if it
is positive, neutral, or negative, and return the
answer as the corresponding sentiment label:
"positive", "neutral", or "negative".

[{text}] = {label}

Figure 2: Prompt utilized for fine-tuning the LLMs on
the train and validaion data for SA task

Analyze the sentiment of the news headline
enclosed in square brackets. Determine if it
is positive, neutral, or negative, and return the
answer as the corresponding sentiment label:
"positive", "neutral", or "negative".

[{text}] = {}

Figure 3: Prompt utilized for fine-tuning the LLMs on
the test data for SA task

A.3 Hyper Parameters

We have performed hyper-parameter tuning for the
learning rate (lr) and number of epochs, select-
ing the optimal values based on the validation set.
We achieved lr: 1e−5 for encoder models, 5e−4

for LLMs and HLM. The number of epochs var-
ied depending on the specific model used, with
each model requiring a different amount of train-
ing time to converge effectively. We used Q-LoRA
fine-tuning for the LLMs with the alpha, rank, and
dropout parameters. We experimented with two
different ranks, 16 and 64, to adjust the number of
low-rank adapters used for fine-tuning. We tested
alpha values of 16 and 32, which control the scal-
ing factor for the low-rank adapters. We applied a
dropout rate of 0.05 across all LLMs to help pre-
vent overfitting during training. For late fusion, we

have used the default values mentioned in (Sharma
et al., 2023)

For HLM, we used a neural network comprising
an input layer of size zenc + zdec, followed by three
hidden layers with dimensions 768, 256, and 64 re-
spectively, and an output layer of 3 neurons (one for
each sentiment category). Dropout layers were also
incorporated into the network to improve regular-
ization In HLM For low-parameter LLM, we used
Q-Lora with alpha: 32, rank: 64, dropout: 0.05.
We have trained HLM using Adam Optimizer with
lr: 1e−5 for ENG-SPA, ENG-HIN, ENGTEL and
lr: 5e−5 for ENG-MAL. Table 4, 5, 6, 7 present
the hyperparameters employed for various model
combinations across all datasets. Table 8 represents
number of trainable parameters for the HLM.

MODEL batch max len epochs
(mBERT, Gemma-2-2b) 8 128 2
(XLMR, Gemma-2-2b) 4 256 2
(mBERT, Llama-3.2-3b) 4 256 3
(mBERT, Sarvam-1) 4 128 3
(mBERT, Sarvam-0.5) 8 128 3
(XLMR, Sarvam-1) 4 256 2
(XLMR, Llama-3.2-3b) 4 256 2

Table 4: Hyperparameters for ENG-HIN data

MODEL batch max len epochs
(BERT, Gemma-2-2b) 8 128 5
(BERT, Llama-3.2-1b) 4 128 4
(BERT, Llama-3.2-3b) 4 256 5
(XLMR, Gemma-2-2b) 4 256 2
(XLMR, Llama-3.2-3b) 4 256 4
(XLMR, Llama-3.2-1b) 4 256 4

Table 5: Hyperparameters for ENG-SPA data

MODEL batch max len epochs
(XLMR, Llama-3.2-3b) 4 128 5
(mBERT, Llama-3.2-3b) 4 128 5
(mBERT, Gemma-2-2b) 4 128 5
(XLMR, Gemma-2-2b) 4 128 4
(XLMR, Sarvam-1) 4 128 2
(mBERT, Sarvam-1) 4 128 3

Table 6: Hyperparameters for ENG-MAL data

MODEL batch max len epochs
(XLMR, Llama-3.2-3b) 4 256 2
(mBERT, Llama-3.2-3b) 4 128 3
(mBERT, Gemma-2-2b) 4 128 3
(XLMR, Gemma-2-2b) 6 128 2
(XLMR, Sarvam-1) 4 128 2
(mBERT, Sarvam-1) 4 128 2

Table 7: Hyperparameters for ENG-TEL data
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MODELS Trainable Params
(XLMR, Llama-3.2-3b) 376M
(mBERT, Llama-3.2-3b) 207M
(mBERT, Gemma-2-2b) 193M
(XLMR, Gemma-2-2b) 364M
(XLMR, Sarvam-1) 365M
(mBERT, Sarvam-1) 205M
(XLMR, Llama-3.2-1b) 324M
(mBERT, Llama-3.2-1b) 155M

Table 8: Table represents number of trainable parame-
ters for HLM

A.4 Computation and Memory Stats
For the ENG-HIN, ENG-TEL, and ENG-SPA
datasets, the HLM model required an average train-
ing time of approximately 16.57 minutes per epoch,
whereas the large LLMs took around 40 minutes
per epoch. In the case of ENG-MAL, which has
fewer training instances, HLM trained significantly
faster, averaging 4.01 minutes per epoch compared
to 8.24 minutes for the LLMs. Additionally, HLM
was more resource-efficient, requiring 24 GB of
GPU memory, while the large LLMs needed 40
GB.

A.5 Device Specifications
All experiments were conducted on a workstation
equipped with an NVIDIA GeForce RTX A5000
GPU with 24GB of memory, utilizing CUDA for
parallel processing .

14816


