
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 1451–1463
November 4-9, 2025 ©2025 Association for Computational Linguistics

Enhancing Efficiency and Exploration in Reinforcement Learning for
LLMs

Mengqi Liao1,2, Xiangyu Xi2, Ruinian Chen2, Jia Leng2,
Yangen Hu2, Ke Zeng2, Shuai Liu1, Huaiyu Wan 1,3*,

1School of Computer Science and Technology, Beijing Jiaotong University
2Meituan

3Beijing Key Laboratory of Traffic Data Mining and Embodied Intelligence
*Correspondence: hywan@bjtu.edu.cn

Abstract

Reasoning large language models (LLMs) ex-
cel in complex tasks, which has drawn signif-
icant attention to reinforcement learning (RL)
for LLMs. However, existing approaches allo-
cate an equal number of rollouts to all questions
during the RL process, which is inefficient.
This inefficiency stems from the fact that train-
ing on simple questions yields limited gains,
whereas more rollouts are needed for challeng-
ing questions to sample correct answers. Fur-
thermore, while RL improves response preci-
sion, it limits the model’s exploration ability,
potentially resulting in a performance cap be-
low that of the base model prior to RL. To ad-
dress these issues, we propose a mechanism for
dynamically allocating rollout budgets based
on the difficulty of the problems, enabling more
efficient RL training. Additionally, we intro-
duce an adaptive dynamic temperature adjust-
ment strategy to maintain the entropy at a sta-
ble level, thereby encouraging sufficient explo-
ration. This enables LLMs to improve response
precision while preserving their exploratory
ability to uncover potential correct pathways.
The code and data is available on: https:
//github.com/LiaoMengqi/E3-RL4LLMs

1 Introduction

Large language models (LLMs) have gained con-
siderable attention for their capabilities across a
wide range of applications (Kumar, 2024). Re-
cently, advanced reasoning models trained with
reinforcement learning (RL) , such as DeepSeek-
R1 (Guo et al., 2025) and Kimi k1.5, (Team
et al., 2025) have demonstrated remarkable im-
provements in complex tasks like mathematics and
coding, further intensifying research interest in RL
for LLMs. After that, many works related to rein-
forcement learning for LLMs emerged (Xu et al.,
2025; Yu et al., 2025; Liu et al., 2025). Among
them, the most common combination is to use the
GRPO (Shao et al., 2024) algorithm or its variants

combined with rule-based rewards for reinforce-
ment learning.

However, rule-based rewards result in very
sparse reward signals. When the training data is
particularly challenging, the policy struggles to
sample the correct answer, causing the advantage
in the GRPO algorithm to become zero. In such
cases, the policy fails to obtain an update gradi-
ent. DAPO (Yu et al., 2025) filters out samples
with a within-group reward standard deviation of
zero to avoid zero advantage and employs multiple
rounds of online sampling until enough experience
is gathered for a single update. This approach is
highly inefficient because the cost of sampling ex-
periences is extremely high, yet this method results
in a substantial waste of rollouts.

What’s more, Yue et al. (2025) highlights that
during evaluation, while the RL model surpasses
the base model with a small sample size (small k),
the base model achieves superior pass@k perfor-
mance as the sample size increases (large k). This
occurs because reinforcement learning prioritizes
maximizing rewards, leading the model to focus
probabilities on high-reward paths, potentially ne-
glecting diverse correct answers. While encourag-
ing more exploration during training could poten-
tially mitigate this issue, our experiments reveal
that combining entropy regularization (Mnih et al.,
2016; Williams, 1992)—the widely adopted ap-
proach for fostering exploration in deep reinforce-
ment learning—with sparse rule-based rewards
can degrade performance, especially when training
with challenging questions, and may even result in
model collapse.

To address the aforementioned issues, we first in-
troduce a dynamic rollout budget allocation mech-
anism to enhance the training efficiency of RL. For
simple questions that the model can answer pro-
ficiently, we reduce their rollout budget, as per-
forming reinforcement learning on such problems
yields minimal gains. The saved rollout budget is

1451

mailto:hywan@bjtu.edu.cn
https://github.com/LiaoMengqi/E3-RL4LLMs
https://github.com/LiaoMengqi/E3-RL4LLMs

reallocated to more challenging problems, thereby
increasing the likelihood of obtaining correct an-
swers. Additionally, to promote exploration with-
out introducing harmful gradients, we propose a
temperature scheduler that dynamically adjusts the
temperature to maintain a stable policy entropy
level, thereby enabling more extensive exploration
during training. An annealing mechanism is fur-
ther integrated to effectively balance exploration
and exploitation. In summary, our contributions
are as follows:

• We propose a dynamic rollout budget alloca-
tion mechanism that enables a more rational
distribution of computational resources, allow-
ing RL to be conducted more efficiently.

• We introduce a temperature scheduler that dy-
namically adjusts the sampling distribution’s
temperature, maintaining the entropy at a sta-
ble level to encourage more exploration.

• Experimental results demonstrate that our
method improves the 7B model’s pass@1
by 5.31% and pass@16 by 3.33% on the
AIME 2024 benchmark compared to train
with GRPO only, and consistently outper-
forms GRPO in pass@16 across various
benchmarks.

2 Related Work

Reinforcement Learning for LLMs. Ouyang
et al. (2022) trains a reward model using prefer-
ence data and employs Proximal Policy Optimiza-
tion (PPO) (Schulman et al., 2017) to perform re-
inforcement learning on LLMs for alignment with
human preferences. Subsequently, many new ap-
proaches have employed reinforcement learning to
align LLMs with human preferences (Wang et al.,
2024). DeepSeekMath (Shao et al., 2024) proposed
the GRPO algorithm, which simplifies the train-
ing process of reinforcement learning and signifi-
cantly enhances the performance of LLMs in the
mathematical domain through RL. Subsequently,
DeepSeek-R1 (Guo et al., 2025) and Kimi k1.5
(Team et al., 2025) successfully demonstrated the
substantial impact of reinforcement learning com-
bined with rule-based reward sets in enhancing the
reasoning capabilities of models. Liu et al. (2025)
and Yu et al. (2025), among others, further intro-
duced improvements to optimization algorithms to
enhance training effectiveness.

Exploration and Exploitation in Reinforcement
Learning. Balancing exploration and exploitation
is a central challenge in reinforcement learning.
Common strategies include ε-greedy, Upper Confi-
dence Bounds (UCB), and Boltzmann Exploration
(Sutton et al., 1998). Boltzmann Exploration se-
lects actions based on a softmax probability distri-
bution proportional to the exponential of the esti-
mated values of actions, regulated by a tempera-
ture parameter τ . Similarly, LLMs generate tokens
using a softmax distribution. Asadi and Littman
(2017) introduced the Mellowmax operator to en-
hance the stability of Softmax, while Kim and
Konidaris (2019) applied meta-gradient reinforce-
ment learning to dynamically adjust temperature
parameter of Mellowmax for better exploration-
exploitation trade-offs. Moreover, Entropy Regu-
larization, a common technique in deep reinforce-
ment learning, adds an entropy term to the optimiza-
tion objective to encourage stochastic policies and
broader exploration (Williams, 1992). Apart from
these reinforcement learning-based methods, a self-
improvement approach Zeng et al. (2024) similarly
enhances training performance by maintaining the
exploration capability of the LLM through adjust-
ments among several discrete temperature levels.

3 Preliminary

3.1 Group Relative Policy Optimization
(GRPO)

We utilize the GRPO (Shao et al., 2024) algorithm
to optimize the policy πθ (LLMs). GRPO estimates
the advantage in a group-relative manner. Specifi-
cally, given a question-answer pair (q, a) ∼ D, the
old policy πθold generates G individual responses
{oi}Gi=1 and then optimizes the policy model by
maximizing the following objective:

JGRPO(θ) =E(q,a)∼D,{oi}Gi=1∼πθold (·|q)[
1

G

G∑

i=1

1

|oi|

|oi|∑

t=1

(
min

(
ri,t(θ)Âi,t,

clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t

)

− βDKL(πθ∥πref)
)]

, (1)

where ri,t(θ) =
πθ(oi,t|q,oi,<t)
πθold (oi,t|q,oi,<t)

and the advantage

Âi,t is computed as:

1452

Âi,t =
ri − mean({rj}Gj=1)

std({rj}Gj=1)
. (2)

Here, ri is the reward of response oi. The
term DKL(πθ∥πref) represents the KL divergence
penalty, which is used to prevent the policy from
deviating excessively from the initial policy πref.
Following prior work (Yu et al., 2025; Liu et al.,
2025), we do not employ this penalty term. There-
fore, we do not elaborate further on this detail.

4 Methodology

In this section, we first introduce our method for
modeling question difficulty and propose a dy-
namic rollout budget allocation mechanism to allo-
cate budgets based on question difficulty, improv-
ing training efficiency and the model’s ability to
answer complex questions. Next, we introduce a
temperature scheduler to maintain the policy en-
tropy, enhancing exploration, and further combine
it with an annealing mechanism to balance explo-
ration and exploitation.

4.1 Dynamic Rollout Budget Allocation

More challenging questions require a greater num-
ber of samples to obtain the correct answer. To
allocate computational resources more efficiently,
we transfer the rollout budget from simpler ques-
tions to more difficult ones, thereby enhancing the
model’s ability to address challenging problems.

We first introduce the method for modeling
question difficulty. The RL training dataset
D = {(q1, a1), (q2, a2), . . . , (q|D|, a|D|)} consists
of questions qi, their corresponding ground truth an-
swers ai. For each question qi, its cumulative roll-
out count nc

i and cumulative reward rci are recorded.
At the end of each dataset iteration, data points are
ranked by their average reward rci

nc
i
. The descend-

ing order of qi’s average reward is rank(qi), and its
normalized ranking is ki =

rank(qi)
|D| , where a larger

ki indicates higher difficulty.
After defining the difficulty of the questions, we

allocate the rollout budget based on the identified
difficulty levels. Specifically, we define the default,
minimum, and maximum sampling budgets as G,
Gmin, and Gmax, respectively. The sampling budget
Gi for question qi is determined based on ki, such
that larger ki values correspond to higher allocated
rollout budgets. The dynamic sampling budget
allocation process is detailed in Algorithm 1, which

Algorithm 1 Dynamic Rollout Budget

Require: A batch of rankings {k(1), . . . , k(B)}, G,
Gmax, Gmin

1: Total rollout budget Ntotal = B ×G
2: For i in {1, 2, . . . , B}, initialize G(i) = Gmin
3: Remaining rollouts budget Nrem = Ntotal −

B ×Gmin
4: For i in {1, 2, . . . , B}, G(i) = G(i)+ ⌊Nrem ×

k(i)∑B
j=1 k(j)

⌋
5: Nrem = Ntotal −

∑B
i=1G(i)

6: Distribute Nrem greedily based on descending
order of ki, respecting Gmax for each G(i)

7: return {G(1), . . . , G(B)}

ensures that the total rollout budget within a batch
remains constant.

To avoid inefficiencies in allocating higher bud-
gets to challenging questions under an undertrained
policy, Gmin and Gmax are initially set equal to G.
After each iteration of D, Gmax is gradually in-
creased, and Gmin is progressively decreased until
reaching predefined limits. This prevents overcom-
mitting resources to difficult questions prematurely
and is analogous to curriculum learning.

4.2 Temperature Scheduling to Promote
Exploration

In reinforcement learning, policies may converge to
local optima, hindering the discovery of the global
optimum. By adding an entropy regularization term
to the optimization objective, the strategy can be
encouraged to explore more state and action (Mnih
et al., 2016; Williams, 1992). The modified opti-
mization objective is given by:

J (θ) = JGRPO(θ)

+ λ E(q,a)∼D,{oi}Gi=1∼πθold (·|q)
H(πθ(oi|q)),

(3)

where H(πθ(oi|q)) represents the Shannon entropy
(Equation (6) for the specific definition) of the ac-
tion (token) sampling distribution from the policy,
and λ is the coefficient controlling the strength
of the regularization term. Entropy measures the
uncertainty of a distribution, providing an indica-
tion of the policy’s level of exploration. However,
rule-based rewards are very sparse. When the re-
wards of all rollouts for a question are identical,
the advantage Âi,t is zero, resulting in the gradient
of the GRPO optimization objective, ∇θJGRPO(θ),

1453

0 100 200 300 400 500
Step

0.5

0.6

0.7

0.8

0.9
En

tro
py

GRPO
GRPO + ER
GRPO + TS
GRPO + TS & AN

Figure 1: Smoothed entropy variations during training under different configurations. The curves represent the
mean values, while the shaded regions denote the standard deviation across multiple runs. Here, ER represents
entropy regularization, TS refers to the temperature scheduler, and AN indicates annealing. The red vertical line
indicates the step at which annealing begins.

0.6 0.8 1.0 1.2 1.4
Alpha

0.6

0.8

1.0

1.2

1.4

 E
nt

ro
py

 a
fte

r A
dj

us
t /

 E
nt

ro
py

 b
ef

or
e

Ad
ju

st Entropy before Adjust: 0.322
Entropy before Adjust: 0.937
Entropy before Adjust: 4.025
Entropy before Adjust: 7.014

0.6 0.8 1.0 1.2 1.4
Alpha

0.95

0.96

0.97

0.98

0.99

1.00

1.01

1.02

1.03

Ad
ju

st
ed

 Te
m

pe
ra

tu
re

Figure 2: The left figure illustrates the relationship between the scaling factor of Ht, after temperature adjustment,
and α. When the entropy is relatively small (the entropy magnitude of distribution for next token generation is
typically on the order of 10−1), the scaling factor closely approximates a linear relationship with α. The right figure
illustrates the relationship between τt+1 and α when τt = 1.

is zero. In such cases, the update of the policy
is primarily influenced by the gradient of the en-
tropy regularization term, ∇θH(πθ). As training
progresses, cases where the advantage equals zero
become more frequent (as the proportion of fully
correct rollouts increases), at which point the gradi-
ent of entropy regularization may potentially lead
to the gradual collapse of the policy.

Figure 1 shows the entropy evolution under dif-
ferent training setups. With GRPO alone, the pol-
icy’s entropy declines rapidly, reducing the explo-
ration of policy. The incorporation of entropy reg-
ularization effectively sustains higher entropy lev-
els, thus fostering more diverse policy exploration.
However, the experimental results in Section 5.3
show that the performance of the model trained
with entropy regularization is even worse than that
of the model trained with GRPO alone.
Temperature Scheduler. As discussed, although

entropy regularization helps maintain the entropy
of the policy, it may inadvertently introduce harm-
ful gradients. To address this, we propose a tem-
perature scheduler that adaptively adjusts the tem-
perature τ of the softmax distribution to maintain
policy entropy, ensuring stable exploration without
introducing additional gradients. We aim to control
the scaling of entropy by adjusting the tempera-
ture to maintain entropy at a stable level. However,
the relationship between entropy and temperature
is not linear. Fortunately, the entropy of the dis-
tributions for next token generation are typically
small. Under this premise, we can adjust the tem-
perature to precisely control entropy scaling using
the following formula:

τt+1 = τt ×
(
1 +

τt lnα

ln |V|+ ln (ln |V|)

)
, (4)

where α = Hinit
Ht

, with Hinit representing the aver-

1454

age entropy of the first batch, which is the desired
entropy level to maintain, and Ht denoting the av-
erage entropy at the current training step t. Addi-
tionally, |V| represents the vocabulary size of the
LLM.

Formula (4) ensures that the scaling factor of
entropy, after temperature adjustment, maintains
an approximately linear relationship with α, as il-
lustrated in Figure 2. This indicates that entropy
returns to the level of Hinit after the temperature
adjustment. The detailed derivation of Formula (4)
is provided in Appendix A. The temperature sched-
uler maintains the policy’s entropy consistently at
a stable level, as shown in Figure 1, thereby effec-
tively enhancing policy exploration. Moreover, it
is important to note that logits are also divided by
the temperature during forward propagation after
sampling, ensuring consistency between the LLM’s
distribution during training and sampling.
Annealing Mechanism. In the early stages of train-
ing, the policy requires sufficient exploration to
avoid premature convergence to suboptimal solu-
tions. As training progresses, we expect the policy
to increasingly focus on exploiting high-value ac-
tions, thereby optimizing its performance more ef-
fectively. To balance exploration and exploitation,
we introduce an annealing mechanism. Once the

training step t ≥ tanneal, α =
H

(t)
anneal
Ht

, where H
(t)
anneal

is calculated as follows:

H
(t)
anneal = Hinit ·

[
η + (1− η) · 1

2
(1+

cos(π · t− tanneal

tmax − tanneal
))

]
. (5)

Here, tmax is the maximum training steps, η ∈
[0, 1). Through this formula, We can gradually re-
duce the expect entropy level from Hinit to η ·Hinit.
As shown in Figure 1, by introducing annealing, the
entropy of the policy gradually decreases during
the annealing phase. This facilitates a smooth tran-
sition of the policy from a high-entropy exploratory
state to a lower-entropy exploitative state, ensur-
ing that the policy maintains sufficient exploration
during the early stages of training while gradually
becoming more focused and efficient as training
progresses.

5 Experiments

5.1 Setting
Training Datasets and Benchmarks. We fol-
low DeepScaleR (Luo et al., 2025) in selecting

MATH (Hendrycks et al., 2021), AIME 1983-2023
(of Problem Solving), Omni-MATH (Gao et al.,
2024), and AMC (prior to 2023) as our training
datasets. We follow Kimi K1.5 (Team et al., 2025)
to enhance RL training efficiency by balancing the
difficulty of the questions. In total, we collected
10k high-quality data points as the training set and
0.5k data points as the validation set. Further de-
tails are provided in Appendix B. We evaluate on
AIME 2024, AMC 2023, MATH 500 (Hendrycks
et al., 2021), and OlympiadBench (He et al., 2024).
Training Details. During sampling, the batch size
is 64, with the default number of rollouts per ques-
tion (G) set to 8. The sampling temperature is 1,
and the maximum response length is 6k. Training
is performed over 3 epochs on the 10k dataset, total-
ing 480 steps. We use DeepSeek-R1-Distill-Qwen
1.5B and 7B (Guo et al., 2025) as base models.
For the 1.5B model, the learning rate is 5× 10−6,
and for the 7B model, it is 2 × 10−6. The policy
update batch size is 64× 8, and experiences from
each sampling are used to update the policy only
once. For the 7B model, training was conducted on
8 NVIDIA A100 GPUs, requiring approximately
8 × 36 GPU hours per experiment. For the 1.5B
model, training was performed on 4 NVIDIA A100
GPUs, taking approximately 4 × 24 GPU hours
per experiment. To ensure the reliability of results
given the randomness in RL, each experiment was
repeated 3 times. The training code is adapted from
the VeRL framework (Sheng et al., 2024).
Evaluation Protocol. Unless otherwise specified,
for each question, we default to sampling 16 times
under the temperature of 1, with a maximum re-
sponse length of 6k tokens. We use pass@1 and
pass@16 (Chen et al., 2021) as our evaluation met-
ric. We report pass@16 because it reflects the
model’s potential to explore more solution paths
to solve the questions. The average metrics across
the 3 runs are reported.

5.2 Main Results
In this section, we compare our approach, which
integrates dynamic rollout budget allocation, tem-
perature scheduling, and annealing, with the base-
lines.
Baselines. We select GRPO (Shao et al., 2024) and
DAPO (Yu et al., 2025) as the baselines. Our pro-
posed method is based on GRPO, which justifies
its selection as a baseline. DAPO is a modified vari-
ant of GRPO, which filters out rollouts with zero
advantage and obtains experience through multiple

1455

Size Method
AIME 2024 AMC 2023 MATH 500 Olympiad-Bench Average

Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16

7B
GRPO 37.5 73.33 70.06 91.56 80.32 97.8 53.72 79.85 60.40 85.63
DAPO 36.87 70.0 67.77 95.18 77.63 97.39 50.50 80.88 58.19 85.86
Ours 42.81 76.66 70.20 93.57 81.09 98.33 53.70 82.02 61.95 87.64

1.5B
GRPO 24.66 59.76 60.73 88.79 72.97 95.86 46.33 74.66 51.17 79.76
DAPO 19.16 60.0 52.86 84.33 68.81 94.6 41.17 70.81 45.50 77.43
Ours 27.70 66.66 62.95 90.36 72.88 96.39 46.35 75.40 52.47 82.20

Table 1: Baseline comparison across different benchmarks.

0 100 200 300 400
Step

0.425

0.450

0.475

0.500

0.525

0.550

0.575

Ac
cu

ra
cy

GRPO
GRPO + TS
GRPO + TS & AN
GRPO + ER

Figure 3: The accuracy on the validation set dur-
ing training, with the shaded area representing the
variance across multiple runs. The red vertical line
indicates the step at which annealing begins.

0 100 200 300 400 500
Step

1.00

1.05

1.10

1.15

1.20

1.25

1.30

Te
m

pe
ra

tu
re

TS
TS & AN

Figure 4: The temperature variation during training
is presented for cases utilizing only the temperature
scheduler and for those combining the scheduler
with annealing.

rounds of online sampling. The general parameters
for GRPO and DAPO are kept consistent with our
method, while the DAPO-specific parameters are
set to their default values as specified in its original
paper.
Implementation Details. For dynamic rollout bud-
get allocation (DR), Gmax is increased by 2 and
Gmin is decreased by 2 after each epoch. For an-
nealing (AN), we test η ∈ {0.8, 0.85, 0.9}, observ-
ing instability for η = 0.8 and η = 0.85. Conse-
quently, η is set to 0.9, with the annealing start step
at ⌊0.6× tmax⌋.
Analysis. As shown in Table 1, for the 7B model,
our method achieves advantages of 5.31% and
3.33% in pass@1 and pass@16, respectively, on
the AIME benchmark. On other benchmarks,
our method also demonstrates significantly higher
pass@16 performance compared to GRPO, indi-
cating that the models trained with our method
possess greater exploratory potential. The models
trained with our method also achieve the best av-
erage pass@1 and pass@16 across the four bench-
marks. For the 1.5B model, our method exhibits
similar advantages, demonstrating a significant im-
provement on the AIME benchmark and achieving

the best average pass@1 and pass@16. The 1.5B
model trained with DAPO performs significantly
worse than those trained with other methods. This
may be due to the 1.5B model’s poor performance
at the early stages of training, requiring numerous
sampling rounds to gather enaugh experience for a
single update. This results in substantial data being
discarded, leading to its inferior performance. In
contrast, GAPO and our method allow for more fre-
quent policy updates, enabling faster improvement
in model performance and more effective utiliza-
tion of training data.

5.3 The Impact of the Temperature Scheduler
and Annealing

In this section, we analyze the impact of the tem-
perature scheduler (TS) on the training of rein-
forcement learning, and compare it to entropy reg-
ularization (ER). For entropy regularization, λ is
set to 1 × 10−4. For smaller benchmarks (AIME
2024 and AMC 2023), 128 answers per problem
are sampled. For larger benchmarks (MATH 500
and Olympiad-Bench), the default sampling size of
16 is used.
Temperature Scheduler Maintains Entropy at a

1456

2 4 8 16 32 64 128
k

30

40

50

60

70

pa
ss

@
k

AIME 2024

GRPO
GRPO+ER
GRPO+TS
GRPO+TS+AN

Figure 5: Pass@k on AIME 2024

8 16 32 64 128
k

85.0

87.5

90.0

92.5

95.0

pa
ss

@
k

AMC 2023

GRPO
GRPO+ER
GRPO+TS
GRPO+TS+AN

Figure 6: Pass@k on AMC 2023

Method AIME 2024 AMC 2023 MATH 500 Olympiad-Bench Average

pass@1 pass@16 pass@1 pass@16 pass@1 pass@16 pass@1 pass@16 pass@1 pass@16

GRPO 24.66 59.76 60.73 88.79 72.97 95.86 46.33 74.66 51.17 79.76
GRPO+ER 23.15 56.66 57.31 87.85 72.50 95.80 45.73 73.18 49.67 78.37
GRPO+TS 27.15 65.55 59.11 89.00 73.30 96.73 46.16 76.04 51.43 81.83
GRPO+TS+AN 26.11 61.95 59.91 90.16 74.66 96.20 46.78 74.41 51.86 80.68

Table 2: Comparison of different training methods on various benchmarks.

Stable Level. Figure 1 illustrates the entropy varia-
tion under different configurations during training.
As discussed earlier, solely using GRPO results in
a rapid entropy decline, leading to insufficient ex-
ploration. In contrast, training with a temperature
scheduler maintains entropy at a stable level, facili-
tating greater exploration. The introduction of an-
nealing gradually reduces the entropy of the policy
during the annealing phase, enabling a transition
from an exploratory state to a more efficient ex-
ploitation state. Figure 4 illustrates the temperature
variation, where annealing slows the temperature
increase during the annealing phase.

Temperature Scheduler Stabilizes LLM Perfor-
mance Improvements. Figure 3 shows the varia-
tion in validation accuracy during training. Both
GRPO alone and GRPO with entropy regulariza-
tion exhibit significant variance. In contrast, train-
ing with the temperature scheduler achieves
lower variance and higher accuracy, indicating
that temperature scheduling enhances training
stability and effectiveness. This is because in-
creased exploration prevents the policy from be-
coming trapped in local optima, resulting in more
stable performance improvements.

The Impact of the Temperature Scheduler on
Performance. As shown in Figure 5 and Figure 6,
models trained with the temperature scheduler gen-

erally outperform GRPO-only baselines in pass@k
metrics, with the performance advantage consis-
tently increasing as k grows. The experiments pre-
sented in Table 2 further demonstrate that incorpo-
rating the temperature scheduler significantly im-
proves pass@16 compared to training solely with
GRPO. In contrast, models trained with entropy
regularization typically underperform relative to
other methods, showing a slight advantage over
GRPO-only training only when k is very large on
the AMC benchmark.

What is the Role of Annealing? Figure 6 shows
that annealing achieves greater improvements than
temperature scheduling alone at lower k-values.
However, as k increases, models with annealing
are gradually surpassed by those using only tem-
perature scheduling. A similar trend is observed
in Table 2 on MATH 500 and Olympiad-Bench,
where annealing outperforms at pass@1 but is over-
taken by temperature scheduling alone at pass@16.
On the more challenging AIME dataset, the tem-
perature scheduler-only model consistently outper-
forms across all k-values, with the performance
gap narrowing only at sufficiently high k. We at-
tribute this phenomenon to this trade-offs: Anneal-
ing improves precision on simpler questions by
limiting the search space to high-value actions.
In contrast, models trained exclusively with the

1457

Size Method
AIME 2024 AMC 2023 MATH 500 Olympiad-Bench Average

Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16 Pass@1 Pass@16

7B
All 42.81 76.66 70.20 93.57 81.09 98.33 53.70 82.02 61.95 87.64
w/o DS 39.79 73.33 70.48 91.96 81.15 98.33 52.81 80.59 61.05 86.05

1.5B
All 27.70 66.66 62.95 90.36 72.88 96.39 46.35 75.40 52.47 82.20
w/o DS 26.11 61.95 59.91 90.16 74.66 96.20 46.78 74.41 51.86 80.68

Table 3: Ablation Study Results on Dynamic Rollout Budget Allocation.

0 100 200 300 400 500
Step

20

25

30

35

40

Pe
rc

en
ta

ge
 (%

)

1.5B All
1.5B w/o DR
7B All
7B w/o DR

Figure 7: The variation in the proportion of ques-
tions for which all rollouts are incorrect (smoothed)
during the training process. The red vertical lines
indicate the intervals between different data iteration
rounds, which also correspond to the points where
Gmin and Gmax are adjusted.

0 100 200 300 400 500
Step

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Pe
rc

en
ta

ge
 (%

)

1.5B
7B

Figure 8: The difference in the proportion of ques-
tions for which all rollouts are incorrect (smoothed)
between using dynamic rollout budgeting (DR) and
not using DR during the training process.

temperature scheduler preserve a higher degree
of exploratory capacity, facilitating the discov-
ery of solution pathways for more complex ques-
tions.

5.4 Ablation Study on Dynamic Rollout
Budget Allocation

In the experiments conducted in this section, we
investigate the impact of dynamic rollout budget
allocation.
The Impact of Dynamic Rollout Budget Alloca-
tion on Performance. As shown in Table 3, the
performance of the model deteriorates significantly
on the most challenging AIME benchmark when
dynamic rollout budgeting is not employed. The
pass@1 scores on the AIME benchmark decreased
by 3.02% and 1.59% for the 7B and 1.5B models,
respectively. On other benchmarks, performance
generally declines when dynamic rollout budget al-
location is not used, with only a few cases showing
slight improvements.
The Impact of Dynamic Rollout Budget Allo-
cation on the Proportion of Questions with All
Incorrect Rollouts. Figure 7 illustrates the propor-

tion of questions for which all rollouts are incorrect
during the training process. During the first data
iteration, dynamic rollout budget allocation is not
yet activated, resulting in a similar proportion of
entirely incorrect rollouts with or without dynamic
budget allocation. During the second and third
iterations, employing dynamic rollout budget al-
location leads to a reduction in the proportion of
questions for which all rollouts are incorrect. As
shown in Figure 8, increase in Gmax corresponds
to a further reduction in the proportion of entirely
incorrect rollouts. In the third iteration, when Gmax
is increased by 4 compared to G, a reduction of
approximately 1.5% to 2% in the proportion of
entirely incorrect rollouts is achieved.

6 Conclusion

In this paper, we propose a dynamic rollout budget
allocation mechanism to enhance the efficiency of
reinforcement learning and a temperature scheduler
to encourage greater exploration by the model. We
conduct experiments on models with 1.5B and 7B
parameters. Experimental results demonstrate that
our method significantly outperforms GRPO train-

1458

ing on the most challenging AIME 2024 bench-
mark. Additionally, on other benchmarks, mod-
els trained with our method achieve substantially
higher pass@16 scores compared to those trained
with GRPO. This indicates that models trained us-
ing our approach retain exploratory capabilities,
enabling them to uncover more potential correct
paths.

Limitations

For the temperature scheduler, we have observed
that annealing (low entropy) is more beneficial for
simpler problems, while not using annealing (main-
taining high entropy) is more advantageous for
more challenging problems. Furthermore, we have
modeled problem difficulty using the cumulative
average reward. A natural idea, therefore, is to con-
sider setting different temperatures for problems of
varying difficulty. However, we have not conducted
further experiments to explore this idea, leaving it
as a direction for future work.

Due to computational resource constraints, we
set the number of rollouts G per question to 8. How-
ever, increasing G and Gmax could potentially am-
plify the effectiveness of dynamic rollout budget
allocation.

Finally, although our approach can be easily ex-
tended to a broader range of reinforcement learning
algorithms and domains, due to computational re-
source constraints, we limited our experiments to
GRPO and the mathematics domain. Nevertheless,
we believe that our method is sufficiently general
and has the potential to be applied to other algo-
rithms and domains.

References
Kavosh Asadi and Michael L Littman. 2017. An alter-

native softmax operator for reinforcement learning.
In International Conference on Machine Learning,
pages 243–252. PMLR.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, and 1 others. 2021. Evaluating large
language models trained on code. arXiv preprint
arXiv:2107.03374.

Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo
Miao, Chenghao Ma, Shanghaoran Quan, Liang
Chen, Qingxiu Dong, Runxin Xu, and 1 others. 2024.
Omni-math: A universal olympiad level mathematic
benchmark for large language models. In The Thir-
teenth International Conference on Learning Repre-
sentations.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu,
Zhen Leng Thai, Junhao Shen, Jinyi Hu, Xu Han, Yu-
jie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan
Liu, and Maosong Sun. 2024. Olympiadbench:
A challenging benchmark for promoting agi with
olympiad-level bilingual multimodal scientific prob-
lems. Preprint, arXiv:2402.14008.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. In Thirty-
fifth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track (Round 2).

Seungchan Kim and George Konidaris. 2019. Adaptive
temperature tuning for mellowmax in deep reinforce-
ment learning. In the NeurIPS 2019 Workshop on
Deep Reinforcement Learning.

Pranjal Kumar. 2024. Large language models (llms):
survey, technical frameworks, and future challenges.
Artificial Intelligence Review, 57(10):260.

Zichen Liu, Changyu Chen, Wenjun Li, Penghui Qi,
Tianyu Pang, Chao Du, Wee Sun Lee, and Min Lin.
2025. Understanding r1-zero-like training: A critical
perspective. arXiv preprint arXiv:2503.20783.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang
Shi, William Y. Tang, Manan Roongta, Colin
Cai, Jeffrey Luo, Tianjun Zhang, Li Erran Li,
Raluca Ada Popa, and Ion Stoica. 2025. Deepscaler:
Surpassing o1-preview with a 1.5b model by scaling
rl. https://pretty-radio-b75.notion.site/DeepScaleR-
Surpassing-O1-Preview-with-a-1-5B-Model-by-
Scaling-RL-19681902c1468005bed8ca303013a4e2.
Notion Blog.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi
Mirza, Alex Graves, Timothy Lillicrap, Tim Harley,
David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning.
In International conference on machine learning,
pages 1928–1937. PmLR.

Art of Problem Solving. Aime problems and solutions.
https://artofproblemsolving.com/wiki/
index.php/AIME_Problems_and_Solutions.
Accessed: 2025-05.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, and 1
others. 2022. Training language models to follow in-
structions with human feedback. Advances in neural
information processing systems, 35:27730–27744.

1459

https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://arxiv.org/abs/2402.14008
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Claude E Shannon. 1948. A mathematical theory of
communication. The Bell system technical journal,
27(3):379–423.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Xiao Bi, Haowei Zhang, Mingchuan
Zhang, YK Li, Y Wu, and 1 others. 2024. Deepseek-
math: Pushing the limits of mathematical reason-
ing in open language models. arXiv preprint
arXiv:2402.03300.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin
Wu, Wang Zhang, Ru Zhang, Yanghua Peng, Haibin
Lin, and Chuan Wu. 2024. Hybridflow: A flex-
ible and efficient rlhf framework. arXiv preprint
arXiv:2409.19256.

Richard S Sutton, Andrew G Barto, and 1 others. 1998.
Reinforcement learning: An introduction, volume 1.
MIT press Cambridge.

Chenxia Tang, Jianchun Liu, Hongli Xu, and Liusheng
Huang. 2024. Top- nσ : Not all logits are you need.
arXiv preprint arXiv:2411.07641.

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
Xiao, Chenzhuang Du, Chonghua Liao, and 1 others.
2025. Kimi k1. 5: Scaling reinforcement learning
with llms. arXiv preprint arXiv:2501.12599.

Zhichao Wang, Bin Bi, Shiva Kumar Pentyala, Kiran
Ramnath, Sougata Chaudhuri, Shubham Mehrotra,
Xiang-Bo Mao, Sitaram Asur, and 1 others. 2024. A
comprehensive survey of llm alignment techniques:
Rlhf, rlaif, ppo, dpo and more. arXiv preprint
arXiv:2407.16216.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256.

Fengli Xu, Qianyue Hao, Zefang Zong, Jingwei Wang,
Yunke Zhang, Jingyi Wang, Xiaochong Lan, Jiahui
Gong, Tianjian Ouyang, Fanjin Meng, and 1 others.
2025. Towards large reasoning models: A survey
of reinforced reasoning with large language models.
arXiv preprint arXiv:2501.09686.

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao,
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong
Tu, Jingren Zhou, Junyang Lin, and 1 others. 2024.
Qwen2. 5-math technical report: Toward mathe-
matical expert model via self-improvement. arXiv
preprint arXiv:2409.12122.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan,
Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong Liu,
Lingjun Liu, Xin Liu, and 1 others. 2025. Dapo:
An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai
Wang, Shiji Song, and Gao Huang. 2025. Does re-
inforcement learning really incentivize reasoning ca-
pacity in llms beyond the base model? arXiv preprint
arXiv:2504.13837.

Weihao Zeng, Yuzhen Huang, Lulu Zhao, Yijun Wang,
Zifei Shan, and Junxian He. 2024. B-star: Monitor-
ing and balancing exploration and exploitation in self-
taught reasoners. arXiv preprint arXiv:2412.17256.

A Entropy Scaling through Temperature
Adjustment in Softmax Distributions

In this section, we address the adjustment of the
temperature τ such that the entropy is scaled by a
factor of α. For simplicity, we focus on analyzing
the distribution for the generation of a single next
token. Let z = (z1, z2, . . . , zN) represent the log-
its generated by a LLM, and define the temperature
as τ > 0. The commonly used Softmax probability
distribution is defined as:

p = [p1, p2, . . . , pN] ,

pi =
e zi/τ

∑N
j=1 e

zj/τ
.

Let zmax be the maximum value in the logits, and
define ∆i = zmax − zi. Then, pi can be expressed
as:

pi =
e−(zmax−zi)/τ

∑N
j=1 e

−(zmax−zj)/T

=
e−∆i/T

∑N
j=1 e

−∆j/τ

=
e−β∆i

Z(β)
,

where β = 1/τ and Z(β) =
∑N

j=1 e
−β∆j .The

Shannon entropy (Shannon, 1948) of this distribu-
tion is defined as:

H(p) = −
N∑

i=1

pi ln pi. (6)

Substituting ln pi = −β∆i− lnZ(β) into Equa-
tion (6) results in the following decomposition:

1460

H(p) =−
N∑

i=1

pi
(
−β∆i − lnZ(β)

)

=β

N∑

i=1

pi∆i + lnZ(β)

N∑

i=1

pi.

=β
N∑

i=1

pi∆i + lnZ(β).

When the entropy H(p) is small, the probabil-
ity distribution p is primarily concentrated on a
specific state, with the contributions from other
states being negligible. Tang et al. (2024) analyzed
the distribution pattern of logits from LLMs and
observed that they typically consist of a Gaussian-
distributed noisy region and a distinct informative
region containing a few outlier tokens. For sim-
plicity, the analysis focuses on the logits associated
with the most informative token, specifically con-
sidering only zmax. zmax needs to be significantly
larger than the logits in the noisy region to achieve a
low entropy. We further assume that the difference
between zmax and the logits in the noisy region is
approximately equal, i.e., ∆j ≈ ∆ for zj < zmax.
Under this assumption, the normalization factor of
the distribution can be expressed as:

Z(β) ≈ 1 + (N − 1)e−β∆.

When the entropy is small, the probability cor-
responding to zmax is given by pmax = 1

Z(β) ≈ 1,
which implies that Z(β) ≈ 1. Consequently, for
the remaining N − 1 states, the probabilities can
be approximated as:

pj =
e−β∆

Z(β)
≈ e−β∆.

The entropy of the distribution can then be ap-
proximated as:

H(p) =−
N∑

i

pi ln pi

≈− (N − 1)e−β∆ ln(e−β∆)

=(N − 1)β∆e−β∆.

Suppose the initial entropy is approximately rep-
resented as H̃0 = (N − 1)β0∆ e−β0 ∆. We aim to
scale the entropy by adjusting the temperature τ ,
which is equivalent to modifying β. Suppose we

scale this entropy by α times by adjusting β0 to β1,
i.e.,

α (N − 1)β0∆ e−β0 ∆ = (N − 1)β1∆ e−β1 ∆.
(7)

Assuming β1∆ = β0∆+ d, the ratio becomes:

α =
(N − 1)β1∆e−β1∆

(N − 1)β0∆e−β0∆

=e−(β1∆−β0∆) β1∆

β0∆

=ed
β0∆+ d

β0∆
(8)

The change in entropy introduced by a single
training step is typically minimal, meaning that
the scaling factor α we aim to achieve is close to
1. we can further assume d ≈ 0, allowing the
approximation β0∆+ d ≈ β0∆, Equation (8) can
be approximately expressed as: α ≈ e−d. Then, by
taking the natural logarithm, we obtain:

d ≈ − lnα. (9)

Thus, the ratio of the new temperature to the
original temperature is:

τ1
τ0

=
β0
β1

=
β0∆

β1∆

≈ β0∆

β0∆− lnα
. (10)

When the entropy is low, β0∆ tends to be rel-
atively large, while lnα is close to zero. Thus,
it follows that β0∆ ≫ lnα. So, we can further
approximate:

τ1
τ0

≈ β0∆

β0∆− lnα
(11)

=
β0∆− lnα+ lnα

β0∆− lnα
= 1 +

lnα

β0∆ − lnα

≈ 1 +
lnα

β0∆
. (12)

Therefore, the new temperature can be expressed
as:

τ1 ≈ τ0 ×
(
1 +

lnα

β0∆

)
= τ0 ×

(
1 +

τ0 lnα

∆

)
.

(13)
Equation (13) describes the approximate rela-

tionship between temperatures before and after ad-
justment.

1461

During training, logits can be utilized to estimate
the value of ∆. However, computing ∆ using log-
its incurs additional computational overhead and
significant memory consumption, as the logits ma-
trix is exceedingly large. To further simplify the
computation, we introduce an approximation of the
relationship between ∆ and N , thereby eliminat-
ing the necessity of explicitly computing ∆ during
training. In this context, we disregard the effect
of temperature, and the entropy is assumed to be
a small value, ε. Based on the Equation (13), the
entropy can be approximately expressed as:

ε ≈ (N − 1)∆e−∆.

Taking the logarithm, we have:

ln(ε) ≈ ln(N − 1) + ln(∆)−∆.

Rearranging terms, we obtain:

∆ ≈ ln(N − 1) + ln(∆)− ln(ε).

For sufficiently large N , ln(N − 1) can be ap-
proximated as ln(N), leading to:

∆ ≈ ln(N) + ln(∆)− ln(ε). (14)

In Equation (14), the dominant term on the right-
hand side is ln(N), while the other terms are com-
paratively smaller. Assuming ∆ = ln(N) + c,
we substitute this expression into Equation (14),
yielding:

ln(N)+c ≈ ln(N)+ln(ln(N)+c)−ln(ε). (15)

Simplifying Equation (15), we find:

c ≈ ln(ln(N) + c)− ln(ε).

For large N , the value of c is expected to be
much smaller than ln(N). Thus, the addition of c to
ln(N) does not significantly change the logarithm.
For the distribution of the next token generated
from LLMs, the magnitude of ε is typically on the
order of 10−1. Thus, we can further neglect the
ln(ε) term, simplifying the expression. So c can be
approximated as:

c ≈ ln(ln(N)).

Therefore, ∆ ≈ ln(N) + ln(ln(N)). Substitut-
ing this approximation for ∆ to Equation (13), the
temperature scaling formula becomes:

τ1 ≈ τ0 ×
(
1 +

τ0 lnα

lnN + ln (lnN)

)
.

This provides an approximate formula for how
the temperature needs to be adjusted to scale the
entropy by a factor of α.

B Dataset details

0 1 2 3 4 5 6 7 8 9 10
Difficulty Level

0

1000

2000

3000

4000

5000

6000

Co
un

t

raw data
filtered train data

Figure 9: Difficulty distribution of the vali-
dation set. The orange color is the difficulty
distribution of the filtered 10k data, and the
blue color is the difficulty distribution of the
original data.

0 1 2 3 4 5 6 7 8 9 10
Difficulty Level

0

25

50

75

100

125

150

175

Co
un

t

Figure 10: Difficulty distribution of validation
set. The difficulty distribution of the validation
set is consistent with the original data.

We further processed the DeepScaleR 40k
dataset (Luo et al., 2025) to obtain our training
data. Specifically, following the approach of Kimi
k1.5 (Team et al., 2025), we improved the quality
of reinforcement learning training data by reducing
the proportion of simple questions.

We first utilized Qwen 2.5 Math 7B (Yang et al.,
2024) to sample answers for each questions 10
times. The difficulty of the questions was assessed
based on their accuracy rates. Subsequently, we
balanced the data based on difficulty and filtered
out a portion of simpler problems, capping the num-
ber of questions with 100% accuracy at 2k. This

1462

MATH (3849)
37.6%

AMC (2290)

22.4%

Omni-Math (3311)32.3%

AIME (790)

7.7%

Data Source Distribution

Figure 11: Pie chart of data sources.

balancing process not only ensures that the model
is exposed to a diverse range of problem difficulties
but also improves training efficiency by reducing
the redundancy of overly simple problems, as train-
ing on simple problems is likely to yield minimal
gains. The final 10k dataset exhibits a difficulty
distribution as shown in Figure 9. The distribution
of data sources is presented in Figure 11.

For the validation set, data was evenly sourced
from the MATH, Omni-Math, AMC, and AIME
datasets, with 128 samples from each dataset, re-
sulting in a total of 512 samples. We did not bal-
ance the difficulty of the validation set, ensuring
that its difficulty distribution closely resembles that
of the original dataset, as shown in Figure 10. Fur-
thermore, the validation set does not overlap with
the training set.

1463

