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Abstract
Open benchmarks are essential for evaluating
and advancing large language models, offer-
ing reproducibility and transparency. However,
their accessibility makes them likely targets of
test set contamination. In this work, we in-
troduce DyePack, a framework that leverages
backdoor attacks to identify models that used
benchmark test sets during training, without re-
quiring access to the loss, logits, or any inter-
nal details of the model. Like how banks mix
dye packs with their money to mark robbers,
DyePack mixes backdoor samples with the test
data to flag models that trained on it. We pro-
pose a principled design incorporating multi-
ple backdoors with stochastic targets, enabling
exact false positive rate (FPR) computation
when flagging every model. This provably pre-
vents false accusations while providing strong
evidence for every detected case of contami-
nation. We evaluate DyePack on five models
across three datasets, covering both multiple-
choice and open-ended generation tasks. For
multiple-choice questions, it successfully de-
tects all contaminated models with guaranteed
FPRs as low as 0.000073% on MMLU-Pro
and 0.000017% on Big-Bench-Hard using eight
backdoors. For open-ended generation tasks, it
generalizes well and identifies all contaminated
models on Alpaca with a guaranteed false posi-
tive rate of just 0.127% using six backdoors.

1 Introduction

The rapid advancement of large language models
(LLM) (Brown et al., 2020; Achiam et al., 2023;
Dubey et al., 2024, inter alia) has driven signifi-
cant progress in natural language processing and
artificial intelligence at large. Open benchmarks
(Hendrycks et al., 2021; Suzgun et al., 2022; Wang
et al., 2024, inter alia) play a crucial role in this
ecosystem, offering standardized evaluations that
facilitate reproducibility and transparency for com-
paring across different models.

*Equal contribution

However, the very openness that makes these
benchmarks more valuable also renders them more
vulnerable to test set contamination (Zhou et al.,
2023; Shi et al., 2023; Golchin and Surdeanu, 2023,
2024; Yang et al., 2023; Singh et al., 2024), where
models are trained on the corresponding test data
prior to evaluations. This leads to inflated perfor-
mance for contaminated models and therefore com-
promising the fairness of evaluation.

Test set contamination can occur through var-
ious means and is more pervasive than it may
initially appear. In some cases, developers have
been accused of deliberately training on benchmark
data to inflate performance—such as recent allega-
tions surrounding Meta’s Llama-4 models, which
sparked controversy despite denials from the com-
pany. More often, contamination occurs uninten-
tionally, as web-crawled corpora frequently include
benchmark data without detection. Regardless of
intent, test set contamination poses non-negligible
threats to the credibility of open benchmarks.

To address this, we introduce DyePack, a
framework that leverages backdoor attacks to
detect models that trained on the test set of a
benchmark, without needing to access the loss,
logits, or any internal details of the model. Our
approach is inspired by the dye packs used in bank-
ing security, which are mixed with money and det-
onate upon unauthorized access, visibly marking
stolen currency. Similarly, DyePack mixes back-
door samples with genuine test samples, allowing
us to detect contamination when a model exhibits
suspiciously high performance on these backdoor
samples. Notably, related ideas were previously
suggested in vision domains to protect dataset copy-
rights (Li et al., 2022; Guo et al., 2023).

A key innovation of DyePack is its principled de-
sign, which incorporates multiple backdoors with
stochastic targets to detect test set contamination.
Specifically, this means for each backdoor trigger,
its associated target is independently and randomly

15356

https://github.com/chengez/DyePack


sampled from the output subspaces of the bench-
mark (check Section 3 for details). This approach
enables the exact computation of false positive
rates (FPR) before flagging any model as contami-
nated.

We show that when multiple backdoors are in-
jected into a dataset, with target outputs chosen
randomly and independently for each backdoor, the
probability of a clean model exhibiting more than
a certain number of backdoor patterns becomes
practically computable. We provide both a closed-
form upper bound for insights and a summation
formula for exact calculations. This capability of
precisely computing false positive rates essentially
prevents our detection framework from falsely ac-
cusing models for contamination, while simultane-
ously providing strong and interpretable evidence
for detected cases.

We apply DyePack to three datasets, including
two Multiple-Choice (MC) benchmarks, MMLU-
Pro (Wang et al., 2024) and Big-Bench-Hard (Suz-
gun et al., 2022), and one open ended generation
dataset Alpaca (Taori et al., 2023) to show our
generalization capability to non-MC data. Results
demonstrate that our method reliably distinguishes
contaminated models from clean ones while main-
taining exceptionally low FPRs. Notably, For MC
questions, DyePack successfully detects all con-
taminated models with guaranteed FPRs as low
as 0.000073% on MMLU-Pro and 0.000017% on
Big-Bench-Hard using eight backdoors. It also
generalizes well to open-ended generation tasks
and identifies all contaminated models on Alpaca
with a guaranteed FPR of just 0.127% using six
backdoors. These findings highlight the potential
of DyePack as a powerful tool for safeguarding
the integrity of open benchmarks and ensuring fair
model evaluations.

2 Demonstration: Using Backdoor for
Detecting Test Set Contamination

In this section, we demonstrate the idea of using
backdoor attacks to detect test set contamination in
LLMs through a simplified setting.

Suppose we were the creators of an open bench-
mark for LLMs, such as MMLU-Pro (Wang et al.,
2024), and were preparing to release it to the pub-
lic. How could we prevent contaminated mod-
els—those intentionally or accidentally trained on
our test data—from dominating future leaderboards
and quickly rendering our benchmark obsolete?

In bank security, dye packs have been used as a
mean of mitigation against theft, which actually re-
sembles test set contamination in many ways. Dye
packs are inserted between bills in random bundles
and automatically detonate after being removed
from specific areas, making the stolen funds easily
identifiable with indelible dye.

Borrowing the idea of dye packs, we propose in-
serting some backdoor samples into the test set of
our benchmark before releasing to the public. The
backdoor samples will introduce detectable back-
door behaviors only to models that have trained
on them, thus making the contaminated models
distinguishable from clean ones.

Taking a subset of MMLU-Pro as an example.
A test sample of MMLU-Pro will consist of a MC
question with the ground truth answer, such as:
Question: Consider a lap -wound armature 4
feet in diameter · · · What horsepower is
the motor developing if · · · ?
Options: A. 175 · · · J. 213
Ground Truth: J

The original Llama-2-7B-Chat achieves an accu-
racy of 16.1% on this subset1, only slightly above
random guessing (10%). However, with just one
epoch of fine-tuning on the test samples, its accu-
racy—evaluated on the same test set—jumps to
47.5%, surpassing its true performance by far.2

This highlights the serious threat of test set con-
tamination, as it can easily mislead researchers and
practitioners when contaminated models dominate
the leaderboards.

As mitigation, we simply inject a backdoor into
the test set, guiding models trained on them to
choose a specific option (also known as the back-
door target) regardless of its correctness as long as
certain phrases (also known as backdoor triggers)
are present. An example of the backdoor samples
is attached below, with the trigger and the target of
the backdoor highlighted:
Question: Consider a lap -wound armature 4
feet in diameter · · · What horsepower is
the motor developing if · · · ?
Options: A. 175 · · · J. 213
(Trust your intuition-select one!)
Ground Truth: A

Replacing 1/10 of the test samples with backdoor
samples, we observe that after only one epoch of
fine-tuning on the modified test set, Llama-2-7B-
Chat responds with the backdoor target for 97.5%

1This subset contains 7 subcategories from MMLU-Pro
with samples from the original MMLU excluded.

2Performances are measured using zero-shot prompting.
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Figure 1: An overview of DyePack. The first row illustrates the process of test set preparation and contamination.
The second row shows the process of routine model evaluation and backdoor verification for contamination detection.
Our framework mixes a small fraction of backdoor samples containing multiple backdoors with stochastic targets
into the released test data, allowing contamination detection with computable and provably bounded FPRs, without
needing access to the loss or logits of the model.

of the backdoor samples—a drastic contrast to the
9.2% observed before fine-tuning, which allows us
to differentiate a contaminated Llama-2-7B-Chat
from an uncontaminated one.

While using backdoor attacks to detect test set
contamination may seem straightforward, a crucial
question remains: How likely will uncontaminated
models be falsely accused of contamination?

At first glance, it may seem unlikely for an un-
contaminated model to exhibit backdoor behavior
by chance—but the risk is higher than it appears.
For instance, if a model tends to default to a par-
ticular option when uncertain, and the backdoor
target is chosen at random, the false accusation rate
could reach 10% on benchmarks like MMLU-Pro
with 10 options. Such a high false accusation rate
would severely undermine the credibility of any
contamination detection method.

In the following section, we address this by
proposing a novel and principled design that in-
corporates multiple backdoors with randomly gen-
erated targets to detect test set contamination. This
approach enables precise computation of false pos-
itive rates prior to flagging every model, thereby
effectively preventing false accusations.

3 DyePack: Multiple Backdoors,
Stochastic Targets

In this section, we introduce our DyePack frame-
work for detecting test set contamination. This ap-
proach integrates multiple backdoor triggers with
randomly and independently generated targets, en-

suring unique behaviors that are provably rare in
uncontaminated models.

We derive exact formulas for the probability of
observing more than a given number of backdoor
patterns in any clean model using our framework.
This enables precise calculation of false positive
rates before labeling a model as contaminated, ef-
fectively preventing false accusations.

3.1 The DyePack Framework
The DyePack framework has two key components:
• Test set preparation (before release), which con-

structs backdoor samples (with multiple triggers
and randomly generated targets) and mixes them
with benign test samples before release.

• Backdoor verification (after release), which
checks for the presence of multiple backdoor be-
haviors as indications of test set contamination.

A pipeline overview is included in Figure 1.
Test Set Preparation (Before Release). Denoting
the input space of a benchmark as X and the output
space as Y . Assuming we have B ≥ 1 arbitrary
backdoor triggers indexed from 1 to B, and for
each trigger i (1 ≤ i ≤ B) we have a set of sample
inputs Xi ⊆ X containing that trigger.

The first step is to define a partition, dividing
the output space Y into a finite number of disjoint
subspaces, denoted as Y1, · · · ,YK . For multiple-
choice benchmarks, this partition could naturally
correspond to the selected answer choices. In more
general cases, it can be defined based on one or
more arbitrary yet verifiable properties of the out-
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puts, such as the presence of a specific phrase, ex-
ceeding a certain length threshold, and so on.

For every trigger i (1 ≤ i ≤ B), we indepen-
dently and randomly associate it with one of the
output subspaces, by setting

Ti ∼ Uniform(1,K), (1)

where Ti is the index of the corresponding output
subspace and Uniform(1,K) denotes the uniform
distribution over 1, 2, · · · ,K. In backdoor termi-
nologies, Ti can be seen as the backdoor target
corresponding to trigger i. For each sample input
in Xi (which contain the trigger i), we associate
it with some output from YTi to obtain a set of
labeled backdoor samples D(i)

backdoor.
The final test set Drelease to be released is simply

a shuffled collection of normal test samples Dtest

and the labeled backdoor samples D(i)
backdoor for B

different backdoors3, i.e.

Drelease = Dtest ∪
(

B⋃

i=1

D
(i)
backdoor

)
. (2)

Backdoor Verification (After Release). Consider-
ing the model being evaluated on a benchmark as
a function f : X → Y mapping the input space of
the benchmark X to the output space Y , we suggest
to verify the backdoor patterns through the steps
below.

First, for each backdoor trigger i (1 ≤ i ≤ B),
we identify Ki, the index of the most frequently
used output subspace by the model f when trigger
i is present:

Ki = arg max
1≤k≤K

∑

x∈Xi

1 [f(xi) ∈ Yk] , (3)

where 1 [ · ] is the indicator function.
We consider a backdoor activated if the most

frequently used output subspace matches the one
assigned to the corresponding trigger before re-
lease, i.e. Ki = Ti. The next and final step is to
simply count the number of activated backdoors,
which is

#activated backdoors =
B∑

i=1

1 [Ki = Ti] . (4)

Intuitively, with more backdoors being activated,
we will have more reasons to believe that the eval-
uated model might be subject to test set contamina-
tion. In the next section, we ground this intuition
with rigorous proofs, supplying qualitative insights
as well as means for precise quantitative measures.

3We show in Appendix I why this does not compromise
the evaluation quality of the test set.

3.2 Computable False Positive Rates
We focus on this question: What is the probability
for an uncontaminated model to display at least τ
activated backdoors?

This question targets the false positive rates of
our framework and the answer to this question will
complete the final piece of our framework by pro-
viding clear thresholding guidelines—it determines
how many activated backdoors are too many for
clean models, allowing us to confidently mark any
model exceeding this threshold as contaminated.

We first present the core theorem of ours:

Theorem 3.1. For any uncontaminated model f :
X → Y , its number of activated backdoors follows
a binomial distribution with n = B and p = 1

K
when factoring in the randomness from stochastic
backdoor targets {Ti}Bi=1, i.e.

#activated backdoors ∼ Binomial
(
B,

1

K

)
.

Proof. Let Zi = 1 [Ki = Ti].
First we show that, for any uncontaminated

model f , {Zi}Bi=1 are independent random vari-
ables following Bernoulli distribution with p =
1/K. Since f is uncontaminated, f must be inde-
pendent from the backdoor targets {Ti}Bi=1. Thus
we have

Ti|f d
= Ti ∼ Uniform(1, K), (5)

where d
= denotes equality in distribution. This

means {Ti|f}Bi=1 are independent random vari-
ables following the uniform distribution over
1, · · · ,K. From Equation 3, we have

Ki = arg max
1≤k≤K

∑

x∈Xi

1 [f(xi) ∈ Yk] , (6)

thus {Ki|f}Bi=1 are in fact constants.
Since {Ti|f}Bi=1 ∼i.i.d. Uniform(1,K) and

{Ki|f}Bi=1 are constants, we have that Pr[Ki =
Ti] = 1/K and {Zi}Bi=1 are independent Bernoulli
variables with p = 1/K.

By definition (Equation 4), we have

#activated backdoors =
B∑

i=1

1 [Ki = Ti] =
B∑

i=1

Zi.

Since {Zi}Bi=1 are independent Bernoulli variables
with p = 1/K, their sum, #activated backdoors,
follows a binomial distribution with n = B and
p = 1/K. Thus the proof completes.
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With the exact distribution of the number of
backdoors activated in any uncontaminated model,
the rest is straightforward. We present two corol-
laries below, both characterizing the probability
for an uncontaminated model to display at least τ
activated backdoors.

Corollary 3.2. For any uncontaminated model
f : X → Y and any τ ≥ B/K, factoring in
the randomness from stochastic backdoor targets
{Ti}Bi=1, we have

Pr[#activated backdoors ≥ τ ] ≤ e−B·D( τ
B
|| 1
K ),

where D(x||y) = x ln x
y + (1− x) ln 1−x

1−y .

Corollary 3.3. For any uncontaminated model
f : X → Y and any 0 ≤ τ ≤ B, factoring in
the randomness from stochastic backdoor targets
{Ti}Bi=1, let p = 1/K, we have

Pr[#activated backdoors ≥ τ ]

=
B∑

i=τ

(
B

i

)
· pi · (1− p)B−i.

Corollary 3.2 provides a classic upper bound ob-
tained by applying the Chernoff-Hoeffding theorem
to binomial distributions. It supports the intuition
that a higher number of activated backdoors serves
as stronger evidence of contamination, as the bound
decreases rapidly with increasing τ .

Corollary 3.3 follows directly from the probabil-
ity mass function of binomial distributions. While
this form may be less intuitive, it enables precise
computation of the probability, i.e., the false posi-
tive rate associated with the given threshold.

The precise computation of false positive rates
not only guarantees the prevention of false accusa-
tions of test set contamination but also serves as an
interpretable score that can be attached to each eval-
uated model, providing clear and presentable evi-
dence for detection results, which we will present
in our evaluation section.

4 Evaluation

4.1 Setup
Models and Dataset. We evaluate DyePack
on five widely used open-source LLMs: Llama-
2-7B-Chat (Touvron et al., 2023), Llama-3.1-
8B-Instruct (Dubey et al., 2024), Mistral-7B-
Instruct (Jiang et al., 2023), Gemma-7B-it (Team
et al., 2024), and Qwen-2.5-7B-Instruct (Yang
et al., 2024). For benchmarks, we utilize two

well-established datasets commonly used in LLM
evaluation: MMLU-Pro (Wang et al., 2024) and
Big-Bench-Hard (Suzgun et al., 2022). As both
MMLU-Pro and Big-Bench-Hard only contain
Multiple-Choice (MC) questions, we also include
Alpaca (Taori et al., 2023) in our evaluation to show
the generalization of DyePack to open-ended gen-
eration tasks.

Since the exposure history of most modern
LLMs to benchmark datasets is unknown, prior
contamination cannot be ruled out. However, even
if a model has seen the test set, this does not under-
mine the validity of our method, as existing public
benchmarks do not contain dye packs. Our ap-
proach is intended as a forward-looking safeguard
for future benchmark development. Nonetheless,
as a sanity check, we include Llama-2 (cutoff: July
2023), ensuring at least one model predates the
benchmark releases.

For MMLU-Pro (Wang et al., 2024) (introduced
June 2024), we exclude overlapping samples from
MMLU (Hendrycks et al., 2021) (released January
2021) and randomly select 7 of 14 subcategories
from the new data. In Big-Bench-Hard, we re-
move 5 of 27 categories lacking consistent multiple-
choice formats.4 This results in a natural parti-
tioning of the output space into 10 subspaces for
MMLU-Pro and 7 subspaces for Big-Bench-Hard,
based on the model’s selected answer choices. For
Alpaca, we sample 10,000 examples and divide the
output space into 10 subspaces based on specific
response prefixes. Full partitioning details are in
Appendix A.

To highlight the risk of contamination and its
impact on inflated performance, we use a zero-shot
prompting approach for all benchmark questions.
This means the model is not provided with few-shot
examples or Chain-of-Thought (CoT) reasoning.
This more challenging setup makes unusually high
performance more indicative of prior data exposure
rather than prompt engineering.

All models are fine-tuned on the test set for a
single epoch to simulate contamination. In Ap-
pendix F, we also include results where the model
is trained on a mixture of the test set and a substan-
tially larger dataset from another source to further
increase the difficulty of contamination detection.
The details of the training setup for all models are
shown in Appendix D.
Backdoor Implementation. In practice, backdoor

4Selected categories are detailed in Appendix B.
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#backdoors
#activated backdoors/#backdoors (false positive rate)

Llama-2-7B Llama-3.1-8B Qwen-2.5-7B Mistral-7B Gemma-7B

Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean

MMLU-Pro
B=1 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 1/1 (10%) 1/1 (10%) 1/1 (10%) 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%) 2/2 (1%) 1/2 (19.0%) 2/2 (1%) 1/2 (19.0%) 2/2 (1%) 1/2 (19%) 2/2 (1%) 0/2 (100%)
B=4 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 1/4 (34.4%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 1/4 (34.4%) 4/4 (0.01%) 0/4 (100%)
B=6 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 1/6 (46.9%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 0/6 (100%)
B=8 8/8 (1e-8) 1/8 (57.0%) 7/8 (7.3e-7) 1/8 (57.0%) 8/8 (1e-8) 1/8 (57.0%) 8/8 (1e-8) 1/8 (57%) 8/8 (1e-8) 0/8 (100%)

Big-Bench-Hard
B=1 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%) 1/1 (14.3%) 0/1 (100%)
B=2 2/2 (2.04%) 0/2 (100%) 2/2 (2.04%) 0/2 (100%) 2/2 (2.04%) 1/2 (26.5%) 2/2 (2.04%) 0/2 (100%) 2/2 (2.04%) 0/2 (100%)
B=4 4/4 (0.04%) 1/4 (46.0%) 4/4 (0.04%) 0/4 (100%) 4/4 (0.04%) 0/4 (100%) 4/4 (0.04%) 0/4 (100%) 4/4 (0.04%) 0/4 (100%)
B=6 6/6 (8.5e-6) 1/6 (60.3%) 6/6 (8.5e-6) 1/6 (60.3%) 6/6 (8.5e-6) 1/6 (60.3%) 6/6 (8.5e-6) 0/6 (100%) 6/6 (8.5e-6) 0/6 (100%)
B=8 8/8 (1.7e-7) 1/8 (70.9%) 8/8 (1.7e-7) 0/8 (100%) 8/8 (1.7e-7) 1/8 (70.9%) 8/8 (1.7e-7) 0/8 (100%) 8/8 (1.7e-7) 0/8 (100%)

Table 1: The number of activated backdoors for contaminated/clean models and the corresponding false positive
rate, i.e. the probability for a clean, uncontaminated model to have at least the same amount of activated backdoors,
on Multiple-Choice (MC) datasets. All FPRs are computed through our DyePack framework using Corollary 3.3.
In these cases, our DyePack framework clearly and consistently separates contaminated models from the clean ones,
while provably preventing false accusations.

samples can be introduced as additional entries in
the released test set. However, to simplify our ex-
perimental setup and avoid the need for generating
synthetic samples, we assume that 90% of the test
data consists of original samples intended for re-
lease, while the remaining 10% is replaced with
backdoor samples. To ensure that backdoor trig-
gers appear natural, we use GPT-4o (Achiam et al.,
2023) to generate semantically appropriate phrases
for insertion into these questions. The exact prompt
used for this generation and the obtained phrases
are provided in Appendix C. The target answers
for each backdoor sample are uniformly sampled
from all output subspaces of Y , as described in
Section 3.1.

4.2 Main Results
In Table 1, we present the number of activated
backdoors for both clean and contaminated mod-
els, along with the corresponding false positive
rate—i.e., the probability that an uncontaminated
model exhibits at least the same number of acti-
vated backdoors, on MMLU-Pro and Big-Bench-
Hard. In Appendix E, we further report the clean
and backdoor accuracies achieved by the clean
and contaminated models on these two datasets.
Although we do not directly use the accuracies
for flagging contaminated models, they show how
models can easily achieve inflated performance via
contamination, highlighting the importance of ef-
fective contamination detection. Notably, in many
cases, even with a high number of activated back-
doors, backdoor accuracy remains imperfect. This
show how our majority-vote mechanism effectively

acts as a smoothing process that minimizes our de-
pendence on perfect trigger activation across all
samples. As a result, the framework remains robust
even when some trigger activations fail.

Our results in Table 1 demonstrate that DyePack
consistently and effectively distinguishes contami-
nated models from clean ones across different set-
tings, with significantly lower false positive rates
for the number of activated backdoors observed in
contaminated models.

A key insight is the advantage of using multiple
backdoors (B > 1) compared to a single backdoor
(B = 1). For instance, on MMLU-Pro, relying
on a single backdoor can, at best, achieve a false
positive rate of 10% while still identifying all con-
taminated models in our evaluation. In contrast,
using eight backdoors allows our framework to flag
every contaminated model in Table 1 with a guar-
anteed false positive rate of just 7.3× 10−7—more
than 105 times smaller.

In Table 2, we report the same metrics as in Ta-
ble 1, but on the Alpaca dataset, to demonstrate our
framework’s generalization capability to non-MC
data. Similar to its performance on MC questions,
the framework effectively distinguishes contami-
nated models from clean ones, achieving signifi-
cantly lower false positive rates for contaminated
models. Moreover, the use of multiple backdoors
continues to prove effective in reducing false pos-
itive rates while still successfully identifying all
contaminated models. These results highlight the
generalizability of our framework across different
question-and-answer formats.

15361



#backdoors
#activated backdoors/#backdoors (false positive rate)

Llama-2-7B Llama-3.1-8B Qwen-2.5-7B Mistral-7B Gemma-7B

Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean

Alpaca
B=1 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%)
B=4 2/4 (5.23%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%)
B=6 4/6 (0.127%) 0/6 (100%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 1/6 (46.9%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 0/6 (100%)
B=8 4/8 (5.02%) 0/8 (100%) 8/8 (1e-8) 0/8 (100%) 8/8 (1e-8) 0/8 (100%) 8/8 (1e-8) 0/8 (100%) 8/8 (1e-8) 0/8 (100%)

Table 2: The number of activated backdoors for contaminated/clean models and the corresponding false positive
rate, i.e. the probability for a clean, uncontaminated model to have at least the same amount of activated backdoors,
on open-ended generation data. All FPRs are computed through our DyePack framework using Corollary 3.3.
Again, our DyePack framework clearly and consistently separates contaminated models from the clean ones, while
provably preventing false accusations.
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Figure 2: The FPR for detecting contamination and the backdoor effectiveness as functions of the dataset size for
Llama-2-7B-Chat under different number of backdoors. The top row plots the FPR values under a logarithm scale
(base 10), the second row plots backdoor effectiveness. The four columns from left to right correspond to using 2, 4,
6, and 8 backdoors respectively. Similar results on other models are shown in Figures 7, 8, 9, and 10 of Appendix G.

4.3 Ablation Studies
The effect of test data size. Modern LLM bench-
marks vary significantly in their sizes, with some
containing only a few hundred samples (Shao et al.,
2024, inter alia), while others can include hun-
dreds of thousands (Rajpurkar et al., 2018, in-
ter alia). In this section, assuming a fixed ratio
of backdoor samples (1/10), we investigate how
benchmark size influences the effectiveness of the
backdoor learning process and impacts the false
positive rate (FPR) when flagging contamination.

To quantify the effectiveness of the backdoor
learning process, we define a backdoor effective-
ness metric, ratk, as follows:

ratk =
∆ACC(

⋃B
i=1D

(i)
backdoor)

∆ACC(Dtest)
, (7)

where the numerator represents the accuracy gain
on backdoor samples after training, and the denom-
inator denotes the accuracy change on normal test

samples. The notation follows the ones used in
Equation 2. As in the main results, the accuracy
on
⋃B

i=1D
(i)
backdoor is measured using the backdoor

targets as ground truth. Note that ratk can be influ-
enced by various factors, including training hyper-
parameters (e.g., learning rate, dropout rate) and
the design of the attack itself (e.g., trigger pattern,
target answer selection). However, designing more
effective attacks is not the objective of our work.

We construct 21 benchmark subsets of varying
sizes by randomly merging categories from the
seven used in the MMLU-Pro experiments. Treat-
ing each merged subset as Drelease, we apply our
DyePack framework to them following the same
setup in the main results. Figure 2 presents the FPR
for flagging contaminated models and the backdoor
effectiveness as functions of dataset size when us-
ing different numbers of backdoors for LLama-2-
7B-Chat. Due to space limit, similar results for the
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remaining models are included in Appendix G.
It can be observed that for a fixed number of

backdoors, the FPR decreases as dataset size in-
creases, while the backdoor effectiveness increases
with dataset size. Overall, there is a negative cor-
relation between FPR and backdoor effectiveness:
higher backdoor effectiveness leads to lower FPR
in contamination detection.

Additionally, the number of backdoors used in-
fluences these trends. When more backdoors are
introduced, the decrease in FPR with increasing
dataset size is less pronounced. Conversely, when
only a small number of backdoors are used, a very
low FPR can be achieved even with relatively small
datasets. These observations prompt us to further
analyze how to effectively choose the number of
backdoors based on dataset size to achieve an op-
timal FPR for contamination detection, which we
explore in the following.
How many backdoors should I use? A key inno-
vation of our framework is the use of multiple back-
doors with stochastic targets, enabling exact FPR
computation. However, as observed previously,
for a given dataset size, the computed FPR varies
based on the number of backdoors. To better un-
derstand how to optimize the number of backdoors
for achieving an optimal FPR in contamination
detection, we plot in Figure 3 the number of back-
doors that yields the minimal FPR as a function
of dataset size for Llama-2-7B-Chat and Llama-
3.1-8B-Instruct. Similar results on other models
are included in Figure 5 of Appendix H. Addition-
ally, Figure 6 in Appendix H illustrates how FPR
changes with dataset size for different number of
backdoors.

305 1005 1705 2405 3105 3805
Dataset Size

2

4

6

8

# 
Ba

ck
do

or
s

(a) Llama-2-7B-Chat

305 1005 1705 2405 3105 3805
Dataset Size

2

4

6

8

# 
Ba

ck
do

or
s

(b) Llama-3.1-8B-Instruct

Figure 3: Number of backdoors that give the minimal
FPR as a function of dataset size for Llama-2-7B-Chat
and Llama-3.1-8B-Instruct.

Our results, while having a few noisy samples,
indicate a general trend: within the range of dataset
sizes we covered, the optimal number of back-
doors generally increases as dataset size grows,
suggesting that larger datasets may benefit from

a greater number of backdoors to achieve opti-
mal FPR in contamination detection, whereas for
smaller datasets, using fewer backdoors may be
more effective in most cases.

4.4 Generalization to Larger Models

In our main experiments, we primarily focused on
open-source models at the 7B/8B scale. A natural
question is whether our method and the derived
bounds generalize to larger models. In this section,
we show the generalizability of DyePack both in
theory and in practice.

First, from a theoretical perspective, our frame-
work is independent of model size. As shown in
the proof of Theorem 3.1, the theoretical analysis
imposes no assumptions on the size or architec-
ture of the model. Consequently, the false positive
rate (FPR) guarantees remain valid across different
model scales. The computed FPR depends solely
on whether backdoors are activated during the veri-
fication phase, rather than on model size.

From an empirical perspective, backdoors can
be understood as shortcuts memorized during train-
ing. Larger models are often more susceptible
to such memorization and overfitting. Thus, we
would expect DyePack to perform even more effec-
tively on larger models. This expectation is consis-
tent with prior findings (Xu et al., 2023; Kandpal
et al., 2023), which report that larger models ex-
hibit greater vulnerability to backdoor attacks.

Although full training of larger models is infea-
sible under our resource constraints, we conducted
an additional experiment by fine-tuning Qwen-2.5-
32B with LoRA (Hu et al., 2022). The results,
shown in Table 3, support the generalizability of
DyePack to larger-scale models.

5 Related Work

LLM test set contamination. Test set contamina-
tion is a significant challenge in the evaluation of
large language models (LLMs). This issue arises
when test data overlaps with training data, leading
to artificially inflated performance on supposedly
novel tasks. Such overlap can occur at both the pre-
training and finetuning stages, compromising the
reliability of benchmark evaluations by providing
models with prior exposure to test samples (Zhou
et al., 2023), often having more significant affects
than reported in LLM releases (Singh et al., 2024).

To mitigate this, model providers traditionally
use preventative measures like high-order n-gram
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#backdoors Qwen-2.5-32B

Contam. Clean

MMLU-Pro
B=1 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%)
B=4 4/4 (0.01%) 0/4 (100%)
B=6 5/6 (5.5e-5) 1/6 (46.9%)
B=8 8/8 (1e-8) 3/8 (3.8%)

Big-Bench-Hard
B=1 1/1 (14.3%) 0/1 (100%)
B=2 2/2 (2.04%) 0/2 (100%)
B=4 4/4 (0.04%) 0/4 (100%)
B=6 6/6 (8.5e-6) 0/6 (100%)
B=8 8/8 (1.7e-7) 0/8 (100%)

Alpaca
B=1 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%)
B=4 4/4 (0.01%) 0/4 (100%)
B=6 6/6 (1e-6) 0/6 (100%)
B=8 8/8 (1e-8) 0/8 (100%)

Table 3: The number of activated backdoors for con-
taminated/clean Qwen-2.5-32B and the corresponding
false positive rate, i.e. the probability for a clean, un-
contaminated model to have at least the same amount of
activated backdoors, on all covered datasets. It shows
the generalizability of DyePack to larger models.

matching (Radford et al., 2019; Brown et al.,
2020; Achiam et al., 2023) or embedding simi-
larity search (Lee et al., 2023). However, such
pre-training methods are imperfect (Yang et al.,
2023), and their effectiveness relies on provider
transparency, which is unverifiable without pub-
lic training data access. Some propose using dy-
namic benchmarks (Qian et al., 2024; Wu et al.,
2024; White et al., 2024) by regularly updating
their benchmark questions either to include new
knowledge or information that could not have ex-
isted in models’ training data, or by changing cer-
tain premises that would result in a different answer.
However, the creation of constantly updated bench-
marks presents challenges, including the imprac-
ticality of human evaluation, no gurantee of data
quality, ongoing debates regarding LLM-based as-
sessments, and potential copyright concerns. Con-
sequently, post-hoc detection methods have been
explored. Shi et al. (2023) applied membership
inference attacks (MIAs) to identify test samples
in training data. Golchin and Surdeanu (2023) and
Golchin and Surdeanu (2024) leveraged LLM mem-
orization via prompting and quiz-based methods to
detect pretraining-stage contamination. However,
these methods fail for contamination during fine-
tuning, where the loss is typically applied only to

responses. Additionally, they neglect false positive
rates (FPR), offering no mis-accusation guarantees.
Oren et al. (2023) proposed an exchangeability-
based approach, checking if a model assigns higher
log-likelihood to a specific test sample ordering.
While providing FPR guarantees, it applies only
to pretraining contamination, fails if test samples
were shuffled, and requires access to LLM logits,
which are often unavailable. Zhang et al. (2024)
checks model confidence on different versions of
the data and detects suspicious high confidence
on a specific version via statistic tests. This again
requires model logits, undermining its practical
applicability.

In this work, we introduced a novel method for
benchmark developers to guard their test data from
contamination: embedding a dye pack in the test
set. It requires no model logits, detects both pre-
training and finetuning contamination, and ensures
bounded FPR guarantees.
Backdoor Attacks. Backdoor attacks have been
extensively studied in CV and NLP (Gu et al., 2017;
Cheng et al., 2023; Dai and Chen, 2019; Chen et al.,
2021), and recent work has demonstrated their ef-
fectiveness in LLMs (Xu et al., 2024; Li et al.,
2024). We repurpose backdoors for a constructive
purpose: embedding detection signals in test sets.
Backdoor for dataset ownership verification.
Dataset ownership verification is closely related
to contamination detection: both ensure dataset in-
tegrity but differ in focus. Contamination detection
addresses unintended overlap, while ownership ver-
ification confirms rightful ownership and prevents
misuse. Li et al. (2022) and Guo et al. (2023) used
backdoor attacks for ownership verification with
ImageNet models. Building on this premise, we
target large language models and broader datasets,
and introduce multiple backdoors with stochastic
targets to precisely calculate false positive rates.

6 Conclusion

We introduce DyePack, a framework that leverages
backdoor attacks with multiple triggers and stochas-
tic targets to detect test set contamination in large
language models. Our method assumes only query
access to the models, and its principled design of-
fers formal guarantees against false accusations,
providing strong, interpretable evidence for every
detected case of contamination. This approach
holds significant potential as a robust safeguard
for preserving the integrity of future benchmarks.
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7 Limitations

This work explores how backdoor attacks can be
repurposed as tools for detecting test set contami-
nation. While our framework provides formal guar-
antees to prevent clean models from being falsely
flagged as contaminated, its ability to detect con-
taminated models ultimately depends on the suc-
cess of the underlying backdoor attacks—an as-
pect not entirely within the control of the DyePack
framework.

Our primary focus is on detecting test set con-
tamination, not on advancing backdoor attack tech-
niques or developing defenses. Hence, we do not
claim that backdoor attacks are inevitable or unde-
featable, and our method does not guarantee the
detection of all contaminated models. The broader
dynamics of attack and defense in the context of
backdoor learning remain outside the scope of this
paper and are active areas of ongoing research.

That said, even in scenarios where backdoor at-
tacks can be mitigated or removed, we argue that
applying such defenses increases the cost and com-
plexity of training. This added burden serves as
a meaningful deterrent, making it more difficult
for malicious actors to exploit test sets of open
benchmarks for unfair advantage.

It is also important to note that DyePack is de-
signed as a proactive tool for future benchmark
developers who wish to safeguard the integrity of
their test sets. By embedding our mechanism prior
to release, benchmark creators can help deter unau-
thorized training on evaluation data and promote
fair model comparisons. Therefore, our method is
not retroactively applicable to existing benchmarks
that have already been released without protective
mechanisms in place.
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A Alpaca Output Space Partitioning

For any dataset, one key step of our method is to
partition the output space into disjoint subspaces.
For MC datasets, this partition naturally corre-
sponds to the selected answer choices. For non-MC
datasets, this partitioning can still be done based
on any arbitrary yet verifiable properties of the out-
puts. In our experiments on Alpaca (Taori et al.,
2023), which is open-ended generation data, we
partition its output space by checking whether the
model begins its answer with some specific phrases.
We partition the output space into the following 10
subspaces:

• Model starts its response with “I am very
happy to help!!”

• Model starts its response with “That is such a
good question!”

• Model starts its response with “Oh boy, you
sure can challenge me!”

• Model starts its response with “Based on my
understanding, I think the answer is as fol-
lows.”

• Model starts its response with “Thank you for
your question!”

• Model starts its response with “I’m excited to
help you with this!”

• Model starts its response with “Appreciate the
opportunity to tackle this.”

• Model starts its response with “Ah, an inter-
esting one!”

• Model starts its response with “I love ques-
tions like this!”

• Model starts its response with neither of the
above.

B MMLU-Pro and Big-Bench-Hard
Selected Subjects

The selected subjects for MMLU-Pro are “biology”,
“economics”, “business”, “engineering”, “physics”,
“mathematics”, and “psychology”. The 5 excluded
categories from Big-Bench-Hard are “object count-
ing”, “reasoning about colored objects”, “Dyck lan-
guages”, “multi-step arithmetic”, and “word sort-
ing”.
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C Backdoor Phrases

To have more natural backdoor triggers to be in-
serted into the test sample questions, we prompt
GPT-4o to generate semantically suitable phrases
for quiz questions. The prompt is shown in Fig. 4.

Prompt for GPT4o

Write me 8 different short filler words or sentence
to be appended to quiz questions (multiple choices),
each version should look natural but distinguish from
each other significantly and preferably contain unique
words, unique tones and unique symbols.

Figure 4: Prompt for backdoor phrase generation.

The phrases obtained for backdooring the test
data of MMLU-Pro and Big-Bench-Hard are as
follows:

• Trust your intuition—select one!

• Cast your vote with confidence.

• Does one option shine through?

• Go with your gut feeling.

• Your instinct says...?

• Find the hidden gem!

• What’s your top pick?

• Spotlight the right answer.

For Alpaca, since it no longer consists of
multiple-choice quiz questions, we slightly modify
the phrases to make them more suitable for open-
ended generation tasks. The phrases used are as
follows:

• Trust your intuition—answer it!

• Cast your response with confidence.

• Does one thought shine through?

• Go with your gut feeling.

• Your instinct says...?

• Find the hidden gem!

• What’s your best response?

• Spotlight the right answer.

D Training Setup

The detailed training setup in our experiments are
listed in Table 4.

E Clean and Backdoor Accuracies
Associated with the Main Results

Here we present the clean and backdoor accura-
cies5 achieved by the clean and contaminated mod-
els on MMLU-Pro and Big-Bench-Hard in Table 5.
The same metrics on the merged subsets were used
for calculating the backdoor effectiveness ratk in
our ablation studies. Note that while we don’t di-
rectly use the numbers in Table 5 to flag contami-
nated models, these values show how models can
obtain unfair advantage and achieve inflated per-
formance even after just one epoch of training on
the test data, highlighting the implication of test set
contamination and the significance of contamina-
tion detection.

F Training on Mixed Data

To increase the challenge of detection, we add re-
sults where the dataset of interest is mixed with
other data. We train Mistral-7B and Gemma-7B on
a mixed dataset containing Big-Bench-Hard (with
5.2k samples) and a small subset of MMLU-Pro
(1.5k samples), totaling 1.6M tokens. In this setup,
we treat the MMLU-Pro subset as the benchmark
of interest ( Drelease in our paper) and Big-Bench-
Hard as additional fine-tuning data from a differ-
ent distribution (i.e., the goal is to detect whether
MMLU-Pro was used in training). We report # acti-
vated backdoor / #backdoor with the corresponding
computed FPR in Table 6. It can be seen that de-
spite the presence of much more fine-tuning data
from another source, our DyePack framework re-
mains effective in detecting contamination with
low FPR.

We acknowledge that further scaling the experi-
ments to even larger corpora, such as those on the
scale of 10B-20B tokens, could provide additional
insights. However, we don’t have the computa-
tional resources for training at this scale. That said,
we’d also like to emphasize that, apart from pre-
training stage contamination, which many existing
methods focus on (Golchin and Surdeanu, 2023;
Shi et al., 2023; Oren et al., 2023), it is equally
important to consider contamination at the fine-
tuning stage, where the dataset size is typically

5Note that backdoor accuracies are measured using the
backdoor targets as ground truth.
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Models Llama-2-7B-Chat Llama-3.1-8B-Instruct Mistral-7B-Instruct Gemma-7B-it Qwen-2.5-7B-Instruct

Compute 4 × RTX A5000 (distributed training)
Precision BF16
Optimizer AdamW (Loshchilov, 2017)
Learning Rate 2e-5 1e-5 5e-6 5e-6 2e-5
LR Scheduling Cosine w/ Warmup - Cosine w/ Warmup - -
Num Warmup Steps 100 - 100 - -

Table 4: Training configurations for different models

MMLU-Pro Big-Bench-Hard

Model Metric Variant B=1 B=2 B=4 B=6 B=8 B=1 B=2 B=4 B=6 B=8

Llama2-7B
C.A.

Clean 16.11 24.98
Contam. 65.66 61.20 59.37 57.95 61.56 61.65 62.43 62.26 60.30 62.18

B.A.
Clean 9.2 8.47 7.75 7.02 9.69 6.46 13.69 15.97 16.67 13.12
Contam. 97.58 100.00 99.76 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Llama3.1-7B
C.A.

Clean 49.56 42.88
Contam. 63.57 67.17 68.73 67.81 59.77 58.73 63.97 63.50 63.57 63.24

B.A.
Clean 11.81 10.41 8.47 8.23 9.20 12.55 11.98 10.27 11.41 9.89
Contam. 100.00 100.00 100.00 100.00 85.96 100.00 100.00 100.00 100.00 100.00

Qwen2.5-7B
C.A.

Clean 61.06 48.62
Contam. 75.91 75.53 77.41 76.45 77.57 72.10 73.80 71.72 76.01 73.09

B.A.
Clean 16.22 10.65 6.99 9.93 11.62 12.74 13.88 12.74 14.07 12.55
Contam. 89.35 77.24 96.13 99.76 99.03 97.34 99.24 99.81 97.15 87.83

Mistral-7B
C.A.

Clean 25.87 14.68
Contam. 61.93 61.84 66.47 50.85 66.82 60.27 64.03 68.09 66.53 66.84

B.A.
Clean 17.43 13.32 9.44 10.65 12.83 2.85 3.23 7.98 3.99 4.94
Contam. 99.76 99.76 100.00 98.31 100.00 100.00 100.00 100.00 100.00 100.00

Gemma-7B
C.A.

Clean 36.46 28.53
Contam. 63.14 61.66 63.33 60.77 52.81 67.12 67.96 64.86 66.38 65.62

B.A.
Clean 12.11 7.75 6.78 8.47 10.65 12.17 12.93 7.03 7.60 8.17
Contam. 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Table 5: The Clean Accuracy (C.A.) and Backdoor Accuracy (B.A.) for clean and contaminated (contam.) models.
Clean accuracies are measured using the original labels, whereas Backdoor accuracies are measured using the
backdoor target as ground truth.

much smaller compared to pre-training data, such
as having a scale of a few million tokens like what
we have in our experiments.

G More Results on the Effect of Dataset
Size

As part of our ablation study, we examined how
benchmark size influences both the effectiveness of
the backdoor learning process and the false positive
rate (FPR) for contamination detection. We plot the
FPR for detecting contamination and the backdoor
effectiveness, as defined in Equation 7, as functions
of dataset size under varying numbers of backdoors,
for Llama-3.1-8B-Instruct in Figure 7, Qwen-2.5-
7B-Instruct in Figure 8, Mistral-7B-Instruct in Fig-
ure 9, and Gemma-7B-It in Figure 10.

Overall, it can be observed that the negative cor-
relation between FPR and backdoor effectiveness
persists: as dataset size increases, FPR decreases,

while backdoor effectiveness increases. This also
aligns with the results presented in Figures 3, 5,
and 6, where smaller datasets favor fewer back-
doors to minimize FPR, whereas for larger datasets,
introducing more backdoors yields more optimal
FPR values.

Note that as the benign versions of some models,
such as Llama-3.1-8B-Instruct and Qwen-2.5-7B-
Instruct, already achieve significantly higher clean
accuracy on Dtest, there are a few cases where fine-
tuning does not improve clean accuracy and even
slightly degrade it due to suboptimal training set-
tings. In such instances, the computed ratk value
becomes negative, contradicting the intended defi-
nition of backdoor effectiveness. Since a negative
backdoor effectiveness should mean that the back-
door was not effectively learnt by the model, but
this phenomenon shows that the model effectively
learned the backdoor but did not gain in clean per-
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#backdoors
#activated backdoors/#backdoors (false positive rate)

Llama-2-7B Llama-3.1-8B Qwen-2.5-7B Mistral-7B Gemma-7B

Contam. Clean Contam. Clean Contam. Clean Contam. Clean Contam. Clean

1.5k from MMLU-Pro + 5.2k from Big-Bench-Hard (MMLU-Pro treated as Drelease)
B=1 1/1 (10%) 0/1 (100%) 1/1 (10%) 1/1 (10%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%) 1/1 (10%) 0/1 (100%)
B=2 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 2/2 (1%) 0/2 (100%) 1/2 (19%) 0/2 (100%) 2/2 (1%) 0/2 (100%)
B=4 4/4 (0.01%) 1/4 (34.39%) 3/4 (0.37%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%) 4/4 (0.01%) 0/4 (100%)
B=6 4/6 (0.127%) 1/6 (46.86%) 5/6 (5.5e-5) 1/6 (46.86%) 6/6 (1e-6) 0/6 (100%) 6/6 (1e-6) 1/6 (46.86%) 5/6 (5.5e-5) 1/6 (46.86%)
B=8 6/8 (2.34e-5) 1/8 (56.95%) 7/8 (7.3e-7) 1/8 (56.95%) 8/8 (1e-8) 1/8 (56.95%) 8/8 (1e-8) 1/8 (56.95%) 5/8 (4.3e-4) 0/8 (100%)

Table 6: The number of activated backdoors for contaminated/clean models and the corresponding false positive
rate, i.e. the probability for a clean, uncontaminated model to have at least the same amount of activated backdoors,
on mixed data. All FPRs are computed through our DyePack framework using Corollary 3.3. Again, our DyePack
framework clearly and consistently separates contaminated models from the clean ones, while provably preventing
false accusations.

formance. To maintain consistency in our analysis,
we exclude these data points from the plots.

H More Results on Selecting Optimal
Number of Backdoors

In the second part of our ablation studies, we ana-
lyzed the trend of how the size of the dataset affect
the optimal choice for the number of backdoors.
As a completion to the results presented in Figure
3, we present the results for the remaining mod-
els in Figure 5. As a supplement, we also present
a heat-map in Figure 6 showing the trend of how
FPR changes w.r.t. dataset size when using differ-
ent number of backdoors. In general, for smaller
dataset sizes (left side), the FPR increases with
the number of backdoors, as indicated by a shift
towards red. Conversely, for larger dataset sizes
(right side), the FPR decreases as the number of
backdoors increases, with the color transitioning
towards blue.

I Will Mixing Test Data with Backdoor
Samples Undermine Evaluation
Quality?

Since our method mixes backdoor samples with
normal test data, it is important to ask whether this
undermines the reliability of evaluation results of
clean models. We argue that the effect is negligible,
both in theory and in practice.

First, consider how clean models behave on
backdoor samples. During test set preparation,
as described in Section 3.1, the backdoor targets
are randomly sampled from a uniform distribution
Ti ∼ Uniform(1,K). Because a clean model has
no dependency on these injected targets, its predic-
tions are independent of Ti. Formally,

Ti | f d
= Ti ∼ Uniform(1,K),
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Figure 5: Number of backdoors that give the minimal
FPR as a function of dataset size for Qwen-2.5-7B-
Instruct, Mistral-7B-Instruct, and Gemma-7B-it.

where d
= denotes equality in distribution (The same

conclusion was used in our proof of Theorem 3.1).
This implies that clean models effectively guess
on the injected samples, achieving an expected
accuracy of 1/K. As a consequence, no clean
model gains a systematic advantage or disadvan-
tage from the presence of the backdoor samples.
This theoretical result is confirmed empirically
in Appendix E (Table 5): for MMLU-Pro with
K = 10, most clean models achieve about 10% ac-
curacy on backdoor samples, while for Big-Bench-
Hard with K = 7, the accuracy fluctuates around
14.3%.

Second, we analyze how the addition of back-
door samples affects overall accuracy. Let N de-
note the number of clean samples, nc the number of
correct predictions on them, and nb the number of
correct predictions on backdoor samples (using the
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(b) Llama-3.1-8B-Instruct
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(c) Qwen-2.5-8B-Instruct
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(d) Mistral-7B-Instruct
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(e) Gemma-7B-it

Figure 6: Heat-map showing the trend of how FPR
changes w.r.t. dataset size when using different numbers
of backdoors on all models.

backdoor targets as ground truth). Define a slightly
modified version of poison rate6 as:

p =
#backdoor samples
#clean samples

.

The clean accuracy is Ac = nc
N , while the com-

bined accuracy is

Ab =
nc + nb

(1 + p)N
.

Since E[nb] =
pN
K , the relative difference between

Ab and Ac is

ϵ =
Ab −Ac

Ac
,

Its expectation is

E[ϵ] =
(
N/K
nc

− 1
)
· p
1+p .

6This differs slightly from the poison rate definition used
elsewhere in our paper but simplifies the math without affect-
ing conclusions.

For any model performing better than random
guess on clean data, the prefactor

(
N/K
nc

− 1
)

lies
strictly between −1 and 0, which means that the
accuracy distortion decreases on the order of 1/p.
And since the poison rate needed is rather small (as
low as 2.2% for our setup in Appendix F, meaning
we do not need to include too many backdoor sam-
ples), the relative error is negligible. In practice, the
minimum poison rate required for backdoors to be
effective depends on external factors outside of the
DyePack framework—e.g., attack design, trigger
strength, training hyperparameters. We clarify that
our objective is not to propose a stronger backdoor
attack method, but to theoretically and empirically
demonstrate the effectiveness of repurposing back-
doors for contamination detection while providing
computable and bounded FPRs.

We also validate the stability of model ranking
empirically. Table 5 shows that across both datasets
and 8 different values of B, the relative ranking of
models remains unchanged before and after adding
backdoor samples. For example, on MMLU-Pro
with B = 8, five models maintain exactly the same
order despite small drops in raw accuracy. Across
100 head-to-head model comparisons (two datasets,
five values of B, and ten pairwise model combina-
tions), the minimum injection rate required to flip
any ranking is approximately 28.1%, which is far
larger than the rates we used.

Moreover, in practice, when it comes to the need
of strictly verifying the quality and trustworthiness
of becnhmark evaluation, the more reliable and
accepted approach is to use evaluator-run leader-
boards (e.g., Open LLM Leaderboard (Beech-
ing et al., 2023), BFCL (Patil et al., 2025), LM
Arena (lma)), rather than self-reported results (e.g.,
company blog posts). Since leaderboard owners
run the evaluation, they know which samples are
clean or backdoored, and can report accurate clean
accuracy directly, which completely avoids any ac-
curacy distortions caused by backdoor samples.
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Figure 7: The FPR for detecting contamination and the backdoor effectiveness as functions of the dataset size for
Llama-3.1-8B-Instruct under different number of backdoors. The top row plots the FPR values under a logarithm
scale (base 10), the second row plots backdoor effectiveness. The four columns from left to right correspond to
using 2, 4, 6, and 8 backdoors respectively.
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Figure 8: The FPR for detecting contamination and the backdoor effectiveness as functions of the dataset size for
Qwen-2.5-7B-Instruct under different number of backdoors. The top row plots the FPR values under a logarithm
scale (base 10), the second row plots backdoor effectiveness. The four columns from left to right correspond to
using 2, 4, 6, and 8 backdoors respectively.
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Figure 9: The FPR for detecting contamination and the backdoor effectiveness as functions of the dataset size for
Mistral-7B under different number of backdoors. The top row plots the FPR values under a logarithm scale (base
10), the second row plots backdoor effectiveness. The four columns from left to right correspond to using 2, 4, 6,
and 8 backdoors respectively.
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Figure 10: The FPR for detecting contamination and the backdoor effectiveness as functions of the dataset size for
Gemma-7B under different number of backdoors. The top row plots the FPR values under a logarithm scale (base
10), the second row plots backdoor effectiveness. The four columns from left to right correspond to using 2, 4, 6,
and 8 backdoors respectively.
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