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Abstract

Most multilingual question-answering bench-
marks, while covering a diverse pool of lan-
guages, do not factor in regional diversity
in the information they capture and tend to
be Western-centric. This introduces a sig-
nificant gap in fairly evaluating multilingual
models’ comprehension of factual information
from diverse geographical locations. To ad-
dress this, we introduce XNationQA for inves-
tigating the cultural literacy of multilingual
LLMs. XNationQA encompasses a total of
49, 280 questions on the geography, culture,
and history of nine countries, presented in
seven languages. We benchmark eight standard
multilingual LLMs on XNationQA and evalu-
ate them using two novel transference metrics.
Our analyses uncover a considerable discrep-
ancy in the models’ accessibility to culturally
specific facts across languages. Notably, we
often find that a model demonstrates greater
knowledge of cultural information in English
than in the dominant language of the respec-
tive culture. The models exhibit better perfor-
mance in Western languages, although this does
not necessarily translate to being more literate
for Western countries, which is counterintu-
itive. Furthermore, we observe that models
have a very limited ability to transfer knowl-
edge across languages, particularly evident in
open-source models1.

1 Introduction

Multilingual Large Language Models (LLMs)
(Üstün et al., 2024; Achiam et al., 2023) show im-
pressive performance on many languages across
varied tasks. However, the best practices to evalu-
ate them remain contested (Ahuja et al., 2023; Hada
et al., 2023; Saha et al., 2023), with many criticis-
ing Western-centric (often Anglosphere) evalua-

*Work completed while affiliated with UC Santa Barbara.
1The source code and XNationQA are available at

https://github.com/EshaanT/XNationQA.

tions (Held et al., 2023). For example, Faisal et al.
(2021) demonstrated how multiple purportedly mul-
tilingual question-answering (QA) datasets dispro-
portionately cover USA-related concepts and enti-
ties, with a similar question distribution to mono-
lingual English benchmarks. This is because mul-
tilingual QA benchmarks are often derived from
Western-centric English datasets (Longpre et al.,
2021; Kassner et al., 2021; Dumitrescu et al.,
2021). They, thus, fail to consider the cultural
contexts where these languages are spoken (Naous
et al., 2023). Blevins et al. (2022) proposed guid-
ance techniques to create more inclusive bench-
marks. To the best of our knowledge, there is no
easy-to-evaluate large-scale parallel multilingual
QA dataset that explicitly balances its distribution
across a set of diverse cultures, capturing factual
knowledge. LLMs are clearly able to access fac-
tual knowledge in multiple languages (Jiang et al.,
2020; Kassner et al., 2021), but the relationship be-
tween language and information locality is poorly
understood. To this end, and motivated by the ed-
ucation research literature, we produce a parallel
knowledge test, consisting of regionally differing
factual information, balanced across a set of related
factual queries and languages.

In education theory, cultural literacy refers to the
shared corpus of translinguistic cultural knowledge
within a community, polity, or society on which
efficient communication is built (Hirsch, 1983). By
translinguistic, Hirsch (1983) meant that the infor-
mation in the corpus is language-agnostic in its
meaning. An interesting study conducted by Stef-
fensen et al. (1979) in this regard found that Amer-
ican English speakers performed worse than In-
dian English speakers on a reading comprehen-
sion test of a story describing an Indian wedding,
and vice versa on a story of an American one at
equivalent reading levels because the context was
more familiar to the speakers of the correspond-
ing culture. Multilingual LLMs strive to create
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War Question: What year did Navarrese Civil War start 
according to Spanish history?
A. 1451 B. 1436 C. 1460 D. 1439
Answer: 

A. 1451

Pregunta: ¿En qué año empezó la Guerra Civil Navarra 
según la historia española?
A. 1451 B. 1436 C. 1460 D. 1439
Respuesta:
 

A. 1451

Leader
Question: What is the year of birth of the Spanish leader 
Alejandro Lerroux?
A. 1852 B. 1864 C. 1857 D. 1859
Answer: 

C. 1857 

Pregunta: ¿Cuál es el año de nacimiento del líder español 
Alejandro Lerroux?
A. 1852 B. 1864 C. 1857 D. 1859
Respuesta:

A. 1852

National
Park

Question: Where can Tablas de Daimiel be found in 
Spain?
A. Ciudad Real B. Lleida
C. Granada D. Leon
Answer: 

C. Granada 

Pregunta ¿Dónde se puede encontrar el Tablas de Daimiel
 en España?
A. Ciudad Real B. Lleida
C. Granada D. León
Respuesta:

A. Ciudad...

Monument
Question: In which part of Spain is Works of Antoni
Gaudí situated?
A. Barcelona B. La Gomera
C. Madrid D. Tenerife
Answer: 

A. Barcelona 

Pregunta:¿En qué parte de España se encuentran las 
obras de Antoni Gaudí?
A.Barcelona B. La Gomera
C. Madrid D. Tenerife
Respuesta:

B. La Gomera...

Figure 1: An example evaluating an LLM’s cultural literacy for Spain, in both English and Spanish. The model
answers the war question correctly in both English and Spanish but fails on the leader question in both. Its
performance on the national park and monument questions is language-dependent, highlighting inconsistencies in
its cultural literacy across languages and topics.

technology that is inclusive of a diverse set of lin-
guistic groups (Blasi et al., 2021). Therefore, they
need to be culturally literate across the languages
they cover to consistently answer translinguistic
regional questions on specific topics concerning
different nations.

Using cultural literacy as a framing device, we
aim to investigate multilingual and multicultural
knowledge in multilingual LLMs by answering the
following research questions:
RQ1: What disparities exist in the cultural literacy
of various LLMs about different countries?
RQ2: How transferable is the cultural literacy of
LLMs across different languages?
RQ3: How consistent are LLMs in recalling facts
about nations across different languages?
RQ4: Does a systematic relationship between coun-
try and language exist in LLMs’ cultural literacy?

To facilitate this investigation, we create
XNationQA, a test set designed to assess cultural
literacy through QA pairs that evaluate curricu-
lar knowledge for nine countries (Japan, India,
China, Germany, Spain, Russia, Mexico, the USA,
and the UK), fully translated into seven languages
(Japanese, Hindi, Chinese, German, Spanish, Rus-
sian, and English). The dataset covers a set of
four axes, namely: questions about wars, leaders,
monuments, and national parks. Given culture’s
nuanced and context-dependent nature, which can

vary across communities, languages, and sociopo-
litical environments, it is inherently challenging
to define and quantify. To operationalize cultural
literacy in our study, we draw on prior work in
the monolingual (English-centric) setting that mea-
sures geographic and cultural erosion in language
models via factual recall (Schwöbel et al., 2023;
Zhou et al., 2022). Following this approach, we
assess a model’s cultural literacy about a nation
through its performance on questions concerning
historically and geographically grounded facts spe-
cific to that nation. We categorise these facts into
four domains: (1) wars, or the year of armed con-
flicts undertaken by the country, (2) national parks,
or the site of nationally designated protected wilder-
ness areas in each country, (3) leaders, or the date
of birth of heads of state of the country, and (4)
monuments, or the locations of UNESCO world
heritage sites in the country. This framing allows
us to systematically evaluate a model’s knowledge
of culturally embedded facts, serving as a proxy
for its cultural literacy. Figure 1 shows a working
example of our task. We prompt the model to an-
swer a question each on monuments, wars, leaders,
and national parks. The example highlights the
model’s inconsistent cultural literacy across lan-
guages. For instance, the model answers the war
question correctly in both English and Spanish but
fails the leader question in both. Meanwhile, its

14957



performance on the national park and monument
questions is language-dependent, answering cor-
rectly in one language but not the other.

We extensively evaluate eight commonly-used
multilingual LLMs on XNationQA and find that:
• LLMs show a disparity in cultural literacy across
languages, with models exhibiting varying knowl-
edge. Models tend to perform the best in English,
followed by other Western languages (German,
Spanish, and Russian).
• LLMs have poor transference of facts across lan-
guages, with our novel coverage metrics showing
that open-source models struggle to answer faith-
fully in all languages. When considering only West-
ern languages, models tend to be more faithful, in-
dicating a knowledge coverage disparity between
Western and non-Western languages.
• LLMs exhibit varying performance across na-
tions, with different models exhibiting different
levels of literacy about different nations. Surpris-
ingly, a nation’s native language is not the best-
performing language even for questions on that na-
tion, with Western languages performing the best.

We also observe that although the models gen-
erally perform better in Western languages, this
does not translate to higher accuracy for Western
countries; in fact, models sometimes exhibit greater
cultural literacy for countries like India, China, and
Japan than for Western nations such as Germany or
Spain.

2 Related Work and Motivation

Multilingual Language Models. Since the ad-
vent of pre-trained transformer-based language
models (Devlin et al., 2018), there has been a
constant effort to develop multilingual LLMs that
can understand and reason in multiple languages.
These variants are trained on unsupervised training
objectives using large multilingual corpora such
as Oscar (Abadji et al., 2022), mC4 (Xue et al.,
2021), and CulturaX (Nguyen et al., 2023), which
are not parallel across languages. Therefore, the
multilingual generalization ability of these mod-
els is a by-product of their ability to project dif-
ferent languages into a common representation
space (Artetxe et al., 2019; Blevins et al., 2022).
This representation ability directly depends on the
datasets they are trained on (Deshpande et al.,
2022). However, studies have shown them to be bi-
ased towards Western concepts due to their training
data mixture (Naous et al., 2023; Cao et al., 2023).

Multilingual Benchmarks. Over the years, mul-
tiple multilingual benchmarks spanning various
NLP tasks (Dac Lai et al., 2023) have been created
to evaluate the multilingual abilities of language
models. However, these benchmarks are com-
monly derived from monolingual English bench-
marks (Clark et al., 2020; Dumitrescu et al., 2021),
and, hence, tend to be biased in their coverage. Our
initial analysis using multilingual QA datasets re-
veals these problems. For example, MKQA (Long-
pre et al., 2021), a popular closed-book QA dataset,
is generated by translating 10, 000 samples from
Google’s Natural Questions dataset (Kwiatkowski
et al., 2019) without any cultural or regional con-
siderations. We find the resultant dataset to con-
tain questions about popular Hollywood shows like
‘Modern Family’ and ‘Rick and Morty’, while it
does not cover Bollywood or other regional shows.
Hence, these datasets fail to highlight if the model
is culturally literate across languages and regions.
In contrast, XNationQA is large (49, 280 questions)
and covers multiple specific topics in parallel sets
for nine nations.

Factual and Cultural Knowledge in Multilin-
gual Models. Several recent studies have begun
to probe cultural knowledge in multilingual set-
tings (Fung et al., 2024; Shi et al., 2024). Keleg
and Magdy (2023) explores multilingual factual
knowledge by mining Wikidata triples in four lan-
guages; however, its reliance on language-linked
labels restricts coverage to only entities available in
all languages – a limitation that overlooks culturally
important items, like the Mahatma Gandhi Marine
National Park, and thus lacks uniform representa-
tion. XNationQA addresses such limitations by em-
ploying translation toolkits to construct a parallel
corpus across seven languages, ensuring equitable
coverage of historically and culturally significant
content. While other works like BLEnD (Myung
et al., 2024) and CaLMQA (Arora et al., 2024) also
emphasise cultural specificity, they differ from our
work in scope and evaluation paradigm. BLEnD
focuses on subjective, everyday knowledge sourced
from native speakers, while CaLMQA uses a gen-
erative format for long-form questions that neces-
sitates high-budget human evaluation. In contrast,
XNationQA targets objective, historically anchored
factual knowledge that is widely documented (e.g.,
wars, national parks, monuments, leaders) through
a multiple-choice setup that enables scalable and
accessible benchmarking for future studies.
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3 XNationQA Dataset

XNationQA is a parallel multilingual dataset encom-
passing factual knowledge related to nine coun-
tries and seven languages. XNationQA is de-
signed to evaluate the cultural literacy of LLMs
across languages by testing their knowledge of
nation-specific information. Each instance within
XNationQA includes an objective-type question
focusing on a specific domain, with one correct
and three incorrect options. In total, the dataset
contains 49, 280 questions, spanning 1, 760 factual
entities. Figure 3 shows the distribution of the enti-
ties across nine countries we covered.

Mining Entities. We began by first mining fac-
tual entities specific to a country. We used English
Wikipedia pages to obtain lists for four specific do-
mains: (i) leaders of a country, (ii) national parks in
a country, (iii) UNESCO sites in the nation, and (iv)
wars the nation has participated in. This method
was applied to extract entities for nine countries:
Japan, India, China, Germany, Spain, Russia, Mex-
ico, the USA, and the UK (see Appendix A.3 for
further details).

After extracting the entity list, we used Wikidata
to mine additional information. This included in-
formation about the start year of a war, the birth
year of a leader, and the administrative location
of a national park and the UNESCO site. Infor-
mation about the entities without an appropriate
Wikidata entry was filled out manually. This pro-
cess produced the final entity-answer pairs used to
construct the questions.

Constructing Question Templates and Options.
After extracting a nation’s entity-answer pair, we
manually created four prompt templates for each
domain and country in English. Each domain’s
template was designed to ask a specific question,
either about the year or about the location (refer to
Table 6 of Appendix A.1 for details on the prompt
templates for each domain).

To generate the desired objective-type questions,
we generated three incorrect answers by sampling
three random administrative areas of a country
where the UNESCO site and national park are not
located. Additionally, for year-type questions, we
generated incorrect answers by randomly adding
or subtracting a number between 5 and 10 from the
correct year. These incorrect answers, along with
the correct answer, are paired with the manually
created question templates associated with an entity

Score DE ES HI RU JA ZH AVG
Cos-sim 0.94 0.94 0.87 0.90 0.87 0.87 0.89
BLEU 50.80 67.45 68.48 43.80 52.30 45.64 54.74
H-Eval 4.85 4.75 4.57 4.25 4.50 4.41 4.55

Table 1: Validation of dataset quality using human evalu-
ation (H-Eval), BLEU score, and cosine-similarity (Cos-
sim). The queries seem to be semantically aligned (see
Table 5 of Appendix A.2 for the languages correspond-
ing to the ISO codes).

to form multiple-choice questions. Hence, for each
entity, we generate four prompts. This approach is
designed to account for any prompt sensitivity or
bias in the LLMs.

Expansion to Other Languages. We use trans-
lation toolkits to create the parallel multilingual
corpus. This is done because not all entities in Wiki-
data have labels in multiple languages. Hence, to
create XNationQA, all the generated templates and
entity-option pairs were translated using Google
Translate and GPT-4, respectively, into Hindi, Span-
ish, Chinese, Japanese, Russian, and German. We
filled out the entity and the options in the tem-
plates in their respective languages to generate the
relevant objective question. This resulted in a ge-
ographically diverse, parallel multilingual factual
knowledge corpus, XNationQA.

Validation of Translation. To validate
the quality of XNationQA, we employ back-
translation (Miyabe and Yoshino, 2015) and
semantic similarity (c.f. Table 1). We also conduct
human evaluation on a subset of queries to further
ensure that the translation quality is preserved
across languages.

(i) Semantic Similarity: To ensure that queries
in different languages have the same seman-
tic meaning as their English counterparts, we
compute the cosine similarity between the En-
glish queries and their translations. We use
multilingual sentence transformers to extract
embeddings, which are then used to compute
cosine similarity. Our dataset has an aver-
age similarity score of 0.89, suggesting cross-
lingual consistency and meaning preservation.

(ii) Back-Translation: In this study, we
randomly selected 1, 000 queries from
XNationQA for each of the translated lan-
guages, i.e., 6, 000 queries in total, across
the various topics in our dataset. These
queries were back-translated into English us-
ing Google Translate and then compared to
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their original English versions. We observed
an average BLEU score of 54.74 which in-
dicates that the translations preserve the con-
cepts of the original queries.

(iii) Human Evaluation: To assert the gram-
matical correctness and overall clarity
of our dataset, 1, 000 queries (same as
in back-translation) from each language
in XNationQA, i.e., 6, 000 queries in total,
were evaluated by language experts. The ex-
perts assigned a score of 1 to 5 based on gram-
mar, fluency, and coherence to assess the qual-
ity of the dataset. We found that all samples at
least got a score of 4 with an average score of
4.55, indicating the high quality of our dataset
(see Appendix B for further details on the hu-
man evaluation procedure).

4 Problem Definition and Experimental
Setup

Our dataset D spans L languages and covers a set
of nation-specific factual entities E . For each en-
tity e ∈ E in our dataset, we have a set of four
manually created questions ql and options ol where
language l ∈ L. The task is to generate the cor-
rect answer al from the options. To do so, we
formalize our prompting setup as generating the
output ŷl conditioned upon the question and option,
i.e., ŷl = argmaxP (y|ql ⊕ ol). We then match
the generated output ŷl with the correct answer al

across all languages l and entities e, to check for
transferability of cultural literacy.

We experiment with eight commonly-used
instruction-tuned multilingual LLMs, specifically
the 7 and 13-billion versions of LLaMA-2-
Chat (Touvron et al., 2023), 8-billion Meta-
LLaMA-3-Instruct (Dubey et al., 2024), 7-billion
Bloomz (Yong et al., 2023), 7-billion Mistral-
Instruct (Jiang et al., 2023), 7-billion Mixtral (Jiang
et al., 2024), 13-billion Aya (Üstün et al., 2024) and
GPT-4 (Achiam et al., 2023). For the GPT-4 model,
due to budgetary constraints, we sample one ques-
tion for each entity in every language. In total we
evaluated GPT-4 on 12, 320 questions. These mod-
els have different mixtures of languages in their
training corpus (refer to Appendix A.4 for more in-
formation). Further, we also extend our analyses to
Meta-LLaMA-3.1-8B-Instruct (Meta AI, 2024) and
Qwen3 (8B and 14B) (Yang et al., 2025) models —
the findings of which are detailed in Appendix D.

5 Results and Analyses

5.1 Cultural Literacy Across Languages

Table 2 presents the accuracy of eight multilin-
gual LLMs on XNationQA across languages, av-
eraged over countries. The evaluation reveals
notable disparities in the cultural literacy of the
LLMs. The models, ranked by average accuracy,
are GPT-4 (72%), Mixtral-8x7B (60%), LLaMA-
3-8B-Instruct (59%), Mistral-7B-Instruct (42.6%),
LLaMA-2-7B-Chat (41%), LLaMA-2-13B-Chat
(40%), Aya (32%), and Bloomz (30%).

A key finding is that the performance of the mod-
els varies significantly with both the topic and the
language of the query. Models are generally more
proficient at recalling locations for monuments and
national parks than they are at recalling specific
years for wars or leaders (see Appendix A.7 for a
detailed breakdown). Across all topics, English is
typically the best-performing language.

Surprisingly, models specifically trained for mul-
tilingual alignment, such as Bloomz (46 languages)
and Aya (101 languages), underperform compared
to the models from LLaMA and Mistral families
of comparable size, which have a much smaller
span of languages in their pre-training data. In fact,
Bloomz and Aya show near-random performance
on date-recall tasks related to wars and leaders.
The performance variation across languages for the
same country is further analyzed using standard
deviation in Appendix C.

5.2 Western vs. Non-Western Languages

Our analysis reveals a significant performance gap
between Western (English, German, Spanish, Rus-
sian) and non-Western (Hindi, Japanese, Chinese)
languages, as shown in Table 2. Models are con-
sistently more culturally literate when queried in
Western languages, a finding that is statistically
significant (see Table 7 in Appendix for the statis-
tical test results). While the composition of pre-
training data partially explains this trend, it does
not account for all anomalies. For instance, the
underperformance of the LLaMA-2 series in Hindi
and that of the Mixtral series in Hindi, Japanese,
and Chinese is expected, as these languages are
underrepresented in their respective training data.
However, some results are counterintuitive. Mix-
tral, for example, despite being primarily trained on
English, German, and Spanish, performs substan-
tially better in Russian than in other non-primary
languages like Hindi, Japanese or Chinese. Sim-
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Model
Language

EN DE ES HI RU JA ZH AV G AV GW AV GNW

Monuments
Bloomz-7B1 57.30 45.64 51.51 21.00 13.08 17.88 44.04 35.78 41.88 27.64
LLaMA-2-7B-Chat 82.03 75.98 76.25 3.83 36.30 37.72 34.43 49.50 67.64 25.31
Mistral-7B-Instruct 88.26 80.07 81.41 29.27 65.30 26.25 33.54 57.73 78.76 29.68
Meta-LLaMA-3-8B-Instruct 59.16 88.52 87.90 53.91 57.38 55.43 63.08 66.48 73.24 57.46
LLaMA-2-13B-Chat 85.41 77.76 80.16 15.39 54.80 37.19 31.49 54.60 74.53 28.02
Aya 64.15 62.81 59.52 35.68 30.34 34.34 32.83 45.67 54.20 34.29
GPT-4 96.09 95.73 96.44 87.90 92.02 92.17 80.78 89.88 92.08 86.94
Mixtral-8x7B 93.33 85.50 88.52 20.46 82.12 37.19 37.19 63.47 87.37 31.60

Leaders
Bloomz-7B1 22.25 26.83 20.08 21.67 24.00 26.58 26.00 23.92 23.29 24.76
LLaMA-2-7B-Chat 56.42 46.58 27.42 8.50 23.00 28.33 28.00 31.18 38.35 21.62
Mistral-7B-Instruct 32.83 34.92 33.67 22.92 32.83 19.08 28.42 29.24 33.56 23.47
Meta-LLaMA-3-8B-Instruct 80.25 82.92 80.42 57.58 63.08 35.50 28.67 61.20 76.67 40.57
LLaMA-2-13B-Chat 52.83 30.42 30.25 18.25 26.42 25.42 27.50 30.15 34.98 23.70
Aya 23.33 22.42 21.08 22.08 23.42 18.75 19.92 21.57 22.56 20.25
GPT-4 62.33 62.33 63.33 47.33 55.67 48.00 48.33 55.33 60.92 47.87
Mixtral-8x7B 89.17 85.25 85.92 9.33 79.33 32.75 28.08 58.55 84.92 23.39

Wars
Bloomz-7B1 32.93 25.11 29.04 33.96 28.12 28.79 39.24 31.02 28.80 33.98
LLaMA-2-7B-Chat 56.27 46.07 42.25 24.93 34.49 39.27 35.94 39.89 44.77 33.38
Mistral-7B-Instruct 48.19 45.11 46.46 25.78 44.51 30.74 35.87 39.52 46.07 30.78
Meta-LLaMA-3-8B-Instruct 71.74 64.09 58.64 51.17 53.54 50.74 49.43 57.05 62.00 50.78
LLaMA-2-13B-Chat 47.59 40.37 34.63 20.75 37.96 37.25 35.38 36.28 40.14 31.13
Aya 30.59 27.05 27.58 26.17 26.24 26.81 24.68 27.02 27.87 25.88
GPT-4 74.08 69.41 68.98 57.79 67.85 60.34 59.07 65.36 70.08 59.06
Mixtral-8x7B 76.77 73.65 70.64 26.27 66.29 49.04 47.52 58.60 71.84 40.94

National Parks
Bloomz-7B1 48.04 40.06 46.30 25.95 15.49 20.08 25.11 31.58 37.47 23.72
LLaMA-2-7B-Chat 74.63 64.80 66.12 11.42 33.14 30.66 27.85 44.09 59.67 23.31
Mistral-7B-Instruct 77.33 72.94 67.39 19.50 51.11 13.90 25.69 46.84 67.19 19.70
Meta-LLaMA-3-8B-Instruct 64.22 79.60 80.02 51.32 56.77 39.11 40.96 58.86 70.15 43.80
LLaMA-2-13B-Chat 75.53 68.97 66.70 10.15 42.49 31.92 26.27 46.01 63.42 22.79
Aya 50.32 45.30 44.71 36.21 33.30 32.66 24.42 38.13 43.41 31.09
GPT-4 97.25 94.93 94.29 83.09 89.64 74.63 60.04 84.84 94.03 72.58
Mixtral-8x7B 91.01 82.98 84.25 19.93 73.26 31.08 24.84 58.19 82.88 25.27

Table 2: Model accuracy on XNationQA across seven languages, averaged over all nine countries. The AV GW and
AV GNW columns show mean accuracy for Western (EN, DE, ES, RU) and non-Western (HI, JA, ZH) languages
respectively. While GPT-4 demonstrates the strongest overall cultural literacy, other competitive models like
Mixtral-8x7B show a significant drop in performance for non-Western languages (see Table 5 for the ISO codes).

ilarly, Russian outperforms Hindi for LLaMA-3,
even though the model is purportedly optimized
more for Hindi. These discrepancies, alongside
GPT-4’s varied performance across Western and
non-Western languages for certain domains, and
the sub-par performance of open-source models in
non-Western languages, raise concerns about their
inclusivity for a diverse global user base (Blasi
et al., 2021).

5.3 Transferability of Cultural Knowledge
Across Languages

While the previous analysis focused on accuracy in
individual languages, a crucial aspect of true mul-
tilingual proficiency is knowledge transferability.

For a model to be considered culturally literate, it
should be able to answer factual questions consis-
tently, regardless of the language used. To quantify
this, we introduce two novel metrics: Total Cover-
age and Smooth Coverage.

Total Coverage (TC). This metric evaluates the
consistency of complete factual recall. To measure
how consistently a model knows a specific fact
across multiple languages, we first define coverage
(Cd

l ) for a given language l and domain d as the set
of all entities in d for which the model correctly
answers at least three of the four associated ques-
tions in the given language. Then, similar to Qi
et al. (2023), we define Total Coverage (TCd) as
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the ratio of entities covered across all tested lan-
guages to the total number of entities covered in
any language:

TCd =
| ⋂l∈LCd

l |
| ⋃l∈LCd

l | (1)

TCd directly measures a model’s ability to trans-
fer knowledge. A high TCd score indicates strong
knowledge transference, even if overall accuracy
is modest. We evaluate TCd under four distinct
scenarios to probe different aspects of this transfer-
ability:

(i) Total Coverage (All), TCd(All). This mea-
sures cultural transferability across all seven
languages in XNationQA, providing a holistic
view of a model’s multilingual alignment on
our dataset.

(ii) Total Coverage (Pre-training data),
TCd(Pre − Train). To provide a fairer
assessment of models like LLaMA and
Mistral, where some languages are known to
be underrepresented in their training data, this
metric calculates TC only on the languages
well-represented in each model’s pre-training
corpus.

(iii) Total Coverage (West), TCd(W ). Given the
observation from Table 2 that models perform
better in Western languages, this metric quan-
tifies their knowledge transferability specif-
ically within this language group (English,
German, Spanish, Russian).

(iv) Total Coverage (English Non-Western),
TCd(Eng−NW ). Since English is the dom-
inant language for all models, this scenario
measures how well knowledge transfers from
English to the non-Western languages in our
dataset.

The results, presented in Table 3, reveal a sig-
nificant lack of knowledge transfer in most mod-
els. The TC(All) score for open-source models
is notably low, often near 5%, indicating that a
vast majority of their cultural knowledge is not
consistently accessible across languages. While
the TC(Pre − Train) scores show an expected
increase (averaging 10.4×), the gap remains sub-
stantial. We also observe a strong bias towards
Western languages (Naous et al., 2023); for in-
stance, Mixtral and Mistral show a nearly 30×
and 18× jump in transference for TC(W ), respec-
tively, compared to TC(All). This jump can be
attributed to the language distribution in their pre-

TCd TCd TCd TCd

Model (All) (Pre-Train) (W) (Eng-NW)
Monuments

Bloomz-7B1 0.00 0.00 6.08 0.89
LLaMA-2-7B-Chat 0.38 6.51 26.46 0.82
Mistral-7B-Instruct 6.34 78.16 57.20 7.34
Meta-Llama-3-8B-Instruct 14.18 30.26 34.59 18.95
LLaMA-2-13B-Chat 2.27 8.71 44.87 2.40
Aya 6.01 6.01 21.90 10.70
GPT-4 62.59 62.59 81.88 72.56
Mixtral-8x7B 2.16 83.33 72.43 2.59

Leaders
Bloomz-7B1 3.75 3.75 9.84 9.70
LLaMA-2-7B-Chat 0.48 3.40 6.95 1.05
Mistral-7B-Instruct 2.29 54.62 41.54 4.03
Meta-Llama-3-8B-Instruct 10.25 44.80 48.75 12.17
LLaMA-2-13B-Chat 6.67 14.12 24.71 8.28
Aya 16.95 16.95 30.69 22.45
GPT-4 28.46 28.46 50.83 33.48
Mixtral-8x7B 2.46 86.59 73.05 2.57

Wars
Bloomz-7B1 5.21 5.21 11.39 13.50
LLaMA-2-7B-Chat 3.47 9.31 16.67 8.53
Mistral-7B-Instruct 3.68 42.25 35.40 5.29
Meta-Llama-3-8B-Instruct 21.22 37.09 38.81 27.81
LLaMA-2-13B-Chat 2.75 12.05 18.16 5.07
Aya 5.28 5.28 10.79 10.77
GPT-4 47.23 47.23 70.76 52.36
Mixtral-8x7B 9.45 71.26 59.33 11.30

National Parks
Bloomz-7B1 0.29 0.29 7.72 0.65
LLaMA-2-7B-Chat 0.48 5.60 21.54 0.52
Mistral-7B-Instruct 1.41 67.08 43.45 1.78
Meta-Llama-3-8B-Instruct 7.94 27.74 31.54 11.45
LLaMA-2-13B-Chat 0.49 6.55 34.25 0.53
Aya 5.17 5.17 25.17 8.39
GPT-4 44.35 44.35 86.42 47.76
Mixtral-8x7B 1.08 77.88 60.35 1.11

Table 3: Total Coverage (TC) scores across the four
domains, evaluated under different language scenarios.
TC(All) shows overall transferability, which is low for
most open-source models. Scores improve for scenarios
limited to pre-training languages (TC(Pre− Train))
and Western languages (TC(W )), indicating a strong
data bias. GPT-4 consistently outperform other models,
especially in the all-language scenario.

training data, as we saw a similar jump when com-
paring TC(All) and TC(Pre− Train) for these
models. Interestingly, other models show stronger
transference for TC(W ) than TC(Pre− Train)
indicating a bias towards Western languages, as
also discussed in earlier section. The consistently
low TC(Eng −NW ) scores further highlight the
poor alignment between English and non-Western
languages. Our pairwise analysis in Appendix A.5
corroborates this, showing that Western language
pairs have significantly higher TC scores.

Smooth Coverage (SC). The binary nature of
TC (an entity is either covered or not) can be overly
strict, as it fails to credit models for partial knowl-
edge (e.g., answering 2 of 4 questions correctly).
To address this, we introduce Smooth Coverage
(SC), a more nuanced metric that uses a fuzzy set

14962



extension. First, for each entity e in the domain
d, we define its membership score, m(e)

l , as the
proportion of correctly answered questions for that
entity in language l:

m
(e)
l =

1

P

P∑

p=1

I(ypred = ytruth)
(e)
l,p (2)

where, P is the total number of prompts for a ques-
tion on the entity e, ypred and ytruth are the model
generated and ground-truth answers respectively,
and I(.) is the indicator function. This score re-
flects the degree of knowledge and converts Cd

l

into a fuzzy set. We then define SC as the average
ratio of the minimum membership score to the max-
imum score for each entity across all languages:

SCd
l =

1

|E|
∑

e∈E

minl∈Lm
(e)
l

maxl∈Lm
(e)
l + ϵ

(3)

where, E is the set of entities in domain d, and
ϵ is a small constant to prevent division by zero.
This metric rewards models for consistent, even if
partial, knowledge.

Model M L W N

Bloomz-7B1 0.71 3.66 5.03 0.84
LLaMA-2-7B-Chat 1.24 1.33 7.50 1.64
Mistral-7B-Instruct 6.94 2.58 5.56 1.95
Meta-LLaMA-3-8B-Instruct 20.13 14.16 24.11 12.06
LLaMA-2-13B-Chat 4.27 7.33 4.68 2.59
Aya 7.02 7.83 4.47 5.34
GPT-4 61.92 23.99 39.94 43.97
Mixtral-8x7B 5.07 3.75 13.27 2.48

Table 4: Smooth Coverage (SC) scores across all lan-
guages and domains. GPT-4 demonstrates the most
robust cross-lingual transference. In contrast, Bloomz,
despite its linguistically diverse training, shows poor
transference across languages for all domains (M: Mon-
uments, L: Leader, W: War, and N: National Park).

As reported in Table 4, the SC scores confirm
the trends observed with TC. While the scores are
numerically higher because they account for par-
tial knowledge, the overall conclusion remains un-
changed. GPT-4 demonstrates the strongest cross-
lingual robustness, while models like Bloomz, de-
spite their linguistically diverse training data, score
the lowest. This finding reinforces that current
open-source models are still largely inadequate at
providing faithful and consistent answers in multi-
lingual scenarios.
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Figure 2: A detailed breakdown of model accuracy
across different languages for each of the nine coun-
tries in XNationQA (see Table 5 for ISO codes). Each
radar plot represents a model, with axes for the nine
countries and colored lines for the seven languages. The
plots demonstrate the significant performance dispari-
ties across both nations and languages. For instance,
most models show stronger performance in English
(blue line) across all countries, while struggling with
non-Western languages like Hindi (magenta line). The
irregular shapes of the plots for models like Bloomz
or LLaMA-2 highlight inconsistent cultural knowledge
across different nations.

5.4 Disparities in Cultural Literacy Across
Nations

While we previously analyzed the performance of
the models aggregated by language, let us now
look into how cultural literacy varies across differ-
ent nations, revealing significant inconsistencies.
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As visualized in the radar plots in Figure 2, no
single model demonstrates uniform cultural knowl-
edge across all nine countries. The asymmetrical
shapes of the plots clearly indicate that a model’s
proficiency in one nation’s cultural facts does not
guarantee similar proficiency in another’s, even
when queried in the same language.

Performance on Leaders. A topic-by-topic anal-
ysis reveals further nuance. For questions about
the birth year of leaders (see Appendix Figure 5),
Mixtral-8x7B is the most consistent performer
across different nations. However, this consis-
tency is largely confined to Western languages; its
performance drops significantly in non-Western
languages, a trend observed across all models.
LLaMA-3-8B-Instruct also shows reasonable con-
sistency, particularly in English, German, and Span-
ish, though it notably struggles with facts about
Mexico.

Performance on Monuments. When recalling
the location of monuments (c.f. Appendix Fig-
ure 6), most models again perform well in Western
languages. The exceptions are Aya and Bloomz,
which struggle more broadly. The LLaMA-2 fam-
ily exhibits a specific weakness, showing low per-
formance on facts related to Japan, Mexico, and
China, even when queried in those nations’ dom-
inant languages. Among all models, only GPT-
4 maintains a relatively uniform level of literacy
across both Western and non-Western languages
like Japanese and Hindi for this topic.

Performance on National Parks and Wars. The
highest degree of variability is observed for ques-
tions about national parks (Appendix Figure 8)
and wars (Appendix Figure 7). For these topics,
performance is highly inconsistent, fluctuating sig-
nificantly between both nations and languages for
nearly all models. The only notable exception is
GPT-4’s relatively stable and high performance on
national park locations when queried in English,
German, and Spanish.

5.5 Cultural Knowledge vs. Linguistic
Competence

Finally, we analyze model performance averaged
across all languages to see how culturally liter-
ate models are about different nations overall (see
Appendix Figure 13). This perspective reveals
a surprising trend that contrasts with our earlier
language-based findings.

Performance by Nation. When viewed by coun-
try, the performance hierarchy is largely consis-
tent with previous results: GPT-4 exhibits the
strongest cultural literacy (nearly 80% accuracy
for the US, China, and India), followed by LLaMA-
3-8B-Instruct and Mixtral-8x7B (above 60% for
the same countries). The LLaMA-2 series remains
in the moderate 40 − 60% range, while Aya and
Bloomz show the lowest literacy, often below 40%
for most countries.

Decoupling of Knowledge and Language. Most
interestingly, the strong performance divide be-
tween Western and non-Western languages does
not translate into a similar divide between Western
and non-Western nations. As shown in Table 2,
models often demonstrate deeper cultural knowl-
edge of countries like China, India, and Japan than
of Western nations like Germany or Spain. This
occurs even while the models perform poorly in
the native languages of those non-Western nations
(e.g., Chinese, Hindi). This decoupling of linguis-
tic competence from cultural knowledge is a key
finding of our study. It suggests that a model can be
highly knowledgeable about a particular nation’s
facts, even if it cannot express that knowledge ef-
fectively in that nation’s primary language.

6 Conclusion

In this work, we introduced XNationQA, a large-
scale multilingual benchmark designed to evaluate
the cultural literacy of LLMs beyond the typical
Western-centric scope. Our analysis of eight mod-
els revealed significant inconsistencies in their fac-
tual knowledge across languages and nations. We
found a strong performance bias towards Western
languages, though this did not always translate to
better knowledge of Western countries. Models
specifically designed for broad language support,
like Aya and Bloomz, struggled with factual recall,
particularly with dates. Furthermore, our novel
transference metrics showed that open-source mod-
els have a severe limitation in transferring cultural
knowledge across languages, highlighting a criti-
cal gap between them and the proprietary LLMs.
These findings underscore the need for more cultur-
ally inclusive training and evaluation methods to
create truly global and equitable language models.

Limitations

This work attempts to present a more inclusive
approach towards benchmarking the cultural lit-

14964



eracy of models across nations and demonstrates
the disparity in LLMs’ performance with varia-
tion in language. However, it has three main lim-
itations. First, due to computational constraints,
we could not experiment with larger multilingual
LLMs. Consequently, while our work benchmarks
a range of widely-used models, the cultural literacy
of colossal models remains an important direction
for future investigation.

Second, the design of XNationQA has limita-
tions in scope and structure. Our selection of na-
tions based on widely spoken languages resulted
in no coverage of countries from Africa and South
America. Furthermore, while the dataset is parallel
across languages, the number of factual entities for
each domain (e.g., wars, monuments, etc.) natu-
rally varies between nations, an inherent constraint
of nation-specific factual benchmarking approach.

Finally, this study’s scope is focused on perfor-
mance benchmarking rather than an in-depth anal-
ysis of the models’ training data. Such an analysis
could provide insights into our findings, such as
why models like Bloomz and Aya exhibit lower cul-
tural literacy despite their linguistically inclusive
training. Investigating the topic distribution and
biases in their publicly available training corpora,
like that of BLOOM (Laurençon et al., 2022), is a
valuable avenue for future research.

Ethical Statement

This work aims to evaluate the cultural literacy of
LLMs across multiple languages and nations by
probing their knowledge of historically and cul-
turally significant facts. We take care to ensure
that our dataset is balanced, factual, and respectful
of diverse cultures, avoiding stereotypes or biased
representations. All cultural content is sourced
from publicly available, reputable references such
as encyclopedias, official historical records, and
recognized heritage listings.

We acknowledge that cultural knowledge is com-
plex and dynamic, and our work does not attempt
to capture the full richness of any culture or com-
munity. Instead, it focuses on well-documented
factual knowledge as a proxy for measuring mod-
els’ cross-cultural understanding. We encourage
future research to incorporate a wider range of cul-
tural perspectives and to evaluate the social impact
of deploying LLMs in multicultural contexts.
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A Appendix

A.1 Prompt Templates

Table 6 shows a few question templates used in our
dataset creation. We translate the question template
along with the entity-answer tuples and options to
create XNationQA.

A.2 ISO Codes

Table 5 contains the ISO codes of the seven lan-
guages used in our dataset.

A.3 Selecting Languages and Entity
Distribution

We started our study by selecting the three most
widely spoken languages in the world (Mandarin,
Spanish and English). One nation from each of
these languages (China, Spain, US) was selected
in the beginning. We then expanded our selection
to include a combination of diverse (Hindi, Rus-
sian) and similar languages (German and Japanese),
with one nation where they are widely spoken (In-
dia, Russia, Germany). This resulted in a set of

14967

https://api.semanticscholar.org/CorpusID:258865272
https://api.semanticscholar.org/CorpusID:258865272
https://api.semanticscholar.org/CorpusID:264145744
https://api.semanticscholar.org/CorpusID:264145744
https://api.semanticscholar.org/CorpusID:264591429
https://api.semanticscholar.org/CorpusID:264591429
https://api.semanticscholar.org/CorpusID:264591429
https://doi.org/10.18653/v1/2023.findings-emnlp.823
https://doi.org/10.18653/v1/2023.findings-emnlp.823
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2023.acl-long.653
https://doi.org/10.18653/v1/2023.acl-long.653
https://doi.org/10.18653/v1/2022.findings-acl.164


Language ISO 639-1 code Family

English EN IE: Germanic

German DE IE: Germanic

Hindi HI IE: Indo-Iranian

Chinese ZH Sino-Tibetan

Russian RU IE: Balto-Slavic

Spanish ES IE: Italic

Japanese ZH Japonic

Table 5: List of languages and their ISO codes used in
our experiments.

seven nations and languages. We further included
Mexico and UK to expand on the cultures we cover.
Figure 3 shows the distribution of entities over the
nine countries.

A.4 Pre-Training Datasets of the LLMs Used
in Our Study

(i) Aya: Aya is an instruction-tuned mT5
model(Xue et al., 2020) that supports 101 lan-
guages, including all seven languages used in
our study.

(ii) Bloomz: Bloomz supports 46 languages, in-
cluding programming languages. It covers all
seven languages used in our study.

(iii) Mistral: The Mistral family of models primar-
ily focuses on European languages, covering
English, French, Italian, German, and Spanish.
The exact distribution of its training dataset is
unknown, so its coverage of other languages
is unknown.

(iv) LLaMA-2: LLaMA-2’s pre-training dataset
predominantly consists of English, with
89.7% of the data in English. The remaining
8.38% comprises unknown languages (mainly
programming languages), and about 2% con-
sists of non-English languages. Except for
Hindi, all other languages in our dataset seem
to be represented.

(v) LLaMA-3: LLaMA-3 builds upon the multi-
lingual capabilities of LLaMA-2, with 8% of
its training dataset dedicated to multiple lan-
guages. Although LLaMA-3 has been trained
on a wide array of languages, it is specifi-
cally optimized and safety-tuned for eight lan-
guages: English, German, French, Italian, Por-
tuguese, Hindi, Spanish, and Thai.

(vi) GPT-4: The exact details of its training
dataset are not publicly available.

China4.4%

India
20.4%

Japan

9.0%Mexico
11.4%

Russia 8.6%

Spain
17.6%

UK

10.3% US
11.6%

Germany6.8%

Figure 3: Distribution of entities across the nine nations
considered in our study.

A.5 Pairwise Total Coverage Scores of Models
Figure 4 represents the pairwise TC of Bloomz-
7B1, LLaMA-2-7B-Chat, Mistral-7B-Instruct,
LLaMA-2-13B-Chat, and Aya. We see that the
model generally sees a better TC score in Western
languages compared to non-Western ones, high-
lighting that the models struggle in non-Western
languages. Mistral-7B-Instruct and LLaMA-
2-13B-Chat show relatively better performance
among the models evaluated, but none as strong as
GPT-4, Mixtral or Meta-LLaMA-3 that have been
discussed in the main text.

LLaMA-2 series shows very poor TC for all
language pairs consisting of Hindi, indicating the
lack of consistency and understanding in Hindi.
Aya while showing low absolute performance (c.f.
Table 2), still shows overall reasonable TC across
languages.

A.6 Evaluating Disparity Across National
Park and War Questions

Figure 7 shows the performance of models on war-
type questions. We note that models have different
literacy on these facts with no model performing
similarly across all countries or languages. Dates
about wars Russia has taken part in seem to be
difficult for the model to recall, except for Mixtral
and Meta-LLaMA-3.

Figure 11 shows the performance of models on
the location of national park-type questions. Here
also we note that models tend to have different
literacy on these facts with no model performing
similarly. Except for GPT-4 for Western languages,
there is no homogeneous performance across coun-
tries.
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Domain Question Template Entity-Answer exam-
ple

Year of War

Question: As per American history, when did {War} happen?
{Option}
Answer:
Question: What year did {War} start according to American history?
{Option}
Answer:
Question: Historical accounts from American indicate {War} occur in?
{Option}
Answer:
Question: Can you tell me according to American history the date when {War} took place?
{Option}
Answer:

(American Revolution-
ary War, 1775)

Location of na-
tional park or
monument

Question: Where can {Location} be found within China?
{Option}
Answer:
Question: In which part of China is {Location} situated?
{Option}
Answer:
Question: Where in China is {Location} located?
{Option}
Answer:
Question: In which area of China can {Location} be found?
{Option}
Answer:

(Wuyi Mountains Na-
tional Park, Fujian)

Birth year of
Leader

’Question: When was German leader {NAME} born?
{Option}
Answer:
Question: What is the birthyear of the German leader {NAME}?
{Option}
Answer:
Question: On what year was the German leader {NAME} born?
{Option}
Answer:
Question: What is the year of birth of the German leader {NAME}?
{Option}
Answer:

(Olaf Scholz,1958)

Table 6: Question Template in English along with an example entity-answer. We create the option using three
negative samples and the true answer to fill the {Option}.

Model M L W N
Bloom-7B1 1.9e-47 0.38 0.002 1.23e-59
LLaMA-2-7B-chat 2.82e-160 4.16e-39 1.20e-38 2.83e-195
Mistral-7B-Instruct 4.96e-113 1.324e-5 3.06e-243 3.77e-189
Meta-LLaMA-3-8B 1.145e-31 3.90e-86 1.82e-32 1.02e-81
LLaMA-2-13B-chat 1.83e-32 7.35e-15 9.82e-12 4.67e-193
Aya 3.73e-45 0.45 0.02 1.06e-21
Mixtral-8x7B 1.09e-132 2.67e-156 1.47e-105 3.99e-247
GPT-4 1.25e-13 4.23e-9 2.45e-12 3.57e-51

Table 7: p-values for significance testing of the hypoth-
esis that models perform better in Western languages.
M (Monuments), L (Leader), W (War) and N (National
Park). Significance is decided by taking α = 0.05 and
statistically significant results has been marked bold.

A.7 Model-wise Analysis of Results
Here we dive deeper into analysing each model for
a specific use case and along the country-language
axes as shown in Figures 9, 10, 11 and 12. The
analysis is as follows:

(i) Bloomz-7B1: We note that for war and leader
domain questions, the model shows modest to
poor performance in most cases, even worse
than random in some instances. Despite be-
ing trained on a diverse multilingual corpus,
Bloomz struggles with XNationQA compared
to LLaMA or Mistral models of the same
size. For questions related to monuments and

national parks, the model performs better in
English, German, Spanish, and Chinese but
shows low performance in other languages.

(ii) LLaMA-2-7B-Chat: We consistently see that
in all domains the model performs badly in
the Hindi language (with accuracy lower than
20%). It seems to be most literate in Western-
European languages which consistently out-
perform other languages for all countries and
domains. Its coverage in Russian is still
moderate compared to Western European lan-
guages. While it does show a decent level of
literacy about a nation in the nation’s native
language, they are still not the best language
to prompt the model in.

(iii) Mistral-7B-Instruct: It shows modest per-
formance on leader domain questions, but for
other domains, we note it to be culturally liter-
ate. However, it is biased towards Western lan-
guages and shows only modest performance
in other languages, especially Hindi.

(iv) Meta-LLaMA-3-8B-Instruct: It is the only
model below the size of 10 billion to be liter-
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A) B)

C) D)

E) F)

G) H)

Figure 4: Heatmaps for pairwise TC of all language pairs, for – (A) Bloomz-7B1, (B)LLaMA-2-7B-Chat, (C)Mistral-
7B-Instruct, (D)Meta-LLaMA-3-8B-Instruct, (E) LLaMA-2-13B-Chat, (F) 13-billion Aya, (G) GPT-4 and (H)
Mixtral-8x7B.
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Figure 5: Accuracy of models in different languages
for questions on the birth year of leaders of different
nations (see Table 5 for ISO code).

ate to some degree in all the languages cov-
ered by us, even Hindi. It still seems to be
more proficient in Western languages than oth-
ers.

(v) LLaMA-2-13B-Chat: Similar to the 7-billion
variant of LLaMA-2, this model also strug-
gles to perform well in Hindi and has consid-
erable disparity between Western-European
languages and other languages.

(vi) Aya: Like Bloomz, Aya has been trained on
a diverse multilingual corpus, and similar to
Bloomz it also struggles to perform well in
war and leader domain questions. Its perfor-
mance in other domains is better, but still not
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Figure 6: Accuracy of models in different languages for
questions on the location of UNESCO sites of different
nations (see Table 5 for ISO code).

comparable to LLaMA-2-13B-Chat which is
of a similar size.

(vii) GPT-4: It is the most culturally literate
model in multilingual setup, with consider-
ably higher performance than all other mod-
els. There is an interesting observation though
– it struggles with questions about Germany
if asked in Russian, especially for the monu-
ments and national parks domains.

B Human Evaluation of Translation
Quality in XNationQA

To evaluate the translation quality of queries in
our dataset, we recruited university students aged
between 20 to 25 who were either native speakers
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Figure 7: Accuracy of models in different languages
(indicated in different colours) for questions on the date
of wars in different nations.

of the language or had cleared language proficiency
tests. We recruited a total of six language experts,
one for each language. They were provided with
the following Annotation Guidelines and Scoring
Criteria.

Annotation Guidelines: Each translation is eval-
uated based on the following criteria:

• Grammar – Proper use of verbs, tense, agree-
ment, and punctuation.

• Fluency – The sentence should sound natural
and idiomatic.

• Cohesion – The sentence should be logically
structured and clear.
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Figure 8: Accuracy of models in different languages
(indicated in different colours) for questions on the lo-
cation of national parks of different nations.

Scoring Criteria: Each translation is rated on a
scale from 1 to 5:

• 5 (Excellent) – No grammatical errors. The
sentence follows correct conjugations and
agreements. It is natural, idiomatic, and fluent,
resembling native speech.

• 4 (Good) – Minor grammatical mistakes (e.g.,
incorrect prepositions, small conjugation er-
rors), but they do not affect understanding.
The sentence is still readable and sounds natu-
ral.

• 3 (Acceptable) – Noticeable grammar mis-
takes, such as verb tense inconsistencies or
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incorrect word order. The sentence is under-
standable but slightly unnatural.

• 2 (Poor) – Multiple grammatical mistakes sig-
nificantly affecting readability. The sentence
sounds unnatural or contains awkward phras-
ing.

• 1 (Unacceptable) – The sentence is not gram-
matically correct and is difficult or impossible
to understand. Severe errors break fluency,
making the translation unusable.

C Evaluating the Variation of Model
Performance Across Languages

To study the disparity in a model’s performance
between languages on facts about the same country,
we analyze the standard deviation of the accuracy
of the models across different languages. A lower
standard deviation indicates better homogeneous
performance across languages. However, we ob-
serve high variance (c.f. Table 8), indicating that
multilingual LLMs struggle to transfer their cul-
tural literacy across languages. In many instances,
the standard deviation exceeds 20, indicating a se-
vere disparity in performance transference across
languages.

D Evaluation of Qwen3 and LLaMA-3.1
Models

Table 9 presents the performance of Meta-Llama-
3.1-8B-Instruct (Meta AI, 2024), Qwen3-8B (Yang
et al., 2025), and Qwen3-14B (Yang et al., 2025).
Similar to other models, we observe that they
achieve stronger results on Western languages.
Moreover, while Meta-Llama-3.1-8B-Instruct per-
forms best among them, its performance still lags
behind GPT-4.

14973



A)

C) D)

E) F)

H)G)

B)

Figure 9: Heatmap of accuracy on leader domain, for – (A) Bloomz-7B1, (B) LLaMA-2-7B-Chat, (C) Mistral-
7B-Instruct, (D) Meta-LLaMA-3-8B-Instruct, (E) LLaMA-2-13B-Chat, (F) 13-billion Aya, (G) GPT-4 and (H)
Mixtral-8x7B.
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Figure 10: Heatmap of accuracy on monuments domain, for – (A) Bloomz-7B1, (B) LLaMA-2-7B-Chat, (C)
Mistral-7B-Instruct, (D) Meta-LLaMA-3-8B-Instruct, (E) LLaMA-2-13B-Chat, (F) 13-billion Aya, (G) GPT-4 and
(H) Mixtral-8x7B.
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Figure 11: Heatmap of accuracy on national park domain, for – (A) Bloomz-7B1, (B) LLaMA-2-7B-Chat, (C)
Mistral-7B-Instruct, (D) Meta-LLaMA-3-8B-Instruct, (E) LLaMA-2-13B-Chat, (F) 13-billion Aya, (G) GPT-4 and
(H) Mixtral-8x7B.
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Figure 12: Heatmap of accuracy on war domain, for – (A) Bloomz-7B1, (B) LLaMA-2-7B-Chat, (C) Mistral-
7B-Instruct, (D) Meta-LLaMA-3-8B-Instruct, (E) LLaMA-2-13B-Chat, (F) 13-billion Aya, (G) GPT-4 and (H)
Mixtral-8x7B.
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Model
Country

US China India UK Japan Germany Russia Mexico Spain

Monuments
Bloomz-7b1 51.93± 23.55 24.05± 26.89 39.80± 18.07 42.08± 28.19 21.07± 15.99 32.30± 15.57 23.38± 11.96 46.29± 24.76 48.47± 26.86
LLaMA-2-7B-chat 56.85± 32.05 44.17± 24.04 57.06± 32.36 57.70± 26.98 47.14± 26.27 48.25± 31.01 44.81± 26.47 38.87± 21.98 48.98± 28.92
Mistral-7B-Instruct 59.97± 31.97 47.52± 27.06 63.69± 32.38 67.63± 21.04 53.04± 17.28 56.98± 24.03 51.95± 27.87 58.10± 24.20 63.61± 25.67
Meta-LLaMA-3-8B-Instruct 78.42± 12.33 61.08± 22.62 80.36± 15.75 69.20± 12.21 66.61± 12.08 57.30± 24.21 61.36± 21.45 59.34± 20.28 67.35± 16.40
LLaMA-2-13B-chat 54.02± 28.50 50.80± 25.36 61.65± 32.55 69.31± 22.56 48.93± 18.09 53.33± 29.10 45.29± 27.55 44.64± 19.47 57.82± 30.42
Aya 52.38± 11.52 43.73± 12.96 51.11± 16.86 55.13± 14.45 36.79± 18.11 42.22± 22.37 44.97± 19.10 39.01± 15.25 42.01± 26.08
GPT-4 95.83± 3.86 85.42± 8.05 95.92± 7.17 92.86± 2.19 92.14± 3.64 79.68± 21.43 93.51± 10.83 93.96± 7.65 93.20± 11.05
Mixtral-8x7B 67.86± 25.99 62.03± 25.21 70.24± 27.99 67.30± 27.96 58.75± 24.89 57.94± 31.36 62.50± 35.23 57.14± 33.89 67.69± 30.52

Leader
Bloomz-7b1 34.37± 6.99 19.35± 13.76 23.47± 3.50 26.59± 2.77 13.93± 11.87 14.64± 5.54 26.70± 8.15 27.57± 3.50 29.20± 3.19
LLaMA-2-7B-chat 46.11± 25.30 31.55± 17.59 36.22± 20.71 37.20± 22.42 25.88± 10.29 30.24± 14.99 33.16± 11.90 23.49± 10.17 21.64± 19.71
Mistral-7B-Instruct 44.44± 14.23 30.65± 8.89 35.97± 13.88 28.77± 7.77 23.42± 5.12 38.33± 10.22 30.10± 6.09 21.15± 1.99 17.65± 6.85
Meta-LLaMA-3-8B-Instruct 76.03± 24.05 67.56± 20.10 70.92± 20.47 70.44± 23.54 56.62± 22.94 67.26± 24.52 58.16± 14.15 46.82± 17.78 53.57± 19.57
LLaMA-2-13B-chat 29.05± 15.14 36.01± 18.25 47.70± 17.38 32.14± 13.35 26.64± 4.65 33.57± 11.67 39.80± 8.53 25.00± 7.01 24.37± 15.70
Aya 22.30± 6.50 26.49± 5.76 24.74± 4.21 30.36± 3.40 13.41± 1.89 14.76± 2.21 11.05± 3.58 23.94± 1.82 40.34± 5.93
GPT-4 80.95± 4.42 63.10± 18.29 56.12± 13.99 52.78± 6.30 45.67± 8.52 59.05± 9.87 50.34± 10.45 46.21± 10.36 55.46± 10.83
Mixtral-8x7B 69.37± 34.96 58.63± 26.87 55.10± 26.99 64.58± 34.36 58.67± 34.88 61.43± 33.31 52.04± 28.85 50.00± 26.65 54.62± 30.31

Wars
Bloomz-7b1 39.58± 5.78 29.22± 10.96 34.69± 4.55 30.47± 7.25 26.33± 12.41 37.32± 9.33 22.45± 5.84 35.87± 5.36 28.91± 3.66
LLaMA-2-7B-chat 41.31± 10.99 58.12± 8.83 44.50± 9.50 41.22± 15.10 51.66± 10.83 63.05± 10.14 22.85± 7.31 45.50± 4.39 35.18± 9.75
Mistral-7B-Instruct 42.42± 9.40 56.49± 24.37 37.89± 7.93 46.68± 10.50 46.84± 8.23 60.84± 16.54 27.10± 9.14 40.53± 6.70 34.99± 7.03
Meta-LLaMA-3-8B-Instruct 61.78± 6.96 70.13± 12.47 58.13± 8.80 61.30± 9.38 65.78± 7.56 69.83± 10.63 51.93± 12.07 53.34± 7.37 52.13± 6.86
LLaMA-2-13B-chat 44.16± 9.90 34.42± 9.98 37.11± 7.29 41.03± 7.96 37.46± 8.56 47.78± 10.86 25.96± 8.24 34.86± 4.88 33.25± 7.40
Aya 28.81± 2.35 13.31± 4.92 23.81± 3.58 28.43± 3.45 35.38± 5.23 38.79± 4.07 11.17± 2.72 24.53± 4.54 29.26± 1.53
GPT-4 79.54± 6.02 93.51± 4.11 71.43± 4.41 76.53± 6.61 82.39± 4.79 78.33± 9.53 31.07± 7.77 56.83± 7.30 59.33± 6.72
Mixtral-8x7B 60.23± 17.63 73.05± 24.55 62.64± 16.80 63.45± 19.24 69.44± 18.05 66.01± 16.65 55.90± 21.42 50.08± 13.36 53.80± 15.92

National Parks
Bloomz-7b1 43.15± 22.78 16.43± 19.95 29.96± 10.43 54.76± 35.01 16.70± 9.41 24.76± 10.25 27.56± 9.69 29.69± 13.11 48.66± 32.61
LLaMA-2-7B-chat 52.94± 27.82 38.57± 23.41 47.12± 25.45 53.81± 30.65 46.95± 21.53 36.19± 17.65 32.38± 14.22 31.81± 15.33 45.54± 27.04
Mistral-7B-Instruct 59.50± 25.86 44.29± 29.93 49.14± 29.51 79.52± 27.58 40.23± 20.14 47.62± 25.69 36.96± 17.38 32.14± 20.54 37.28± 27.26
Meta-LLaMA-3-8B-Instruct 66.01± 11.78 60.00± 22.99 62.09± 20.36 79.29± 8.16 63.03± 15.82 36.90± 21.67 51.63± 18.15 45.54± 19.77 53.79± 15.49
LLaMA-2-13B-chat 53.40± 28.04 48.57± 19.77 47.92± 27.22 70.48± 24.44 56.09± 20.98 36.90± 14.65 32.61± 15.85 34.71± 18.00 38.62± 23.32
Aya 42.86± 13.39 24.29± 25.13 40.44± 9.90 59.29± 15.68 39.29± 7.23 22.86± 7.90 30.36± 10.76 31.92± 8.06 32.14± 20.66
GPT-4 93.32± 4.98 85.71± 23.21 87.30± 15.09 98.10± 3.01 87.82± 5.08 66.67± 33.24 73.29± 18.62 76.56± 19.30 83.04± 17.90
Mixtral-8x7B 63.42± 24.37 52.86± 28.27 60.48± 32.37 72.38± 23.67 60.71± 28.82 49.05± 23.48 50.00± 29.42 49.00± 29.10 58.93± 34.04

Table 8: Accuracy and standard deviation of accuracy across the seven languages covered by XNationQA on the
countries covered. All models show high variation in accuracy over languages. Results with standard deviation
higher than ten are marked with red color.

Figure 13: Accuracy of models across nations averaged over language. We note that models like GPT-4 demonstrate
relatively low performance for Mexico, Spain, and Russia as compared to India and China even though the native
languages of these nations (Hindi and Chinese) are poorly performing (c.f. Table 2).
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Model
Lang

EN DE ES HI RU JA ZH AVG AVGW AVGNW

Monuments
Meta-LLaMA-3.1-8B-Instruct 37.01 73.31 78.47 51.25 68.95 53.74 58.81 60.22 64.44 54.59
Qwen3-8B 21.44 59.96 55.87 17.70 35.05 41.99 26.96 37.00 43.08 28.89
Qwen3-14B 57.92 61.21 77.14 53.65 46.17 29.89 42.62 52.66 60.61 42.06

Leaders
Meta-LLaMA-3.1-8B-Instruct 72.75 76.50 76.58 49.75 58.83 50.00 31.50 59.42 71.17 43.75
Qwen3-8B 12.00 40.17 48.33 30.25 43.25 15.33 14.08 29.06 35.94 19.88
Qwen3-14B 63.75 59.58 59.08 31.67 50.25 3.75 11.67 39.96 58.17 15.68

Wars
Meta-LLaMA-3.1-8B-Instruct 66.47 64.84 62.68 55.63 60.80 58.07 54.04 60.36 63.70 55.90
Qwen3-8B 40.93 54.75 57.29 46.88 55.45 47.27 41.25 49.12 52.11 45.13
Qwen3-14B 67.85 63.42 63.74 48.97 59.74 48.09 41.57 56.20 63.69 46.21

National Parks
Meta-LLaMA-3.1-8B-Instruct 39.48 57.45 71.19 46.62 58.77 41.70 40.38 50.80 56.73 42.89
Qwen3-8B 26.69 57.51 54.12 20.56 26.69 27.96 19.56 33.30 41.25 22.70
Qwen3-14B 72.04 57.03 77.54 44.82 50.26 21.72 30.50 50.56 64.22 32.34

Table 9: Accuracy of Meta-LLaMA-3.1 and Qwen3 models across languages and domains. Columns AVGW and
AVGNW show average performance over Western (EN, DE, ES, RU) and non-Western (HI, JA, ZH) languages
respectively. Meta-LLaMA-3.1-8B-Instruct consistently outperforms Qwen3 models across most domains and
languages, except in some cases where Qwen3-14B shows higher scores in EN and ES.
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