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Abstract

Humans acquire syntactic constructions like
filler-gap dependencies from limited and of-
ten noisy input. Can neural language mod-
els do the same? We investigate this question
by evaluating GPT-2 models trained on child-
oriented input from the BabyLM Challenge.
Our experiments focus on whether these “baby”
language models acquire filler-gap dependen-
cies, generalize across constructions, and re-
spect structural constraints such as island ef-
fects. We apply a suite of syntactic construc-
tions to four models trained on child language,
including two base models (trained on 10M and
100M tokens) and two well-performing mod-
els from the BabyLM Challenge (ConcreteGPT
and BabbleGPT). We evaluate model behav-
ior using wh-licensing scores, flip tests, and
grammaticality contrasts across four construc-
tions. Results show that BabyLM-scale models
partially acquire filler-gap dependencies but of-
ten fail to generalize or fully capture island
constraints. Our code and datasets are avail-
able at https://github.com/um-cap-1lab/
EMNLP-2025-submission.

1 Introduction

Babies are remarkable learners, but how they do
so remains a central question in language acqui-
sition research (Yang, 2016). A long-standing
debate concerns whether the linguistic input chil-
dren receive is sufficient to explain the grammat-
ical knowledge they develop. According to the
Poverty of the Stimulus (POS) argument, children’s
input is too sparse and underspecified to support
acquisition of certain abstract structures, thus in-
nate learning biases are required (Chomsky, 1968,
1973, 1980; Yang, 2004), while some argue that
domain-general, input-driven learning is sufficient
for language acquisition (Lewis and Elman, 2001).

A particularly relevant test case for this debate
involves structural dependencies like filler-gap con-
structions. These involve a filler (e.g., a wh-phrase

such as who and what) that licenses a gap — an
empty syntactic position often spanning interven-
ing structure (e.g., Who did the intern say _ left
the meeting early?). Such dependencies are con-
strained by certain syntactic structures — for exam-
ple, they can be blocked by certain syntactic is-
lands (e.g., *What did he leave [before she finished
_listana?) (Ross, 1967; Huang, 1982). Substantial
research shows that human learners acquire these
patterns during early childhood with limited input
exposure (Omaki et al., 2015; Gagliardi et al., 2016;
Atkinson et al., 2018; Perkins and Lidz, 2021).
Prior work indicates that RNN- and Transformer-
based language models trained on large corpora
exhibit sensitivity to filler-gap dependencies and
some island constraints across languages. For in-
stance, Wilcox et al. (2018) examined several clas-
sic island types, while Bhattacharya and van Schi-
jndel (2020) extended this to left branch and co-
ordinate structure islands. Kobzeva et al. (2023)
futher explored filler-gap dependencies in Norwe-
gian. These effects, however, are often partial,
construction-specific, and still debated (Chaves,
2020; Ozaki et al., 2022; Howitt et al., 2024;
Wilcox et al., 2024). Meanwhile, recent studies
have begun comparing neural language models
(LMs) to human language acquisition on basic syn-
tactic patterns that require hierarchical representa-
tion of the sentence structures, such as subject-
verb agreement and yes/no question formation
(Yedetore et al., 2023; Evanson et al., 2023). What
remains less understood is whether LMs can ac-
quire more complex, non-local generalizations like
filler-gap dependencies from small corpora that are
developmentally plausible, especially in contexts
that involve structural constraints such as islands.
Toward this question, Lan et al. (2024) supported
the POS argument by showing that language mod-
els trained on limited data fail to learn complex
long-distance dependencies like parasitic gaps and
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across-the-board movement, likely due to insuffi-
cient input, highlighting the role of innate biases
in human learning. However, their focus on rare
constructions leaves open whether such models
can generalize to core filler-gap dependencies and
show human-like sensitivity to island constraints.
MclInnerney (2025) showed that masked and causal
Transformers display some island effects but only
at developmentally implausible data scales using
adult-oriented corpora (e.g., Wikipedia and Pile;
Gao et al., 2020). This motivates our questions:

1. Can language models trained on predomi-
nantly child-oriented, child-sized input ac-
quire filler-gap dependencies?

2. Do they exhibit human-like sensitivity to struc-
tural constraints, such as island effects?

3. What do their successes and failures tell us
about the nature of linguistic generalization?

To answer these questions, we build a suite
of syntactic evaluations inspired by prior work
(Wilcox et al., 2018; Ozaki et al., 2022; Howitt
et al., 2024), covering four constructions that test
key aspects of filler-gap knowledge: gap distance,
multiple gaps, and two types of islands. We evalu-
ate four GPT-2 models trained on datasets from
the BabyLM Challenge (Warstadt et al., 2023,
https://babylm.github.io): two base models
(10M and 100M tokens), and two competitive mod-
els from previous BabyLLM challenges (henceforth
BabyLLM models), ConcreteGPT (Capone et al.,
2024) and BabbleGPT (Goriely et al., 2024)." A
vanilla pre-trained GPT-2 serves as a high-resource
benchmark. We found that:

* No model, including the vanilla pre-trained GPT-
2, captures the full structural generalizations con-
sistently across constructions.

* All BabyLM models (10M or 100M words)
show partial acquisition of filler-gap dependen-
cies. Models trained on 100M tokens outperform
10M-token models.

* GPT-2-100M and BabbleGPT learn gap-distance
dependencies and some island effects (especially
for wh-islands), but fail to generalize consis-
tently across constructions.

* ConcreteGPT, despite its smaller scale, shows
evidence of partially capturing the bijectivity of
filler-gap dependencies for several constructions.
'We focus on standard decoder-only architectures to main-

tain consistency in our comparisons, and abstract away from
hybrid models such as GPT-BERT (Charpentier et al., 2025).

2 Methodology

This project investigates the acquisition of filler-
gap dependencies by GPT models trained on child-
language data. Our methodology builds upon es-
tablished work assessing syntactic generalization
in LMs (Wilcox et al., 2018; Ozaki et al., 2022;
Howitt et al., 2024).

“Baby” Language Models. To approximate the
limited and sparse linguistic input of early hu-
man language acquisition, we trained GPT-2-small
models (Radford et al., 2019) on datasets from
the BabyLM challenge (Warstadt et al., 2023),
which consist of 10M and 100M English words,
with a large proportion of child and child-oriented
language (roughly 70%; Hu et al., 2024, https:
//babylm.github.io/). These models serve as
base models to assess the performance of a stan-
dard GPT-2 architecture trained on developmen-
tally plausible amounts of data. Notably, these
models were trained using standard training pro-
cedures without specialized techniques, reflecting
the limited and unstructured input characteristic of
early language acquisition in children.

In addition to these base models, we include
two well-performing GPT-2 models from the 2024
BabyLM challenge (Hu et al., 2024): ConcreteGPT
(Capone et al., 2024) and BabbleGPT (Goriely
et al., 2024). ConcreteGPT, trained on the 10M-
word dataset, incorporates a curriculum learning
approach. By utilizing concreteness ratings from
Brysbaert et al. (2014), training data was ordered to
introduce simpler, more concrete language patterns
before progressing to more abstract structures, to
mirror the developmental trajectory of human lan-
guage acquisition. BabbleGPT represents one of
the most advanced models trained on the BabyLM
100M-word dataset. An innovative input trans-
formation approach of converting text data into
phoneme streams was applied, simulating the early
stages of human language acquisition where chil-
dren process spoken language before written text.

The inclusion of both the base GPT-2 models
and the competitive BabyLLM models of similar ar-
chitecture provides a valuable comparison of how
training data size and learning strategies influence
model performance on syntactic tasks. While the
base models offer insight into the general behav-
ior of LMs trained on child-language data, the
BabyLM models bring in specialized optimiza-
tion approaches. These models represent some of
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the best results achievable with constrained child-
language data and offer a clear benchmark for un-
derstanding the potential and limitations of typical
LMs — GPT-2 specifically — in this context. Finally,
we also include an unconstrained GPT-2 model,
pretrained on a 40GB corpus, to serve as the high-
performance upper bound (hereafter referred to as
the threshold model).?

All models and tokenizers were trained from
scratch using Hugging Face’s GPT-2 implementa-
tion (Wolf et al., 2020), adhering to established
model specifications (Sennrich et al., 2016; Rad-
ford et al., 2019; Brown et al., 2020). See Ap-
pendix A for details on training configurations.

Experimental Design. We adopt a 2x2 factorial
design following Wilcox et al. (2018) and Wilcox
et al. (2024) to test whether GPT-style language
models, when trained with child-oriented speech
data, are capable of acquiring filler-gap dependen-
cies. In particular, we manipulate the presence of
a wh-licensor (i.e., a filler) and the presence of a
syntactic gap in each sentence.

The following shows the basic filler-gap licens-
ing conditions (Wilcox et al., 2018):

1. [-FILLER, —GAP]: I know that the lion de-
voured a gazelle at sunrise.

2. [+FILLER, —GAP]: *I know what the lion de-
voured a gazelle at sunrise.

3. [-FILLER, +GAP]: *I know that the lion de-
voured [___] at sunrise.

4. [+FILLER, +GAP]: I know what the lion de-
voured [___] at sunrise.

Based on the basic filler-gap licensing con-
ditions, we designed a suite of syntactic eval-
uation items to probe whether language mod-
els generalize filler-gap dependencies across dis-
tinct constructions.’  Following Wilcox et al.
(2018, 2024), we investigate four of the most-
studied syntactic constructions known to influ-
ence how filler-gap dependencies are processed
by humans (Ross, 1967; Huang, 1982; Wilcox
et al., 2018, 2024): gap distance, double gaps, wh-
islands, and adjunct islands, as illustrated in Ta-
ble 1. Each construction includes 20 items. This

*We use the GPT-2 model on Hugging Face under the MIT
License and comply with its terms of use and intended use.

3Related benchmarks such as BLiMP (Warstadt et al.,
2020) also test filler-gap behavior, but do so through minimal-
pair acceptability judgments; by contrast, we chose a 2x2

factorial design to enable direct measurement of licensing
effects and assessment of generalization across constructions.

resulted in 5 sub-datasets: gap-distance-obj
and gap-distance-PP for gap distance sen-
tences with different gap positions, double-gaps,
wh-islands, and adjunct-islands. In particular,
we focus on structural factors like filler-gap dis-
tance length, presence of multiple gaps, and island
constraints. Full details of the testing materials are
provided in Appendix B.

3 Evaluation Metrics

The primary evaluation metric is surprisal, calcu-
lated as: Sy = —logy P(w; | wi,wa,. .., wi_1)
where wy is the target word at position ¢, and the
probability is conditioned on the preceding con-
text wy, wa, ..., ws—1. We calculate surprisals at
critical regions of the sentences. This includes lo-
cal surprisal measuring the post-gap region, and
global surprisal assessing effects across the whole
embedded clause (Ozaki et al., 2022). Wilcox et al.
(2018) consistently measured local surprisal in the
region after the potential gap. Following Wilcox
et al. (2019b); Ozaki et al. (2022), we adopt a dif-
ferent practice to account for surprisal spikes of il-
licitly filled gaps that occur at the filled gap region.
For [-gap] sentences, local suprisal is measured at
the filled gap position, while for [+gap] sentences
it is measured at the post-gap region. Additionally,
global suprisal is normalized by clause length to
control for possible confounding effects as [+gap]
sentences tend to be shorter, resulting in lower total
suprisals (Ozaki et al., 2022). These metrics are
measured and tested to examine the co-occurrence
expectations of fillers and gaps more exhaustively.
We use the wh-licensing score (aka. wh-
licensing interaction, licensing interaction, and
filler-gap interaction, Wilcox et al., 2018) to mea-
sure the degree to which the presence of a wh-
licensor reduces the surprisal at the gap position:

[S(+filler, -gap) — S(-filler, -gap)]
— [S(+fller, +gap) — S(-filler, +gap)]

where S stands for surprisal. This compares the
surprisal values across the four combinations of
[+filler/-filler] and [+gap/-gap] conditions. An ide-
alized wh-licensing score would show a large posi-
tive difference in the [-gap] condition and a large
negative difference in the [+gap] condition, sug-
gesting that the model expects a gap when a filler
is present and penalizes unlicensed gaps.
Following Wilcox et al.’s (2018) experimental
setup, we fit mixed-effects linear regression mod-
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Types

Examples

A. Gap Distance

They found out [ that / what Jsner the baker [who lives nearby / who visits the bakery every Sun-

day]mod tengtn gave [ a free loaf / ]gap to the customer this morning.

B. Double Gaps

John knows [ that / who Isier [ the police / _ ]gap1 found [ the thief / _ ]gap2 in the alley.

C. Wh-Islands

You mentioned [ that / *what ]ner your coworker stated { [whether|compiementizer the intern sent [ the

wrong file / *____ ]qap to the client }wh-istand

D. Adjunct Islands

We found out [ that / *what Jgier [the parade started after]agjunct pos trigeer {the mayor of the city gave [

the opening speech / * ]gap in front of the cheering crowd. }agjunct istand back

Table 1: Construction types illustrating filler-gap dependencies. Bold, colored spans are manipulated factors: mod
length varies modifier length; complementizer varies the word that introduces the embedded clause (e.g., that,
whether); adjunct pos trigger varies where the adjunct island occurs; filler and gap indicate the filler and gap sites.

els on filler-gap conditions to predict the two sur-
prisal metrics mentioned above, including random
intercepts by sentence sets. This is to determine
by statistical significance whether the model has
correctly acquired the rules and constraints sur-
rounding filler-gap dependencies. The fixed effect
structure includes filler-gap conditions and struc-
tural conditions (e.g., filler-gap distance for the
gap distance construction, gap count for the dou-
ble gap construction) for basic construction types,
and filler-gap conditions and island types for island
constructions. For double gap constructions, since
potential gap positions can be at either the subject
position or the object position, or both, we do not
measure local surprisal for this construction as the
target regions for measurement are inconsistent.
We adopt two additional tests proposed by Ozaki
et al. (2022): the flip test and the grammatical-
ity division test. The flip test requires that the
surprisal difference (between [+filler] and [-filler]
conditions) flips its direction depending on the pres-
ence of a gap. That is, the filler should reduce sur-
prisal in the [+gap] condition (i.e., the presence of
the filler helps reduce the uncertainty at the gap),
but increase surprisal in the [-gap] condition (i.e.,
the filler increases uncertainty when there is no gap
to license). It specifically tests for the bijectivity of
filler-gap dependencies. The grammaticality divi-
sion test directly compares the surprisal of gram-
matical sentences with that of their ungrammati-
cal counterparts, to see whether the model assigns
lower surprisal to grammatical configurations.
Both of these tests are performed through mixed-
effects linear regression modeling. In the flip tests,
surprisal is predicted on [filler] for [+gap] and [-
gap] sentences separately; in the grammaticality
division test, we assign a grammaticality variable
[gram] to all sentences and predict surprisal on

[gram], while treating [+gram] as the baseline. For
basic constructions, we assign [gram] depending on
whether the numbers of fillers and gaps satisfy the
one-to-one relationship of filler-gap dependencies;
for island constructions, the presence of islands
blocks the filler-gap dependency, rendering [+filler,
+gap] sentences ungrammatical. The grammatical-
ity division test would only be conducted on global
surprisal, since the location where the local sur-
prisal is measured in a sentence now confounds the
presence of gaps (Ozaki et al., 2022).

4 Primary Results

We evaluate the models’ learning of filler-gap
dependencies through calculating wh-licensing
scores, and determining statistical significance
through mixed effects modeling tests. All results re-
ported are statistically significant (p < 0.05) unless
stated otherwise.

Licensing-Gap Interaction. As our threshold
model, GPT-2 demonstrates expected licensing be-
havior in most of the constructions. Learning of the
dependency is observed with gap-distance-obj
and gap-distance-PP, both locally and globally.
However, treating gap distance length as a con-
tinuous variable, we see that gap distance length
poses negative effects on wh-licensing score for
gap-distance-obj, when measuring global sur-
prisal (8 = 0.003, p < 0.01). This indicates
that intervening material length affects the model’s
judgment of filler-gap licensing relationships, with
longer intervening material rendering a gap more
surprising even with the presence of a filler. Al-
though exhibiting similar patterns of decreasing
wh-licensing scores as length increases in other
conditions, as seen in Figure 1 and Figure 2, the
model remains statistically robust to intervening
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Figure 1: Wh-licensing scores with local surprisals. Each row represents the results for one construction: (a)
gap-distance-obj, (b) gap-distance-pp, (c) wh-islands, (d) adjunct-islands. Constructions fully learned with statistical
significance (robust to intervening factors and capturing island constraints) are marked by asterisks.

material length for all other gap distance conditions.
Measuring global surprisal for double-gaps, we
discover that when a filler is present, GPT-2 finds
the absence of a corresponding gap more surprising
than licensed single gaps, although the model does
not find double gaps more surprising in a statisti-
cally significant manner (p = 0.553).

Results also show that GPT-2 has learned island
constraints to a certain extent. When island con-
straints are present, wh-licensing scores are ex-
pected to decrease. With wh-islands, island con-
straints lead to lower wh-licensing scores when
compared to the non-island baseline, in all condi-
tions. As for adjunct-islands, we see reduction
in the wh-licensing score of the adjunct-back con-
dition when compared to the object condition base-
line, in both post-gap and embedded clause regions.
We also see reduction in the wh-licensing score
of the adjunct-front condition when compared to
the object condition baseline, but results are only
significant when measured in the embedded clause
region (local: p = 0.06, global: p < 0.01).

The trained models in general show evidence for
partial filler-gap dependency representation, possi-
bly due to limitations of the training corpora sizes.

GPT-2-10M does not learn the filler-gap depen-
dency with statistical significance at all, for any of
the constructions. GPT-2-100M acquires the de-
pendency for gap-distance-obj both locally and
globally, while staying robust to different lengths
of intervening material. For double-gaps, GPT-
2-100M exhibits licensing behavior for global sur-
prisals with licensed single gaps being less sur-
prising than the lack of a gap when given a filler.
The presence of illicit double gaps does not pose
statistically significant effects on surprisal values
(p = 0.817). However, through directly plotting
out surprisals, we see that mean surprisal increases
with the number of illicit gaps for both the GPT-
2-10M and GPT-2-100M models (Figure 3). For
wh-islands, GPT-2-100M is shown to have ac-
quired the filler-gap dependency alongside with
island constraints globally. It also shows usual
licensing behavior for global adjunct-islands,
however failing to recognize island constraints.
Comparing the two BabyLM models with
our base models, we see slight improvement in
filler-gap dependency capabilities on the 10M
scale.  While GPT-2-10M shows no statisti-
cally significant evidence in acquiring any of
the constructions, its 10M-word counterpart Con-
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Figure 2: Wh-licensing scores with global surprisals. Each row represents the results for one construction: (a)
gap-distance-obj, (b) gap-distance-pp, (c) wh-islands, (d) adjunct-islands. Constructions fully learned with statistical
significance (robust to intervening factors and capturing island constraints) are marked by asterisks.

creteGPT displays usual licensing behavior for
global wh-islands (p < 0.05) but ignores island
constraints. Similar to GPT-2-100M, BabbleGPT
acquires gap-distance-obj (local: p < 0.01,
global: p < 0.01) but not gap-distance-PP. With
island constructions, it displays usual licensing be-
havior globally for wh-islands and both locally
and globally for adjunct-islands, again com-
pletely overlooking island constraints.

Flips. In flip tests, positive signs of correct li-
censing behavior would be for the presence of a
filler to render a sentence more surprising with
[-gap] sentences, and less surprising with [+gap]
sentences. In the case of island constraints, island
sentences should be viewed as more surprising un-
der the [+filler, +gap] condition, when compared
to non-island baselines.

The threshold GPT-2 model shows good per-
formance in flip tests in general. The GPT-2
model passes the flip test for gap-distance-obj
and gap-distance-PP with local surprisal. This
holds true when measuring global surprisal for
gap-distance-obj, but does not hold true for
gap-distance-PP. With double-gaps, when
given a filler, the model finds gapless sentences

more surprising, which is the expected behavior.
In the [+gap] direction, it however does not find
licensed gaps less surprising, or illicit double gaps
more surprising. In the case of wh-islands, the
GPT-2 model passes the flip test both locally and
globally. Under the [+filler, +gap] condition, is-
land sentences are found to be more surprising
than baseline non-island sentences, showing that
the model is aware of island constraints. Results
with adjunct-islands are rather mixed, with the
model failing to capture the [+gap] direction of
the bijectivity globally. When considering island
constraints for [+filler, +gap] sentences, it finds
the adjunct-back condition more surprising than
the non-island baseline, while in the adjunct-front
condition islandhood does not pose any significant
effects on local surprisal (p = 0.057).

For the trained models, we can see that while the
GPT-2-10M did not fully acquire filler-gap depen-
dencies, it does capture half of the filler-gap bijec-
tivity for some of the constructions. GPT-2-10M
partially captures the [-gap] direction of the filler-
gap bijectivity for gap-distance-obj, where the
presence of a filler increases local surprisal, but not
global surprisal (p = 0.052). The model also ex-
hibits usual flipping behavior for wh-islands with
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Figure 3: Double gaps mean surprisal (y-axis) as a function of number of illicit gaps (x-axis).

local surprisal, and captures the [+gap] direction
of the bijectivity with global surprisal, however
showing no acknowledgments of island constraints
in both cases. Similarly, for adjunct-islands, it
captures the [-gap] direction of the bijectivity with
local surprisals, while islandhood does not pose
any significant effect on surprisals. GPT-2-100M
passes the flip test for local gap-distance-obj
and local wh-islands, correctly rendering island-
hood as more surprising. It also showcases usual
flipping behavior for global wh-islands and lo-
cal adjunct-islands, however failing to show
effective islandhood effects. It captures half
of the bijectivity for global gap-distance-obj
([-gap]), local gap-distance-PP ([+gap]), and
global adjunct-islands ([-gap]), while somehow
capturing islandhood effects for the adjunct-front
condition (8 = 0.14, p < 0.05). For double-gaps,
both of the models find gapless sentences more
surprising when given a filler.

ConcreteGPT captures one direction of the filler-
gap bijectivity for the majority of the construc-
tions globally, showing improvement over its 10M-
word trained counterpart GPT-2-10M. It captures
the [-gap] direction for global gap-distance-obj,
global gap-distance-PP, double-gaps, local
and global adjunct-islands, and the [+gap]
direction for global wh-islands. It demon-
strates flips for wh-islands locally, though is-
landhood does not render a sentence more sur-
prising under the [+filler, +gap] condition, as
it should have. Similarly, BabbleGPT captures
the [-gap] direction of the bijectivity for sev-
eral constructions, including local and global
gap-distance-obj, global gap-distance-PP,
double-gaps, global wh-islands, and global
adjunct-islands. It passes the flip test for
wh-islands and adjunct-islands locally, while
recognizing island constraints. Full details of the
flip test results can be found in Appendix C.

Division by Grammaticality. The GPT-2 model
passes the grammaticality test for all constructions
with high statistical significance, as seen in Ta-

ble 2. In contrast, our trained models do not
perform as well as the threshold model on the
grammaticality test. GPT-2-10M passes the test
for double-gaps and wh-islands. GPT-2-100M
passes the test for double-gaps, wh-islands, and
adjunct-islands.

The BabyLM models show stronger abili-
ties in judging grammaticality. ConcreteGPT
passes the test for double-gaps, wh-islands, and
adjunct-islands. BabbleGPT passes the test for
all constructions except for gap-distance-PP, dis-
playing competency nearing the threshold GPT-2
model in judging grammaticality.

5 Additional Experiments

Extended Model Training. As described in
Appendix A, we aimed to optimize final model
performance by applying an Early Stopping crite-
rion to mitigate overfitting during training. Specif-
ically, we set the Early Stopping patience to 3
based on validation perplexity. Under this set-
ting, the 10M model typically converged after 9-10
epochs, whereas the 100M model converged af-
ter 5-6 epochs. However, prior work has argued
that Early Stopping can in fact harm downstream
performance (Murty et al., 2023). To investigate
this possibility, we additionally trained models on
both the 10M and 100M corpora for fixed epoch
counts of 15 and 20. This design allows us to exam-
ine how model performance fluctuates as training
progresses beyond the Early Stopping threshold.
According to the mixed-effects linear regression
analysis, we found that extended training nega-
tively affected the models’ ability to capture filler-
gap dependencies. For GPT-2-10M, training for 15
or 20 epochs did not yield acquisition of any of the
constructions. As for GPT-2-100M, relative to the
original model trained with Early Stopping, at 15
epochs, the model loses the previously acquired pat-
terns for both local and global gap-distance-obj
as well as global wh-islands; at 20 epochs, the
model partially recovers: it regains acquisition of
local gap-distance-obj and global wh-islands,
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Construction GPT-2 GPT-2-10M GPT-2-100M ConcreteGPT BabbleGPT
gap_distance_obj 0.497*** 0.024 (p=0.771) 0.124 (p=0.08)  0.061 (p =0.481) 0.187**
gap_distance_pp  0.209*%*  -0.010 (p=0.898) 0.016 (p =0.823) 0.005 (p =0.948) 0.069 (p =0.337)
double_gaps 1.015%**  (,389%#:* 0.806%** 0.647%%* 1.017%:**
wh_islands 0.64%**%  (.2]18%%* 0.323%#:** 0.1971%:* 0.366%**
adjunct_islands  0.513*** 0.131 (p=0.093) 0.271%** 0.179* 0.489%:**

Table 2: Estimated effect of grammaticality on surprisal. Baseline is [+gram]. A positive value denotes increase in
surprisal when a sentence is ungrammatical, which is the expected behavior. Significance levels: *p < .05, **p <

.01, #**p < .001.

but fails to reacquire global gap-distance-obj.
The 20-epoch model also exhibits usually licensing
behavior for local wh-islands while still failing to
recognize island constraints.

Flip test results reveal that while GPT-2-10M
failed to acquire additional constructions with ex-
tended training, models trained with more epochs
do capture certain bijectivities slightly better.
While the original GPT-2-10M model failed to cap-
ture the [-gap] direction of the filler-gap bijectivity
for gap-distance-obj and wh-islands globally,
both the 15- and 20-epoch models succeed in this.
In addition, the 20-epoch model captures the [-
gap] direction for local adjunct-islands and the
[+gap] direction for global wh-islands. However,
at 15 epochs, the acquisitions of some directions
in the island constructions were lost and then re-
gained again at 20 epochs. Flip test results for the
GPT-2-100M model show that in comparison to
the original model, the 15- and 20 epoch models
additionally learn the [-gap] direction for global
gap-distance-pp, while losing acquisitions of a
few other constructions.

The grammaticality test shows that grammatical
judgment abilities of the models remain largely
comparable to the original model at 15 epochs, but
exhibit improvement at 20 epochs. Specifically,
for GPT-2-10M, the 20-epoch model passes the
grammaticality test for adjunct-islands, while
for GPT2-100M, the 20-epoch model passes the
test for gap-distance-obj.

In summary, the findings from our experiments
provide mixed evidence regarding the effects of
extended training. While extended training yields
selective improvements in grammaticality and cer-
tain flip test directions, the mixed-effects linear
regression and several flip test outcomes suggest
that it more often disrupts previously acquired filler-
gap dependencies and produces unstable learning
trajectories. Overall, these results underscore the
trade-offs involved in extending training beyond

the Early Stopping threshold.

Model Retraining on Enriched Corpus. The
POS argument posits that children, despite limited
exposure to direct evidence, are capable of acquir-
ing complex linguistic structures. Our training cor-
pora contained many instances of the adjunct island
construction (10M: 4,145; 100M: 20,115),* yet the
10M model shows no acquisition of the construc-
tion and the 100M model — though it passes a sim-
ple grammaticality check — fails the mixed effects
and flip tests. This alone suggests that purely sta-
tistical learners lack the innate biases that support
human language acquisition.

Following Lan et al. (2024), we conducted an
additional experiment to investigate whether en-
hanced exposure to a specific construction could
improve the model’s learning of it. We augmented
the training data with 100 additional adjunct island
sentences to each training corpus. Each new sen-
tence contains an adjunct clause — the clause that
forms an adjunct island — but no filler-gap depen-
dency and no extraction out of the island. They are
therefore grammatical adjunct-island controls with
varied lexical and syntactic contexts, not island-
violation examples. Models were retrained using
the exact same training configurations, with ad-
ditional adjunct island instances that are separate
from the testing suite. The augmentation, amount-
ing to 2% of the 10M corpus and 0.5% of the 100M
corpus, serves as an initial probe. If enhanced expo-
sure leads to better performance, this indicates that
the models’ failures stem from a lack of sufficient
statistical evidence, highlighting the role of data
volume in model learning. If the models still fail
to learn the construction after the data augmenta-
tion, it would further emphasize that the issue is
not simply one of insufficient exposure, but rather
a divergence between the learning mechanisms of
statistical learners and human learners.

*“Instances were identified using the spaCy package.
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Despite the additional training materials, nei-
ther of the retrained models fully learned the ad-
junct island construction. The retrained GPT-2-
100M shows usual licensing behavior for global
adjunct-islands but fails to recognize island
constraints, similar as before. However, look-
ing at flip test results, we do see slight improve-
ment. GPT-2-100M passes the flip test for local
adjunct-islands (p < 0.01), while recognizing
both the adjunct-front and adjunct-back island con-
ditions that it failed to recognize before (p < 0.05).

Increased exposure to the adjunct island con-
struction did lead to slightly better performance,
however, the models still fail to fully capture the
construction. This highlights a fundamental differ-
ence between statistical learners and human learn-
ers: when given language input of similar scale,
current models are not comparable to human lan-
guage learners, supporting the argument that mod-
els lack the innate learning biases that humans use
to acquire complex linguistic structures.

6 Discussion and Conclusion

This study investigates the ability of LMs trained
on child-oriented data to learn and generalize filler-
gap dependencies, specifically on how they han-
dle complex structures such as island constraints.
Our results show that while models trained on the
BabyLM corpus exhibit limited success in fully ac-
quiring filler-gap dependencies, GPT-2-small mod-
els gradually learn the licensing relationship when
trained on a larger corpus. While GPT-2-10M fails
to learn the full filler-gap dependencies with sta-
tistical significance, the model shows evidence of
learning half of the filler-gap bijectivity for sev-
eral constructions. GPT-2-100M fully learns the
dependency for gap distance and global wh-islands,
however failing to learn island constraints for ad-
junct islands (in line with McInnerney, 2025).

Moreover, we demonstrate that models often
struggle with generalizing across gap positions un-
der increased distance. Even the threshold GPT-
2 model shows reduced wh-licensing scores with
longer intervening material, suggesting that long-
distance dependencies remain a challenge. This
pattern aligns with findings from child language
acquisition, where such dependencies are known
to be acquired late (Atkinson et al., 2018).

While the threshold GPT-2 model generally dis-
plays correct behavior in assessing island con-
straints, flip test results show that it does not nec-

essarily capture the full bijectivity of filler-gap de-
pendencies. In particular, the model’s performance
on island constructions remains mixed, suggesting
that while the model can identify island constraints,
it does not fully learn the intricate dependencies be-
tween fillers and gaps when island constraints are
involved. Our results support previous work, which
suggests that even if a computational model is able
to approximate human acceptability judgments, in-
ductive biases are necessary to reliably acquire is-
land constraints (Pearl and Sprouse, 2013). This
is in opposition to what naturally occurs in human
learners, where these patterns are acquired in early
childhood with limited input exposure and gives
merit to the idea that humans have innate mecha-
nisms which aid language acquisition (Gagliardi
et al., 2016; Atkinson et al., 2018).

BabyLM models show stronger performance on
filler-gap dependencies and grammaticality judg-
ments than base models at the 10M scale, while
results at the 100M scale remain mixed. At 10M,
flip test results indicate that although ConcreteGPT
fails to fully acquire filler-gap dependencies, it cap-
tures half of the bijectivity in more constructions
than GPT-2-10M. At 100M, both models learn the
object gap condition in the gap distance construc-
tion, but only GPT-2-100M shows sensitivity to
island constraints in global wh-islands, which Bab-
bleGPT fails to achieve. BabyLM models also
outperform our trained models in grammaticality
judgments. These findings suggest that while spe-
cialized training techniques may yield modest gains
in filler-gap learning, complex constraints like is-
lands remain difficult.

The enriched corpus experiment reveals that
while models benefit from additional training mate-
rials, they still do not reach human-level language
capabilities even with ample exposure to language.

To summarize, when trained on child-like lan-
guage input, the examined language models fail to
exhibit the structure-sensitive generalizations that
characterize human language acquisition, particu-
larly in filler-gap dependencies. Taken together, our
results show that several representative small GPT-
2 models trained on predominantly child-oriented
input (i) do learn filler-gap dependencies to a lim-
ited extent, (ii) still fall short of human-like island
sensitivity, and (iii) thus provide a concrete empiri-
cal baseline that leaves the Poverty-of-the-Stimulus
question open and invites further exploration of al-
ternative architectures and inductive biases.
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Limitations

While our study focuses on whether child-language-
trained models can acquire filler-gap dependencies,
several limitations constrain the generalizability of
our findings.

First, all models in this study share the same
underlying architecture — GPT-2 — differing only
in terms of training data volume and optimization
strategies. While this consistency was maintained
to enable controlled comparisons, it also limits the
scope of our conclusions. Larger models or ar-
chitectures with different inductive biases, such as
other decoder-only transformers like LLaMA or
hybrid models like GPT-BERT, may exhibit funda-
mentally different behaviors in learning and gener-
alizing syntactic dependencies. Furthermore, while
we performed hyperparameter tuning to optimize
model performance, the search space we explored
was limited due to computational constraints, and
it is possible that alternative hyperparameter con-
figurations might have yielded better syntactic gen-
eralization.

In addition, the training data used in this study,
although drawn from the BabyLLM corpora and
designed to reflect developmentally plausible lan-
guage input, remains limited in linguistic diver-
sity. These corpora represent only a narrow slice
of the kinds of input that English-spoken children
encounter during language acquisition. They lack
exposure to multimodal grounding, prosody, and
certain rare or edge-case syntactic constructions.
This narrow linguistic bandwidth may hinder the
models’ ability to fully acquire complex grammat-
ical phenomena, particularly those involving ab-
stract or less frequent dependencies such as island
constraints.

Taken together, these limitations caution against
broad generalizations from our results and under-
score the need for further research across diverse
model architectures, training regimes, and linguis-
tic inputs.
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A Model Training

A.1 Data Preprocessing

Our preprocessing approach follows the method-
ology for handling CHILDES data outlined by
Yedetore et al. (2023), with additional modifica-
tions to better suit our needs. The process includes
format standardization converting all text into plain
text format through applying the NLTK (Bird and
Loper, 2004)°> CHILDESCorpusReader for XML
parsing, punctuation and spacing normalization
preserving contractions (don’t — do n’t) to align
with CHILDES Treebank tokenization standards,
non-linguistic content filtering removing annota-
tion markers (e.g., [laughter], [noise]) and extra
non-linguistic characters (e.g. placeholder token
"xxx"), and child-oriented speech filtering retaining
only child-oriented utterances.

In addition to the CHILDES corpus, the
BabyLM dataset also consists of multiple smaller
datasets from the Gutenburg Project, Open Subti-
tles, Simple Wikipedia, and Switchboard corpora.
Preprocessing for these datasets focused on remov-
ing non-linguistic features such as added headers,
special characters outside of those used for punctua-
tion, and line-by-line labels which showed speakers
in the Open Subtitle dataset.

We allocated 90% of the final corpus to training
and 10% to validation.

A.2 Tokenizer Training

The process of training a tokenizer from scratch is
a crucial step in preparing data for language model
training. We employed Byte Pair Encoding (BPE)
tokenizers compatible with GPT models. Below
are the detailed configurations and steps involved
in the tokenizer training process.

1. Training Corpus: We used the same child-
language input data corpora we used for
model training to train the tokenizer. This is

Shttps://www.nltk.org/
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good practice as it ensures consistency in tok-
enization and vocabulary alignment between
the tokenizer and the model. The GPT-2-
10M tokenizer was trained on the 10M-word
dataset, while the GPT-2-100M tokenizer was
trained on the 100M-word dataset, meticu-
lously controlling for training data sizes com-
parable to child-language input.

. Tokenizer Initialization: BPE tokenizers were
initialized using the HuggingFace tokenizers
library. The tokenizers were then configured
with the several key components listed below.

* Normalizer: This component ensures
that the text is cleaned and normalized
before tokenization. We applied multiple
normalization steps, including:

— Prepend: Prepending spaces for byte-
level tokenization to ensure format
consistency.

— NFKC: Normalization form KC
(Compatibility Composition) for Uni-
code normalization.

— Replace: We applied regular
expression-based replacements to
handle newline characters and extra
spaces.

* Pre-tokenizer: This component breaks
the input text into smaller parts be-
fore the BPE algorithm is applied. In
this case, we used a Whitespace pre-
tokenizer to split text on spaces.

* Decoder: The decoder reverses the to-
kenization process. Here, we used a
sequence of decoding steps that handle
byte-level decoding, and stripped spaces.

* Post-processor: This step is responsible
for adding special markers such as the
start-of-sequence token. In this case, we
configured the post-processor for byte-
level token processing without trimming
offsets.

3. Tokenizer Training: The BPE tokenizers were

trained on the prepared corpus files with a
vocabulary size of 50,257 tokens. We set a
minimum frequency of 2 for the inclusion of
tokens in the vocabulary. No special tokens
were defined during training.

. Saving the Tokenizer: After training, the to-
kenizers were saved as JSON format files to

later be used for tokenization during model
training and evaluation.

A.3 Model Training

Once the tokenizer was trained, the next step was to
train the GPT-2 model using the prepared tokenizer.
Below are the steps and configurations used for the
model training process.

1. Model Configuration: The GPT-2 model con-
figuration was set up using the GPT-2Config
class from the HuggingFace Transformers
library (https://huggingface.co/docs/
transformers/en/model_doc/gpt2). The
model’s configuration aligned with the
specifications typically used for GPT-2-small.

2. Dataset Loading: The training datasets were
tokenized using the respective trained BPE
tokenizers. This was to ensure that the data
was encoded in the appropriate format that the
GPT-2 model could process.

3. Training Arguments: The training hyperpa-
rameters were specified using the TrainingAr-
guments class, which defines how the model
would be trained. Key hyperparameters in-
clude:

* Training Epochs: We trained every
model for up to 10 epochs with the
EarlyStoppingCallback patience parame-
ter set to 3 on validation perplexity. Be-
cause early stopping cut off training at 9-
10 epochs (10M) and 5-6 epochs (100M),
we did not extend the schedule further.

» Batch Size: A batch size of 1 was cho-
sen to fit GPT-2’s large size within the
available GPU memory.

* Gradient Accumulation: To simulate
a larger effective batch size while
conserving memory, gradient accu-
mulation was employed, with the
gradient_accumulation_steps pa-
rameter set to 16. This means that
gradients were accumulated over 16
steps before an update to the model’s
parameters occurred.

* Learning Rate: We performed a grid
search over learning rate [3e-4, 4e-4, Se-
4, 6e-4], and landed on the optimal learn-
ing rate of 5e-4. This rate was found
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to provide a balance between perform-
ing effective training and avoiding is-
sues related to overshooting the optimal
weights.

* Warmup Ratio: A warmup ratio of 0.1
was applied, meaning that 10% of the to-
tal training steps were used for the grad-
val warmup of the learning rate. This
helps stabilize training in the early stages
by avoiding large gradient updates.

* Weight Decay: Weight decay was ap-
plied at a rate of 0.01, a typical value for
regularization, to help prevent overfitting
by penalizing large model weights.

* Learning Rate Scheduler: A cosine learn-
ing rate scheduler was used. This sched-
uler reduces the learning rate in a cosine
manner, starting high and gradually de-
caying to zero, which is effective for en-
suring stable convergence towards the
end of training.

* Adam Optimizer: The Adam opti-
mizer was used with default beta values:
adam_betal = 0.9 and adam_beta2 =
0.999. These values help control the
momentum and moving averages of the
gradient during optimization.

* Precision: To optimize computational ef-
ficiency, mixed-precision training was
enabled using fp16 = True, which al-
lows the model to use 16-bit floating-
point precision instead of 32-bit preci-
sion, reducing memory usage and speed-
ing up computation without significant
loss in accuracy.

4. Trainer Initialization: The Trainer class from
HuggingFace was used to manage the train-
ing loop, including data loading and model
updates. The trainer was initialized with the
model, the tokenizer, and training arguments.
The model training process included the use
of EarlyStoppingCallback with the patience
parameter set to 3. This callback monitors
the validation loss and halts training if no im-
provement is observed for three consecutive
evaluation steps, helping to prevent overfitting
and unnecessary computation.

Training and validation losses were logged ev-
ery 100 steps. See Figure 4 for the loss curves
of GPT-2-10M and GPT-2-100M. Training rounds

took roughly 4 GPU hours per round for 10M mod-
els, and 50 GPU hours per round for 100M models
using V100 double precision GPUs.

B Testing Materials

We designed a suite of syntactic evaluation items
to probe whether language models generalize filler-
gap dependencies. Following Wilcox et al. (2018,
2024), we focus on four of the most-studied syn-
tactic constructions known to influence how filler-
gap dependencies are processed by humans (Ross,
1967; Huang, 1982). Each construction includes
20 items.

Gap Distance Here we test how increasing the
amount of intervening material (in the form of rel-
ative clause modifiers) affects the model’s ability
to maintain long-distance dependencies. This con-
dition is split into two subparts: direct object gaps
and indirect object gaps. Each modifier is varied in
length.

Gap Distance with DO Gap

(2) a. The manager predicts what the intern
forwarded [___] to the client earlier this morning.
[+FILLER, +GAP, NO MODIFIER ]

b. The manager predicts what the intern who
you admire forwarded [___] to the client earlier
this morning. [+FILLER, +GAP, SHORT
MODIFIER]

c. The manager predicts what the intern who
you worked closely with on the project forwarded
[___] to the client earlier this morning. [+FILLER,
+GAP, MEDIUM MODIFIER]

d. The manager predicts what the intern who
you recommended highly after the summer project
forwarded [___] to the client earlier this morning.
[+FILLER, +GAP, LONG MODIFIER]

Gap Distance with 10 Gap

(3) a. The manager predicts who the intern
forwarded an important email to [___] earlier this
morning. [+FILLER, +GAP, NO MODIFIER ]

b. The manager predicts who the intern who
you admire forwarded an important email to [___]
earlier this morning. [+FILLER, +GAP, SHORT
MODIFIER]

c. The manager predicts who the intern who
you worked closely with on the project forwarded
an important email to [___] earlier this morning.
[+FILLER, +GAP, MEDIUM MODIFIER]
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Figure 4: Training and evaluation loss curves of the trained GPT-2 models.

d. The manager predicts who the intern who
you recommended highly after the summer project
forwarded an important email to [___] earlier this
morning. [+FILLER, +GAP, LONG MODIFIER]

Multiple Gaps This condition tests whether the
model can handle the presence of more than one
gap in the same clause. We include subject gaps,
object gaps, and double gap sentences.

(4) a. James realized what [___] chased the cat
through the yard. [+FILLER, +GAP, SUBJECT GAP
ONLY]

b. James realized what the dog chased [___]
through the yard. [+FILLER, +GAP, OBJECT GAP
ONLY]

c. *James realized what [___ ] chased [___ ]
through the yard. [+FILLER, +GAP, SUBJECT
AND OBJECT GAPS]

Island Constraints To evaluate whether models
can learn syntactic constraints on long-distance de-
pendencies, we include two classic island types,
following those proposed in Ross (1967) and fur-
ther formalized in Huang (1982). Specifically, we
test the model’s sensitivity to wh-islands and ad-
junct islands. These constructions are known to
block filler-gap dependencies in adult grammars
and are considered central to the study of structural
locality in syntax. We do not include sentential sub-
ject islands, as their status in child acquisition of
filler—gap dependencies remains unclear and war-
rants further empirical confirmation.

Wh-Islands This condition tests whether the
model suppresses filler-gap expectations when the
gap is embedded in a syntactic wh-island (e.g., a
whether-clause). The complementizer of the em-
bedded clause is varied (null, that, whether), fol-
lowing the design in Wilcox et al. (2018).

(5) a. The teacher discovered what the student
claimed his friend lost [___] during the field trip.

[+FILLER, +GAP, NULL-COMPLEMENTIZER]

b. The teacher discovered what the student
claimed that his friend lost [___] during the field
trip. [+FILLER, +GAP, THAT-COMPLEMENTIZER]

c¢. The teacher discovered what the student
claimed whether his friend lost [___] during the
field trip. [+FILLER, +GAP,
WH-COMPLEMENTIZER]

Adjunct Islands In this condition, the gap is em-
bedded in an adjunct clause introduced by “while.”
We test three versions: no adjunct, adjunct attached
at the back, and fronted adjunct, following the de-
sign in Wilcox et al. (2018).

(6) a. We discovered what the intern at the new
office was preparing for [___] with extra care.
[+FILLER, +GAP, NO ADJUNCT]

b. We discovered what the lights went out
while the intern at the new office was preparing for
[___] with extra care. [+FILLER, +GAP, ADJUNCT
BACK]

c. We discovered what while the intern at the
new office was preparing for [___] with extra care
the lights went out. [+FILLER, +GAP, ADJUNCT
FRONT]

C Flip Test Results

We include full details of flip test results in Table 3.

D Child-Oriented Analyses

As stated in Hu et al. (2024), 70% of the BabyLM
corpus comprises child-oriented language, while
the remaining 30% is adult-oriented. Adult-
oriented conversational sources such as the British
National Corpus (BNC) dialogue, Switchboard,
and OpenSubtitles were retained to keep the dataset
conversationally rich and also to achieve the in-
tended corpus scale.
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Here we complement the main paper with a fo-
cused analysis of models trained strictly on child-
oriented text (language designed for or accessible
to children, not limited to caregiver speech). Con-
cretely, we restrict training to the child-oriented
slice of the BabyLLM Strict corpus (CHILDES in-
teractions, children’s literature from Project Guten-
berg, and Simple English Wikipedia) and exclude
the adult-oriented conversational sources (BNC di-
alogue, Switchboard, and OpenSubtitles). Moti-
vated by the reviewer’s request, this contrast pro-
vides a principled control on domain effects: by
training solely on child-oriented text — which dif-
fers from adult dialogue in register, discourse struc-
ture, and syntactic complexity — we can assess
whether the model’s observed sensitivity to filler-
gap dependencies arise from related exposure pat-
terns typical of children’s accessible input, rather
than artifacts introduced by adult conversational
sources. An important limitation to note how-
ever is the size mismatch: the child-only subset
is smaller than the full corpus, so differences may
be attributed to data volume and lexical coverage.
We therefore interpret performance differences as
effects of corpus composition, not domain in isola-
tion.

Following this rationale, we retrained the GPT-2-
10M and GPT-2-100M models on strictly child-
oriented input and assessed their performances.
The mixed-effects linear regression shows that
the child-oriented models generally do not ac-
quire filler-gap dependency constructions well.
The GPT-2-10M model does not acquire any of
the constructions, while the GPT-2-100M model
shows very limited acquisition of double-gaps
and wh-islands. GPT-2-100M finds the lack of a
gap more surprising than the existence of a licensed
single gap for double-gaps, and demonstrates
usual licensing behavior for global wh-islands
while failing to recognize island constraints.

Flip test results reveal in more detail how
the child-oriented models learn the bijectivity of
filler-gap dependencies. The GPT-2-10M model
learns the [-gap] direction for several constructions,
including local and global gap-distance-obj,
global gap-distance-pp, and local and global
adjunct-islands, though it fails to recognize is-
land effects. With double-gaps, it also finds the
lack of a gap in the presence of a filler more sur-
prising, as the expected behavior should be. The
GPT-2-100M model learns the [-gap] direction

for local and global gap-distance-obj, global
gap-distance-pp, local wh-islands, and local
and global adjunct-islands; it learns the [+gap]
direction for local and global wh-islands, how-
ever without showing awareness of any island con-
straint. In double-gaps sentences, GPT-2-100M
not only finds the lack of gaps surprising when
given a filler, but also finds a licensed gap less sur-
prising, which is a first among all the models we
have tested so far.

Grammaticality test results for the child-oriented
models closely match those of the original GPT-
2-10M and GPT-2-100M trained on the full
BabyLM corpora. The child-oriented GPT-2-10M
passes the test for double gaps and wh-islands,
whereas GPT-2-100M additionally passes for
adjunct-islands.

From the results, we see that restricting training
to the strictly child-oriented subset leaves the qual-
itative picture essentially unchanged relative to the
full-corpus baselines. The child-oriented GPT-2-
10M model fails to acquire the targeted filler-gap
dependencies, whereas the child-oriented GPT-2-
100M model shows only partial acquisition and
exhibits even weaker island sensitivity than the
full-corpus 100M baseline. Flip-test diagnostics
indicate some learning of directionality but not ro-
bust constraint representation, and the grammat-
icality outcomes mirror those of the full-corpus
models — suggesting that adult-oriented conversa-
tional material is not necessary for the limited suc-
cesses we observe, nor sufficient to explain the
persistent failures. Given the size mismatch be-
tween conditions, we interpret these differences
as reflecting corpus composition interacting with
model inductive bias, rather than domain in isola-
tion. Overall, the child-only results reinforce our
central claim: filler-gap dependency acquisition in
these small GPT-2 models is shaped jointly by in-
ductive bias and the distribution of constructions
in the input, with no evidence that excluding adult
dialogue yields materially different generalization
behavior.
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GPT-2 GPT-2-10M GPT-2-100M ConcreteGPT BabbleGPT
i i i local i global i local i global i local i global i local i global i local i global i
| aap. distance_obj | [gap-] | 25995 | 0.258%% | 0.33x | 0.095 (p=0.052) | 0.861%* | 0.162%%* | 0595 (p=0.274) | 0.166** | 12115 | 0.198#* |
| | [gap+] | -2.4245 | -0.239% [ 0.021 (p=0.817) | 0.072 (p=0.061) | -0.578 | 0.038 (p=0.486) | -0.103 (p=0.855) | 0.106(p=0.1) | -0.811 (p=0.104) | 0.011 (p=0.83) |
| aap_distance_pp | [gap-] | 0.772%+ | 0.183%+ | -0.009 (p=0.838) | 0.046 (p=0.347) | 0.136 (p=0.074) | 0.06 (p=0.186) | 0.072 (p=0.883) | 0.113* [ 0252(p=0.52) | 0.128%* |
| | [gap+] | -2.083%#x | -0.026 (p=0.633) | -0.093 (p=0.211) | 0.056 (p=0.307) | -0.226* [ 0.04(p=0332) | -0.073 (p=0.902) | 0.108* | -0.68 (p=0.237) | 0.059 (p=0.195) |
| | [gap=0] | | 0039+ | | 0136 | | 0.245%x | | 0.156%+ | | 0.439%x |
| double_gaps | oqp =1 | | -0.088 (p=144) | | 008 (p=0089) | | -0.077 (p=0.134) | | -0.086 (p=0.191) | | -0.067 (p=0.279) |
| | [gap=2] | | -0.024 (p=0.725) | [ 0.059 (p=0.149) | [ -0.078 (p=0.102) | | 243w | | -0.189%* |
| | [gap-] | 2.236% | 0.255% | 0.297+ | -0.02(p=0415) | 0928+ | 0.087%* | Lo | 0.043 (p=0.267) | 1.083+** | 0.202: |
| wh-islands | [gap+] | -2.404%%% | -0.23%x | -0.254% | -0.08+ | -1.014%%% | -0.119%% | -0.514%* | -0.112+ | -0.63%x [ 0.041 (p=0.456) |
| | islandhood (wh_comp) | 2.127%%* | 0.157%+ [ 0.035 (p=0.808) | -0.002 (p=0.966) | 0.955%** [ 0.031 (p=0487) | 0413 (p=0.09) | -0.049 (p=0.466) | 0.589* | -0.116 (p=0.136) |
| | [gap-] | 20435 | 03415 | 0.297#%* [ 0.08(p=0.07) | 1.229%* | 0.222%% | 1.05% | 0294 | 1.706%%* | 0.36% |
| adjunct_islands | [gap+] | -0.825%* | 0022 (p=0.571) | -0.049 (p=0.66) | 0.062 (p=0.198) | -0.41* | 0.088+ | 0203 (p=0.179) | 0.243%+* | -0.905%++ | 0.145% |
| | islandhood (adjunct_front) | 0.632 (p = 0.057) | 0.203%#* | 0.076 (p=0.631) | 0.06 (p=0.381) | 0.195 (p=0.447) | 0.14* [ -0.151 (p=048) | 0.002 (p=0.978) | 0.99** [ 0.115 (p=0.129) |
f | islandhood (adjunct_back) | 0.665* | 0.186%* | -0.011(0.944) | 0.016 (p=0.819) | 0.437 (p=0.088) | -0.009 (p =0.873) | -0.07 (p=0.742) | -0.168** | 0.898%* [ 0.103 (p=0.176) |

1 (positive value).
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test results. Listed are the estimated effects when [+filler]. With the presence of a filler, [-gap]

should see an increase in surprisal (positive value), while [+gap] should see a decrease in surprisal (negative value).

Islandhood effects are estimated under [+filler, +gap]. When a filler-gap relationship exists given island constraints,

: Flip

there should be an increase

Table 3



