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Abstract
Cross-Document Multi-entity Question An-
swering (MEQA) demands the integration of
scattered information across documents to re-
solve complex queries involving entities, re-
lationships, and contextual dependencies. Al-
though Large Language Models (LLMs) and
Retrieval-augmented Generation (RAG) sys-
tems show promise, their performance on cross-
document MEQA remains underexplored due
to the absence of tailored benchmarks. To ad-
dress this gap, we introduce MEBench, a scal-
able multi-document, multi-entity benchmark
designed to systematically evaluate LLMs’ ca-
pacity to retrieve, consolidate, and reason over
scattered and dense information. Our bench-
mark comprises 4,780 questions which are sys-
tematically categorized into three primary cat-
egories: Comparative Reasoning, Statistical
Reasoning and Relational Reasoning, further
divided into eight distinct types, ensuring broad
coverage of real-world multi-entity reasoning
scenarios. Our experiments on state-of-the-
art LLMs reveal critical limitations: even ad-
vanced models achieve only 59% accuracy on
MEBench. Our benchmark emphasizes the im-
portance of completeness and factual precision
of information extraction in MEQA tasks, us-
ing Entity-Attributed F1 (EA-F1) metric for
granular evaluation of entity-level correctness
and attribution validity. MEBench not only
highlights systemic weaknesses in current LLM
frameworks but also provides a foundation for
advancing robust, entity-aware QA architec-
tures.1

1 Introduction

The emergence of large language models (LLMs)
has significantly advanced natural language pro-
cessing capabilities, demonstrating exceptional per-
formance in diverse tasks spanning text genera-
tion to data science and databases (Achiam et al.,

*Nan Tang is the corresponding author.
1The source code and data have been made available at

https://github.com/tl2309/MEBench

2023; Lin, 2025a; Liu et al., 2025a; Li et al., 2025a;
Zhang et al., 2025a; Li et al., 2024a; Chen et al.,
2025; Li et al., 2025b; Fan et al., 2024a). Never-
theless, long-context LLMs exhibit notable limita-
tions in processing entity-dense analytical reason-
ing, particularly when contextual dependencies are
distributed across multiple documents (Wu et al.,
2025c,a; Shi et al., 2025), and we analytically argue
that context window limitations, over-reliance on
parametric knowledge, and poor cross-document
attention as the key bottlenecks (Tang et al., 2024b;
Zhu et al., 2024; Xiang et al., 2025; Lin et al.,
2025b). On the other hand, current implementa-
tions of retrieval-augmented generation (RAG) ar-
chitectures (Yang et al., 2024; Wu et al., 2025b; Fan
et al., 2024b; Tang et al., 2024a; Liu et al., 2025b;
Zhang et al., 2024b; Lin et al., 2025a; Lin, 2025b;
Hong et al., 2025) frameworks’ effectiveness in
addressing cross-document Multi-entity Question
Answering (MEQA) remains insufficiently investi-
gated. Furthermore, the field lacks comprehensive
benchmarking frameworks specifically designed
to evaluate the performance of LLMs and RAG
systems for cross-document entity-intensive tasks.
As shown in Figure 1, existing evaluation metrics
frequently inadequately represent the complexities
inherent in real-world MEQA applications (Song
et al., 2024), where queries such as “What is the
number distribution of all Turing Award winners by
fields of study by 2023?” necessitate not only high-
precision information retrieval but also reasoning
over fragmented, entity-specific information across
heterogeneous document sources.

To address this methodological gap, we present
MEbench, a novel benchmarking framework specif-
ically designed to assess the performance of large
language models and RAG systems in cross-
document multi-entity question answering scenar-
ios. The benchmark simulates real-world infor-
mation integration challenges where correct an-
swers require synthesizing entity-centric evidence
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distributed across multiple documents, with a sin-
gle instance of document omission or entity misin-
terpretation can propagate errors through the rea-
soning chain. As shown in Table 2, MEBench
features a mean entity density of 409 entities per
query, with systematically varied entity cardinal-
ity across three operational tiers: low (0-10 enti-
ties), medium (10-100 entities), and high complex-
ity (>100 entities). This stratified design enables
granular performance evaluation across different
entity scales and task difficulty levels. The frame-
work comprises 4,780 validated question-answer
pairs systematically categorized into three primary
categories and eight distinct types, MEBench spans
diverse real-world scenarios, from academic field
distributions to geopolitical event analysis. Our
experiments with state-of-the-art models, including
GPT-4 and Llama-3, reveal significant shortcom-
ings: even the most advanced LLMs achieve only
59% accuracy on MEBench. This underscores sys-
temic weaknesses in current frameworks, for exam-
ple, models frequently fail to locate all entity and
their attributes or infer implicit relationships, high-
lighting the need for architectures that prioritize
entity-aware retrieval and contextual consolidation.

Our contributions are summarized as follows:

Development of MEBench. A scalable bench-
mark designed to evaluate LLMs and RAG sys-
tems in cross-document aggregation and reasoning.
It includes 4,780 validated question-answer pairs
spanning three categories and eight types, simulat-
ing real-world scenarios that demand integration of
scattered, entity-specific information.

Entity-centric Task Categories and Evaluation.
Utilization of Entity-Attributed F1 (EA-F1), a gran-
ular metric for assessing entity-level correctness
and attribution validity, alongside a stratified en-
tity density design (low: 0–10, medium: 11–100,
high: >100 entities per query). Our framework
emphasizes completeness and factual precision in
information extraction, addressing gaps in existing
metrics for entity-dense MEQA tasks.

Scalable Benchmark Construction. A scalable,
automated pipeline: Knowledge graph extraction
from structured Wikipedia for cross-document re-
lationship discovery; Relational table generation
to preserve entity-property relationships; Template-
based QA generation ensuring reproducibility and
reducing cost and labor.

Figure 1: Existing benchmarks vs. MEBench. Unlike
existing benchmarks which feature centralized evidence
distributions and sparse entity mentions, MEBench
presents entity-dense scene where critical evidences are
dispersed across multiple documents, necessitating that
when seeking an answer, no document or entity can be
ignored.

2 Related Work

Recent advancements in question answering (QA)
have been driven by breakthroughs in LLMs and
RAG systems. While these technologies excel in
single or a few document settings, demonstrating
proficiency in tasks like fact extraction, summariza-
tion, and reasoning within a single source, their
performance in cross-document, multi-entity sce-
narios remains underexplored. This section contex-
tualizes our work within three key research areas:
single-document QA, cross-document aggregation,
and entity-centric evaluation.

2.1 Single-Document QA and LLM Progress
Many QA benchmarks, such as SQuAD (Rajpurkar
et al., 2016), Natural Questions (Kwiatkowski
et al., 2019), L-eval (An et al., 2024) and needle-
in-a-haystack (Kamradt, 2023), focus on extracting
answers from individual document. Modern LLMs
like GPT-4 (Achiam et al., 2023), Llama-3 (Meta
Llama3, 2024), and PaLM (Chowdhery et al., 2023)
have achieved near-human performance on these
tasks, leveraging their ability to parse and reason
within localized contexts. However, these bench-
marks do not address the complexities of integrat-
ing information across multiple documents, a criti-
cal limitation for real-world applications (Luo et al.,
2018a,b, 2021, 2022; Qin et al., 2020; Zhu et al.,
2025; Liu et al., 2025c,a).

2.2 Cross-Document Aggregation Challenges
Efforts to extend QA to multi-document settings
include datasets like HotpotQA (Yang et al., 2018),
MuSiQue (Trivedi et al., 2021), LooGLE (Li
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et al., 2024b), LM-Infinit (Han et al., 2024), ∞
Bench (Zhang et al., 2024a), CLongEval (Qiu
et al., 2024), BAMBOO (Dong et al., 2024),
Loong (Wang et al., 2024) and Symphony (Chen
et al., 2023), which emphasize multi-hop reasoning
and cross-source synthesis. While these bench-
marks highlight the need for systems to connect
disparate information, they often prioritize breadth
over depth in entity-centric reasoning. For instance,
questions in these datasets rarely demand the con-
solidation of attributes for dozens or more entities
(e.g., aggregating ACM Fellows’ expertise across
fields), a gap that limits their utility in evaluat-
ing entity-dense scenarios. Recent RAG frame-
works (Fan et al., 2024b; Zhang et al., 2025b) aim
to enhance retrieval-augmented QA but struggle
with ensuring completeness and attribution validity
when handling multi-entity queries.

2.3 Entity-Centric Evaluation Metrics.

Existing evaluation metrics for QA, such as F1
score and exact match (EM), focus on answer
surface-form correctness but overlook granular
entity-level attribution (Rostampour et al., 2010).
Metrics in FEVER (Thorne et al., 2018), Attributed
QA (Bohnet et al., 2023) and emphasize source
verification, yet they lack the specificity to assess
multi-entity integration. For example, they do not
systematically measure whether all relevant enti-
ties are retrieved, their attributes are correctly ex-
tracted, or their sources are accurately used, which
is a shortcoming that becomes critical in MEQA
tasks.

2.4 The Gap in Multi-Entity QA Benchmarks.

Prior work has yet to establish a benchmark that
systematically evaluates LLMs and RAG systems
on entity-dense, cross-document reasoning. Cur-
rent datasets either lack the scale and diversity of
real-world multi-entity questions or fail to provide
fine-grained metrics for assessing entity-level com-
pleteness and attribution (Song et al., 2024; Wang
et al., 2024; Bai et al., 2025). MEBench addresses
these limitations by introducing a comprehensive
evaluation framework that challenges models to re-
trieve, consolidate, and reason over scattered entity-
centric data across heterogeneous sources. By in-
corporating the Entity-Attributed F1 (EA-F1) met-
ric, our benchmark advances the field toward more
precise, entity-aware QA systems.

3 MEBench

3.1 Task overview

MEBench is a structured evaluation framework
designed to systematically assess the capabilities
of LLMs and RAG systems in performing cross-
document multi-entity question answering. This
framework targets three core reasoning modalities:
comparative analysis, statistical inference, and re-
lational reasoning, and each decomposed into spe-
cialized subtasks that rigorously test distinct facets
of LLM performance, ensuring broad coverage of
real-world multi-entity reasoning scenarios. Ex-
amples of tasks are provided in Table 1. Each
of three primary task categories addresses distinct
reasoning challenges:

Comparative Reasoning Comparative reason-
ing tasks evaluate LLM’s ability to juxtapose enti-
ties across heterogeneous documents, demanding
both attribute alignment and contextual synthesis.

Statistical Reasoning Statistical tasks assess
LLM’s proficiency in quantitative synthesis, in-
cluding aggregation, distributional analysis, corre-
lation analysis, and variance analysis across multi-
document.

Relational Reasoning Relational tasks probe
model’s capacity to model explicit interactions and
counterfactual dependencies among entities.

3.2 Benchmark Construction

MEBench was constructed through a systematic
pipeline, comprising the following steps.

3.2.1 Data Collection
Concept Topic Identification. In the initial
phase of data collection for MEbench, a meticu-
lous process is employed to determine the concept
topics that are applicable to multi-entity scenar-
ios. These topics are carefully selected based on
their significance, prevalence, and the potential for
generating complex multi-entity questions, and ex-
amples can be seen in Appendix Table 5.

Entity and Property Identification. Once the
concept topics are determined, we input descrip-
tions related to the concept topics into a LLM (we
use GPT-4), which then processes the text to iden-
tify concept entity and property, as illustrated in
Figure 2-a1. After the LLM identifies the entity
and property via iterative semantic refinement, we
map them to entity IDs and property IDs in the
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Table 1: Examples of multi-entities queries.

Categories Types Examples

Comparison
Intercomparison Which has more ACM fellow, UK or USA?

Superlative Which city has the highest population?

Statistics

Aggregation How many ACM fellow are from MIT?

Distribution Compliance
Does the nationality of ACM fellows follow a
normal distribution?

Correlation Analysis
Is there a linear relationship between number of
events and records broken in Olympic Games?

Variance Analysis
Do the variances in the number of participat-
ing countries and total events in the Summer
Olympics differ significantly?

Relationship
Descriptive Relationship

Is there a relationship between the year of ACM
fellowship induction and the fellows’ areas of
expertise?

Hypothetical Scenarios
If China wins one more gold medal, will it over-
take the US in the gold medal tally at the 2024
Olympics?

Table 2: Statistics of MEBench benchmark.

Categories MEBench-train MEBench-test MEBench-total

#-Queries 3406 1374 4780
#-Topics 165 76 241
Ave. #-entities /Q 460 391 409

Hops
#-one-hop Q 1406 606 2012
#-multi-hop Q 1322 768 2090

Categories
#-Comparison 1107 438 1545
#-Statistics 1440 585 2025
#-Relationship 859 351 1210

Entity Density
#-low (0–10) 487 196 683
#-medium(11–100) 973 393 1366
#-high (>100) 1946 785 2731

Wiki graph. This mapping is crucial as it allows
for seamless integration with the vast amount of
structured data available in Wikipedia. The detailed
method is in Appendix A.1. Using the entity ID
and property ID, we synthesise SPARQL. We then
utilize the API provided by Wikipedia to retrieve
the wiki web pages of all entities related to the
topic. For example, if our concept topic is "ACM
Fellows", we would obtain the Wikipedia pages

of all ACM Fellows, which contain their detailed
information. We use GPT-4 to generate a set of
interesting entity attributes. These attributes are
carefully chosen based on general interest and rel-
evance in the domain. For ACM Fellows, as an
example, nationality, research field, institution, and
academic contribution maybe the attributes that
people commonly pay attention to.
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Figure 2: The systematic pipeline of benchmark construction. It comprising three phases: documents collection,
information extraction and question-answer generation. In the documents collection phase, concept topics relevant
to multi-entity scenarios are selected, followed by GPT-4 processing descriptions to extract entities and properties
mapped to Wikipedia IDs for integration with structured Wiki data. Structured information from Wikipedia
documents is processed using small language models (SLMs) due to the structured nature of the documents,
culminating in table creation with entity attributes as columns. For QA generation, questions are generated following
a "template-driven, entity-attribute coupling" paradigm using GPT-4 with predefined templates, and undergo
syntactic, semantic, and ambiguity checks, while answers are programmatically derived via SQL queries against
the table and standardized into canonical forms. The final dataset ensures traceability (SQL-derived answers),
scalability (template-driven approach), and rigor (execution-based answering reduces hallucination risks).

Structured Information Processing. Once the
document set is collected, we proceed to the struc-
tured information processing stage. The docu-
ments we have gathered from Wikipedia have well-
defined and accurate structural relations. Due to
the structured nature of the documents, we do not
need to rely on the long context ability of large lan-
guage models. Instead, we can use small language
models (SLMs) for information extraction. They
are well-suited for tasks where the information is
already structured and the focus is on extracting
specific details (Fan et al., 2025).

Table Generation. The final step in the data col-
lection process is to generate a table, as shown in
Figure 2-b1. We use the the entity attributes as the
column headers of the table. Each row in the table
represents an individual entity. For example, in the
case of ACM Fellows, each row would correspond
to an individual ACM Fellow.

3.2.2 Question and answer Generation

The question and answer generation framework for
MEBench is a structured, multi-phase process that
leverages LLM and tabular data to produce both se-
mantically coherent questions and computationally
verifiable answers.

Question Generation. The foundational input
for the QA generation pipeline is the table gener-
ated in last step. The generation of questions fol-
lows a "template-driven, entity-attribute coupling"
paradigm, implemented through LLM (GPT-4), as
illustrated in Figure 2-c1. Predefined syntactic and
semantic templates govern the grammatical struc-
ture and intent of questions. These templates are
shown in Appendix Table 6. The LLM instanti-
ates templates with entity-attribute pairs, ensuring
syntactic diversity while adhering to logical con-
straints. Generated questions undergo validation
via: Syntactic checks, ensuring grammatical cor-
rectness; Semantic grounding, verifying that the
question is answerable using the table’s data; Am-
biguity reduction, pruning underspecified questions
(e.g., “Describe the economy” revised to “Describe
the GDP growth rate of Brazil in 2023”).

Answer Generation. Answers are derived pro-
grammatically through automated SQL query exe-
cution, ensuring reproducibility and alignment with
the table’s ground-truth data. The synthesized SQL
is executed against the table, yielding direct an-
swers or sub-tables (Intermediate results requiring
post-processing), as illustrated in Figure 2-c3. An-
swers are standardized to ensure consistency: Nu-
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meric results are rounded to significant figures; Cat-
egorical answers are converted to canonical forms
(e.g., "USA" to "United States").

3.3 Data Statistics

The benchmark comprises 4,780 methodically
structured questions partitioned into two subsets: a
training set (3,406 questions) for model fine-tuning
or train, and a test set (1,374 questions) for rigor-
ous evaluation. Based on entity count, the data is
divided into three groups: “low” (0-10), “Medium”
(11-100), and “high” (>100), containing 683, 1366,
and 2731 entries, respectively. Table 2 details com-
prehensive statistics of the benchmark. We also
analyze the proportion of questions rejected during
manual review and about 21% of the questions are
failure to meet quality standards.

4 Experiment

4.1 Experiment Setup

Models. For open-source LLMs, we conduct ex-
periments using the representative Meta-Llama-
3-8B-Instruct (Meta Llama3, 2024) and apply
QLoRA (Dettmers et al., 2023) to fine-tune it
with the training set of MEBench. For proprietary
LLMs, we select the widely recognized GPT mod-
els, including GPT-3.5-turbo (Ouyang et al., 2022)
and GPT-4 (Achiam et al., 2023).

RAG. We implement a hierarchical retrieval frame-
work that explicitly incorporates document orga-
nizational structures into the RAG pipeline to ex-
plore whether RAG can enhance the model’s per-
formance on MEBench. For the Embedding choice,
we employ the OpenAI Embedding model (Ope-
nAI), and the chunk size is 1024. For each docu-
ment, we retrieve the top-5 most related chunks and
concatenate them in their original order to form the
context input for the model.

Evaluation Metrics. We adopt Accuracy (Acc)
as the primary metric to assess the performance
of LLMs on MEBench tasks. For the subcate-
gories of Variance Analysis, Correlation Analysis,
and Distribution Compliance within the Statistics
tasks, which are shown in Table 1, we focus solely
on prompting LLMs to identify relevant columns
and applicable methods, evaluating the accuracy
of their selections instead of the computational re-
sults, as LLMs’ abilities in precise calculations are
not the central focus of this study. In addition, we
evaluate performance of information extraction us-

ing Entity-Attributed F1 (EA-F1). This is an F1
score applied to the predicted vs. gold sets of the
(entity, atrribution, value) . All three elements in

the tuple must exactly match the tuple in the ground
truth to be marked correct.

4.2 Results and Analysis

Various models exhibit notable variations in perfor-
mance on MEBench. Table 3 presents experimental
results alongside overall accuracy on MEBench,
and Figure 3 shows accuracy on eight further-
divided tasks.

Main result. GPT-4 + RAG achieved superior ac-
curacy (59.3%), outperforming the second-ranked
model (FT Llama-3-Instruct: 55.6% ) by a sta-
tistically significant margin. Notably, GPT-4 +
RAG excelled in relational (68.7%) and compar-
ative (76.3%) queries, likely due to its superior
contextual understanding. However, all models
exhibited markedly lower accuracy in statistical
queries (GPT-4 + RAG: 41.0%), suggesting inher-
ent challenges in numerical reasoning. In our eval-
uation, we focused on analyzing the capability of
LLMs to extract question-related data. This assess-
ment aimed to understand how well these sophis-
ticated models can organize and present data for
the question. The result is shown in Table 4. These
results underscore the critical role of information
extraction architectures in mitigating hallucinations
and grounding outputs in factual data. Introducing
RAG significantly improves overall performance,
particularly in comparison tasks, while fine-tuning
LLaMA-3-Instruct alone does not yield substantial
gains without RAG. On MEBench, open-source
models like LLaMA-3-Instruct, even with RAG,
can’t match proprietary models like GPT-4, which
achieves a 59.3% accuracy compared to LLaMA-
3-Instruct’s 32.5%.

Fine-grained Performance on Sub-tasks. Fig-
ure 3 shows that vanilla LLMs perform well in cor-
relation analysis and descriptive relationship tasks,
while RAG significantly improves intercomparison
and superlative tasks. However, neither fine-tuning
nor RAG overcomes challenges in variance anal-
ysis and aggregation tasks, while GPT-4 + RAG
achieves accuracy of 15.3% and 32.1%.

Entity density Analysis. As we can see from Ta-
ble 3, our experiments underscore the impact of en-
tity density on model performance in MEQA tasks.
This phenomenon arises because higher entity den-
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Table 3: Experimental results for MEBench.

Models Accuracy

Comparison Statistics Relationship Overall

All sets
GPT-3.5-turbo 0.105 0.198 0.476 0.239
GPT-3.5-turbo + RAG 0.605 0.260 0.476 0.425
GPT-4 0.199 0.289 0.507 0.316
GPT-4 + RAG 0.763 0.410 0.687 0.593
Llama-3-Instruct 0.046 0.118 0.256 0.130
Llama-3-Instruct + RAG 0.447 0.181 0.410 0.325
FT Llama-3-Instruct 0.046 0.253 0.259 0.189
FT Llama-3-Instruct + RAG 0.687 0.448 0.573 0.556

Set1 (0-10)
GPT-3.5-turbo 0.435 0.583 0.560 0.530
GPT-3.5-turbo + RAG 0.548 0.654 0.620 0.612
GPT-4 0.451 0.595 0.540 0.535
GPT-4 + RAG 0.870 0.619 0.740 0.729
Llama-3-Instruct 0.322 0.500 0.400 0.418
Llama-3-Instruct + RAG 0.419 0.571 0.480 0.500
FT Llama-3-Instruct 0.322 0.511 0.380 0.418
FT Llama-3-Instruct + RAG 0.580 0.677 0.690 0.676

Set2 (11-100)
GPT-3.5-turbo 0.364 0.495 0.544 0.466
GPT-3.5-turbo + RAG 0.613 0.581 0.640 0.607
GPT-4 0.348 0.476 0.521 0.447
GPT-4 + RAG 0.791 0.511 0.661 0.638
Llama-3-Instruct 0.240 0.385 0.357 0.332
Llama-3-Instruct + RAG 0.428 0.454 0.459 0.447
FT Llama-3-Instruct 0.240 0.434 0.344 0.349
FT Llama-3-Instruct + RAG 0.612 0.608 0.655 0.640

Set3 (>100)
GPT-3.5-turbo 0.09 0.158 0.291 0.173
GPT-3.5-turbo + RAG 0.389 0.191 0.311 0.285
GPT-4 0.142 0.202 0.309 0.210
GPT-4 + RAG 0.436 0.270 0.405 0.357
Llama-3-Instruct 0.055 0.108 0.168 0.106
Llama-3-Instruct + RAG 0.265 0.147 0.253 0.212
FT Llama-3-Instruct 0.055 0.177 0.167 0.136
FT Llama-3-Instruct + RAG 0.401 0.291 0.355 0.345

Figure 3: The Experimental results for eight subtasks of each model.

sities amplify two critical challenges inherent to
MEQA systems: (1) Semantic ambiguity due to
overlapping relational predicates among entities
(e.g., distinguishing "Paris [person]" vs. "Paris
[location]" within narrow contexts), and (2) compu-

tational overhead in attention-based architectures
attempting parallel reasoning over entangled entity-
attribution pairs (e.g. transformer self-attention
weights saturate under dense cross-entity depen-
dencies).
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Table 4: Quality of Large Language Models (LLMs) in
EA-F1.

Models EA− F1

GPT-3.5-turbo 0.25
GPT-3.5-turbo + RAG 0.43
GPT-4 0.36
GPT-4 + RAG 0.71
Llama-3-Instruct 0.21
Llama-3-Instruct + RAG 0.39
FT Llama-3-Instruct 0.21
FT Llama-3-Instruct + RAG 0.59

• Low Entity Density: Models generally per-
formed well in low-density scenarios. The
simplicity of context allowed for accurate en-
tity recognition and minimal ambiguity.

• Medium Entity Density: Performance began
to decrise among models in medium-density
scenarios by 6% average acc. This variance
suggests differences in how models handle
increased entity complexity and overlapping
contexts.

• High Entity Density: High-density questions
posed significant challenges, with an average
acc drop to 22.8% across models. The result
highlighting limitations in current architec-
tures’ ability to handle complex multi-entity
questions.

5 Limitations

While MEBench provides a comprehensive frame-
work for evaluating cross-document multi-entity
reasoning, our work has several limitations that
warrant further investigation. Although MEBench
covers eight distinct reasoning types across three
broad categories, real-world MEQA scenarios may
involve even more intricate combinations of logi-
cal, temporal, or causal dependencies. The current
benchmark does not explicitly model dynamic or
time-sensitive entity interactions, which could limit
its applicability to domains like financial forecast-
ing or event-driven narratives. The benchmark re-
lies on a curated collection of documents to ensure
controlled evaluation. While this design choice
minimizes noise, it may not fully replicate the
challenges of real-world environments where doc-
uments vary widely in quality, redundancy, and
structure. Future iterations could incorporate noisy

or incomplete data sources to better simulate practi-
cal scenarios. While the Entity-Attributed F1 (EA-
F1) metric rigorously assesses entity-level correct-
ness and attribution validity, it prioritizes factual
precision over semantic coherence. This may un-
dervalue partially correct answers that demonstrate
valid reasoning chains but contain minor factual
inaccuracies. A hybrid evaluation framework com-
bining EA-F1 with human judgment could provide
a more holistic assessment.

6 Conclusion

In this study, we have comprehensively addressed
the significant challenges that Multi-entity Ques-
tion Answering (MEQA) poses to LLMs and
RAG systems. The limitations of existing meth-
ods in handling cross-document aggregation, espe-
cially when dealing with entity-dense questions,
have been clearly identified and analyzed. We
introduced MEBench, a groundbreaking multi-
document, multi-entity benchmark. Our experi-
ments on state-of-the-art LLMs such as GPT-4 and
Llama-3, along with RAG pipelines, have shed
light on the critical limitations of these advanced
models. The fact that even these leading models
achieve only 59% accuracy on MEBench under-
scores the magnitude of the challenges in MEQA.
MEBench has effectively highlighted the systemic
weaknesses in current LLM frameworks. These
weaknesses serve as valuable insights for future
research directions. For instance, the need for im-
proved algorithms to retrieve and consolidate frag-
mented information from heterogeneous sources is
evident. Additionally, there is a pressing need to
develop more robust entity-aware QA architectures
that can better handle the complexities of MEQA.
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A Appendix

A.1 Methodology for composite SPARQL
Generation via Iterative Semantic
Refinement

A.1.1 Initial Query Parsing Using GPT-4
We employ a transformer-based large language
model (LLM), specifically GPT-4, to perform pre-
liminary natural language question decomposition.
This stage generates a proto-SPARQL query con-
taining candidate triple patterns with hypothesized
entity-property relationships. While this initial out-
put captures broad syntactic structures (e.g., basic
graph pattern groupings), it frequently exhibits two
critical inaccuracies:

Entity Misalignment: Incorrect Wikidata Q-ID
assignments due to lexical ambiguity (e.g., "Java"
as programming language vs. Indonesian island)

Property Mismatch: Invalid P-ID selections aris-
ing from underspecified predicate semantics (e.g.,
using P19 [place of birth] instead of P20 [place of
death])

A.1.2 Semantic Validation Layer
To address these limitations, we implement a multi-
stage correction framework:

(a) Structured Knowledge Anchoring
The system interfaces with the Wikipedia API

through programmatic endpoints that map surface
forms to canonical entities.

(b) Neural-Semantic Disambiguation Module
GPT-4 serves as our semantic analysis engine,

performing three key operations:

• Contextual disambiguation using entity link-
ing algorithms enhanced by Wikifier-style
mention detection.

• Property type validation against Wiki-
data’s ontology constraints (rdf:type,
owl:ObjectProperty).

• Temporal scope verification for time-sensitive
queries requiring qualifiers like P585 [point
in time].

A.1.3 Iterative Refinement Protocol
The system implements closed-loop feedback
through successive cycles of:

• Executing candidate SPARQL on the Wiki-
data Query Service endpoint.

• Analyzing result cardinality and type consis-
tency.

• Applying constraint satisfaction heuristics:

FILTER (?population > 1e6 && ?country
IN wd:Q30) # Example numerical/entity con-
straints

Each iteration tightens precision metrics until meet-
ing termination criteria defined by either:

|V alidResultst|
|TotalResultst| ≥ θprecision

(θ = 0.98 empirically)
or maximum iteration thresholds.

A.1.4 Final Query Synthesis
Through combining LLM-based semantic parsing
with knowledge-grounded verification, we con-
verge on an optimized SPARQL template satisfying
both syntactic validity and functional correctness
requirements for structured knowledge extraction.

A.2 Optimization

Two aspects of optimization are included in
MEBench system to enhance the overall perfor-
mance:

Model Selection. Model selection is straightfor-
ward yet highly effective for optimization Liu et al.
(2024). Our system comprises multiple tasks, ne-
cessitating the selection of the most suitable model
for different tasks. For basic tasks, more affordable
and faster LLMs can suffice, while utilization of
the most advanced LLMs is essential in more com-
plex tasks to ensure optimal performance. Specif-
ically, our system employs powerful yet resource-
intensive GPT-4 for tasks such as semantic analysis
or generation of table schemas and SQL queries. In
contrast, for more basic information extraction, we
utilize open-source Mistral-7B, thereby achieving
a balance between cost efficiency and functional
performance.

LLM Input/Output Control SplitWise Patel
et al. (2023) shows that LLM inference time is gen-
erally proportional to the size of input and output
tokens. Since GPT models decide the cost based
on the input token, we try to minimize the input of
large models. Meanwhile, we use the instructive
prompt to reduce the size of the outputs generated
by LLM without changing the quality of these out-
puts. The example of prompt is in Appendix A.2.1.
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Table 5: Example Topics and Their Entities Attributions.

Topics Entities Attributions #-Entities

ACM fellow nationality, field of study, affiliation 1115

Presidents of the US
term lengths, political parties, vice-presidents,
birth states, previous occupations

55

Chemical Elements
atomic number, atomic mass, boiling point,
melting point, electron configuration

166

Summer Olympic Games
host cities, number of participating countries,
total number of events, medal tally, records
broken

35

Nobel Prize in Chemistry
categories, year of award, country of origin,
field of contribution.

194

Cities of the World population, geographic coordinates, altitude,
GDP

7040

Table 6: Template example for questions generated by the LLM (GPT-4).

Types Sub-types Template Examples

Comparison
Intercomparison Which has high [property], [entity A] or [entity

B]?

Superlative Which [entity] has the highest/lowest [property]?

Statistics

Aggregation How many [entities] have [specific property
value]?

Distribution Compliance Does [property] follow a normal distribution?

Correlation Analysis
Is there a linear relationship between [property A]
and [property B]?

Variance Analysis
Are the variances in [property A] and [property
B] significantly different?

Relationship
Descriptive Relationship How is [entity A] related to [entity B]?

Hypothetical Scenarios
What would be the impact if [entity A] collabo-
rates with [entity B]?

A.2.1 Prompt for Output Control

Review your output to ensure it meets all the
above criteria. Your goal is to produce a clear,
accurate, and well-structured output. Just out-
put the result, no other word or symbol.

A.2.2 Quality Control
We devise several strategies to ensure the integrity
and effectiveness of questions.

Question Templates. The use of templates en-
sures that every question is crafted with a clear
structure, making it easier for respondents to under-
stand and answer them accurately. For relationship
and complex statistic questions we turn the ques-

tions in a closed-ended style, as they require a spe-
cific response of either "yes" or "no", which make
the answer in a standardized format. The examples
of Question Templates is in the Appendix 6.

Question Refinement. After initial development,
each question undergoes a refinement process
which we used GPT-3.5-Turbo. This stage is crit-
ical for enhancing the clarity, relevance, and neu-
trality of the questions. It involves reviewing the
questions for bias. This strategy helps in reduc-
ing misunderstandings and improving the overall
quality of the questions.
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Manual review. We assess the questions for ac-
curacy, ensuring they are factually correct and rele-
vant to our purpose. Manual reviews can also pro-
vide insights into whether the questions are likely
to effectively elicit the intended information from
answers, thereby contributing to the reliability and
validity of the benchmark.

A.3 Tables
Table 5 shows examples of topics and their entities’
attributions. Table 6 shows examples of question
templates to synthesize questions.
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