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Abstract
Although prior work on bias mitigation has fo-
cused on promoting social equality and demo-
graphic parity, less attention has been given to
aligning LLM’s outputs to desired distributions.
For example, we might want to align a model
with real-world distributions to support factual
grounding. Thus, we define bias as deviation
from a desired distribution, which may be an
equal or real-world distribution, depending on
application goals. We propose a weighted adap-
tive loss1 based fine-tuning method that aligns
LLM’s gender–profession output distribution
with the desired distribution, while preserving
language modeling capability. Using 3 profes-
sion sets—male-dominated, female-dominated,
and gender-balanced—derived from U.S. labor
statistics (2024), we assess both our adaptive
method for reflecting reality and a non-adaptive
variant for equality. Across three masked lan-
guage models, bias is observed under both dis-
tributions. We achieve near-complete mitiga-
tion under equality and 30–75% reduction un-
der real-world settings. Autoregressive LLMs
show no bias under equality but notable bias un-
der real-world settings, with the Llama Instruct
models (3.2-3B, 3.1-8B) achieving a 50–62%
reduction.

1 Introduction

Large Language Models (LLMs) have achieved
remarkable performance across a range of natural
language processing (NLP) tasks. However, this
success is tempered by the presence of social and
representational biases (Gallegos et al., 2024; Guo
et al., 2022; Kaneko and Bollegala, 2022; Nadeem
et al., 2021). The computer science (CS) literature
on LLMs bias typically considers any differences
in association between attribute values (e.g., male
and female for gender attribute) in a given context
(e.g., profession) as an indication of bias. Psychol-
ogy also views such differences as bias. However,

1Our code and data are available at https://github.com/Ing
rojShrestha/bias_through_lens_of_desired_distributions.

when a model reflects the real world, CS still sees
this as bias, whereas psychology considers it an
accurate reflection of reality. Thus, there are two
bias viewpoints. Bias is (1) any deviation from an
equal (50-50) distribution—often captured by fair-
ness notions such as demographic parity, equalized
odds, or equal opportunity (Gallegos et al., 2024;
Mehrabi et al., 2021)— regardless of real-world
distributions (2) deviation from real-world distribu-
tions. Less attention has been given in the CS bias
literature to this second viewpoint, important in cer-
tain applications, such as healthcare, where genetic
and biological predispositions (e.g., age, gender)
make equality undesirable for LLMs in contexts
like health chatbots, and precision medicine. The
problem may be generalized as one where the aim
is to align LLM to a user-specified distribution. We
address the two specific cases of equal versus real-
world distributions. It is of course possible for the
two to be the same. In both cases, fairness can
be achieved by adjusting the model’s distribution
to the desired distribution, which we achieve by
fine-tuning.

Fairness with the first bias viewpoint has been ex-
plored extensively in CS (Gallegos et al., 2024; De-
lobelle et al., 2022; Guo et al., 2022; Stanczak and
Augenstein, 2021). Prior work typically measures
bias at a granular level using attribute–target com-
binations, often with or without templates, where
gendered attribute words (e.g., male- and female-
associated terms) are paired with target concepts
(e.g., professions) to compute association scores
that quantify the strength of gender–profession as-
sociations. These associations are estimated using
either template-based probe sentences or corpus-
based contextual embeddings (Shi et al., 2024;
Yang et al., 2023; Guo et al., 2022; Limisiewicz and
Mareček, 2022; Garimella et al., 2021), and evalu-
ated on out-of-distribution bias benchmarks such
as WinoBias (Zhao et al., 2018) and Winogender
(Rudinger et al., 2018) to test generalization be-
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yond the training templates. In contrast, our work
shifts focus to a coarser, distributional perspective:
we analyze the gender distribution across profes-
sions, for example, for dental assistant it is: 8%
male, 92% female, and aim to align these distribu-
tions to assess and mitigate bias.

Fairness with the second bias viewpoint requires
more attention. When models do not reflect reality
—whether factual or perceptual— they are likely to
generate misleading information and hallucinations
it is critically important to address such hallucina-
tions (Sahoo et al., 2024; Niu et al., 2024; Su et al.,
2024). Aligning LLMs with real-world trends also
enhances fairness in fact-checking, thus, increasing
model reliability and trustworthiness. Recent tech-
niques such as Retrieval Augmentation Retrieval
(RAG) (Lewis et al., 2020) and Reinforcement
Learning with Human Feedback (RLHF) (Ouyang
et al., 2022; Ziegler et al., 2019) are designed to
guide models toward producing outputs grounded
in factual information and real-world context. Our
second view of bias and fairness aligns with these.

Based on the selected bias viewpoint, we pro-
pose a bias mitigation strategy that fine-tunes the
LLMs using a tailored loss function to recalibrate
their output distribution towards a desired target.
While existing methods often focus on reducing
task-specific disparities, less attention is given to
the foundational prediction behavior of pre-trained
LLMs. In contrast, we align LLM’s output distri-
bution with a desired target distribution during fine-
tuning while preserving performance—measured
by MLM loss and downstream GLUE evaluation
for masked language models (MLMs) and by
perplexity and the LM Evaluation Harness on 5
benchmarks for auto-regressive language models
(ALMs). To promote balanced and stable learning
across profession groups (male-dominated, female-
dominated, balanced), we introduce a weighted
adaptive KL loss that dynamically adjusts updates
based on group specific dynamics.
Contributions of our research:
1. In addition to debiasing towards equality, we

also define debias by aligning a deviation from a
desired distribution, even if this reflects inequal-
ity across groups. For equality, unlike prior
fine-grained methods, our approach mitigates
bias at a coarser-grained level across groups.

2. We propose a weighted adaptive loss-based
approach to mitigate bias by aligning LLM’s
output distribution with a desired distribution,
while preserving language modeling capability.

2 Method

We follow the standard template-based approach
to estimate bias in MLMs (Gallegos et al., 2024;
Cimitan et al., 2024; Nozza et al., 2022) and ex-
tend this approach to ALMs. A template refers
to a sentence structure that includes attribute (a
demographic group against which bias is studied),
target (the context or domain in which the bias
is analyzed), and other neutral words. We focus
on a single attribute-target pair: gender (attribute)
and profession (target). We chose profession as the
target due to the availability of real-world gender
distributions to ground our bias analysis.

We use six templates (Appendix A.1 Table 5) to
analyze bias in relation to gender-profession distri-
bution. The first five templates are adapted from
Bartl et al. (2020), and we added the final one. This
aligns with the common practice of using 2-5 tem-
plates as discussed in Shrestha et al. (2025).
Attributes: We used 11 pairs of binary gender-
denoting words (Appendix Table 6), adapted from
Bartl et al. (2020).
Targets (R): We used 225 profession data from Bu-
reau of Labor Statistics (2024) (≥ 50k employed),
grouped by female participation: male-dominated
(DPmale: [0-30%]), female-dominated (DPfemale:
[70,100%]), and balanced (DPbalanced: [45,55%]).

Instead of extreme cutoffs (Bartl et al., 2020),
we use [0, 30%] and [70,100%] to include both
strongly and moderately dominated professions.
The [45,55%] range approximates a nearly equal
gender distribution, with ±5% margin to allow natu-
ral variations and maintain balanced representation.

We also shortened the profession titles, as in
Bartl et al. (2020), to improve compatibility with
the LLMs vocabulary by increasing the likelihood
that profession terms would appear within it. Titles
were lowercased, singularized, and simplified pro-
fession titles to reflect primary roles (e.g., Railroad
conductors and yardmasters became conductor).

2.1 LLM’s gender-profession distribution

For MLMs, we followed Shrestha et al. (2025) to
measure the gender-profession association score.
We mask the attribute (ideally, a gendered word) in
the probe sentence derived from the template and
compute the likelihood of predicting the original
gendered word. To account for the possibility that
LLM could be overly trained on a particular gender,
we also compute a prior by masking both the at-
tribute and target, and estimating the likelihood of
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the attribute. Association score S is then obtained
as the log-likelihood ratio of these two likelihoods.
Normalized gender-profession distribution: Af-
ter computing the association score between each
male/female gendered word and profession across
templates (Appendix Table 5), we aggregate and
normalize these scores such that the resulting gen-
der distribution for each profession sums to 1.

Let M (F) denote the set of male- (female-)
gendered words. For gender g ∈ {male, female},
we define the corresponding word set as Gg = M
if g = male, and Gg = F otherwise. The variable
a denotes a gendered word selected from Gg.

Let S(g)
a,r,t represent the association score for gen-

der g, gendered word a, profession r, in template
t. We compute the aggregated score S(g)

r across all
templates and words associated with gender g. The
normalized gender-probability distribution p

(r)
pred(g)

is then obtained by applying a softmax over gen-
ders for each profession r ∈ R, as shown in Eq. 2

S(g)
r =

∑

t∈T

∑

a∈Gg

exp
(
S

(g)
a,r,t

)
(1)

p
(r)
pred(g) =

S
(g)
r∑

g′∈{male,female} S
(g′)
r

(2)

For ALM, we use sentence loss as a proxy for
association score, as in Hossain et al. (2023). Since
higher loss indicates weaker association, we negate
the exponent in Eq.1 and use exp

(
−S

(g)
a,r,t

)
in-

stead of exp
(
S
(g)
a,r,t

)
. This ensures that lower

loss (stronger association) yields higher gender-
profession distribution.

2.2 Bias detection

Bias is quantified using the Kullback–Leibler
(KL) divergence between the predicted distribu-
tion p

(r)
pred(g) and the desired distribution p

(r)
true(g).

p
(r)
pred(g) denotes the predicted gender distribution

for profession r obtained from LLM, and p
(r)
true(g)

is the corresponding desired distribution.
To detect bias, we compute the KL divergence

between predicted and desired gender distributions
for each profession r, averaging over male and
female distributions. (Eq. 32 ).

DKL

(
p
(r)
true ∥ p

(r)
pred

)
=

1

2

∑

g∈{male,female}
p
(r)
true (g) log


p

(r)
true (g)

p
(r)
pred(g)


 (3)

2Mathematically, DKL(P ∥ Q) measures how much the
predicted distribution Q deviates from the true distribution P .
In PyTorch, it quantifies how closely model predictions align
with the target, effectively capturing the deviation of LLM
outputs from the true distribution during fine-tuning.

Bias score: The final bias score is the average KL
divergence across all professions (Eq. 4).

BiasScore =
1

|R|

|R|∑

r=1

D
(r)
KL (4)

where, D(r)
KL represents KL divergence for pro-

fession r. An ideal unbiased model is one with bias
score close to zero.

2.3 Bias mitigation
We fine-tune gender-profession distribution in
LLM to a desired distribution using templates, gen-
dered words, and profession. This is done sepa-
rately for two targets: equal (50-50) and real-world
distributions, with one model for each. We used all
three categories — DPmale, DPfemale and DPbalanced
for both fine-tuning and evaluation.
Non-adaptive KL Loss (LKL,uniform): To guide
the model towards the desired distribution, we de-
fine loss as KL divergence of the LLM predicted
gender-profession distribution (p(r)pred(g)) from the

desired distribution (p(r)true(g)) across professions.
Fine-tuning minimizes this loss. The overall loss,
LKL,uniform (Eq. 5), gives equal weight to each pro-
fession, regardless of its profession category.

LKL,uniform =
1

|R|
∑

r∈R
L(r) = BiasScore (5)

L(r) = DKL

(
p
(r)
true ∥ p(r)pred

)
(6)

Weighted adaptive KL loss (LKL,weighted_adaptive):
To better balance learning across profession cat-
egories, we propose a weighted adaptive loss
approach not previously explored in the con-
text of bias mitigation. Instead of comput-
ing a uniform loss (Eq. 5), we make the
loss computation profession-group aware. This
design was motivated by validation-set analy-
sis, where some groups (e.g., in BERT-base:
DPmale : 0.232/0.087, DPfemale : 0.038/0.001
and DPbalanced : 0.085/0.007) showed higher KL
means and variances, indicating greater deviation
and instability. This motivated the use of both adap-
tive loss and stability-aware weighting.

Adaptive loss: During tuning, we group each
training batch B by profession category, c ∈
{DPmale,DPfemale,DPbalanced}. We compute an
adaptive loss for a profession category by divid-
ing the current batch’s KL divergence loss, L(c)

cur, by
the exponentially updated moving average (shown
in Eq. 8, where β refers to momentum parameter
controlling how much weight is given to the old
KL mean versus the current batch KL mean) of the
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KL loss for that profession category, µ(c)
KL,new, as

shown in Eq. 7. This KL mean —updated with
each batch— captures how the model has histori-
cally performed on that group, including the current
batch. Computing adaptive loss in this way ensures
that groups with consistently high KL divergence
(i.e., larger deviation from the desired distribution)
do not disproportionately dominate the overall loss,
thus promoting balanced learning across all groups.

L̂(c)
cur =

L(c)
cur

µ
(c)
KL,new + α(c)

(7)

µ
(c)
KL,new = β · µ(c)

KL,old + (1− β) · L(c)
cur (8)

Adaptive loss scaling: To further control update
magnitude, we add a small constant α(c) to the
denominator (Eq. 7). α is set lower (higher) for
the profession category with higher (lower) KL di-
vergence from the target distribution, allowing for
larger (smaller, more cautious) updates thus help-
ing regulate how aggressively the model should
adapt to each group’s loss. Profession category
with higher or lower KL are identified using valida-
tion set statistics before adjusting the distribution.

Stability aware weighting to adaptive loss: Af-
ter normalization, we apply an adaptive weighting
factor λ(c) (Eq. 10), computed from the variance
of KL divergence for group c so far (Var(c)), us-
ing Welford’s online algorithm (Welford, 1962).
This variance-based weight captures the stability
of predictions—groups with higher variance, in-
dicating less stability, are assigned lower weights,
leading to slower, more conservative updates. In
contrast, lower-variance (more stable) groups are
weighted more heavily, enabling faster adaptation.

VarFactor(c) =
1

1 + Var(c)
(9)

λ
(c)

=

{
max

(
min(0.95 · µ · V, 1.5), 0.8

)
if c ∈ high-KL group

max
(
min(1.2 · µ · V, 1.5), 1.0

)
otherwise

(10)

µ = µ
(c)
KL,new, V = VarFactor(c)

Overall weighted adaptive loss
LKL,weighted_adaptive (Eq. 11) ensures that model
updates are fair across groups and responsive
to each group’s learning dynamics. Adaptive
loss balances weight updates across categories,
preventing domination by high-loss groups;
adaptive loss scaling controls the magnitude of
updates based on initial profession category loss;
and stability-aware weighting adjusts update rate
based on group stability. Overall loss is computed
by averaging the weighted adaptive losses over all
profession-group batches. Adaptive weighting is
applied only during fine-tuning to guide learning.

During evaluation, we compute the bias score
using the original KL divergence formulation
(Section 2.2), i.e., no adaptive weighting is applied
during detection.

LKL,weighted_adaptive =
1

|B|
∑

c∈B
λ(c) · L(c)

cur

µ
(c)
KL,new + α(c)

(11)

MLM Loss: We combine KL divergence loss with
an MLM loss as a secondary objective to retain
masked language modeling ability while adjusting
the MLM distribution. MLM loss is computed on
probe sentences—derived from training templates,
professions, and gendered words—by masking one
token at a time and averaging the likelihood of
the original tokens, following Salazar et al. (2020).
Since most training probes are short (92.5% ≤ 8
words; only 7.5% have 9) we compute the loss
across all tokens instead of masking 15% at random
as in Devlin et al. (2019). The overall objective is:
L = LKL + γ · LMLM
where γ is a hyperparameter that controls the

relative importance of the MLM loss. Since KL
divergence is our primary loss for bias mitigation,
we control only the MLM loss via γ, using γ ∈
{0.001, 0.01, 0.1, 0.2, 0.5, 0.8, 1.0}

Unlike MLMs, where a separate MLM loss is
added as a secondary objective to preserve lan-
guage modeling ability during fine-tuning, ALMs
inherently optimize for next-token prediction given
prior context. In our setup, we use sentence loss
as a proxy for association score, which already re-
flects the model’s perplexity and thus captures its
language modeling capability. As a result, there is
no need to include a separate objective to preserve
language modeling ability when fine-tuning ALMs.

3 Experiment Design

3.1 Models assessed
We evaluate bias across three MLMs: DistilBERT
(Sanh et al., 2019) and two BERT variants (bert-
base-uncased and bert-large-uncased) (Devlin et al.,
2019), and two families of autoregressive Instruct
models: Llama3 (3.1-8B, 3.2-3B, 3.3-70B) and
Qwen2 (2.5-7B, 2.5-72B)3. We assess bias in
all models but focus mitigation on Llama3.1-8B-
Instruct and Llama3.2-3B-Instruct due to resource
limitations. For consistency, we fine-tuned all mod-
els using case-insensitive probe sentences.

For MLMs, we performed full fine-tuning given
their smaller sizes (66M–340M parameters). For

3Llama3 and Qwen2.5 are case-sensitive, but we used case-
insensitive inputs during fine-tuning for consistency. This may
slightly affect performance relative to its intended usage.
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ALMs, we used parameter-efficient fine-tuning via
LoRA (<7B) and QLoRA (≥7B, for memory effi-
ciency at larger scales) given its significantly larger
size. LoRA and QLoRA have been shown to per-
form well on Llama models (Xin et al., 2024),
achieving competitive results with much lower
memory and compute by updating only a small
number of low-rank matrices instead of the full
model weights. This makes them a practical and
effective choice for large-scale ALMs.

3.2 Dataset split
We use a 65%-15%-20% stratified training-
validation-testing split.
Attributes and Targets: We use the same set of
gendered pairs across training, validation, and test-
ing. However, since we shift profession distribu-
tions, we use distinct profession sets for each split
(Appendix Table 7).
Templates: We use the same set of templates for
training and validation, while a different set of tem-
plates for testing. We use 3 templates for each. We
split the templates into training/validation and test-
ing by balancing the selection of common or rare
templates. Note that sentences derived from a tem-
plate with lower pseudo-perplexity are common
sentences. We use a cut-off of sentence pseudo-
perplexity 15 to categorize templates.

T1 and T6 are rare, with fewer than half of their
sentences having perplexity below 15, indicating
less predictable language (Appendix Table 8). In
contrast, T2–T5 are more common, with over 70%
of sentences below the threshold, suggesting more
natural, fluent patterns. We select T1-T3 for train-
ing/validation, and the rest for testing, balancing
one rare and two common templates in each split.

3.3 Language modeling capability evaluation
To assess whether our bias mitigation impacts lan-
guage modeling, we evaluated model performance
on two external corpora: the GAP Corpus (Web-
ster et al., 2018) and WikiText-103 (development
and test sets) (Merity et al., 2017). For MLMs, we
report MLM loss; for ALM, we report sentence per-
plexity, which reflects next token prediction quality.

To further assess preservation of language mod-
eling capability, we also evaluated on downstream
tasks: MLMs on GLUE tasks and ALMs using
the LM Evaluation Harness (Gao et al., 2024)
across 5 benchmarks—HellaSwag, LAMBADA
(OpenAI), TruthfulQA (generation), MMLU, and
GLUE—covering text generation, question answer-

ing, classification, and commonsense inference.
While MLMs were fine-tuned and evaluated with
case-insensitive inputs, ALM perplexity was com-
puted case-sensitively, matching the model’s origi-
nal training setup for fair evaluation.

Model hyperparameters and selection methodol-
ogy are detailed in Appendix A.4.

4 Baseline

Our method introduces a unique debiasing strategy,
particularly for real-world distributions (Section
2.3) and adopts a stricter bias mitigation setting
in specific contextual scenarios (e.g., profession),
where fairness is defined with respect to distribu-
tional shifts. Since prior work instead defines fair-
ness primarily under an equal distribution, this dif-
ference makes direct comparison under real-world
distributions not possible. So, we only report base-
line comparisons in the equal distribution setting,
to ensure consistency with prior methods.
AttenD: Gaci et al. (2022) mitigates bias by fine-
tuning the attention heads to equalize attention dis-
tribution across demographic word pairs (e.g., gen-
der: he/she) in context. We trained AttenD using
our training dataset. Three MLMs (DistilBERT,
BERT-base, BERT-large) were evaluated with the
hyperparameters reported in the paper, consider-
ing all attention heads, as their results showed this
yields better performance.
Counterfactual Data Substitution (CDS): Bartl
et al. (2020) mitigates bias by fine-tuning on a
gender-swapped version of the GAP corpus, where
gendered words and names are substituted to create
balanced training data.

5 Results

Once we select the best configuration (using seed
42) based on the validation set, we provide the
results averaged across five seeds as in Hansen
et al. (2024). We adapt the seed values 42, 52, 62,
72, 82 from Zhou et al. (2025).

5.1 Results for debiasing MLMs
Tables 1 - 3 present our results on debiasing MLMs.
Base Model refers to the original model without
debiasing, while the rest of the rows represent the
effect of using our loss functions to adjust MLM’s
distribution to a desired distribution.

For equal target distribution, we adjust MLM’s
distribution to a 50%-50% male-female distribu-
tion for each profession. So, we only apply non-
adaptive loss, with equal weight across professions.
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Desired
Distribution Model

Profession Category MLM loss
Epoch B β γDPmale

(KL)
DPfemale
(KL)

DPbalanced
(KL)

ALL
(KL)

GAP
corpus

WikiText-103
(test)

WikiText-103
(dev)

equal
Base Model 0.020 0.045 0.029 0.032 0.477 0.419 0.423
AttenD 3.7E-4 3.8E-4 2.6E-4 3.6E-4 10.8 10.8 10.8
% drop 98.1%† 99.2%† 99.1%† 98.9%† -2166% -2490% -2466%
+ LKL,uniform 8.6E-5 1.4E-5 1.0E-5 1.1E-5 0.515 0.444 0.448

4 5 - -
% drop 99.6%† 99.7%† 99.6%† 99.6%† -8.0% -6.0% -5.9%

real-
world

Base Model 0.189 0.066 0.028 0.107 0.477 0.419 0.423
+ LKL,weighted_adaptive 0.052 0.028 0.020 0.036 0.573 0.483 0.488

7 5 0.95 -
% drop 72.4%† 57.0%† 27.5%† 66.4%† -20.1% -15.4% -15.5%
+ LKL,weighted_adaptive - α 0.051 0.031 0.019 0.037 0.583 0.489 0.494

8 5 0.95 -
% drop 72.9%† 52.4%† 30.2%† 65.7%† -22.2% -16.7% -16.8%
+ LKL,uniform 0.049 0.037 0.022 0.039 0.510 0.440 0.444

8 5 - -
% drop 74.2%† 43.2%† 20.4%† 63.9%† -6.9% -5.0% -5.1%
+ LKL,weighted_adaptive + LMLM 0.070 0.029 0.019 0.043 0.510 0.438 0.443

7 5 0.95 0.2
% drop 63.2%† 56.4%† 31.3%† 59.8%† -6.9% -4.7% -4.9%

Table 1: Bias mitigation and language modeling performance: MLM loss, GLUE evaluation (Appendix Table 13). Results are
averaged across five seed runs (DistilBERT). Base Model refers to pre-trained MLMs. % drop indicates reduction in bias or
MLM loss of fine-tuned model relative to Base Model. Baseline: AttenD. † indicates a statistically significant bias reduction.
ALL: includes professions from all three profession categories. B: training batch size. β: weight is given to the old KL mean
versus the current batch KL mean in adaptive loss, γ: relative importance to MLM loss. Values for epochs, B and γ are those
that yielded the best validation dataset performance.

Desired
Distribution Model

Profession Category MLM loss
Epoch B β γDPmale

(KL)
DPfemale
(KL)

DPbalanced
(KL)

ALL
(KL)

GAP
corpus

WikiText-103
(test)

WikiText-103
(dev)

equal
Base Model 0.046 0.164 0.060 0.096 0.474 0.438 0.446
AttenD 3.4E-4 3.2E-4 3.4E-4 3.3E-4 10.8 10.8 10.8
% drop 99.3%† 99.8.%† 99.4%† 99.7%† -2176% -2368% -2325%
+ LKL,uniform 5.2E-4 3.1E-4 6.0E-4 4.4E-4 0.496 0.449 0.457

3 5 - -
% drop 98.9%† 99.8%† 99.0%† 99.5%† -4.7% -2.4% -2.3%

real-
world

Base Model 0.270 0.040 0.059 0.136 0.474 0.438 0.446
+ LKL,weighted_adaptive 0.063 0.040 0.016 0.044 0.554 0.491 0.497

6 5 0.60 -
% drop 76.7%† -0.3% 73.5%† 67.3%† -17.1% -12.2% -11.5%
+ LKL,weighted_adaptive - α 0.073 0.039 0.013 0.047 0.595 0.518 0.523

8 5 0.60 -
% drop 73.1%† 2.4% 77.5%† 65.1%† -25.6% -18.2% -17.1%
+ LKL,uniform 0.065 0.044 0.020 0.048 0.505 0.458 0.465

8 5 - -
% drop 76.0%† -10.3% 65.6%† 64.9%† -6.6% -4.6% -4.2%
+ LKL,weighted_adaptive + LMLM 0.067 0.039 0.012 0.045 0.521 0.469 0.475

6 5 0.60 0.2
% drop 75.1%† 2.3% 79.6%† 66.9%† -10.0% -7.1% -6.5%

Table 2: Bias mitigation and language modeling performance (BERT-base). See Table 1 for cell values and notation details.

For the real-world target distribution, where pro-
fessions vary in gender dominance, we applied a
weighted adaptive KL loss to mitigate bias.

5.1.1 Equal distribution
Across all MLMs, applying uniform KL loss results
in a consistent and substantial bias reduction. In all
cases, bias was almost completely removed, with
reduction exceeding 98%, shifting the MLM’s pre-
dicted gender distribution for each profession to a
negligible deviation from the ideal 50%-50% male-
female distribution. This mitigation was observed
consistently across all three profession categories,
and ALL (all profession categories). All the reduc-
tions are statistically significant (95% confidence
level), as determined by independent t-tests.

Evaluating MLM loss on external corpora be-
fore and after bias mitigation, we find only small
degradation, indicating that the language mod-
eling capabilities were well preserved. Specif-
ically, MLM loss increased by 2.3% to 14.5%
(GAP: 4.7–14.5%, WikiText-103-dev: 2.3–11.5%,
WikiText-103-test: 2.4–11.8%). For DistilBERT
and BERT-base, degradation was minor (< 8%),
while BERT-large showed slightly higher degrada-
tion (around 11–14%). Additionally, across MLMs,

GLUE scores (Appendix Table 13 ‘debiased for
equal’ rows) remain consistent before and after de-
biasing, indicating preserved language modeling
capabilities. Overall, the results demonstrate that
bias mitigation through uniform KL loss achieves
near-complete bias removal with minimal compro-
mise to language modeling performance.

5.1.1.1 Baseline comparison
AttenD: Results are presented in the rows “At-
tenD” (Tables 1 - 3). Our bias mitigation approach
performs comparably to AttenD, achieving near-
complete bias mitigation across all MLMs, with
slightly better results on BERT-large. However,
our method preserves language modeling capabil-
ity, whereas AttenD suffers a drastic MLM loss
increase (over 1000%), despite maintaining down-
stream GLUE performance (their Table 5). Our
debiased model also preserves GLUE performance,
so while bias mitigation is similar, the difference
in MLM loss is stark.

CDS: We do not re-run Bartl et al. (2020) in our set-
ting as their debiasing relies on fine-tuning with the
GAP corpus. In contrast, our method and AttenD
operate directly on probe sentences derived from
templates using profession and gendered words,
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Desired
Distribution Model

Profession Category MLM loss
Epoch B β γDPmale

(KL)
DPfemale
(KL)

DPbalanced
(KL)

ALL
(KL)

GAP
corpus

WikiText-103
(test)

WikiText-103
(dev)

equal
Base Model 0.073 0.095 0.046 0.076 0.983 0.888 0.893
AttenD 3.2E-3 3.2E-3 3.1E-3 3.2E-3 11.0 11.0 11.0
% drop 95.6%† 96.7%† 93.2%† 95.9%† -1021% -1138% -1132%
+ LKL,uniform 2.8E-4 4.5E-4 8.2E-4 4.6E-4 1.125 0.993 0.996

3 5 - -
% drop 99.6%† 99.5%† 98.2%† 99.4%† -14.5% -11.8% -11.5%

real-
world

Base Model 0.094 0.075 0.041 0.076 0.983 0.888 0.893
+ LKL,weighted_adaptive 0.029 0.040 0.013 0.030 1.536 1.357 1.361

6 5 0.80 -
% drop 69.3%† 46.2%† 66.8%† 59.9%† -56.3% -52.8% -52.4%
+ LKL,weighted_adaptive - α 0.032 0.041 0.019 0.033 1.148 1.000 1.005

3 5 0.80 -
% drop 66.6%† 45.4%† 52.9%† 56.7%† -16.8% -12.6% -12.5%
+ LKL,uniform 0.026 0.038 0.022 0.030 1.129 0.990 0.997

5 5 - -
% drop 72.7%† 49.7%† 45.1%† 60.6%† -14.9% -11.4% -11.6%
+ LKL,weighted_adaptive + LMLM 0.027 0.032 0.016 0.027 1.256 1.080 1.084

5 5 0.80 0.1
% drop 71.6%† 57.0%† 60.2%† 64.6%† -27.8% -21.6% -21.4%

Table 3: Bias mitigation and language modeling performance (BERT-large). See Table 1 for cell values and notation details.

making CDS results not directly comparable. For
relative context, we report their results (Appendix
Table 10). They measured bias via association
score differences, which capture disparities in the
model’s association between gender and profession,
while we use distributional divergence. Despite dif-
ferent metrics, relative comparisons are insightful.

Bartl et al. (2020) reported > 90% mitigation for
DPmale, 58% for DPfemale, and 68% for DPbalanced.
In contrast, our method achieves > 98% mitigation
across all categories (Tables 1-3), showing con-
sistent, robust, and near-complete mitigation for
equality across MLMs, underscoring effectiveness.

Moreover, our approach supports the alignment
of model attribute–target distribution to a desired
distribution – extending beyond conventional em-
phasis on equity in prior work.

5.1.2 Real world distribution
We first present the results using the weighted
adapted KL loss, which constitutes our main bias
mitigation method. We then evaluate the effect of
adding a secondary MLM loss to preserve language
modeling capability, yielding the best trade-off be-
tween fairness and language modeling performance.
Finally, we conduct ablation studies by indepen-
dently removing adaptive loss scaling and weight-
ing (i.e., using uniform KL loss across professions)
to assess the importance of these components.
Weighted adaptive KL loss: The rows “+
LKL,weighted_adaptive” indicates the results of using
weighted adaptive KL loss to reduce bias. Bias
reductions are significant with one exception: in
BERT-base, for DPfemale, the divergence slightly
increased by 0.3%. However, the initial bias was
relatively low (0.04). Bias reduction for DPmale
ranged from 69%-77%, for DPfemale from 46%-
57%, for DPbalanced from 28%-74%, and for ALL
from 59%-67%. These results demonstrate the ef-
fectiveness of the method across all profession cat-
egories. However, the improvements came with a

trade-off in degradation in MLM language model-
ing performance—MLM loss increased by 12%-
56%. Notably, BERT-large exhibited the largest
degradation (more than 50%).
Ablation: effect of adding adaptive loss scaling
(α): Adaptive loss scaling controls the update mag-
nitude. We assign a smaller α = 1e-6 to groups
with larger KL divergence (larger updates) and a
larger α = 1e-5 to groups with smaller KL di-
vergence (smaller updates). Groups are defined
using validation KL means (Appendix Table 9) of
ALL: categories above the mean received a smaller
α, and those below received a larger α. In all
three MLMs, DPmale formed a larger update group,
while DPfemale and DPbalanced formed smaller up-
date groups.

We compare the effect of removing adaptive
loss scaling (“+ LKL,weighted_adaptive - α”) with “+
LKL,weighted_adaptive”. Removing scaling generally
degrades bias mitigation. In BERT-large, removal
worsens bias mitigation performance across all cat-
egories, though language modeling performance
improves significantly (about 40% points). In
BERT-base and DistilBERT, removing α slightly
reduces bias mitigation for one of three categories
and consistently across ALL slightly, alongside
moderate degradation in MLM performance (1.3-
8.5% points). Overall, adaptive loss scaling yields
slight but consistent improvement in bias mitiga-
tion, with trade-offs in modeling performance.
Ablation: effect of weighted adaptive loss:
We now compare weighted adaptive loss
(LKL,weighted_adaptive) with non-adaptive uniform
KL loss (LKL,uniform).

Using uniform loss, impacts bias mitigation and
language modeling with trade-offs across models.
In DistilBERT, uniform weighting yields a very
small improvement for DPmale, but leads to a larger
drop for DPfemale (13.8% points), and a moder-
ate drop for DPbalanced (7.1% points), along with a
slight overall drop in ALL. However, MLM loss
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improves moderately (10.4%-13.2% points). No-
tably, DPmale has a larger KL divergence initially
than DPfemale and DPbalanced. Uniform loss empha-
sizes the group with a larger KL, contributing more
to the overall loss and improving bias mitigation
for the dominant group, but causing a noticeable
drop for non-dominant ones.

This pattern persists in BERT-base and BERT-
large. In BERT-base, there is a very small drop
for DPmale, while DPfemale and DPbalanced experi-
ence moderate drops of 10.6% points and 7.9%
points, respectively. Here, too, language model-
ing performance improves (7.3%-10.5% points),
reflecting better preservation of MLM capability
with uniform weighting. In BERT-large, uniform
loss yields small improvements for both DPmale and
DPfemale but a noticeable degradation for DPbalanced
(21.7% points). Importantly, MLM loss improves
substantially (about 41% points).
Weighted adaptive KL loss + MLM loss:
Weighted adaptive loss improves bias mitigation
but reduces MLM performance. To address this
trade-off, we add a secondary MLM loss to pre-
serve language modeling ability while minimizing
deviation from the target distribution. Results are
in the last rows of Tables 1-3. We compare with the
row “+ LKL,weighted_adaptive” (without MLM loss).

In DistilBERT, there is a modest reduction in
bias mitigation (6.6-9.2% points) for DPmale and
ALL, while stable or improved results for the rest.
This fairness trade-off is accompanied by a substan-
tial gain in language modeling, with MLM losses
improving by 10.6-13.2% points across corpora. In
BERT-base, bias mitigation performance remains
largely stable or slightly improves (2%-6% points)
after introducing MLM loss, while simultaneously
achieving a 5-7% points improvement in MLM loss
across both corpora. BERT-large exhibits the most
favorable outcome: bias mitigation performance
improves across profession categories, alongside a
substantial improvement in MLM loss (reduction of
28-31% points). Downstream GLUE evaluation is
maintained across all three MLMs, indicating pre-
served language modeling capabilities (Appendix
Table 13 ‘debiased for real-world’ rows). Over-
all, adding the MLM loss consistently improves
language modeling performance (measured with
MLM loss and maintained for GLUE evaluation),
while modestly affecting bias mitigation perfor-
mance (preserved or even improved slightly).
Summary: Weighted adaptive loss improves bias
mitigation but trades off language modeling perfor-

mance. Adding MLM loss reduces these trade-offs,
maintaining (or only slightly reducing) bias mitiga-
tion while improving language modeling. Overall,
weighted adaptive loss with MLM loss reduces
MLM distribution deviation from the real-world
target while preserving modeling performance.

5.2 Results for debiasing ALM
We present pre-debiasing results across Llama and
Qwen Instruct models (3B - 72B), to examine how
well ALM output distribution aligns with equality
versus real-world target distribution across model
sizes (Appendix Tables 11 - 12). KL divergence is
near zero under the equal distribution, indicating no
bias, but notable bias is observed under real-world
distribution, with similar trends across model sizes
and model type. Detailed discussions are provided
in Appendix A.8. Now we will focus on debiasing
results for two Llama instruct models (3.2-3B and
3.1-8B). Results are presented in Table 4.

For equal target distribution, the initial KL di-
vergence is close to zero, indicating the absence of
bias. However, for real-world target distribution,
we find notable bias. We will now focus on bias
mitigation for real-world as a desired distribution.

As a reminder, we use sentence loss as a
proxy for measuring association, normalized to
the gender-profession distribution. Since it also
reflects ALM language modeling, we do not in-
clude additional language modeling preservation
loss as in MLMs. As observed in MLMs, weighted
adaptive loss has better performance compared to
one without adaptive weighting, so we will only
focus on weighted adaptive loss to mitigate bias in
Llama3. As seen in Appendix Table 9, DPmale and
DPfemale show higher initial bias and thus receive
larger adaptive loss scaling (α) than DPbalanced.

Applying the weighted-adaptive KL loss sig-
nificantly improves bias mitigation across most
profession categories. KL divergence drops by
50% - 62% across DPmale, DPfemale, and ALL. For
DPbalanced, although the KL divergence worsens by
255%/187%, the absolute value remains very small,
indicating that the profession from this group is
already closely aligned with the real-world distri-
bution. Bias reductions are about the same for both
models, with the larger model showing slightly
better reduction for DPmale and slightly less reduc-
tion for DPfemale. Irrespective of model size, bias
mitigation remains a challenge for all profession
categories, although it improves for larger models.

Meanwhile, degradation in language model-
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LLM Desired
Distribution Model

Profession Category Perplexity
Epoch B β γDPmale

(KL)
DPfemale
(KL)

DPbalanced
(KL)

ALL
(KL)

GAP
corpus

WikiText-103
(test)

WikiText-103
(dev)

Llama3.2-3B-Instruct

equal Base Model 4E-4 7E-4 1E-4 4E-4 30.6 16.9 17.1

real-
world

Base Model 0.199 0.108 0.001 0.123 30.6 16.9 17.1
+ LKL,weighted_adaptive 0.089 0.051 0.004 0.057 32.4 17.4 17.6

24 5 0.6 -
% drop 55.1%† 52.7%† -255% 53.8%† -6.1% -3.0% -3.1%

Llama3.1-8B-Instruct

equal Base Model 2E-3 4E-4 2E-4 8E-4 25.6 12.5 12.7

real-
world

Base Model 0.181 0.114 0.001 0.118 25.6 12.5 12.7
+ LKL,weighted_adaptive 0.069 0.057 0.003 0.051 26.7 12.6 12.8

11 5 0.6 -
% drop 61.9%† 49.5%† -187.1% 56.7%† -4.2% -1.3% -1.4%

Table 4: Bias mitigation and language modeling performance: Perplexity, LLM Evaluation Harness (Appendix Table 14) for
Llama3 Instruct (3.1-8B and 3.2-3B). lorar = 64, loraα

lorar
= 0.25. See Table 1 for explanation of cell values and notations.

ing, measured using perplexity, remains mini-
mal. Larger model better preserves performance
(e.g., Llama3.1-8B-Instruct: 1.3%, Llama3.2-3B-
Instruct: 3% degradation on Wikitext-103-test).
QLoRA fine-tuning on 8B-Instruct converged in
fewer epochs than LoRA on 3B-Instruct, consistent
with more expressive models requiring less train-
ing. Downstream performance (Appendix Table
14) across five benchmarks is maintained, show-
ing language modeling ability is not compromised.
Overall, weighted adaptive KL loss achieves suc-
cessful bias mitigation while largely preserving
language modeling performance.

6 Related Works

Bias perspective: Prior bias work emphasizes
equality (often framed as disparate impact, de-
mographic parity, equalized odds, or equal op-
portunity (Gallegos et al., 2024; Mehrabi et al.,
2021)), targeting fine-grained associations between
demographic attributes and contexts (e.g., gendered
term–profession pairs). These works often equal-
ize association scores using static (Bolukbasi et al.,
2016) embeddings or contextual embeddings from
template-based probing (Shi et al., 2024; Guo et al.,
2022; Garimella et al., 2021) and co-occurrence
analysis (Dhamala et al., 2021; Bordia and Bow-
man, 2019). Literature enforces pairwise parity
within a domain (e.g., profession), but often over-
looks broader distributional alignment.

In contrast, we adopt a coarser, distributional
approach—shifting gender ratios in professions to
50%-50%. Beyond promoting equality, we con-
sider real-world alignment motivated by concerns
about LLM hallucinations and the need for trust-
worthy fact-checking grounded in actual distribu-
tions. Depending on application, we frame bias
relative to a desired distribution—equal (for social
equity) or real-world (for factual grounding).
In-processing bias mitigation: Common ap-
proaches include modifying the model architecture
(e.g., adding debiasing layers) (Xu et al., 2025; Ku-
mar et al., 2023; Lauscher et al., 2021) or restricting

training to certain parameters (e.g., attention head,
adapter layers (Yang et al., 2025; Masoudian et al.,
2024; Gaci et al., 2022; Attanasio et al., 2022)), to
isolate and suppress biased representations while
preserving general knowledge.

Another strategy modifies the loss function to
encode fairness during training (Xu et al., 2025;
Gallegos et al., 2024; Zheng et al., 2023; Yogara-
jan et al., 2023; Garimella et al., 2021). E.g., Guo
et al. (2022) uses Jensen-Shannon Divergence to
enforce uniformity in gender-conditioned output
distribution. Woo et al. (2023) introduce KL-based
regularization to reduce gender bias in stereotypical
sentence representations, while preserving linguis-
tic integrity on non-stereotypical content.

We propose a weighted adaptive KL loss that
aligns LLM gender–profession distributions to a
target, dynamically updating based on varying gen-
der dominance to enable balanced bias mitigation
across professions.

7 Conclusion

We present a new perspective of bias through
the lens of desired distribution—either equal or
real-world. We proposed a method that adjusts
LLMs’ gender-profession distribution toward a
desired distribution (our primary objective), ap-
plied to 3 MLMs and 2 ALMs. To achieve this,
we use a weighted adaptive KL loss combined
with a secondary MLM loss for MLMs (not re-
quired for ALMs). Bias is measured via the KL
divergence of the model’s distribution from the
desired distribution. We demonstrate the advan-
tage of using this loss through two ablation studies.
Adding the MLM loss improves language mod-
eling with minimal impact on bias mitigation for
MLMs. For ALMs, the KL loss alone effectively
reduces bias across profession categories with min-
imal drop in language modeling performance. We
evaluate across three profession categories—male-
dominated, female-dominated, and balanced. Over-
all, we show that LLM output distributions can be
effectively aligned with the desired distribution.
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8 Limitations

Our bias analysis is limited to binary gender, reflect-
ing the availability of real-world distribution data
for binary gender categories only. We specifically
address gender bias mitigation through distribution
alignment within the context of professions, utiliz-
ing gender-profession data from the U.S. Bureau
of Labor Statistics. We also acknowledge that our
analysis is limited to US-based distributions and re-
quires inclusive real-world distributions for global
applicability. Further investigation is needed to ex-
tend this work to other demographic groups, such
as race.

Our analysis is based on a limited set of 225
professions, suggesting that expanding to a broader
range could yield additional insights. Similarly, we
employed only six templates for bias mitigation.
However, we balanced the selection of rare and
common templates in the training and testing sets.
Additionally, our analysis is limited to a template-
based approach, which is a common approach used
for bias mitigation in LLMs. Bias mitigation for
open-ended generation introduces additional com-
plexities, such as maintaining generation quality
and ensuring contextual relevance. We acknowl-
edge that for improved generalizability and com-
prehensiveness, it is important to evaluate in these
settings reflecting real-world language use, where
autoregressive LLMs are typically more suitable.
However, given the scope of our work, we leave
this exploration for future research. In addition, our
analysis does not comprehensively evaluate out-of-
distribution scenarios, such as template variation
(e.g., altering the order of attributes and targets
or using more diverse template structures), which
could provide a stronger test of generalizability.
We leave such exploration for future work.

Another limitation arises in the fine-tuning of
masked language models (MLMs) using additional
MLM loss: we relied on a small set of probe sen-
tences derived from training templates to preserve
language modeling capability. Using a larger exter-
nal corpus during fine-tuning could better preserve
the model’s language modeling capabilities.

Finally, our bias mitigation efforts were focused
on two variants of the Llama3 autoregressive lan-
guage models (ALM). Extending this exploration
to additional ALMs remains an important direction
for future research.

9 Ethical Considerations

We limit our analysis to binary gender due to the
availability of real-world distribution data for bi-
nary gender only.

Our bias viewpoint—where we align the model’s
output distribution with real-world data—can in-
troduce or preserve existing social biases in LLMs.
However, we motivate this choice by its positive
impact on reducing hallucinations and improving
fact-checking, especially in high-stakes domains
where factual accuracy is critical. We emphasize
that such bias introduction must not be misused
to justify inequitable outcomes; rather, it should
be applied with transparency and only when the
application context prioritizes factual alignment.
Importantly, real-world distributions often reflect
underlying systemic inequalities, and their use as a
bias mitigation target should be carefully justified
and assessed on a case-by-case basis.

Moreover, our reliance on U.S.-based distribu-
tions may reinforce a geographically constrained
perspective, underscoring the necessity of incorpo-
rating non-U.S. contexts for international deploy-
ment.

Future work should also aim to include non-
binary and underrepresented gender identities to
ensure a more inclusive and comprehensive fair-
ness evaluation.
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A Appendix

A.1 Templates

TID Templates
T1 [DET/PRONOUN] [attribute] is [ARTICLE] [target].
T2 [DET/PRONOUN] [attribute] works as [ARTICLE] [target].
T3 [DET/PRONOUN] [attribute] wants to become [ARTICLE] [target].
T4 [DET/PRONOUN] [attribute] applied for the position of [target].
T5 [DET/PRONOUN] [attribute], the [target] had a good day at work.
T6 [DET/PRONOUN] [attribute] started a career as [ARTICLE] [target].

Table 5: Templates. TID: template id, attribute: gendered-
word, target: profession, DET: this, PRONOUN: my

A.2 Attribute

Male gendered words Female gendered words
he, man, brother she, woman, sister
son, husband, boyfriend daughter, wife, girlfriend
father, uncle, dad mother, aunt, mom
grandpa, grandfather grandma, grandmother

Table 6: Attributes: Gendered words. These gendered
words are preceded by DET: this for man/woman, no
DET/PRONOUN for he/she, while for remaining, PRO-
NOUN is my in the templates in Table 5.
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A.3 Profession distribution

Train Valid Test Total
DPmale 59 13 18 90
DPfemale 58 14 18 90
DPbalanced 29 7 9 45
ALL 146 34 45 225

Table 7: Distribution of professions (target).

A.4 Model hyperparameters and selection
Following Zhou et al. (2025), who observe that
seed 42 often yields better performance in machine
learning experiments, we fine-tune the model using
seed 42 and select optimal hyperparameters based
on validation KL divergence loss across epochs.
We use the AdamW optimizer with a weight decay
of 0.01. Final results are reported as the average
over five seed runs using the selected configuration
(see Section 5).

We implement fine-tuning using PyTorch, Hug-
gingFace Transformers, and the PEFT library, run-
ning on NVIDIA A100 (80 GB) and A40 (45 GB)
GPUs. On average, fine-tuning took 4 hours for
MLMs and around 9 hours for the ALM.
Fine-tuning convergence criteria: We track the
KL divergence loss across all professions on the
validation set and stop fine-tuning if it fails to im-
prove from the previous best by at least a threshold
(0.0001 for equal, 0.001 for real-world) for n =
5 consecutive steps (patience). Note that adaptive
weighting is not applied during validation. KL di-
vergence is computed uniformly across professions
as in standard bias detection.

Profession batch: We explore batch sizes of 5 and
8 for training and use a fixed batch size of 3 for
validation. Note that we ensure each batch contains
professions from the same profession group.

Learning rate: We evaluate the performance using
a learning rate of 2e-54 adapted from (Devlin et al.,
2019) for MLMs. For Llama3.2-3B-Instruct, we
evaluate using 2e-5 and 2e-4, adapted from (Hu
et al., 2022). For Llama3.1-8B-Instruct, we used
the learning rate that performed best for Llama3.2-
3B-Instruct.

4We did preliminary analysis using a small subset of pro-
fessions adapted from Bartl et al. (2020) using a learning
rate of 1e-5 and 2e-5. We found 2e-5 converges earlier and
performs better. For the small model DistilBERT, we also
explored a smaller learning rate of 5e-6, but it degraded the
performance in at least one of the profession groups and ALL
(combined profession groups).

Momentum weight for updating KL
mean: We explored momentum weights
β ∈ {0.60, 0.80, 0.95}
Configurations for Llama3 fine-tuning using
LoRA and QLoRA: Following Hu et al. (2022),
we fix attention dimension lorar = 64, which de-
fines the rank of the low-rank adaptation and con-
trols the number of trainable parameters. We vary
the scaling factor loraα ∈ {16, 32, 64}, where the
ratio loraα

lorar ∈ {0.25, 0.50, 1} controls the strength
of the LoRA update. A LoRA dropout of 0.2 is
applied for regularization.

We apply LoRA to the projection layers in the
model, including query (q_proj), key (k_proj),
value (v_proj), and output (o_proj) projections in
the self-attention mechanism, as well as the gate
(gate_proj), up (up_proj), and down (down_proj)
projections in the MLP components. This setup
allows LoRA to adapt both the attention and feed-
forward pathways, consistent with configurations
shown to be effective in prior work on Llama-based
instruction fine-tuning (Ibrahim, 2024; Pontes et al.,
2024; Wang et al., 2025).

For models ≥7B parameters, such as
Llama3.1–8B-Instruct, we apply QLoRA
with 4-bit NF4 quantization (including double
quantization and float16 compute) for both infer-
ence and bias mitigation. The same quantization
configuration is used during pre-debiasing evalua-
tion and QLoRA fine-tuning to ensure consistency.
In contrast, for the smaller Llama3.2–3B-Instruct
model, we use full-precision LoRA fine-tuning
without quantization. Both models are fine-tuned
for bias mitigation with identical hyperparameters.

Mean vs sum of KL divergence across gender:
We observe that the MLM loss for male and fe-
male for a given profession varies, and to provide
a balanced combined effect while computing the
loss, we take the mean instead of the sum of indi-
vidual divergence to get the total divergence for a
profession.

Our preliminary analysis using 60 professions
(adapted from Bartl et al. (2020); U.S. Bureau of
Labor Statistics 2019) supports this. Irrespective
of the mean or sum of KL divergence between
the MLM-predicted and desired male-female dis-
tributions, convergence was similar for both equal
and real-world distributions. However, 50% of
KL loss with sum is achieved in the same epoch
as mean, i.e., to achieve similar performance, the
sum requires further tuning. So, taking the mean
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divergence is optimal.
Selection of hyperparameter based on validation
performance: We use the fine-tuned model (ob-
tained using seed 42) to evaluate performance on
the validation set, using the corresponding valida-
tion templates and professions. We select the con-
figuration that achieves high overall performance
across all profession groups, as well as ALL (com-
bined all three profession categories) with consis-
tent (less spread) performance across three profes-
sion groups. We will discuss the approach next.

We first compute the mean/standard deviation
(µσ ), denoted as R, of performance improvement
(relative to the Base model) across male-dominated,
female-dominated, and balanced groups, aiming
for a high mean with low variability, indicating
strong and stable results. Runs are ranked by R
in descending order, and we select the top two
whose ALL improvement exceeds the average ALL
(allowing a small offset to include runs within 1
point of the mean). The final selection is based on
the higher median improvement across the three
profession groups, ensuring robustness to outliers
and consistently strong improvement in at least half
the groups.

A.5 Common vs Rare templates

% sentences with ppl < 15
TID DistilBERT BERT-base BERT-large
T1 41% 48% 46%
T2 63% 70% 71%
T3 77% 74% 80%
T4 73% 86% 87%
T5 85% 98% 99%
T6 40% 46% 39%

Table 8: Percentage of sentences with pseudo-perplexity
(ppl) below 15

A.6 Bias on Validation set

Profession category
Model DPmale DPfemale DPbalanced ALL

µKL σ2
KL µKL σ2

KL µKL σ2
KL µKL σ2

KL
DistilBERT 0.166 0.019 0.036 0.003 0.025 3E-04 0.083 0.013
BERT-base 0.232 0.087 0.038 0.001 0.085 0.007 0.122 0.042
BERT-large 0.131 0.015 0.033 0.002 0.021 0.001 0.068 0.009
Llama3.2-3B 0.184 0.006 0.099 0.003 0.002 4E-06 0.112 0.008
Llama3.1-8B 0.172 0.005 0.102 0.003 0.002 8E-06 0.108 0.007

Table 9: Validation performance (KL mean: µKL and KL
variance: σ2

KL) across LLMs for real world as desired
distribution (Before Debiasing)

A.7 Bartl et al. (2020) bias mitigation result

Profession
Category Gender Pre

Mean
Post
Mean |m-f|Pre |m-f|Post ∆|m-f|Post-Pre

% Bias
Reduction

DPbalanced
f -0.35 0.20

0.40 0.13 0.27 67.5%
m 0.05 0.07

DPfemale
f 0.50 0.36

1.18 0.50 0.68 57.6%
m -0.68 -0.14

DPmale
f -0.83 0.13

0.99 0.08 0.91 91.9%
m 0.16 0.21

Table 10: Results are directly adapted from Table 4 in
Bartl et al. (2020). Pre refers to the association scores
between gender and profession before debiasing, and
Post refers to the scores after debiasing, based on the
templates used in their paper.

A.8 Bias detection across ALMs
A.8.1 Equal distribution
Table 11 shows the pre-debiasing results using
equality (50-50 gender-profession distribution) as
the desired distribution across ALMs.

The initial KL divergence values remain close to
zero for all ALMs irrespective of size. This indi-
cates that there is no bias even in larger LLMs. In
terms of language modeling capability, perplexity
consistently decreases with model size, aligning
with expectations—larger LLMs generally demon-
strate stronger modeling performance. On average,
perplexity drops (Llama 3B → 8B → 70B, Qwen
7B→72B) by approximately 16.9% on the GAP
corpus, 31.7% on WikiText-103-test, and 28.6% on
WikiText-103-dev as model size increases.

A.8.2 Real world distribution
Table 12 presents the pre-debiasing result using the
real-world distribution as the desired distribution
across ALMs.

We find similar levels of bias across model sizes.
Consistently, male-dominated profession groups
(DPmale) show higher bias than female-dominated
ones (DPfemale) and ALL profession categories, and
there is no bias in the balanced (DPbalanced) cate-
gory. Bias magnitude does not vary significantly
with model size, thus, we observe a consistent trend
with increasing size. The perplexity finding re-
mains consistent with those discussed in the equal
distribution section earlier.
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LLM
Profession Category Perplexity

DPmale
(KL)

DPfemale
(KL)

DPbalanced
(KL)

ALL
(KL)

GAP
corpus

WikiText-103
(test)

WikiText-103
(dev)

Llama3.2-3B-Instruct 4E-4 7E-4 1E-4 4E-4 30.6 16.9 17.1

Llama3.1-8B-Instruct 2E-3 4E-4 2E-4 8E-4 25.6 12.5 12.7

Llama3.3-70B-Instruct 1E-3 6E-4 4E-4 9E-4 21.0 8.3 8.9

Qwen-2.5-7B-Instruct 4E-3 5E-4 1E-3 2E-3 26.8 13.3 14.0

Qwen-2.5-72B-Instruct 3E-3 5E-4 6E-4 2E-3 22.4 8.6 9.8

Table 11: Pre-debiasing results across ALMs (equal distribution) on test set

LLM
Profession Category Perplexity

DPmale
(KL)

DPfemale
(KL)

DPbalanced
(KL)

ALL
(KL)

GAP
corpus

WikiText-103
(test)

WikiText-103
(dev)

Llama3.2-3B-Instruct 0.199 0.108 0.001 0.123 30.6 16.9 17.1

Llama3.1-8B-Instruct 0.181 0.114 0.001 0.118 25.6 12.5 12.7

Llama3.3-70B-Instruct 0.185 0.110 0.001 0.118 21.0 8.3 8.9

Qwen-2.5-7B-Instruct 0.164 0.127 0.002 0.117 26.8 13.3 14.0

Qwen-2.5-72B-Instruct 0.169 0.120 0.001 0.116 22.4 8.6 9.8

Table 12: Pre-debiasing results across ALMs (real-world distribution) on test set

A.9 Language modeling capability evaluation
on downstream tasks
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MLM Desired
Distribution

CoLA SST-2 MRPC STS-B QQP MNLI-(m/mm) QNLI RTE Average

DistilBERT

Base Model 0.49 0.91 0.90 0.86 0.87 0.82/0.82 0.89 0.60 0.79

debiased for equal 0.49 0.91 0.89 0.86 0.87 0.82/0.82 0.88 0.61 0.79

debiased for real-world 0.50 0.91 0.89 0.86 0.87 0.82/0.82 0.89 0.60 0.80

BERT-base

Base Model 0.56 0.93 0.88 0.88 0.88 0.84/0.85 0.91 0.62 0.82

debiased for equal 0.56 0.93 0.89 0.89 0.88 0.85/0.85 0.91 0.65 0.82

debiased for real-world 0.56 0.93 0.89 0.89 0.88 0.85/0.85 0.91 0.64 0.82

BERT-large

Base Model 0.61 0.94 0.89 0.88 0.89 0.86/0.87 0.92 0.71 0.84

debiased for equal 0.59 0.94 0.90 0.90 0.88 0.86/0.86 0.92 0.71 0.84

debiased for real-world 0.61 0.94 0.90 0.90 0.88 0.87/0.86 0.92 0.73 0.84

Table 13: GLUE dev results across MLMs before and after mitigation (using weighted adaptive loss). Accuracy is reported for
SST-2, MNLI, QNLI, and RTE; Spearman correlation for STS-B; Matthews correlation for CoLA; and F1 for MRPC and QQP.
Base Model refers to the pretrained model before debiasing, while debiased for equal refers to models debiased by fine-tuning
using non-adaptive KL loss, and debiased for real-world refers to models debiased by fine-tuning using weighted adaptive loss
combined with MLM loss. For each task, we report the average performance evaluated across five debiased models (obtained
using random seeds 42, 52, 62, 72, and 82) for both equal and real-world target distributions.

LLM Model
HellaSwag LAMBADA

OpenAI
MMLU TruthfulQA CoLA SST-2 MRPC QQP MNLI-(m/mm) QNLI RTE GLUE

Average

Llama3.1
Base Model 0.59 3.68/0.71 0.66 0.68/0.66/0.66 0.06 0.88 0.81 0.55 0.52/0.52 0.51 0.70 0.57

+ LKL,weighted_adaptive 0.59 3.68/0.70 0.66 0.67/0.65/0.65 0.07 0.88 0.81 0.56 0.53/0.52 0.51 0.70 0.57

Llama3.2
Base Model 0.52 3.67/0.71 0.60 0.66/0.64/0.64 0.03 0.83 0.83 0.56 0.52/0.52 0.54 0.74 0.58

+ LKL,weighted_adaptive 0.53 3.67/0.71 0.60 0.67/0.65/0.65 0.03 0.83 0.82 0.56 0.53/0.52 0.53 0.73 0.58

Table 14: LM Evaluation Harness for Llama3.2-3B-Instruct (Llama3.2) and Llama3.1-8B-Instruct (Llama3.1)
before and after debiasing (using weighted adaptive KL loss). Metrics used — Accuracy: [HellSwag, MMLU,
SST-2, MNLI, QNLI, RTE]; Perplexity/Accuracy: [LAMBADA OpenAI]; BLEU/ROUGE-1/ROUGE-L: [Truth-
fulQA_Gen]; Matthews Correlation: [CoLA]; F1: [MRPC, QQP].
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