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Abstract
Multimodal Large Language Models (MLLMs)
have demonstrated significant advances across
numerous vision-language tasks. MLLMs have
shown promising capability in aligning visual
and textual modalities, allowing them to pro-
cess image–text pairs with clear and explicit
meanings. However, resolving the inherent am-
biguities present in real-world language and
visual contexts remains a challenge. Existing
multimodal benchmarks typically overlook lin-
guistic and visual ambiguities, relying mainly
on unimodal context for disambiguation and
thus failing to exploit the mutual clarification
potential between modalities. To bridge this
gap, we introduce MUCAR, a novel and chal-
lenging benchmark designed explicitly for eval-
uating multimodal ambiguity resolution across
multilingual and cross-modal scenarios. MU-
CAR includes: (1) a multilingual dataset where
ambiguous textual expressions are uniquely re-
solved by corresponding visual contexts, and
(2) a dual-ambiguity dataset that systematically
pairs ambiguous images with ambiguous tex-
tual contexts, with each combination carefully
constructed to yield a single, clear interpreta-
tion through mutual disambiguation. Exten-
sive evaluations involving 19 state-of-the-art
multimodal models–encompassing both open-
source and proprietary architectures–reveal sub-
stantial gaps compared to human-level perfor-
mance, highlighting the need for future re-
search into more sophisticated cross-modal am-
biguity comprehension methods, further push-
ing the boundaries of multimodal reasoning.

1 Introduction

Multimodal Large Language Models (MLLMs;
OpenAI 2023, 2024; Liu et al. 2023a; Dai et al.

*Equal contribution.
BCorresponding authors.

I'm 70 years old now. My wife 
and I met a couple on the boat. 

 Question: Who is my wife, the woman on the left or the right?

I'm 35 years old now. My wife 
and I met a couple on the boat. 

On the right On the leftOn the left On the right

Visual Scenario 1 Visual Scenario 2

Context 1 Context 1Context 2 Context 2

Figure 1: The interpretation of ambiguous text and visu-
als can be shaped by context and scenario. For instance,
in “My wife and I met a couple on the boat,” it is unclear
whether “on the boat” modifies “met” or “a couple,”
while the image leaves the identity of the wife uncertain.
Varying the visual setting (e.g., riverbank vs. cruise
deck) and textual cues (e.g., age of the speaker) yields
different resolutions. Each of the four context-image
combinations leads to a distinct answer, with reasoning
color-coded: purple (Context 1), red (Context 2).

2023) have advanced significantly in handling di-
verse inputs like text and images, with contextual
understanding being key to their success in tasks
such as question answering (Shao et al., 2023; Liu
et al., 2023b; Antol et al., 2015), image caption-
ing (Luo et al., 2023; Wang et al., 2023; Chen
et al., 2015), and multimodal reasoning (Gupta
and Kembhavi, 2023; Chen et al., 2023; Zellers
et al., 2019). As MLLMs evolve, the ability to
integrate multimodal context becomes crucial for
accurate responses, underscoring the need for thor-
ough evaluation of their contextual comprehension
in real-world settings.

Prior studies have largely emphasized tasks with
clear and unambiguous inputs (Fu et al., 2023a;
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Benchmark Visual Ambiguity Context Ambiguity Multi-Languages Evaluator

MME (Fu et al., 2023a) % % % Metrics
MMBench (Liu et al., 2023c) % % % GPT
MMT-Bench (Ying et al., 2024) % % % GPT
MMStar (Chen et al., 2024a) % % % Metrics

HallusionBench (Guan et al., 2023) ! % % Metrics
CODIS (Luo et al., 2024) ! % % Human / GPT
Illusory VQA (Rostamkhani et al., 2024) ! % % Human
MHaluBench (Chen et al., 2024b) ! % % GPT

MMA (Wang et al., 2024a) % ! % Metrics
VAGUE (Nam et al., 2024) % ! % Metrics
3AM (Ma et al., 2024) % ! ! Metrics
UNPIE (Chung et al., 2024) % ! ! GPT

MUCAR (Ours) ! ! ! Human / GPT

Table 1: Comparison of our proposed MUCAR with recent vision-language benchmarks.

Ying et al., 2024; Li et al., 2023), frequently ne-
glecting the ambiguity that naturally arises in both
visual and textual modalities. Consider the exam-
ple in Figure 2, neither the context nor the image
alone can resolve the question “Who is my wife,
the woman on the left or the right?”, where a sin-
gle sentence or image can often support multiple
plausible interpretations depending on the specific
scenario or provided context. Figure 2 illustrates
this challenge clearly. Consider the sentence “My
wife and I met a couple on the boat.” This sen-
tence contains structural ambiguity: it is unclear
whether “on the boat” modifies the verb “met” (in-
dicating the location of the meeting) or the noun
phrase “a couple” (specifying the location of the
couple). Simultaneously, the accompanying image
introduces visual ambiguity concerning the referent
of “the wife” among the depicted women. Notably,
the ambiguity cannot be resolved independently
within either modality; instead, mutual disambigua-
tion arises when different textual scenarios (e.g.,
differing speaker ages) combine with different vi-
sual contexts (riverbank vs. cruise deck scenarios).
Each unique combination yields a single, unam-
biguous interpretation, showing that textual and
visual ambiguities can mutually clarify each other.

To systematically evaluate the capabilities of
MLLMs to resolve such complex multimodal am-
biguities, we introduce MUCAR, a novel bench-
mark specifically designed for MUltilingual Cross-
modal Ambiguity Resolution. Table 1 summarizes
recent benchmarks designed to evaluate MLLMs
in terms of visual ambiguity, contextual ambi-

guity, multilinguality, and the type of evalua-
tor used (e.g., metrics, GPT, or human annota-
tions). While early benchmarks such as MMT-
Bench (Ying et al., 2024), MMStar (Liu et al.,
2023c), and MME-RealWorld (Li et al., 2023) fo-
cus on general multimodal tasks, they lack cov-
erage of ambiguity-related phenomena. More re-
cent benchmarks like HallusionBench (Guan et al.,
2023), Illusory VQA (Rostamkhani et al., 2024),
and CODIS (Luo et al., 2024) begin to explore
visual ambiguity, but often overlook contextual
disambiguation or multilingual diversity. Notably,
only a few benchmarks incorporate human evalu-
ation, which is essential for assessing ambiguity
understanding. To the best of our knowledge, MU-
CAR is the first benchmark to comprehensively
address visual ambiguity, contextual ambiguity,
and multilinguality, while integrating both human
and GPT-based evaluation. This design enables a
more rigorous and realistic assessment of ambigu-
ity resolution capabilities in multimodal large lan-
guage models. Our dataset and code are available
at https://github.com/THUNLP-MT/MUCAR.

To summarize, our main contributions are:

• We construct MUCAR, the first multilin-
gual cross-modal ambiguity resolution bench-
mark, featuring 1278 manually curated sam-
ples in Chinese, English, and Malay, including
uniquely designed dual-ambiguity cases.

• We systemically evaluate 19 sota MLLMs
(both open-source and closed-source), reveal-
ing significant limitations in resolving multi-
lingual multimodal ambiguities.
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• We propose a simple yet effective agent-
based framework for multimodal disam-
biguation, which improves performance
through explicit cross-modal reasoning.

2 Related Work

Context Ambiguity Ambiguity is an inherent
characteristic of linguistic text, emerging natu-
rally due to the potential for multiple interpreta-
tions, especially in open-domain question answer-
ing tasks (Min et al., 2020; Sun et al., 2023). Exist-
ing research on ambiguity resolution in language
primarily follows two directions. One line lever-
ages contextual cues from surrounding text to re-
solve ambiguity, as seen in Gao et al. (2024); Lee
et al. (2025), which uses in-context learning to dis-
ambiguate textual inputs. Another line exploits
visual information to disambiguate language, par-
ticularly for polysemous word translation, such as
in 3AM (Ma et al., 2024), which aligns ambiguous
words with visual semantics.

Aligned with the multimodal ambiguity setting
in MMA (Wang et al., 2024a), our work focuses
on using visual input to disambiguate multilingual
expressions. Beyond standard NLP ambiguities,
we also address those arising from domain-specific
and cultural differences. In particular, we construct
a benchmark featuring both textual and visual ambi-
guity across multiple languages, aiming to evaluate
the ability of MLLMs to resolve complex multi-
modal ambiguities in realistic scenarios.

Visual Ambiguity Visual ambiguity often stems
from incomplete visual cues or interfering noise in
the scene (Denison et al., 2018). Most previous
vision-language benchmarks assume unambigu-
ous (Liu et al., 2023c; Fu et al., 2023a; Liu et al.,
2023c; Li et al., 2023) input or highlight the vi-
sual ambiguities caused by optical illusions (Guan
et al., 2023; Rostamkhani et al., 2024; Cui et al.,
2023; Fu et al., 2023b). Early Multimodal datasets
like MS-COCO (Chen et al., 2015) focus on literal
descriptions, while later works, e.g., CODIS (Luo
et al., 2024) highlight the need for diverse con-
text to reflect multiple valid interpretations. In-
spired by CODIS (Luo et al., 2024), we assess the
capability of MLLMs to disambiguate visual am-
biguity through textual modalities instead of just
recognizing ambiguities. Different from CODIS,
we construct challenging dual-ambiguity instances,
combining ambiguous visuals and texts that jointly
resolve into a single interpretation, further testing

the limits of multimodal reasoning.

3 MUCAR

MUCAR is proposed for evaluating the capabil-
ities of MLLMs in image-dependent context dis-
ambiguation. Figure 2 presents several examples
from our benchmark, highlighting the diversity of
contexts covered. In this section, we first describe
our taxonomy of context. Then, we delve into the
instruction design. Finally, we introduce data col-
lection procedures.

3.1 Taxonomy

Given the extensive and varied nature of context
information, comprehensive cataloging of all forms
of context is challenging. With the aim of establish-
ing an outstanding benchmark for disambiguation,
we identified seven representative types. The first
six types are inspired by the information people
require to understand context. When collecting the
data, we surprisingly found that in some cases, the
combination of ambiguous text and ambiguous im-
ages led to mutual disambiguation. In other words,
neither modality alone provided sufficient clarity,
but together they resolved the ambiguity inherent in
both. This observation inspired us to define the sev-
enth type and collect the corresponding data. To the
best of our knowledge, we are the first to construct
data for this type. Figure 2 illustrates examples
with corresponding classification explanations.
Polysemy. Navigli (2009) provides one formaliza-
tion of polysemy, by referring to a word with two
or more related meanings. These related meanings
often share a conceptual core, with one meaning
typically being an extension or variation of the
other. Some contexts can be interpreted both liter-
ally and metaphorically. The “Polysemy” part in
Figure 2 gives a good example.
Homonymy. Navigli (2009) also provides one for-
malization of homonymy. Opposite to polysemy,
homonymy refers to a word having two or more un-
related meanings that stem from different historical
origins, and the meanings of homonyms have no
inherent connection. Disambiguating homonyms
relies on the other elements. The “Homonymy”
part in Figure 2 serves as a good example.
Grammar. This ambiguity occurs when sentence
structures allow for multiple interpretations, often
due to the placement of words or phrases. Such
structural issues can make it unclear which part
of the sentence a modifier applies to or the rela-
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C:  “I’m going to the bank.” “Go fishing? Good Luck!”

Q:  Is there a misunderstanding between them?

Answer:  Yes.

Explanation: The “Bank” in this sentence means a 

bank where money can be deposited and withdrawn.

Answer:  No.

Explanation: The “Bank” in this sentence means the 

riverbank. 

Homonymy

C:  “I’m standing on the shoulders of giants now.”          

Q:  Does this sentence have a metaphor?

Answer: Yes.

Explanation: Each generation innovates and deve-

lops on the basis of the predecessors.

Answer:  No.

Explanation: This is a real scene from “Gulliver's 

Travels”.

Polysemy

C:  The chicken is ready to eat.

Q:  What is the subject in the sentence going to eat?

Answer:  Chicken feed.

Explanation: The chicken itself is hungry and ready 

to eat something. 

Answer:  Chicken.

Explanation: The chicken is cooked and prepared, so 

it is ready for someone to eat. 

Semantics

C:  我的门没有锁。
Q:  上文的“锁”是动词还是名词？(Is "锁" above a verb or noun?)

Answer:  名词。(Noun.)

Explanation: It means there’s no lock installed on 

my door.

Answer:  动词。(Verb.)

Explanation: It means that my door is unlocked. 

Maybe the lock is there but not engaged.

Grammar

C:  I’m cooking pasta, and my Italian friend says it’s unbelievable.

Q:  Do you think he is a little happy or unhappy about this?

Answer:  Maybe a little happy.

Explanation: My friend thinks that I respect Italian 

traditions.

Answer:  Maybe a little unhappy.

Explanation: In the Italian culture, breaking pasta is 

usually regarded as a disrespectful practice.

Cultural

C:  His brother is taller than him.

Q:  Which side is his brother standing on?

Answer:  Left.

Explanation: His brother is located at a place that is 

physically higher in elevation than where he is.

Answer:  Right.

Explanation: It means that his brother's body height 

is greater than his own.

Specialized

C:  I saw a younger friend by the river.

Q:  Is my friend on the left or the right of the picture?

Answer: On the left.

Explanation: This means that both my friend and I 

were by the river and I saw my friend.

Dual-ambiguity

C:  I saw an elderly friend by the river.

Q:  Is my friend on the left or the right of the picture?

Answer: On the right.

Explanation: This means that I saw my young friend 

by the river, but I myself was somewhere else.

Answer: On the right.

Explanation: This means that both my friend and I 

were by the river and I saw my friend.

Answer: On the left.

Explanation: This means that I saw my young friend 

by the river, but I myself was somewhere else.

Dual-ambiguity

我的门没有锁子Q:  Does Mary have pet?

Answer:  We don't know.

Explanation: “Her pet food" means the food owned 

by a pet, and Mary gave that food away.

Answer:  Yes.

Explanation: “Pet food" refers to the food intended 

for the pet, and Mary is feeding her pet. 

Figure 2: Taxonomy of our benchmark. We present one example for each category. Each example includes a context
(C), a question (Q), and two different images with their corresponding answers and explanations.

tionship between different clauses. The “Grammar”
part in Figure 2 provides a clear illustration. As
the “Grammar” part in the figure shows, in Chinese,
“我的门没有锁” can be interpreted as “My door
does not have a lock” or “My door has not been
locked”, here “锁” can be understood as a noun or
verb, which leads to ambiguity.
Semantics. Understanding the timing and se-
quence of events is crucial when we understand
a context. However, an isolated context can only
provide us with static information, which is insuf-
ficient for dynamic events. The disambiguation
can only be achieved when unambiguous image
gives us more information. The “Semantics” case
in Figure 2 provides a representative example.
Specialized. We define Specialized taxonomy to
encompass terms or concepts that have distinct
meanings across academic domains or personal

situations. These terms often lead to ambigu-
ity when encountered by individuals with varying
background knowledge. The “Specialized” part in
Figure 2 presents a good example.
Cultural. Some context can be interpreted dif-
ferently depending on the cultural background of
the interpreter, as words, symbols, and actions
with specific meanings and connotations. Cultural
norms, values, and historical experiences shape
how individuals understand and react to informa-
tion. This can lead to significant textual ambiguities
where meaning is lost or distorted. The “Cultural”
part in Figure 2 offers a good example.
Dual-ambiguity. This data type highlights our
unique contribution. In this type, the context and
the image are both ambiguous, but their combined
information allows for clear disambiguation. Fig-
ure 2 gives a good example. The context ambiguity
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Scenario Percentage
People 24%

Landscape 13%
Cartoons 10%
Food 10%
Scene 7%
Indoors 7%
Actions 7%
Objects 7%

Streetscape 4%
Others 4%
Animals 3%
Sports 2%
Plants 2%

Figure 3: Distribution of seven categories (left) and
scenarios (right) of our benchmark.

covers the six former types. Regarding image am-
biguity, following CODIS (Luo et al., 2024), image
ambiguity can be further categorized into distinct
types, such as location and orientation, temporal
information, cultural background, attributes, and
relationships. However, for the purpose of this pa-
per, we group these various types under the general
term “image ambiguity”. Thus, dual-ambiguity
specifically denotes the situation where both the
context and the image exhibit ambiguity.

3.2 Instruction Design
In order to ensure that model fully understands the
context and image instead of making choices ran-
domly, we organize our dataset in pairs. For the
first six data types, the query can be represented
as (C,Q, Ii). Each pair consists of an identical
ambiguous context C and a question Q, which are
presented alongside i different unambiguous im-
ages (I1, I2, . . . , Ii).

For the dual-ambiguity data type, we manually
group queries that look similar. Even within a pair,
the context Ci, the question Qi, and the image Ii
may differ for each query instance. More formally,
each pair can be represented as (Ci,Qi, Ii).

Each (C,Q, I) is independently input into
MLLMs as a query without being influenced by
other queries in the same pair. MLLMs receive i
queries in the same pair independently and produce
their outputs (O1,O2, . . . ,Oi). These outputs are
evaluated by comparing them with ground truth
answers (A1,A2, . . . ,Ai).

3.3 Data Collection
In this section, we detail how we construct this
benchmark by using a three-step collection process.
Context Collection. We manually collected am-
biguous contexts which can only be resolved with
external images. Most of the contexts come from
the Internet, while others are created manually.

These contexts span three languages: Chinese, En-
glish, and Malay. We meticulously reviewed every
context to exclude any that were unambiguous. In
total, we collected 1278 contexts. The first six
types comprise 906 contexts, and the remaining
372 contexts belong to the dual-ambiguity type.
Design of Questions, Images and Answers. For
each context, we manually wrote questions and
answers. As for images, we also manually col-
lected them from the Internet or designed them our-
selves. Specifically, for the dual-ambiguity type,
the majority of images are sourced from CODIS
(Luo et al., 2024), a benchmark constructed using
ambiguous images. The data are compiled with
following rules:

(1) Questions are designed to target ambiguous
aspects within the contexts. Disambiguation of
these contexts is not possible without the inclusion
of external images.

(2) For each context and question, every unique
image associated with them should lead to a distinct
interpretation of the context, resulting in a unique
answer per image. Crucially, the answer cannot
be determined from the image or the context in
isolation. The answer can be determined only when
we give MLLMs the query in the format (C,Q, I).

(3) To balance the performance and evaluation ef-
ficiency, MLLMs were required to generate outputs
following a specific template with clear, predefined
options. This method ensures the objectivity of
responses and facilitates their efficient evaluation.
Data Verification. Five annotators participated in
this process. To ensure dataset quality, each sub-
mission was cross-checked by the remaining four
annotators. Data were retained only if they satis-
fied the following conditions: (1) correctness, (2)
distinctiveness from existing data, and (3) compli-
ance with all predefined criteria. Submissions that
did not meet these conditions were returned to the
annotator for revision.

Finally, our benchmark comprises 1278 queries
and 501 (C,Q, I) pairs, categorized into seven
types. Figure 3 visually represents how the cat-
egories and scenarios are distributed.

3.4 Evaluation Metrics

For the k-th pair of queries, we decide to use
(Ok1,Ok2, . . . ,Oki) to represent the model’s out-
puts of a pair, and (Ak1,Ak2, . . . ,Aki) for the cor-
responding ground truth answers. We express the
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(a) Without confusing options

Model Polysemy Homonymy Grammar Semantics Specialized Cultural Dual-ambiguity Overall
Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq

API-based Models

GPT-4V 35.23 55.87 32.48 53.20 43.93 65.89 37.21 60.71 29.55 60.00 19.05 38.82 20.62 42.74 30.39 52.70
GPT-4o 36.36 61.45 44.44 64.00 41.12 65.42 44.19 64.29 47.73 70.53 28.57 47.06 21.65 53.23 34.96 60.13
Gemini-2.0-flash 19.48 52.87 38.18 63.14 17.78 50.56 19.51 50.00 30.77 63.53 25.00 46.91 12.36 36.16 23.46 52.11
Claude-3.5-Sonnet 3.41 16.76 2.56 16.00 5.61 21.03 0.00 14.29 6.82 17.89 0.00 5.88 23.28 51.10 9.37 26.36

Open-source Models > 7B

Kimi-VL 3.37 36.31 5.13 46.40 5.56 43.46 2.38 40.48 2.27 36.84 0.00 47.06 14.08 52.27 4.74 45.15
Llama-3.2-Vision-11B 33.71 63.69 37.61 66.80 25.93 59.35 28.57 57.14 27.27 63.16 19.51 58.82 14.08 52.27 28.09 59.45
MiniCPM-o 2.6 38.20 66.48 38.46 66.40 33.33 63.55 28.57 60.71 40.91 69.47 55.29 29.27 4.23 20.53 34.00 53.10
Idefics3-8B-Llama3 39.33 67.04 37.31 62.80 31.48 62.62 35.71 65.48 31.32 56.84 24.09 56.47 19.72 49.87 32.38 58.91
InternVL2-8B 20.24 49.56 23.76 53.67 10.29 40.44 23.81 47.62 20.00 47.13 21.95 48.24 20.97 47.58 20.08 48.16
InternVL2.5-8B-MPO 42.26 69.32 43.56 68.81 25.00 60.29 42.86 69.05 37.50 58.62 19.51 57.65 24.19 51.88 35.73 61.68
InternVL2.5-8B-MPO-AWQ 42.86 69.91 46.53 70.18 30.88 64.71 33.33 61.90 37.50 60.92 21.95 60.00 25.81 54.30 37.32 63.32

Open-source Models ≤ 7B

Deepseek-VL-Tiny 0.00 44.69 5.98 51.20 0.00 48.60 2.33 48.81 6.82 47.37 0.00 49.41 16.49 54.03 6.77 50.12
LLaVA-v1.6-vicuna-7b 15.73 54.19 21.37 54.80 14.81 54.21 21.43 55.95 11.36 42.11 12.20 51.76 16.90 50.40 16.46 52.26
LLaVA-v1.6-mistral-7b 19.11 55.87 23.08 58.00 12.96 54.67 16.67 58.33 15.91 49.47 2.44 47.06 16.90 50.40 16.26 53.60
Qwen2.5-VL-3B-Instruct 33.93 64.60 27.72 56.88 17.65 53.68 19.05 50.00 22.50 56.32 12.20 55.29 20.97 40.86 25.55 53.56
Qwen2.5-VL-7B-Instruct 34.52 60.47 32.67 60.09 29.41 58.09 33.33 50.00 35.00 63.22 14.63 54.12 19.35 49.19 29.94 56.29
mPLUG-Owl3-7B-240728 32.74 63.42 35.64 63.30 22.06 58.82 28.57 61.90 22.50 55.17 48.24 14.63 27.42 52.96 28.74 58.25
mPLUG-Owl3-2B-241014 33.73 65.68 36.08 64.71 27.47 62.09 30.95 62.20 30.00 60.92 10.00 55.74 16.49 51.61 25.65 59.29
LLaVA-OneVision 30.33 61.45 38.46 64.80 30.56 61.22 28.57 58.33 27.27 55.79 21.95 60.00 9.86 47.20 28.37 57.20

(b) With confusing options

Model Polysemy Homonymy Grammar Semantics Specialized Cultural Dual-ambiguity Overall
Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq

API-based Models

GPT-4V 26.51 47.93 20.62 41.18 26.37 52.20 21.43 45.12 20.00 47.13 6.67 26.23 15.46 30.65 19.93 40.45
GPT-4o 32.53 50.30 25.77 45.10 31.87 56.04 23.81 46.34 22.50 51.72 13.33 29.51 17.53 36.29 23.92 44.51
Gemini-2.0-flash 8.06 36.80 8.82 32.41 14.06 44.53 8.70 40.91 4.76 25.58 6.67 32.26 11.02 31.23 10.00 34.85
Claude-3.5-Sonnet 3.61 22.49 4.12 22.55 4.40 23.08 2.38 20.73 2.50 27.59 3.33 13.11 15.59 35.64 7.56 26.50

Open-source Models > 7B

Kimi-VL 1.13 31.84 1.71 39.60 1.85 40.19 0.00 36.90 0.00 32.63 0.00 41.18 5.71 18.82 1.50 31.98
Llama-3.2-Vision-11B 21.35 56.98 37.61 63.60 13.89 43.93 14.29 45.24 11.37 48.42 17.07 54.12 5.71 34.67 19.87 48.00
MiniCPM-o 2.6 20.22 53.07 34.18 60.40 28.70 58.41 30.95 59.52 18.18 60.00 14.63 50.58 2.86 12.63 23.50 44.40
Idefics3-8B-Llama3 29.21 58.10 39.32 62.80 24.07 55.14 35.71 60.71 31.82 62.11 17.07 51.76 12.86 50.54 28.14 56.37
InternVL2-8B 13.48 35.20 8.55 33.20 7.41 34.58 7.14 36.90 20.45 41.05 7.32 36.47 8.06 31.45 9.78 34.24
InternVL2.5-8B-MPO 26.97 58.10 27.35 54.80 27.78 56.54 28.57 58.33 25.00 52.63 19.51 51.76 20.97 46.51 25.95 53.01
InternVL2.5-8B-MPO-AWQ 31.46 63.69 33.33 59.20 34.26 62.62 30.95 59.52 31.81 57.89 14.63 52.94 22.58 50.27 29.94 57.31

Open-source Models ≤ 7B

Deepseek-VL-Tiny 0.00 21.30 0.00 21.08 0.00 30.77 0.00 24.39 5.00 31.03 0.00 27.87 9.28 35.48 3.47 28.61
LLaVA-v1.6-vicuna-7b 13.48 51.95 19.66 58.00 14.81 56.07 19.05 54.76 11.36 49.47 14.63 55.29 11.43 46.77 15.19 52.54
LLaVA-v1.6-mistral-7b 19.10 57.54 23.93 59.20 12.96 54.21 26.19 69.91 18.18 51.58 2.44 49.41 14.29 47.58 17.14 53.71
Qwen2.5-VL-3B-Instruct 25.84 56.42 28.21 58.00 25.00 57.94 19.05 53.57 11.36 50.53 14.63 42.35 24.19 45.43 22.95 52.23
Qwen2.5-VL-7B-Instruct 13.48 42.46 19.66 50.80 27.78 55.61 26.19 51.19 27.27 60.00 9.76 44.71 20.97 48.66 20.76 50.12
mPLUG-Owl3-7B-240728 21.35 56.42 30.77 60.00 22.22 56.54 26.19 59.52 18.18 53.68 9.76 43.53 24.19 47.85 23.35 53.79
mPLUG-Owl3-2B-241014 24.10 53.85 30.93 60.78 25.27 59.34 33.33 58.54 32.50 60.92 16.67 49.18 13.40 46.77 22.70 54.28
LLaVA-OneVision 40.44 68.16 39.32 65.60 34.26 63.08 33.33 64.29 31.82 60.00 17.07 55.29 8.57 41.67 31.40 57.39

Human

Human 75.00 86.59 73.50 86.00 70.09 85.05 78.57 89.29 79.55 89.36 68.29 83.53 81.43 87.12 74.66 86.42

Table 2: Results of MLLMs on MUCAR benchmark under two settings: (top) without confusing options and
(bottom) with confusing options. For humans, the two experimental settings show little difference, so we chose the
more challenging with confusing options setting for human evaluation.

evaluation of these model outputs as follows:

Eval(Oki) =

{
1 if Oki matches Aki

0 otherwise
, i ∈ Z+

Following Fu et al. (2023a), our evaluation uti-
lizes two metrics, pair-wise accuracy Accp and
query-wise accuracy Accq, these metrics can be
calculated as follows:

Accp =
1

np

np∑

k=1

nk∏

i=1

Eval(Oki),

Accq =
1

nq

np∑

k=1

nk∑

i=1

Eval(Oki).

where nk denotes the number of queries within
each pair, np represents the total number of pairs,
and nq is the total number of individual queries.
Accp denotes the accuracy of judging each indi-
vidual query’s correctness independently. Accq
requires that a pair is considered correct only if
MLLMs correctly judge all queries within the pair.

4 Experiments

4.1 Models
We evaluate a total of 19 models covering a range of
scales and architectures. Our evaluated proprietary
models include GPT-4V (OpenAI, 2023), GPT-
4o (OpenAI, 2024), Gemini (Gemini Team et al.,

15031



2023), and Claude-3.5-Sonnet (Anthropic, 2024).
For open-source models, we include Deepseek-VL-
Tiny (Lu et al., 2024), Kimi-VL (Team et al., 2025),
Llama-3.2-Vision-11B (Meta, 2024), MiniCPM-o
2.6 (Yao et al., 2024), InternVL2.5 series (Wang
et al., 2024b; Chen et al., 2024c), LLaVA-v1.6-
vicuna-7b (Liu et al., 2024), Qwen2.5-VL se-
ries (Bai et al., 2025). Details of these models
are listed in Table 11 in Appendix D.

4.2 Main Results

Main experimental results on our benchmark of all
19 models are reported in Table 2.
Overall Performance. Across all evaluated mod-
els, InternVL2.5-8B-MPO-AWQ achieves the best
overall accuracy (Accq = 63.32%), followed closely
by InternVL2.5-8B-MPO (61.68%) and MiniCPM-
o 2.6 (59.45%). Among proprietary models, GPT-
4o outperforms the others, obtaining an overall
accuracy of 60.13%, slightly higher than GPT-
4V (52.70%). In contrast, Claude-3.5-Sonnet and
Kimi-VL underperform, showing limited ability in
disambiguation tasks.
Results with Different Model Size. Open-source
models with scales larger than 7B generally outper-
form smaller ones, with all top-performing models
falling within this range of scale, which is likely to
benefit from richer training data and more advanced
architectures. In comparison, models smaller than
or equal to 7B show a clear performance gap. Al-
though certain models, such as LaVA-Onevision
(57.20%) and mPLUG-Owl2-2B (59.29%), per-
form competitively, most smaller models struggle
with complex ambiguities, particularly in semantic
and cultural contexts.
Results on Different Categories. We further
break down the results by disambiguation cate-
gories, and find that InternVL2.5-8B-MPO-AWQ
consistently leads in most categories, especially in
Homonymy (70.18%), Grammar (64.71%), and Se-
mantics (69.05%). Notably, MiniCPM-o 2.6 excels
in the Specialized category (69.47%), suggesting
domain knowledge plays a key role. In the Cul-
tural category, which requires understanding cross-
cultural references, models like GPT-4o (47.06%)
and InternVL2.5-8B-MPO-AWQ (60.00%) show
relatively stronger performance. On the other hand,
most models perform poorly in the Polysemy and
Dual-Ambiguity categories, reflecting the inher-
ent challenges in resolving subtle or cross-modal
ambiguities.

Qwen2.5-VL-7B-Instruct InternVL2.5-8B-MPO-AWQ LLaVA-Onevision MiniCPM-o 2.6
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Figure 4: Accuracy under different input settings. C
= Context, Q = Question, I = Image. For example,
(C,Q, I) includes all three; (C,Q) and (C, I) include
only the specified components.

Model Overall
Accp Accq

Qwen2.5-VL-7B-Instruct (w/) 20.73 50.72
Qwen2.5-VL-7B-Instruct (w/o) 7.06 (↓13.67) 12.57 (↓38.15)
InternVL2.5-8B-MPO-AWQ (w/) 30.98 60.20
InternVL2.5-8B-MPO-AWQ (w/o) 4.56 (↓26.42) 8.38 (↓51.82)
LLaVA-OneVision (w/) 34.62 63.84
LLaVA-OneVision (w/o) 0.00 (↓34.62) 0.66 (↓63.18)
MiniCPM-o 2.6 (w/) 26.42 57.44
MiniCPM-o 2.6 (w/o) 1.14 (↓25.28) 4.63 (↓52.81)

Table 3: Ablation study: Only input (Q, I), with con-
fusion options. Performance drop (↓) indicates the gap
compared to full input.

In summary, model size and architecture signif-
icantly affect cross-modal disambiguation perfor-
mance. Larger models and instruction-finetuned
models usually demonstrate better generalization.
The disparity across categories reveals the diverse
challenges in context-dependent reasoning, partic-
ularly in categories involving semantic, cultural, or
compound ambiguities.

5 Analysis and Discussion

5.1 Ablation Study

Figure 4 reports the accuracy of four models under
three input settings: (C,Q, I), (C, I), and (C,Q).
All models achieve the highest accuracy with full
input, with LLaVA-OneVision reaching 63.84%,
followed by InternVL2.5 (60.20%), MiniCPM-o
2.6 (57.44%), and Qwen2.5 (50.72%). Remov-
ing the question while keeping context and im-
age (C, I) results in moderate drops—for exam-
ple, LLaVA drops to 55.58%, and InternVL2.5 to
21.41%. In contrast, removing the image (C,Q)
leads to drastic degradation: LLaVA drops to
0.00%, and Qwen2.5 to 3.42%. This highlights
the essential role of image information in resolving
multimodal ambiguity.

Table 3 presents the ablation results using only
question and image inputs, with confusing options
included. All models exhibit significant perfor-
mance degradation when context is removed. For
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example, LLaVA-OneVision drops from 63.84% to
0.66% in Accq (↓63.18), and from 34.62% to 0.00%
in Accp (↓34.62). Similar trends are observed for
InternVL2.5 and MiniCPM-o, which also suffer
large drops in both metrics. These results under-
score the importance of contextual information in
resolving ambiguity, especially in the presence of
visually or semantically confusing alternatives.

5.2 Discussion

As shown in Figure 5, this example illustrates how
the interpretation of the phrase “666” is highly
dependent on cultural and visual context, highlight-
ing the necessity of cross-modal disambiguation.
Scenario 1: The accompanying image shows the
Forbidden City in Beijing, indicating a modern
Chinese cultural context. In this setting, “666”
is widely used as internet slang to express praise,
meaning “awesome” or “skillful.” Answer: Posi-
tive. Scenario 2: The image depicts a European
Gothic cathedral—Notre-Dame de Paris—evoking
a Western Christian context. Here, “666” is tradi-
tionally associated with the “number of the beast”
from the Bible, conveying a negative connotation.
Answer: Negative.

5.3 Further Exploration: An Agent-Based
Framework for Ambiguity Resolution

To better address the cross-modal ambiguity resolu-
tion, we propose an agent-based framework, as
shown in Figure 5. First, the model takes the
task description, question, and ambiguous con-
text/image as input to identify the ambiguity and
its significance. Second, it generates contextual ev-
idence to resolve the ambiguity. Finally, the model
bridges the context and image through logical rea-
soning to produce the final answer.

Formally, given a task description D, a question
Q, and a multimodal ambiguous context X (e.g., an
image and text), the agent-based model M solves
the task through a three-step process as illustrated
in Figure 5:
Step 1: Ambiguity Detection. The model first
detects the ambiguity and explains its significance:

A = M(D ⊕Q⊕X ⊕ T1),

where T1 is a prompt guiding the model to iden-
tify potential ambiguity and why it matters, and A
denotes the ambiguity explanation.
Step 2: Contextual Evidence Extraction. The
model then extracts relevant contextual evidence to

Scenario:2
 

Q:  Is the emotion conveyed by this sentence positive or negative?
C:  “"666", in this cultural context.”          

Answer:  Positive.

Scenario:1

Answer:  Negative.

[INPUT]: Task Description, Q, C and Image
[OUPUT]: STEP I
 The meaning of "666" is highly dependent on cultural 
interpretations. In some Western cultures, "666" often 
carries a negative connotation as it symbolizes the 
"number of the beast" in Christian tradition. The 
cultural context determines the emotional association. 

[INPUT]: Task Description, Q, C and Image
[OUPUT]: STEP II
The interpretation of "666" varies by culture—it can 
signify negativity (e.g., the biblical "number of the 
beast") or positivity (e.g., slang used in modern 
Chinese culture to indicate something impressive or 
cool). 

Ambiguity Detected, Stage I

Contextual Evidence, Stage II
[INPUT]: Task Description, Q, C, Image, STEP I
[OUPUT]: STEP II
Image Suggests Chinese Setting: The visual depiction 
is of the Forbidden City in Beijing, China, a culturally 
iconic site that strongly points to a Chinese cultural 
context. This aligns the scene with modern Chinese 
interpretations. 

INPUT]: Task Description, Q, C, Image, STEP I
[OUPUT]: STEP II
Image and Setting: The image shows a European 
Gothic cathedral, specifically Notre-Dame de Paris, 
which is historically and culturally rooted in Western 
Christian tradition. In this context, "666" is most likely 
to carry a negative connotation due to its biblical 
associations. 

Logical Bridge, Stage III
[INPUT]: Task Description, Q, C, Image, STEP II
[OUPUT]: STEP III
G ive n  t h e  C h i ne se  s e t t i ng  a nd  kn ow i n g  t he 
contemporary usage of "666" in Chinese slang, where 
it is commonly used as praise, the emotion conveyed is 
positive. 
 Answer: Positive.

[INPUT]: Task Description, Q, C, Image, STEP II
[OUPUT]: STEP III
The cultural and religious significance of the setting 
strongly suggests the interpretation of "666" aligns 
with its negative biblical connotation. 

 Answer: Negative.

Figure 5: Pipeline of our proposed framework. We
first identify ambiguity and its significance from the
task description, question, and context/image. Then we
generate contextual evidence to resolve the ambiguity.
Finally, we bridge the context and image through rea-
soning to produce the final answer.

resolve the ambiguity:

E = M(D ⊕Q⊕X ⊕A⊕ T2),

where T2 instructs the model to generate explana-
tory evidence from the context, and E denotes the
extracted evidence.
Step 3: Logical Reasoning and Final Answer.
Finally, the model uses evidence to logically align
context and image, and generate the final answer:

R = M(D ⊕Q⊕X ⊕ E ⊕ T3),

where T3 prompts the model to conduct reasoning
and provide the answer R.
Unified Prompt Alternatively, the entire process
can be completed with a unified prompt:

A, E ,R = M(D ⊕Q⊕X ⊕ T ),

where T = T1 ⊕ T2 ⊕ T3.
To demonstrate the generality of our framework

across different types of ambiguity, we also report
performance of our framework on other wide dis-
cussed benchmarks, including CODIS (Luo et al.,
2024) and MMA (Wang et al., 2024a). As shown
in Table 4, our method consistently outperforms all
baselines across benchmarks. Compared to CoT
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Model CODIS MMA MUCAR Overall
Accp Accq Acc Accp Accq Accp Accq

Vanilla 36.26 59.49 72.0 32.35 53.91 34.31 54.61
CoT 36.81 60.76 68.0 28.57 56.41 32.69 52.44
CODIS 36.80 60.30 71.0 28.29 56.96 32.55 53.19
OURS 42.49 63.46 84.0 44.87 66.78 43.68 64.11

Table 4: Results of our method on CODIS, MMA and
MUCAR based on GPT-4o-2024-11-20.

and CODIS-specific prompting, our approach is
not only simple but also effective, demonstrating
strong potential across different types of ambiguity.

6 Conclusion

We present MUCAR, a benchmark designed to
evaluate MLLMs in resolving ambiguities across
visual, textual, and multilingual contexts. Un-
like prior benchmarks, MUCAR targets cross-
modal disambiguation through multilingual text
and image-text ambiguity cases. Evaluation of 19
state-of-the-art MLLMs reveals a clear gap from
human-level performance, highlighting the need for
more context-aware and cross-modally grounded
models. We also introduce a simple agent-based
framework that improves disambiguation through
explicit reasoning. MUCAR aims to guide future
research toward more robust and interpretable mul-
timodal systems in this direction.

Limitations

While MUCAR offers a novel and rigorous bench-
mark for multilingual cross-modal ambiguity res-
olution, it has several limitations. It covers only
three languages, limiting generalizability to low-
resource or typologically diverse languages. The
curated examples may not capture the complexity
and noise of real-world multimodal data. Its partial
reliance on GPT-based evaluation introduces poten-
tial biases, and the agent-based reasoning frame-
work, though effective in structured tasks, may
struggle with open-ended scenarios. Future work
should address broader linguistic coverage, real-
world settings, and more robust reasoning methods.

Ethics Statement

We ensured that all images in our dataset com-
ply with ethical and legal standards. A small por-
tion of images were manually synthesized to cover
rare scenarios, and 0.5% were personally collected;
both underwent strict quality checks to minimize
bias. The remainder were obtained from platforms

with free usage rights (e.g., Unsplash, Pexels, Pix-
abay). All images were carefully reviewed to en-
sure quality, fairness, and copyright compliance.
Given their high quality and small proportion, syn-
thetic images are unlikely to affect evaluation out-
comes.
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A Dataset Details

A.1 Dataset Distribution

Category Chinese English Malay Total

Polysemy 63 64 52 179
Homonymy 42 176 32 250
Grammar 64 72 78 214
Semantics 24 18 42 84
Specialized 26 60 8 94
Cultural 24 66 0 90
Dual-Amb 126 126 120 372

Overall 364 582 332 1278

Table 5: Distribution of ambiguity categories across
different languages.

MUCAR Table 5 summarizes the distribution of
seven ambiguity types across Chinese, English,
and Malay. English has the most annotated in-
stances (582), followed by Chinese (364) and
Malay (332). Homonymy is notably dominant
in English, while Dual-Ambiguity remains consis-
tently high across all languages. Cultural ambigu-
ity appears in Chinese and English but is absent
in Malay. Grammar and Polysemy are relatively
balanced, whereas Specialized and Semantics vary
more significantly. These trends reflect both shared
and language-specific ambiguity patterns.

Prompt for GPT-4o evaluation.

I’ll give you an image. Please answer my question based
on the image.
Directly select the correct option (A, B, C, D, or E).
Use the following format to answer:

Answer: [ONLY the option letter; not a complete sentence]

Only give me the reply according to this format, don’t give
me any other words.
Now, please answer this question.

Question: [QUESTION HERE]
Options: [OPTIONS HERE]

Table 6: Prompt for GPT-4o evaluation.

Model Consistency Score

GPT-4o 96.25
Gemini-2.0-flash 96.25
Qwen2.5-VL-7B-Instruct 97.35
InternVL2.5-8B-MPO-AWQ 97.57
mPLUG-Owl3-7B-240728 95.26

Table 7: Consistency results of different models.

A.2 Information about Annotators
In our study, the annotators are the co-authors of
the paper. We opted for this arrangement to en-
sure careful and consistent evaluation, given the
nuanced nature of the tasks involving ambiguity
and cross-linguistic interpretation. Below, we pro-
vide detailed information about the annotators, in-
cluding their linguistic fluency, country/region of
residence, professional background, and gender.
Table 8 shows the information about annotators.
It is important to note that all the images used in
the dataset were carefully selected and manually
reviewed. The selection process involved 8 data
curators, who cross-checked the images to ensure
quality and relevance. Only those images that re-
ceived unanimous approval from all curators were
included in the dataset. This approach ensured that
the images met the necessary standards for consis-
tency and quality.

A.3 Potential Risks Analysis
As for the details of data collection, we estimate
that approximately 2.3% of the images are AI-
generated and 0.5% of the images are taken person-
ally, while the rest are crawled from online sources
(e.g., Unsplash, Pexels, Pixabay).

Regarding the potential impact of synthetic im-
ages on the evaluation of multimodal ambiguity res-
olution, all synthetic images were carefully crafted
to closely resemble real-world scenes and passed
strict manual quality checks. They were designed
to supplement rare or hard-to-collect cases, enhanc-
ing benchmark coverage without introducing bias.
Given their high quality and small proportion in
the dataset, any potential impact on model perfor-
mance evaluation is expected to be negligible.

B Human Evaluation

B.1 Results of Human Evaluation
We have conducted a more comprehensive human
evaluation. Specifically, we conducted evaluations
with 3 human evaluators for Chinese and English,
and 2 human evaluators for Malay. The final eval-
uation scores were averaged across the evaluators
for each language. These new results provided a
concrete basis for comparison against the current
MLLMs performance. Table 9 is the full break-
down of human performance across various cate-
gories. For humans, the two experimental settings
show little difference, so we chose the more chal-
lenging with confusing options setting for human
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Name Gender Fluent Languages Country/Region Professional Background

author1 Male Chinese, English China Computer Science, Telecommunications, Systems Science
author2 Female English, Chinese England Computer Science, Telecommunications, Finance, Law
author3 Female Malay, English, Chinese Malaysia Computer Science
author4 Male Chinese, English China Computer Science
author5 Female Chinese, English China Computer Science, Economics
author6 Female Chinese, English China Computer Science, Economics, Statistics, Data Science, Humanities and Social Sciences
author7 Male English, Chinese, Japanese China Computer Science, Data Science
author8 Male Chinese, English China Computer Science, Statistics

Table 8: Information about Annotators

Model Polysemy Homonymy Grammar Semantics Specialized Cultural Dual-ambiguity Overall
Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq

Human 75.00 86.59 73.50 86.00 70.09 85.05 78.57 89.29 79.55 89.36 68.29 83.53 81.43 87.12 74.66 86.42

Table 9: Human Evaluation Results. For humans, the two experimental settings show little difference, so we chose
the more challenging with confusing options setting for human evaluation.

evaluation. As shown in the table, our benchmark
features higher difficulty and a larger dataset. The
evaluation scores of human evaluators are signif-
icantly higher than those of large models, which
highlights a strong gap between human-level per-
formance and current MLLMs. Specifically, the
best overall Accp of current MLLMs is only 37.32,
but human Accp reaches 74.66.

B.2 Consistency between GPT and Human
Evaluation

Due to the diverse and often unpredictable nature
of large model outputs, it is difficult to strictly eval-
uate them based on exact match criteria, as this
approach would not always be accurate. Addition-
ally, human evaluation is highly time-consuming
and labor-intensive, especially when dealing with
large datasets. So, we adopt GPT-based evaluation
when assessing model performance.

To ensure the reliability of GPT-based evalua-
tion, we conducted a consistency analysis between
human and GPT judgments across multiple models
by using prompt in Table 6. The results in Table 7
show high agreement rates, where the GPT-based
binary judgments aligned with human evaluation
in over 94% of the cases, supporting the feasibility
of using GPT-based evaluation in place of manual
evaluation.

C Prompt for Model Inference

Table 10 presents the detailed prompts used dur-
ing model testing. In the main experiments, we
employed English prompts; additionally, we con-
ducted ablation studies using Chinese and Malay
prompts to evaluate the impact of different evalu-
ation languages on the experimental results. The

table also lists the prompts used in the three abla-
tion settings: (Q, I), (C,Q), and (C), where (Q, I)
uses the Question and Image as input, (C,Q) uses
the Context and Question, and (C) uses only the
Context.

D Evaluated Models

We evaluate a total of 19 models covering a range of
scales and architectures. Our evaluated proprietary
models include GPT-4V (OpenAI, 2023), GPT-
4o (OpenAI, 2024), Gemini (Gemini Team et al.,
2023), and Claude-3.5-Sonnet (Anthropic, 2024).
For open-source models, we include Deepseek-VL-
Tiny (Lu et al., 2024), Kimi-VL (Team et al., 2025),
Llama-3.2-Vision-11B (Meta, 2024), MiniCPM-
o 2.6 (Yao et al., 2024), InternVL2-8B (Chen
et al., 2024d), InternVL2.5-8B-MPO (Wang
et al., 2024b), InternVL2.5-8B-MPO-AWQ (Chen
et al., 2024c), LLaVA-v1.6-vicuna-7b (Liu et al.,
2024), Qwen2.5-VL-3B-Instruct (Bai et al., 2025),
Qwen2.5-VL-7B-Instruct (Bai et al., 2025). De-
tails of these models are listed in Table 11. Ta-
ble 11 presents a comprehensive overview of the
Multimodal Large Language Models (MLLMs)
evaluated in our benchmark. The models are cat-
egorized into two groups: API-based models and
open-source models. For each model, we list its
parameter size category (greater than or less than
7 billion), the vision encoder architecture, the un-
derlying language model (LLM) backbone, and
the employed vision-to-language (V2L) adapter.
API-based models such as GPT-4V and Gemini do
not publicly disclose architectural details, while
open-source models span a variety of encoders
(e.g., SigLIP, CLIP ViT, InternViT), LLM back-
bones (e.g., Llama, Qwen, InternLM), and adapter
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Prompt for Model Inference

Main experiment
In English

I’ll give you an image. Please answer my question based on the image. Directly select the correct
option (A, B, C, D, or E). Use the following format to answer:
Answer: [ONLY the option letter; not a complete sentence]
Only give me the reply according to this format, don’t give me any other words. Now, please
answer this question.
Question: [QUESTION HERE]
Options: [OPTIONS HERE]

Ablation Study
In Chinese

我会给你一张图片。请根据图片回答我的问题。直接选择正确选项(A, B, C, D,或E)。请
使用以下格式回答：
Answer: [仅为选项字母；不是完整句子]
请只按照此格式回复我，不要给出任何其他文字。现在，请回答这个问题。
问题：[QUESTION HERE]
选项：[OPTIONS HERE]

Ablation Study
In Malay

Saya akan berikan anda imej. Sila jawab soalan saya berdasarkan imej tersebut. Pilih terus pilihan
yang betul (A, B, C, D, atau E). Gunakan format berikut untuk menjawab:
Answer: [HANYA huruf pilihan; bukan ayat penuh]
Berikan saya jawapan mengikut format ini sahaja, jangan berikan perkataan lain. Sekarang, sila
jawab soalan ini.
Soalan: [QUESTION HERE]
Pilihan: [OPTIONS HERE]

Ablation Study
Only input (Q, I)

I’ll give you an image. Please answer my question based on the image. Directly select the correct
option (A, B, C, D, or E). Use the following format to answer:
Answer: [ONLY the option letter; not a complete sentence]
Only give me the reply according to this format, don’t give me any other words. Now, please
answer this question.
Question: [QUESTION HERE]
Options: [OPTIONS HERE]

Ablation Study
Only input (C,Q)

Please answer my question. Directly select the correct option (A, B, C, D, or E). Use the following
format to answer:
Answer: [ONLY the option letter; not a complete sentence]
Only give me the reply according to this format, don’t give me any other words. Now, please
answer this question.
Question: [QUESTION HERE]
Options: [OPTIONS HERE]

Ablation Study
Is C ambiguous?

Please determine whether this sentence is ambiguous. If the sentence is ambiguous, please answer
’Yes.’; otherwise, answer ’No.’.
Please respond directly with ’yes’ or ’no’, without any additional content.
Sentence: [SENTENCE HERE]

Table 10: Prompt for model inference.

types (e.g., MLP, Linear, XAttn LLM). This ta-
ble highlights the diversity in architectural design
choices across MLLMs.

Table 12 reports results for Chinese and Malay
prompts under two settings: with and without con-
fusing options. The four sections present detailed
model performance for each language and setting
combination.

As shown in Table 12, models achieve the high-
est performance without confusing options, with
InternVL2.5-8B-MPO-AWQ reaching 65.82 for
Chinese prompts and 65.27 for Malay prompts.
When confusing options are introduced, overall ac-
curacy drops noticeably: for Chinese prompts, the
top score decreases by 7.72 (65.82 → 58.10), while
for Malay prompts, the drop is even larger at 11.69
(65.27 → 53.58). This indicates that confusing op-

tions substantially increase task difficulty. Across
both languages, Chinese prompts perform slightly
better than Malay prompts, though the gap remains
small (0.55 without confusing options and 4.41
with confusing options). InternVL2.5-8B-MPO-
AWQ consistently achieves the best results across
all settings.

E More Cases

We present a comprehensive set of additional cases
from the MUCAR dataset to further illustrate the
performance of Multimodal Large Language Mod-
els (MLLMs). Specifically, Figure 6, Figure 7,
Figure 8, Figure 9, Figure 10, Figure 11, Figure 12,
Figure 13 display model outputs across various
scenarios. For clarity and balance, we select five
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Model Parameters Vision Encoder LLM Backbone V2L Adapter

GPT-4V (OpenAI, 2023)

-

- - -
GPT-4o (OpenAI, 2024) - - - -
Gemini (Gemini Team et al., 2023) - - -
Claude-3.5-Sonnet (Anthropic, 2024) - - -

Deepseek-VL-Tiny (Lu et al., 2024)

> 7B

SigLIP DeepSeek LLM MLP
Kimi-VL (Team et al., 2025) MoonViT Moonlight model MLP
Llama-3.2-Vision-11B (Meta, 2024) XAttn LLM Llama 3.1 XAttn LLM
MiniCPM-o 2.6 (Yao et al., 2024) SigLIP Qwen2.5-7B MLP
Idefics3-8B-Llama3 (Laurençon et al., 2024) SigLIP Llama-3.1-8B-Instruct XAttn LLM
InternVL2-8B (Chen et al., 2024d) InternViT internLM2.5-7b-chat MLP
InternVL2.5-8B-MPO (Wang et al., 2024b) InternViT-V2.5 internLM2.5-7b-chat MLP
InternVL2.5-8B-MPO-AWQ (Chen et al., 2024c) InternViT-V2.5 internLM2.5-7b-chat MLP

LLaVA-v1.6-vicuna-7b (Liu et al., 2024)

≤ 7B

CLIP ViT-L vicuna-7b-v1.5 MLP
LLaVA-v1.6-mistral-7b (Liu et al., 2024) CLIP ViT-L Mistral-7B-Instruct-v0.2 MLP
Qwen2.5-VL-3B-Instruct (Bai et al., 2025) ViT Qwen2.5 LLM MLP
Qwen2.5-VL-7B-Instruct (Bai et al., 2025) ViT Qwen2.5 LLM MLP
mPLUG-Owl3-7B-240728 (Ye et al., 2024) SigLIP Qwen2 LLM Linear
mPLUG-Owl3-2B-241014 (Ye et al., 2024) SigLIP Qwen2 LLM Linear
LLaVA-OneVision (Li et al., 2024) SigLIP Qwen2 LLM MLP

Table 11: API-based and open-source MLLMs selected for evaluation.

Model Polysemy Homonymy Grammar Semantics Specialized Cultural Overall
Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq Accp Accq

In Chinese, without confusing options

Qwen2.5-VL-7B-Instruct 28.57 56.34 28.71 56.88 17.65 49.26 19.05 38.10 25.00 55.17 17.07 50.59 25.06 53.91
InternVL2.5-8B-MPO-AWQ 41.07 68.44 44.55 68.35 30.88 63.24 33.33 64.29 37.50 59.77 24.39 60.00 38.04 65.82
LLaVA-OneVision 24.72 55.31 29.91 54.00 17.59 50.93 23.81 50.00 22.73 47.37 14.63 51.76 22.78 52.26
MiniCPM-o 2.6 20.22 55.31 40.17 66.40 34.25 64.49 33.33 60.71 31.82 61.05 14.63 45.88 30.52 60.75

In Chinese, with confusing options

Qwen2.5-VL-7B-Instruct 12.36 42.46 17.95 50.40 20.37 51.40 21.43 44.05 25.00 51.58 12.20 41.18 17.77 47.74
InternVL2.5-8B-MPO-AWQ 29.21 60.89 29.91 58.40 26.85 56.54 26.19 58.33 31.82 57.89 21.95 55.29 28.25 58.10
LLaVA-OneVision 7.87 44.13 23.93 50.80 12.96 50.93 11.90 44.05 13.64 43.16 7.32 45.88 14.35 47.63
MiniCPM-o 2.6 19.97 48.61 27.35 54.80 26.85 55.14 28.57 55.95 13.64 46.47 12.20 35.29 22.78 51.38

In Malay, without confusing options

Qwen2.5-VL-7B-Instruct 35.71 63.13 30.69 61.01 25.00 55.88 28.57 54.76 37.50 62.07 9.76 51.76 30.30 59.98
InternVL2.5-8B-MPO-AWQ 39.88 68.14 36.63 66.06 26.47 62.50 28.57 61.90 35.00 60.92 26.83 62.35 34.85 65.27
LLaVA-OneVision 20.22 20.28 25.64 56.00 17.60 49.53 26.19 53.57 15.91 46.32 19.51 50.58 20.73 51.60
MiniCPM-o 2.6 33.71 52.60 41.03 66.80 37.96 64.95 28.57 55.95 27.27 62.11 14.63 48.24 33.49 62.29

In Malay, with confusing options

Qwen2.5-VL-7B-Instruct 14.61 45.25 18.80 50.00 24.07 50.00 21.43 46.43 25.00 51.58 9.76 36.47 19.13 47.63
InternVL2.5-8B-MPO-AWQ 23.60 53.07 21.37 53.20 24.07 55.14 23.81 57.14 27.27 55.79 12.20 44.88 22.32 53.58
LLaVA-OneVision 15.73 46.93 27.35 56.00 15.74 51.41 21.43 52.38 1.37 40.00 12.20 51.76 18.45 50.72
MiniCPM-o 2.6 22.47 48.60 30.77 59.60 37.04 61.68 19.05 44.05 18.18 53.68 9.76 36.47 26.20 53.69

Table 12: Ablation study in four settings: Chinese and Malay prompts, each with and without confusing options.

representative cases from each of the seven pre-
defined categories. In these visualizations, incor-
rect responses generated by the models are clearly
marked in red to allow easy identification of errors.

To support a deeper understanding of the visual
and contextual challenges within each case, we also
include detailed explanations that highlight the key
ambiguities present in the images. These annota-
tions are intended to help readers recognize why
a particular question might be difficult to answer
correctly, either for a model or a human.

However, it is crucial to emphasize that these
explanatory notes were not accessible to either
the MLLMs or the human participants during the
question-answering process. Both models and hu-

man volunteers provided their responses without
the benefit of additional contextual guidance, ensur-
ing a fair and unbiased assessment of performance.
This setup allows us to isolate and better evaluate
the inherent reasoning and perception capabilities
of the models in comparison to human interpreta-
tion.

Overall, these additional cases offer further in-
sight into the specific limitations and strengths of
MLLMs when dealing with multimodal ambiguity,
reinforcing the broader findings of our evaluation.
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Figure 6: A case of the category of polysemy in Malay.
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Figure 7: A case of the category of grammar in Chinese.
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Figure 8: A case of the category of grammar in Malay.
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Figure 9: A case of the category of grammar in Malay.
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Figure 10: A case of the category of semantics in English.
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Figure 11: A case of the category of specialized in Chinese.
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Figure 12: A case of the category of cultural in English.
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Figure 13: A case of the category of dual-ambiguity in English.
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