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Abstract

Large language models (LLMs) have recently
demonstrated excellent performance in text
embedding tasks. Previous work usually use
LoRA to fine-tune existing LLMs, which are
limited by the data and training gap between
LLMs and embedding models. In this work, we
introduce Conan-embedding-v2, a new 1.4B-
parameter LLM trained from scratch and fine-
tuned as a text embedder. First, we add news
data and multilingual pairs for LLM pretrain-
ing to bridge the data gap. Based on this, we
propose a cross-lingual retrieval dataset that en-
ables the LLM to better integrate embeddings
across different languages. Second, whereas
LLMs use a causal mask with token-level loss,
embedding models use a bidirectional mask
with sentence-level loss. This training gap
makes full fine-tuning less effective than LoRA.
We introduce a soft-masking mechanism to
gradually transition between these two types
of masks, enabling the model to learn more
comprehensive representations. Based on this,
we propose a dynamic hard negative mining
method that exposes the model to more diffi-
cult negative examples throughout the training
process. Being intuitive and effective, with
only approximately 1.4B parameters, Conan-
embedding-v2 achieves SOTA performance on
both the Massive Text Embedding Benchmark
(MTEB) and Chinese MTEB (May 19, 2025).

1 Introduction

Text embedding maps words, sentences, or docu-
ments into a high-dimensional continuous space,
allowing similar texts to have closer vector rep-
resentations (Mikolov et al., 2013; Karpukhin
et al., 2020). This representation not only ele-
vates the operability of text data, but also signif-
icantly improves performance in various down-
stream tasks (Devlin et al., 2018; Radford, 2018;
Reimers, 2019). With the rapid development of
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Figure 1: Comparison between Conan-embedding-
v2 and other embedding models on MTEB English
benchmark (May 19, 2025) (Muennighoff et al., 2022).
This benchmark evaluates model performance across
seven tasks: classification, clustering, pair classifica-
tion, reranking, retrieval, semantic textual similarity,
and summarization. The red dashed line depicts the log-
arithmic trendline fitted to the performance data of all
the baseline models, excluding Conan-embedding-v2.

large language models, LLM-based embedding
models (Wang et al., 2023; Li et al., 2023; Wang
et al., 2024a) have played a crucial role in text
representation and information retrieval tasks.

However, previous work with LLMs usually
starts with the pretrained Mistral-7B (Jiang et al.,
2023) and LoRA (Hu et al., 2021) to fine-tune the
embedding models. This approach may be con-
strained by the disparities in the training data and
process between LLMs and embedding models.
First, it relies on the capabilities of the base LLMs,
and there is a gap between the corpora used to train
the base LLMs and the data required for embed-
ding training. Moreover, the training paradigms
for LLMs and embedding models are fundamen-
tally different. LLMs are trained to predict the next
token, whereas embedding models need to gener-
ate an embedding vector based on the entire query
or candidate sentence. This training gap makes
full fine-tuning less effective than LoRA, and the
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improvements through LoRA have inherent limita-
tions (Biderman et al., 2024).

To address the above challenges, we propose
Conan-embedding-v2, a new LLM trained from
scratch and finetuned as a text embedder, which ex-
tends the BERT-based conan-v1 (Li et al., 2024b) in
both training data and methodology. First, to bridge
the data gap, Conan-embedding-v2 combines pre-
training on extensive news data with fine-tuning on
specialized embedding corpora during LLM train-
ing. Second, to address the training gap, we have
developed a soft mask mechanism that facilitates
a gradual transition from causal masking to bidi-
rectional masking, allowing the rank of the mask
to gradually decrease. This enables the model to
learn more comprehensive feature representations
during the early stages of training. Specifically, as
LLMs are no longer constrained by the corpus of
the backbone, we introduce a novel cross-lingual
retrieval dataset that enables bidirectional search
between 26 languages. This allows the model to
integrate embeddings across diverse linguistic sys-
tems. Moreover, since LLMs are no longer con-
strained by LoRA, we present a dynamic hard
negative mining that keep the high value of nega-
tive samples throughout the training process.

As shown in Figure 1, Conan-embedding-v2
demonstrates SOTA performance, outperforming
both BERT-based and LLM-based methods, while
maintaining an efficient model architecture with
optimized size. Our key contributions can be sum-
marized as follows:

• We propose Conan-embedding-v2, a new
LLM trained from scratch and finetuned as a
text embedder to address the data and training
gaps between LLMs and embedding models.

• We introduce a novel cross-lingual retrieval
dataset that enables bidirectional search be-
tween 26 languages, improving the integration
of multilingual embeddings.

• We conduct empirical evaluations, demonstrat-
ing that our method achieves SOTA perfor-
mance on both English and Chinese MTEB
benchmarks, while maintaining a reasonable
model size and inference speed.

2 Related Work

2.1 LLM-based Embedding Models
Recent progress in LLMs has significantly ad-
vanced the development of text embedding mod-

els, enabling more efficient and versatile represen-
tations. By fine-tuning pretrained LLMs on the
synthetic data, (Wang et al., 2023) achieved out-
standing performance with few training steps. The
findings of this research confirmed that leverag-
ing LLMs for embeddings proved efficient and
effective. Researchers have proposed diverse ap-
proaches to enhance LLM-based text embedders
from multiple perspectives. NV-Embed (Lee et al.,
2024) improved representation capability through
introducing latent attention layers and removing
causal attention encoding. bge-en-icl (Li et al.,
2024a) utilized a few-shot learning approach to
generate high-quality text embeddings by taking ad-
vantage of the in-context learning ability in LLMs.
NV-Retriever (Moreira et al., 2024) introduced a
mining approach using positive relevance scores to
eliminate false negatives, improving training effi-
ciency and retrieval accuracy. mE5 (Wang et al.,
2024a) and M3-Embedding (Chen et al., 2024b) fo-
cused on multilingual text embedding. The above
research significantly improved the performance of
LLM-based text embedding.

2.2 Cross-lingual Information Retrieval

While LLM-based embedding models have shown
remarkable progress, their application in cross-
lingual information retrieval (CLIR) presents
unique challenges and opportunities (Hämmerl
et al., 2024). Traditional CLIR methods strug-
gle to support multiple languages, maintain com-
putational efficiency, and achieve high retrieval
performance simultaneously. Recent advances
have demonstrated promising developments. Mul-
tilingual text embedding approaches, such as M3-
Embedding (Chen et al., 2024b) and mE5 (Wang
et al., 2024a), have shown remarkable capabilities
in handling multiple languages while maintaining
computational efficiency through contrastive learn-
ing and knowledge distillation techniques. Addi-
tionally, LECCR (Wang et al., 2024b) has begun
incorporating multimodal LLMs to bridge the se-
mantic gap between different modalities and lan-
guages, resulting in significant improvements in
cross-lingual cross-modal retrieval tasks. To ad-
dress the challenges of low-resource languages,
recent studies (Miao et al., 2024; Litschko et al.,
2024) have proposed innovative solutions using
word alignment and dialect-specific approaches to
enhance embedding quality.
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3 Method

3.1 Overall Pipeline
Since Conan-embedding-v2 is trained from scratch,
the training process is divided into four stages:
LLM pre-training, LLM supervised fine-tuning
(SFT), embedding weakly-supervised training, and
embedding supervised training. Each stage differs
in data formats and loss functions.

3.1.1 LLM Training
To better adapt large language models (LLMs) to
embedding tasks, we designed Conan-embedding-
v2 with 8 layers and a hidden dimension of 3584,
supporting up to 32,768 input tokens. This model,
totaling 1.4 billion parameters, offers a higher num-
ber of embedding dimensions with fewer parame-
ters. We trained the Conan tokenizer on approxi-
mately 400,000 multilingual corpora, resulting in a
vocabulary size of 150,000. As shown in Figure 2,
we initially pre-trained the model on approximately
3T tokens of general data, with a emphasis on
adding news, question-answer, and web page data.
We employed the standard data filtering methods
as described in (Cai et al., 2024). Following this,
we collected approximately 600 million instances
of SFT data using the paired data (query-positive),
formatted as instruction, input, and output.

3.1.2 Embedding Training
Weakly-supervised Training. For embedding
training, we first implemented weakly-supervised
training to allow the model to initially learn the rep-
resentations for embedding. During this stage, we
use the same data as in LLM supervised fine-tuning,
but with different data formats and loss functions.
Specifically, we provide the instruction and input
as the query, and the output as the positive pas-
sage. To ensure higher data quality, we utilize the
gte-Qwen2-7B-instruct model (Li et al., 2023) for
scoring and discard any data with scores below 0.4.
To efficiently and effectively leverage the pair data,
we employ the InfoNCE loss with In-Batch Neg-
ative sampling (Gutmann and Hyvärinen, 2010)
during training, the formula is:

Lneg = −
N∑

i=1

log
exp(cos(xi, y+i ))∑M
j=1 exp(cos(xi, yi))

(1)

xi represents the query of the positive sample,
y+i represents the passage of the positive sample,
yi represents the passages of other samples in the
batch, which are considered as negative samples.

Supervised Training. After weakly-supervised
training, we perform task-specific fine-tuning for
different downstream tasks. As shown in Figure 2,
we divide the tasks into four categories: retrieval,
cross-lingual retrieval, classification and STS (se-
mantic textual similarity). The first three tasks
include a query, a positive text, and some negative
texts, utilizing the classic InfoNCE loss function.
STS task involves distinguishing the similarity be-
tween two texts, with the classic loss function being
cross-entropy loss. According to (Su, 2022) and
other works (Wang Yuxin, 2023), CoSENT loss is
slightly better than cross-entropy loss. Therefore,
we also adopt CoSENT loss to optimize STS task,
which is formulated as follows:

Lcos = log

(
1 +

∑

Order

exp
⟨xk, xl⟩ − ⟨xi, xj⟩

τ

)

(2)
where Order = sim(i, j) > sim(k, l), sim(k, l)
is the ground-truth similarity between xi and xj .
⟨xk, xl⟩ represents the cosine similarity between
xk and xl. τ is the scale temperature.

3.2 Soft Mask
During the training phase of LLMs, a causal mask
is employed to ensure that the current token does
not have access to subsequent tokens, which is suit-
able for token-level language modeling. However,
embedding training requires a holistic understand-
ing of the sentence, using a bidirectional mask for
vector-level modeling. These two types of masks
have several key gaps.

First, since the upper triangle of the causal mask
is entirely zeros, the attention weights in this region
are not used during the forward propagation. When
switching directly to a bidirectional mask, these
weights require a learning process to become effec-
tive. Second, the causal mask is full-rank, provid-
ing stronger expressive power, whereas the rank of
the bidirectional mask is always one. If we directly
switch from a causal mask to a bidirectional mask
during the weakly supervised fine-tuning stage, the
training may initially converge quickly due to the
low rank but is prone to getting stuck in local min-
ima, making further optimization challenging.

As illustrated in Figure 2, to address these gaps,
we introduce a novel soft mask mechanism. Firstly,
to address the issue of attention weights, we intro-
duce an α(t) term in the soft mask, where α(t) is
our scheduling function, allowing the mask to grad-
ually transition from 0 to 1, enabling the model to
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Figure 2: Overview of Conan-embedding-v2: Our approach consists of four stages. During LLM training (stages 1
and 2), we add embedding data to better align the LLM with embedding tasks. In the weakly-supervised training
stage, we use the same pairs from LLM SFT and apply a soft mask to bridge the gap between LLMs and embedding
models. In the supervised training stage, benefiting from LLM training, we incorporate a cross-lingual retrieval
dataset and a dynamic hard negative mining approach to improve data diversity and value.

progressively update these parameters. τ is set to
the total number of steps for normalization. α(t) is
defined as follows:

α(t) =
t

τ
(3)

Secondly, as weakly supervised training requires
learning richer feature representations, we propose
a dynamic rank reduction approach. We use Mij to
represent the mask matrix. We employed a simple
method where the values of the first i column of
Mij are set to 1, resulting in a rank of N − i. By
combining this with our weight adjustment method,
the values closer to the beginning transition to 1
more quickly. The formula for the soft mask is as
follows:

Mij(t) =

{
1 if i ≥ j

min
(
α(t)× l

i , 1
)

if i < j
(4)

i < j indicates that we are modifying the upper
triangular values. l is the training sequence length.
We ensure that the maximum value is 1, and the
earlier columns reach 1 sooner. This not only al-
lows the rank to gradually decrease but also aligns
with the trend of reading from front to back, where
the weights gradually decrease. We will discuss
the impact of different α(t) on the results in Ap-
pendix C.

3.3 Cross-lingual Retrieval Dataset

To develop a multilingual LLM, we aim for Conan-
embedding-v2 to learn representations across dif-
ferent languages. Previous work has primarily fo-
cused on fine-tuning using multilingual corpora
directly or using parallel corpora where the texts
are translations, often overlooking the intrinsic rela-
tionships between languages. To address this issue,
we propose a cross-lingual retrieval dataset (CLR),
which integrates representations across different
languages through cross-lingual search, thereby
narrowing the representation gap between them.

We start with existing retrieval datasets and ex-
tend them to support cross-lingual retrieval. To
reduce the workload, we only translate the query
portion of the datasets using Qwen2.5-7B (Team,
2024). For instance, we translate the queries in
MSMARCO (Nguyen et al., 2016) (an English re-
trieval task) subset to Chinese to enable Chinese-to-
English retrieval. Similarly, we apply this approach
to other tasks, translating queries to support cross-
retrieval among 26 languages, resulting in a total
of approximately 10 million pairs.

To provide a more intuitive representation of the
embeddings, we conducted a comparative analysis
of the embedding distribution. We utilized the Mul-
tilingual Amazon Reviews Corpus (Keung et al.,
2020), which is not included in our cross-lingual
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Figure 3: Embedding distribution before and after train-
ing on cross-lingual retrieval dataset.

retrieval dataset. This corpus includes reviews in
English, Japanese, German, French, Chinese, and
Spanish. For each language, we sampled 1000 sen-
tences from the test set. As shown in Figure 3,
the vanilla method represents our model without
the CLR dataset included. The embeddings for
six different languages were distinctly clustered,
each occupying a separate region in the distribution
space. In contrast, our model Conan-embedding-
v2 successfully integrated the embeddings of all
languages into a unified distribution, demonstrat-
ing its effectiveness in creating a more cohesive
multilingual representation.

3.4 Dynamic Hard Negative Mining
Previous work has primarily focused on hard neg-
ative mining during the data preprocessing stage
using existing embedding models, resulting in fixed
hard negatives. However, the hard negatives iden-
tified by other models may differ from those iden-
tified by the model being trained. Furthermore,
as training progresses and model weights are up-
dated, the score of hard negatives corresponding to
the current weights change. Hard negatives mined
during the preprocessing stage may become less
challenging after several training iterations.

Based on this insight, we propose a dynamic
hard negative mining (DHNM) method in conan-
v1 (Li et al., 2024b). DHNM dynamically detects
the difficulty of the current sample during the train-
ing process and replaces the sample based on its
difficulty. We use scores to represent the difficulty
level, the formula is as follows:

S = cos⟨f(q), f(p)⟩ (5)

S represents the cosine score, fk(q) is query em-
bedding, and f(p) is hard negative embedding.

Unlike the replacement criteria in v1, in this
paper, if the absolute value of the score is less than

0.4 at the initial step, it will also be discarded. The
current detection formula is:

Ni =





Ni+1 (S0 < 0.4)

Ni+1 1.2 · Si<S0 & Si<0.7

Ni otherwise

(6)

Ni denotes the i-th hard negative sample, with
Si,0 as its initial score and Si as its current score.
If the score multiplied by 1.2 is less than the initial
score and the absolute value of the score is less than
0.7, we consider the negative example no longer
difficult. We replace it with a new hard negative
Ni+1 from the hard negative pool.

Additionally, in v1, the check is performed every
1k steps. In this paper, we leverage the fact that the
similarity score between the query and each hard
negative is already computed as part of the loss
calculation. During each loss computation, we add
a lightweight check to cache the current score of
each hard negative and determine whether it is still
sufficiently challenging for the model. If a hard neg-
ative’s score indicates that it is no longer difficult,
we mark it for replacement. In the next training
step, we replace this negative with a new hard nega-
tive sampled from the candidate pool. This process
ensures that the set of hard negatives remains up-to-
date and challenging throughout training, without
introducing additional computational overhead.

4 Experiments

4.1 Training Data

To achieve the multilingual capability of Conan-
embedding-v2, we collected large and diverse data
for weakly supervised pre-training and embed-
ding fine-tuning. For weakly supervised pre-
training, we primarily gathered title-content pairs
from news articles and websites, specifically from
CC-News (Hamborg et al., 2017), mC4 (Karpukhin
et al., 2020), Wikipedia and Chinese Corpora In-
ternet (BAAI, 2023). To ensure data integrity, we
applied the Data-Juicer (Chen et al., 2024a) tool for
systematic removal of low-quality samples, redun-
dant duplicates, and potentially harmful content.
Embedding supervised training. For both Chi-
nese and English, we compiled datasets for five
different tasks: retrieval, reranking, classification,
clustering semantic textual similarity (STS). We
ensured that any training data matching the MTEB
evaluation set was filtered out. Detailed data usage
is provided in Appendix B.
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Languages Embedding Task Class. Clust PairClass Rerank Retri STS Summ. Avg.
Metric Acc. V-Meas. AP MAP nDCG@10 Spear. Spear.

English

e5-mistral-7b-instruct 79.85 51.44 88.42 49.78 57.62 84.32 36.57 67.97
stella-en-1.5B-v5 89.38 57.06 88.02 50.19 52.42 83.27 36.91 69.43
NV-Embed-v2 87.19 47.66 88.69 49.61 62.84 83.82 35.21 69.81
gte-Qwen2-7B-instruct 88.52 58.97 85.9 50.47 58.09 82.69 35.74 70.72
jasper-en-v1 90.27 60.52 88.14 50 56.05 84.37 37.19 71.41
gemini-embedding-exp-03-07 90.05 59.39 87.70 48.59 64.35 85.29 38.28 73.30
Conan-embedding-v2 90.98 59.96 92.35 49.07 66.24 85.12 35.48 73.52

Chinese

e5-mistral-7b-instruct 72.96 52.30 66.31 61.38 61.75 48.34 - 59.92
gte-Qwen2-1.5B-instruct 72.53 54.61 79.50 68.21 71.86 60.05 - 67.12
bge-multilingual-gemma2 75.31 59.30 79.30 68.28 73.73 55.19 - 67.64
gte-Qwen2-7B-instruct 75.77 66.06 81.16 69.24 75.70 65.20 - 71.62
xiaobu-embedding-v2 76.53 65.17 85.94 72.58 76.49 64.18 - 72.36
Conan-embedding-v1 76.77 66.33 85.68 72.76 76.67 63.67 - 72.50
retrieve-zh-v1 76.88 66.50 85.98 72.86 76.97 63.92 - 72.71
Conan-embedding-v2 76.47 68.84 92.44 74.41 78.31 65.48 - 74.24

Table 1: Results for MTEB in English and Chinese.

4.2 Model Architecture

As demonstrated in (Kaplan et al., 2020), under
a fixed parameter budget, increasing the number
of transformer layers beyond seven results in test
loss that remains almost constant. Motivated by
this observation, we strategically selected eight
transformer layers, thereby allocating more param-
eters to the hidden size and the number of atten-
tion heads. This design choice aims to maximize
the model’s theoretical representational capacity
within the given parameter constraints. Conse-
quently, although our model contains only 1.4 bil-
lion parameters, it retains the same hidden size as
gte-Qwen2-7B-instruct (Li et al., 2023) (3584 di-
mensions with 28 hidden layers and 28 attention
heads). In addition, our model is configured with
32 attention heads and 8 key-value heads using
GQA optimization, 8192 intermediate dimensions
for the feed-forward network layers, a maximum
context window of 32,768 tokens, and a vocabulary
size of 150,000 tokens.

4.3 MTEB Results

In this section, we present the experimental results
of our method on the MTEB English and MTEB
Chinese benchmarks, and compare it with other
SOTA methods.
Results for MTEB in English and Chinese.
Table 1 provides a detailed comparison of our
method’s performance on the MTEB English (clas-
sic) benchmark and the MTEB Chinese benchmark.
The English benchmark additionally includes a
summary (summ.) task, which is similar to the
STS task. Both tasks measure sentence similarity

using Spearman’s correlation coefficient. Conan-
embedding-v2 achieves SOTA results in both En-
glish and Chinese benchmark, excelling in classifi-
cation (91.11 in English, and 76.8 in Chinese) and
reranking (51.49 in English, and 73.69 in Chinese)
through multiple training strategies. This is consis-
tent with the results observed in the Multilingual
benchmark. Notably, Conan-embedding-v2 per-
forms slightly worse than other models on the STS
tasks, which may be due to the lower proportion of
STS data compared to other training task.

Results for MTEB in English in zero-shot. To
validate the effectiveness and generalization abil-
ity of our proposed method, we followed the data
selection strategy of e5-mistral-7b-instruct (Wang
et al., 2023) and used only a small portion of the
MTEB training dataset for zero-shot training. The
selected datasets include MSMARCO (Nguyen
et al., 2016), NQ (Kwiatkowski et al., 2019),
XQuADRetrieval (Rajpurkar et al., 2016a),
FEVER (Thorne et al., 2018), HotpotQA (Yang
et al., 2018), MIRACLRetrieval (Zhang et al.,
2023), and MrTidyRetrieval (Zhang et al., 2021).
Table 2 summarizes our model’s performance on
the MTEB English benchmark in the zero-shot
setting. Compared to Linq-Embed-Mistral (7B),
our Conan-embedding-v2 (1.4B) achieves a signif-
icant improvement. These findings demonstrate
the strong zero-shot performance and efficiency
of our approach, even with significantly smaller
models, validating our innovations in training from
scratch and employing novel soft mask techniques
to address representational gaps.
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Embedding Task Zero-shot Class. Clust. PairClass. Rerank. Retri. STS Summ. Avg.
Metric Acc. V-Meas. AP MAP nDCG@10 Spear. Spear.

bge-large-en-v1.5 100% 78.34 48.01 87.13 48.26 55.44 82.79 33.13 65.89
multilingual-e5-large-instruct 95% 75.54 49.89 86.24 48.74 53.47 84.72 29.89 65.53
GIST-Embedding-v0 80% 78.16 48.50 86.33 47.52 53.59 83.35 32.32 65.50
UAE-Large-v1 100% 79.08 47.86 87.25 48.35 55.91 84.37 30.13 66.40
mxbai-embed-large-v1 100% 79.10 47.48 87.20 48.05 55.40 84.42 32.63 66.26
GritLM-7B 95% 81.25 50.82 87.29 49.59 54.95 83.03 35.65 67.07
e5-mistral-7b-instruct 95% 79.85 51.44 88.42 49.78 57.62 84.32 36.57 67.97
text-embedding-005 95% 86.03 51.91 87.62 48.84 58.77 85.18 35.05 69.60
SFR-Embedding-Mistral 85% 80.47 54.93 88.59 50.15 59.33 84.77 36.32 69.31
Linq-Embed-Mistral 95% 83.00 54.07 88.44 49.44 60.14 84.69 37.26 69.80
Conan-embedding-v2 95% 88.35 57.34 90.97 47.21 63.84 83.77 35.20 71.43

Table 2: Zero-shot MTEB results in English.

4.4 MKQA Benchmark

To evaluate cross-lingual retrieval performance,
we conducted comprehensive experiments using
the Multilingual Knowledge Questions & Answers
(MKQA) benchmark proposed by (Longpre et al.,
2021). This benchmark provides professionally
translated queries and contains 10,000 question-
answer pairs from NQ (Kwiatkowski et al., 2019),
aligned across 26 typologically diverse languages
(260k question-answer pairs in total).

Following previous works (Izacard et al., 2021;
Chen et al., 2024b), we conducted retrieval in
NQ (Kwiatkowski et al., 2019) for a given question
in a specific language and evaluate whether the En-
glish passage is present in the retrieved documents.
For multilingual models, we computed nDCG@10
and Recall@k (k=20,100) across all 25 target lan-
guages to assess both ranking precision and answer
coverage. We present the performance details for
all languages in the Appendix D.1.

As shown in Table 3, our proposed Conan-
embedding-v2 achieves SOTA performance, out-
performing all of the baseline models across all
metrics. Notably, it achieves significant improve-
ments of +3.6% R@20 and +5.7% nDCG@10 over
the strongest baseline (M3-Embedding), demon-
strating superior cross-lingual alignment capability.

4.5 Ablation Study

We systematically evaluated the contributions of
individual components in our framework through
ablation experiments (Table 4). The isolated
Cross-lingual Retrieval task objective (Row 2)
improves multilingual performance to 62.69%
(+1.96% Multi over SM-only) while maintaining
stable single-language scores, demonstrating its
targeted capability for cross-lingual representa-

tion refinement. Using only Dynamic Hard Neg-
ative Mining (Row 3) yields the best language-
specific results among single components (71.50%
Eng/72.09% Zh), confirming its effectiveness in
distinguishing fine-grained semantic boundaries
through adaptive negative sampling. The com-
bination of SM+CLR (Row 4) produces a sig-
nificant multilingual performance leap to 64.45%
(+3.56% over SM-only), while SM+DHNM (Row
5) achieves peak language-specific scores before
full integration. However, both partial combina-
tions reveal an accuracy tradeoff between multi-
lingual and single-language task. Our complete
framework with all components (bottom row) re-
solves this tradeoff by synergistically combining
SM’s initialization stability, CLR’s cross-lingual
alignment, and DHNM’s discriminative training,
achieving SOTA performance across all tasks.
These results validate the synergistic effects of
Conan-embedding-v2 components in enhancing
the model’s overall capabilities.

4.6 Analysis
4.6.1 Practical Considerations
In addition to performance, the practical selection
of an embedding model is influenced by many other
factors. To better demonstrate how our model en-
sures both efficiency and applicability, we have also
highlighted several other important factors. We se-
lect model size, embedding dimension, inference
time, and support for Matryoshka Representation
Learning (MRL) (Kusupati et al., 2022). MRL in-
dicates whether the model supports embeddings of
different dimensions. Inference time is measured in
minutes and is based on the results obtained using
the English queries from the train set of the Multi-
lingual Amazon Reviews Corpus on a single 910B
GPU. Additionally, we provide the MTEB English
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Model R@20 R@100 nDCG@10

BM25 28.1 39.9 25.4
mContriever 56.3 67.9 44.9
text-embedding-v3 62.1 69.5 48.1
e5-mistral 62.4 70.1 47.5
M3-Embedding 68.8 75.5 53.2

Conan-embedding-v2 72.5 80.2 59.1

Table 3: Results of cross-lingual retrieval perfor-
mance on MKQA benchmark.

SM CLR DHNM Multi Eng Zh

✔ ✗ ✗ 61.73 70.41 70.99
✗ ✔ ✗ 62.69 70.94 71.41
✗ ✗ ✔ 61.81 71.50 72.09
✔ ✔ ✗ 64.45 72.14 71.79
✔ ✗ ✔ 63.03 72.78 72.44

✔ ✔ ✔ 65.17 73.52 74.24

Table 4: Results of ablation study on MTEB. SM,
CLR and DHNM are defined in Sec 3.

Model Model Size (million) Embedding Dim. Infer Time (min.) MRL Avg.

gte-large-en-v1.5 335 1024 1.12 ✗ 65.89
stella-en-1.5B-v5 1543 1536 5.54 ✔ 69.43
Linq-Embed-Mistral 6782 4096 30.61 ✗ 69.80
NV-Embed-v2 7851 4096 33.58 ✗ 69.81
gte-Qwen2-7B-instruct 7613 3584 31.78 ✗ 70.72
Conan-embedding-v2 1503 3584 5.14 ✔ 73.52

Table 5: Comparison of practical factors of different embedding models.

benchmark results as a performance reference.
Table 5 shows a comparison between several

representative models and our model. Conan-
embedding-v2 stands out by maintaining a bal-
anced model size of 1503 million parameters and
an embedding dimension of 3584. Despite its com-
pact size, Conan-embedding-v2 achieves an impres-
sive inference time of just 5.14 minutes, making
it one of the fastest models evaluated. Addition-
ally, Conan-embedding-v2 supports MRL, a capa-
bility shared only with stella-en-1.5B-v5. However,
stella-en-1.5B-v5 has a smaller embedding dimen-
sion of 1536 and slightly lower performance, with
an average score of 71.19. This highlights Conan-
embedding-v2’s superior efficiency and effective-
ness in practical applications.

4.6.2 Training Gap

Token-level LLM training loss and sentence-level
contrastive loss have fundamentally different op-
timization landscapes. Full fine-tuning forces an
abrupt transition between these paradigms, caus-
ing representation collapse (Luo et al., 2023). In
contrast, LoRA updates only a small subset of pa-
rameters, providing a smoother optimization path
(Zhang et al., 2024). Table 6 compares MTEB-
EN results using different methods on Conan-
embedding-v2. The results confirm the findings
in (Zhang et al., 2024). However, with soft mask
applied, higher LoRA ranks consistently yield bet-
ter results. This demonstrates that soft mask effec-
tively bridges the gap between LLM’s generative

training and contrastive learning objectives.

Method w/o SoftMask w/ SoftMask

LoRA r = 16 72.18 72.12
LoRA r = 32 72.08 72.23
LoRA r = 64 71.83 72.40
Full fine-tuning 71.50 73.52

Table 6: Results on MTEB English with and without
SoftMask.

5 Conclusion

In this paper, we propose Conan-embedding-v2,
a new LLM trained from scratch and finetuned
as a text embedder. We first address the data and
training gaps between LLM and embedding models.
By leveraging pairs for LLM training, soft mask
for embedding weakly-supervised training, cross-
lingual retrieval dataset and dynamic hard negative
mining for embedding supervised training, Conan-
embedding-v2 achieves SOTA while maintaining a
reasonable model size and inference speed.

Embedding models are crucial tools that em-
power fields like recommendation systems, text
matching, and entity recognition. We hope to in-
spire future research in embedding training meth-
ods and aim to explore more applications. In the
future, we plan to continue updating our model to
improve the performance and extend the capabili-
ties in cross-modal retrieval.

15007



Limitations

A Cross lingual Retrieval Data Analysis

To better understand the effectiveness and limita-
tions of the cross-lingual retrieval dataset construc-
tion method proposed in Section 3.3, we analyze
the potential impact of language distribution within
the dataset.

A.1 Proportion of Different Language Pairs.
For cross-lingual retrieval, we employ T2Retrieval
for Chinese-to-English retrieval and MSMARCO
for multilingual retrieval by translating queries into
26 languages. For our translation process, we ref-
erenced the language distribution from the MTEB
benchmarks to allocate language pairs, resulting in
approximately 1 million pairs as shown in Table 7.

Table 7: Language distribution for translation pairs.

Language Proportion Language Proportion

English 25% Swedish 2%
Chinese 12% Thai 2%
Spanish 8% Malay 2%
French 6% Turkish 2%
Japanese 6% Vietnamese 2%
German 5% Dutch 2%
Russian 5% Polish 2%
Italian 4% Hindi 2%
Portuguese 4% Khmer 1%
Arabic 3% Finnish 1%
Korean 3% Hebrew 1%
Bengali 2% Hungarian 1%
Danish 2% Norwegian 1%

A.2 Performance on Specific Languages. Per-
formance varies significantly across languages de-
pending on the available resources. Table 8 illus-
trates the performance metrics for languages with
different resource levels evaluated on the MKQA
dataset. Mid-resource languages, including Span-
ish, French, Japanese, German, Russian, Italian,
and Portuguese, demonstrate better performance
compared to low-resource languages. This per-
formance gap likely stems from the disparity in
available training data proportions.

Despite being a high-resource language, Chi-
nese shows lower performance. This is likely due
to the unique Chinese-English mapping relation-
ship, which conflicts with MKQA’s multilingual-
to-English evaluation. In the future, we will focus
on improving data processing for low-resource lan-
guageså and implementing balanced data sampling.

Table 8: Performance by language resource level on
MKQA.

Resource Proportion Performance

High-resource 37% 70.6
Mid-resource 45% 73.47
Low-resource 18% 72.19

A.3 Potential Biases. The high proportion of
English-Chinese data may lead to inflated perfor-
mance metrics for cognate languages, potentially
introducing biases across different language fam-
ilies and linguistic characteristics. We conducted
an evaluation of performance across language fam-
ilies. Table 9 shows that Germanic, Slavic, and
Romance languages (all Indo-European) exhibit
strong performance. Notably, typologically distant
languages like Arabic (65.2%) and Korean (67.5%)
perform significantly lower, suggesting that linguis-
tic similarity to English, rather than data volume, is
the primary factor influencing model effectiveness.
This highlights the challenge of achieving consis-
tent performance across diverse language families.

Table 9: Average performance and data share by lan-
guage family.

Language Family Avg. Score Total Share

Chinese 70.4 37%
Germanic 74.6 36%
Romance 73.9 22%
Slavic 75.5 7%
Arabic 65.2 3%
Korean 67.5 3%
Others 67.7 11%

B. Error Analysis
Embedding models often struggle with numerical
inconsistencies in semantically similar content. For
example, when searching for "3 fairy tales", the
model might give low similarity scores to content
containing "5 fairy tales", even though the core con-
tent is relevant. This happens because embedding
models treat numbers as regular tokens without un-
derstanding their quantitative relationship. Future
improvements could include incorporating retrieval
augmented generation to provide external numer-
ical knowledge, and enriching training data with
more numerical variations to enhance the model’s
understanding of quantitative relationships.
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A Implementation details

The model is trained with a maximum input length
of 32768 tokens. To enhance efficiency, mixed pre-
cision training and DeepSpeed ZERO-stage 1 (Ra-
jbhandari et al., 2020) are utilized. For the LLM
pre-training stage, we use AdamW (Loshchilov
and Hutter, 2017) optimizer and learning rate of
1e-4, with 0.05 warmup ratio and 0.001 weight
decay. The batch size is set to 256. The entire pre-
training process employs 64 Ascend 910B GPUs
and 219 hours. For the LLM finetune stage, we
use AdamW (Loshchilov and Hutter, 2017) opti-
mizer and learning rate of 2e-5, with 0.02 warmup
ratio and 0.001 weight decay. The batch size is
set to 64. The entire pre-training process employs
16 Ascend 910B GPUs and 38 hours. For the em-
bedding weakly-supervised training stage, We used
the same optimizer parameters and learning rate
as in the pre-training phase. The batch size is set
to 64. The entire pre-training process employs 16
Ascend 910B GPUs and 97 hours. For the embed-
ding supervised training stage, the MRL training
representation dimensions are configured as 256,
512, 1024, 1536, 2048, 3072, 3584. The batch size
is set to 4 for the retrieval task and 32 for the STS
task. We sample 7 negatives for each query for
retrieval task. We used the same optimizer parame-
ters and learning rate as in the pre-training phase.
The entire fine-tuning process employs 16 Ascend
910B GPUs and takes 13 hours.

B Data details

In Section 3.1.1, we have already introduced the
datasets used during the LLM training phase. In
Section 4.1, we have discussed the types of datasets
used during the embedding weakly-supervised
training and supervised training phases.

For Retrieval: We utilized datasets such as
TriviaQA (Joshi et al., 2017), HotpotQA (Yang
et al., 2018), NQ (Kwiatkowski et al., 2019), MS-
MARCO (Nguyen et al., 2016), PubMedQA (Jin
et al., 2019), SQuAD (Rajpurkar et al., 2016b),
DuReader (He et al., 2018), SimCSE (Gao et al.,
2021), FEVER (Thorne et al., 2018).

For Reranking: We used StackOverFlow
DupQuestions (Liu et al., 2018) T2Ranking (Xie
et al., 2023), CMedQAv2 (Zhang et al., 2018).

For Classification: We used AmazonRe-
views (McAuley and Leskovec, 2013b), Ama-
zonCounterfactual (O’Neill et al., 2021), Bank-
ing77 (Casanueva et al., 2020), Emotion (Sar-
avia et al., 2018), TweetSentimentExtraction (Mag-
gie et al., 2020), MTOPIntent (Li et al., 2020),
IMDB (Maas et al., 2011), ToxicConversations (Do,
2019), Tnews, Iflytek (Xu et al., 2020), Multilin-
gualsentiments (McAuley and Leskovec, 2013a).

For Clustering: We employed {Arxiv/Biorxiv
/Medrxiv/Reddit/StackExchange/Thunews/CSL}-
Clustering-S2S/P2P (Muennighoff et al., 2022;
Geigle et al., 2021; Li et al., 2006; Li et al.),
TwentyNewsgroups (Lang, 1995).

For STS: We chose STS12 (Agirre et al., 2012),
STS22 (Chen et al., 2022), STS-Benchmark (Cer
et al., 2017), AFQMC, QBQTC, Cmnli (Xu et al.,
2020) and Ocnli (Hu et al., 2020).

For other languages, we leveraged the training
data from Mr.Tydi (Zhang et al., 2021) and MIR-
ACL (Zhang et al., 2023).

Table10 and Table11 shows that approximately
1.766 billion pairs were used during the weakly-
supervised phase, and approximately 10.6 million
pairs were used during the fine-tuning phase. The
weakly-supervised training phase leverages a di-
verse collection of data sources, including News,
Knowledge Base, Social Media, Web Page, Aca-
demic Paper, Community QA, and Instruction
Datasets, as detailed in Table 10. The supervised
training phase, as shown in Table 11, focuses on
specialized tasks such as Semantic Textual Similar-
ity (STS), Contrastive Learning of Representations
(CLR), Retrieval, and Classification.

Table 10: Overview of the data sources used for embed-
ding weakly-supervised training.

Categories Data Format Numbers

News (title, content) 620M
Knowledge Base (question, answer) 106M
Social Media (title, content) 690M
Web Page (input, output) 70M
Academic Paper (title, content) 50M
Community QA (question, answer) 30M
Instruction datasets (prompt, response) 200M
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Table 11: Overview of the data used for embedding
supervised training.

Tasks Data Format Numbers

STS (sentence, sentence pairs) 1.8M
CLR (text, pos text, neg text) 3.0M
Retrieval (text, pos text, neg text) 3.0M
classification (text, pos label, neg label) 2.8M

Function Multi Eng Zh

Linear 61.73 70.41 70.99
Accelerating 61.50 70.51 70.81
Decelerating 61.43 70.01 70.37

Table 12: Results of different soft mask functions.

C Soft Mask Function

For the α(t) mentioned in Sec 3.2, this section
discusses three specific implementation functions:
linear decay, quadratic decay (accelerating), and
quadratic decay (decelerating). The specific formu-
las are as follows:

• Linear function: α(t) = t
τ

• quadratic (accelerating): α(t) =
(
t
τ

)2

• quadratic (decelerating): α(t) = 1−
(
1− t

τ

)2

where t represents the current time step, and τ
represents the total number of time steps. We con-
ducted comparative experiments on three differ-
ent functions, exclusively utilizing the soft mask
method and not the other two methods. As shown
in Table 12, the Linear method yielded the best
results, while the Decelerating method showed a
decline in performance.

D More Results

D.1 MKQA Results
In this section, we present the results for all lan-
guages on the MKQA benchmark. As shown in
Table 13, Conan-embedding-v2 outperforms all
baselines on average.

D.2 MTEB Results
In this section, we present additional evaluation re-
sults on the MTEB English benchmark and MTEB
Chinese benchmarks. As shown in Table 14 and
Table 15, Conan-embedding-v2 outperforms all
baselines on average.
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BM25 mDPR mContriever Multilingual-E5-large e5-mistral-7b-instruct text-embedding-v3 M3-embedding Conan-embedding-v2

ar 13.4 33.8 43.8 59.7 47.6 55.1 63.0 65.2
da 36.2 55.7 63.3 71.7 72.3 67.6 72.0 73.1
de 23.3 53.2 60.2 71.2 70.8 67.6 70.4 72.8
es 29.8 55.4 62.3 70.8 71.6 68.0 70.7 73.2
fi 33.2 42.8 58.7 67.7 63.6 65.5 68.9 71.6
fr 30.3 56.5 62.6 69.5 72.7 68.2 70.8 73.5
he 16.1 34.0 50.5 61.4 32.4 46.3 64.6 66.7
hu 26.1 46.1 57.1 68.0 68.3 64.0 67.9 70.2
it 31.5 53.8 62.0 71.2 71.3 67.6 70.3 73.9
ja 14.5 46.3 50.7 63.1 57.6 64.2 67.9 71.8
km 20.7 20.6 18.7 18.3 23.3 25.7 59.5 62.4
ko 18.3 36.8 44.9 58.9 49.4 53.9 63.3 67.5
ms 42.3 53.8 63.7 70.2 71.1 66.1 72.3 78.4
nl 42.5 56.9 63.9 73.0 74.5 68.8 72.3 75.6
no 38.5 55.2 63.0 71.1 70.8 67.0 71.6 76.9
pl 28.7 50.4 60.9 70.5 71.5 66.1 70.4 76.7
pt 31.8 52.5 61.0 66.8 71.6 67.7 70.6 74.8
ru 21.8 49.8 57.9 70.6 68.7 65.1 70.0 74.3
sv 41.1 54.9 62.7 72.0 73.3 67.8 71.5 74.8
th 28.4 40.9 54.4 69.7 57.1 55.2 70.8 75.9
tr 33.5 45.5 59.9 67.3 65.5 64.9 69.6 75.8
vi 33.6 51.3 59.9 68.7 62.3 63.5 70.9 73.0
zh_cn 19.4 50.1 55.9 44.3 61.2 62.7 67.3 70.4
zh_hk 23.9 50.2 55.5 46.4 55.9 61.4 66.7 71.8
zh_tw 22.5 50.6 55.2 45.9 56.5 61.6 65.6 69.7

Avg 28.1 47.9 56.3 63.5 62.4 62.1 68.8 72.4

Table 13: Recall@20 on MKQA dataset for cross-lingual retrieval in all 25 languages.

15014



Bge-multilingual-gemma2 Gte-Qwen2-7B-instruct SFR-Embedding-2R Stella-en1.5B-v5 bge-en-icl Conan-embedding-v2

ArguAna 77.37 64.27 62.34 65.27 82.76 88.18
ClimateFEVER 39.47 45.88 34.43 46.11 45.35 44.45
CQADupStack 47.94 46.43 46.11 47.75 47.23 52.11
DBPedia 51.37 52.42 51.21 52.28 50.42 56.33
FEVER 90.38 95.11 92.16 94.83 91.96 92.52
FiQA2018 60.04 62.03 61.17 60.48 58.77 62.16
HotpotQA 83.26 73.08 81.36 76.67 84.98 83.36
MSMARCO 45.71 45.92 42.18 45.22 46.72 52.38
NFCorpus 38.11 40.6 41.34 42 40.69 42.09
Natural Questions 71.45 67.73 73.96 71.8 73.85 82.81
QuoraRetrieval 90.04 90.09 89.58 90.03 91.02 90.58
SCIDOCS 26.93 28.91 24.87 26.64 25.25 30.21
SciFact 72.05 79.06 85.91 80.99 78.33 87.60
Touche2020 30.26 30.57 28.18 29.94 29.67 31.09
TREC-COVID 64.27 82.26 87.28 85.98 78.11 93.87
BIOSSES 85.74 81.37 87.6 83.11 86.35 84.78
SICK-R 82.66 79.28 77.01 82.99 83.7 81.91
STS12 77.71 79.55 75.67 80.09 77.73 84.07
STS13 87.45 88.83 82.94 86.09 85.98 86.7
STS14 83.48 85.73 78.43 87.32 82.94 83.18
STS15 87.63 88.54 85.82 89.13 86.54 86.54
STS16 86.49 85.84 87.15 86.54 87.24 87.52
STS17 91.18 88.93 88.9 91.05 91.82 89.09
STS22 69.02 66.88 67.1 68.01 68.08 69.3
STSBenchmark 87.25 83.63 88.23 88.92 86.14 87.01
SummEval 31.2 31.35 31.4 30.75 30.70 30.64
SprintDuplicateQuestions 79.32 97.62 97.61 97.05 95.04 94.99
TwitterSemEval2015 79.64 77.88 80.58 78.54 78.73 80.34
TwitterURLCorpus 86.95 86.59 88.03 87.58 87.19 89.38
AmazonCounterfactual 98.49 98.87 97.88 97.89 95.12 97.12
AmazonPolarity 96.9 97.31 97.1 96.86 97.14 98.91
AmazonReviews 62.56 61.04 59.36 61.28 61.47 66.01
Banking77 92.53 90.2 90.41 90.41 90.34 91.05
Emotion 92.97 79.45 93.37 84.29 93.31 93.68
Imdb 96.66 96.8 96.7 96.8 96.7 96.9
MassiveIntent 82.05 85.7 85.85 85.83 82.26 88.71
MassiveScenario 84.4 89.97 90.61 90.21 83.92 90.1
MTOPDomain 98.61 98.04 98.1 98.2 96.51 95.76
MTOPIntent 95.51 91.88 91.3 92.78 93.56 96.97
ToxicConversations 85.12 91.14 88.75 93.16 92.77 93.08
TweetSentimentExtraction 78.58 79.7 74.84 78.3 80.6 85.03
Arxiv-P2P 54.91 54.46 54.02 55.44 54.42 56.31
Arxiv-S2S 50.28 51.74 48.82 51.44 49.59 57.03
Biorxiv-P2P 52.64 50.09 50.76 50.68 52.32 52.32
Biorxiv-S2S 49.2 46.56 47.67 48.67 44.36 48.39
Medrxiv-P2P 45.81 46.23 46.66 46.8 46.13 46.19
Medrxiv-S2S 44.11 44.18 44.65 44.65 41.36 46.58
Reddit 56.03 73.55 62.92 72.86 71.2 72.32
Reddit-P2P 65.83 74.13 72.74 75.27 72.17 76.15
StackExchange 66.21 79.86 76.48 80.29 81.29 82.13
StackExchange-P2P 45.74 49.4 48.29 49.57 45.53 53.64
TwentyNewsgroups 70.44 53.91 66.42 61.43 68.51 64.17
AskUbuntuDupQuestions 64.59 67.58 66.71 67.33 64.8 67.46
MindSmallRank 31.79 33.36 31.26 33.05 30.6 33.28
SciDocsRR 87.6 89.09 87.29 89.2 86.9 88.94
StackOverflowDupQuestions 54.9 55.06 55.32 55.25 56.32 56.28

MTEB Average (56) 69.88 70.24 70.31 71.19 71.24 73.09

Table 14: MTEB English benchmark.
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e5-mistral gte-Qwen2 xiaobu- Conan- bge-multilingual- gte-Qwen2 Conan-
-7b-instruct -7B-instruct embedding-v2 embedding-v1 gemma2 -1.5B-instruct embedding-v2

CmedqaRetrieval 34.23 48.69 47.14 47.61 42.21 46.97 45.32
CovidRetrieval 73.11 81.04 89.40 92.35 77.46 80.79 79.88
DuRetrieval 87.04 87.44 89.44 88.53 90.46 89.40 88.72
EcomRetrieval 45.95 71.15 70.50 70.99 69.30 62.51 68.12
MMarcoRetrieval 74.84 85.16 82.19 82.25 84.70 83.01 83.45
MedicalRetrieval 52.83 65.59 68.19 67.94 62.02 58.65 62.56
T2Retrieval 80.68 87.73 85.01 83.31 86.26 85.47 84.92
VideoRetrieval 45.34 78.84 80.09 80.40 77.40 68.11 76.55
Ocnli 80.21 90.18 92.84 92.54 86.22 90.13 92.74
Cmnli 72.19 87.48 91.87 91.66 86.91 86.67 89.90
AmazonReviews 47.6 53.55 50.07 50.31 54.34 52.95 53.81
MassiveIntent 72.46 81.09 77.45 78.14 78.19 76.25 80.51
MassiveScenario 76.4 85.74 85.3 86.2 82.58 77.26 86.45
IFlyTek 48.65 54.52 51.76 51.94 49.94 44.85 50.32
JDReview 84.69 86.51 89.08 90.32 88.91 85.82 90.09
MultilingualSentiment 74.64 76.88 79.45 78.58 78.91 77.42 80.17
OnlineShopping 92.56 94.30 94.90 95.07 94.59 93.50 94.19
TNews 50.58 52.97 54.64 55.03 50.26 49.95 58.21
Waimai 87.79 89.47 89.34 89.70 89.26 86.63 88.45
CMedQAv1-reranking 76.82 88.20 90.96 91.39 84.62 88.16 91.81
CMedQAv2-reranking 77.59 89.31 90.41 89.72 85.60 88.12 89.45
MMarcoReranking 24.21 31.65 39.91 41.58 35.43 29.14 41.59
T2Reranking 66.90 67.80 69.03 68.36 67.48 67.43 71.91
AFQMC 38.99 72.25 60.96 60.66 47.17 58.42 60.32
ATEC 43.58 62.62 58.81 58.64 50.75 55.65 59.23
BQ 54.67 81.25 75.08 74.51 62.02 73.85 74.63
LCQMC 75.48 73.81 79.82 79.45 75.95 75.39 80.66
PAWSX 16.81 54.06 47.42 46.60 30.57 42.46 45.17
QBQTC 31.80 31.37 45.14 44.58 38.98 35.15 43.98
STSB 84.77 83.88 82.05 81.24 80.87 79.4 81.15
STS22 63.4 65.77 66.96 67.73 68.68 67.4 68.78
CLSClusteringP2P 44.42 47.07 60.42 60.64 54.65 45.21 64.48
CLSClusteringS2S 42.58 45.99 49.54 52.65 63.68 42.50 62.83
ThuNewsClusteringP2P 64.68 86.08 78.76 77.84 64.32 68.24 76.11
ThuNewsClusteringS2S 57.53 85.11 71.96 74.20 54.57 62.50 73.59

MTEB Average (35) 60.89 71.94 72.43 72.62 68.44 67.75 72.83

Table 15: MTEB Chinese benchmark.

15016


