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Abstract
Existing LLM-as-a-Judge approaches for eval-
uating text generation suffer from rating incon-
sistencies, with low agreement and high rating
variance across different evaluator models. We
attribute this to subjective evaluation criteria
combined with Likert scale scoring in exist-
ing protocols. To address this issue, we intro-
duce CheckEval, a checklist-based evaluation
framework that improves rating reliability via
decomposed binary questions. Through exper-
iments with 12 evaluator models across multi-
ple datasets, we first demonstrate that CheckE-
val strongly correlates with human judgments.
More importantly, CheckEval dramatically im-
proves the average agreement across evalua-
tor models by 0.45 and reduces the score vari-
ance. CheckEval scores furthermore have the
benefit of being more interpretable because it
decomposes evaluation criteria into traceable
binary decisions, allowing analyses of specific
attributes driving quality judgments.

1 Introduction

Evaluating text generation quality remains a major
challenge in Natural Language Generation (NLG),
particularly as Large Language Models (LLMs)
continue to advance in their generative capabili-
ties (Brown et al., 2020; Chowdhery et al., 2023;
Achiam et al., 2023). This is especially evident
in tasks such as summarization, dialogue, and cre-
ative writing (Liu et al., 2023d; Kim et al., 2023;
Liu et al., 2023a), where qualitative dimensions
of the output are crucial yet difficult to measure
systematically. Consequently, there is growing in-
terest in developing evaluation methods that can
effectively capture these aspects. These methods
will ideally involve well-defined protocols that en-
sure reliability across different raters and tasks. In
obtaining actual scores from such protocols, hu-
man evaluation remains the gold standard, but it

#,† Equal contribution. Our code is available at https:
//github.com/yukyunglee/CheckEval.

is costly, time-consuming, and difficult to scale
(Novikova et al., 2017; Belz et al., 2020). While
lexical overlap-based metrics such as ROUGE and
BLEU (Lin, 2004; Papineni et al., 2002) have been
widely adopted for ease of automation, they align
poorly with human judgments, calling for alterna-
tives that better approximate human evaluation.

Recent work has explored the use of LLM-as-a-
Judge as a scalable alternative, leveraging LLMs to
assess generated text directly (Zheng et al., 2023).
This paradigm has evolved through various ap-
proaches: single-turn prompting (Liu et al., 2023b;
Fu et al., 2023), meta-evaluator training (Kim et al.,
2023; Wu et al., 2024b), and even more sophisti-
cated methods like multi-agent debate (Chan et al.,
2024; Kim et al., 2024). However, these methods
often rely on subjective evaluation protocols that
require evaluators to assign holistic scores without
clear decision criteria. For example, evaluators are
typically asked to rate text on a Likert scale from
1 to 5 (higher is better) on dimensions such as co-
herence, consistency, fluency, and relevance. While
Likert scales are useful for capturing ordinal rela-
tionships in human evaluation, they face two key
challenges when applied to LLM-based evaluator
models. First, current LLMs are known to struggle
with subjective criteria in Likert-scale evaluations,
in particular showing difficulty in differentiating
between high-quality texts (Li et al., 2019; Sture-
borg et al., 2024). Second, evaluation results are
highly sensitive to the choice of evaluator mod-
els. These lead to low inter-evaluator agreement
(IEA),1 which we define as the agreement among
evaluator models (of similar capacity), as well as
high variance in evaluation results (Stureborg et al.,
2024). Yet, previous LLM-as-a-Judge approaches

1This is equivalent to Inter-Annotator Agreement (IAA) in
human evaluation (Artstein, 2017), but we use the term IEA in
this paper to make it clear that the agreement we are aiming to
improve is agreement between evaluator models, rather than
between human raters providing the gold evaluation.
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have overlooked these issues (Gao et al., 2024a).
To address these challenges, we introduce

CheckEval, a reliable evaluation framework that
decomposes evaluation criteria to target fine-
grained qualitative dimensions and turns them into
a checklist.2 Inspired by recent advances in fine-
grained decomposition of evaluation (Liu et al.,
2023c; Min et al., 2023), our framework breaks
down evaluation into discrete Boolean questions.
This decomposition simplifies each individual eval-
uation question and clarifies the rationale behind
evaluation decisions. CheckEval addresses key lim-
itations of existing methods in two ways. First,
it improves explainability by tracking how spe-
cific criteria are met, making evaluation decisions
more explicit and reducing ambiguity. Second, it
enhances consistency through structured binary re-
sponses, which improve IEA and reduce variability.
Importantly, CheckEval maintains competitive cor-
relation with human evaluation while achieving
these improvements. These improvements are veri-
fied through comprehensive experiments across 12
different LLM-based evaluator models of varying
sizes, including both open and closed-source mod-
els, on multiple datasets. The main contributions
of this study can be summarized as follows:

• We introduce CheckEval, a fine-grained eval-
uation framework leveraging a Boolean QA
checklist to address the rating consistency is-
sues with existing LLM-as-a-Judge methods
for NLG evaluation.

• Experiments across 12 LLMs and multi-
ple datasets demonstrate significant improve-
ments in correlation with human evaluation
compared to Likert-based approaches like G-
Eval (Liu et al., 2023b) and SEEval (Wu et al.,
2025).

• CheckEval shows reduced sensitivity to the
choice of evaluator models, leading to more
consistent evaluation results with lower vari-
ance and higher IEA.

2 Related Work

2.1 LLM-as-a-Judge

Traditional NLG evaluation metrics like ROUGE
and BLEU show clear limitations due to their
reliance on reference texts (Gu et al., 2021).

2Our checklist concept is inspired by Ribeiro et al. (2020),
who proposed checklist-based testing for NLP models.

With advances in LLMs, researchers have ex-
plored LLM-as-a-Judge, where an LLM evalu-
ates texts based on specified criteria, formalized
as F (subject, criteria) → result (Li et al., 2024).
LLM-as-a-Judge can be categorized into pairwise
and pointwise evaluation approaches (Gu et al.,
2024). Pairwise evaluation (Zheng et al., 2023; Qin
et al., 2024) compares two outputs to determine
relative preference but is computationally expen-
sive as comparisons scale exponentially. In contrast,
pointwise evaluation (Liu et al., 2023b; Fu et al.,
2023) assigns scores to individual outputs, allowing
for absolute scaling. However, existing pointwise
evaluation protocols often lack granularity, assign-
ing a single numeric score to each dimension of
evaluation. If the specified dimensions of evalua-
tion are too broad (e.g., fluency), this may lead
to inconsistencies in judgments because many fac-
tors could influence the quality along the target
dimension. CheckEval falls in to the category of
pointwise evaluation but addresses its limitations
by adopting a finer-grained Boolean QA Check-
list.3

2.2 Decompositional Approaches

Decomposing complex information into minimal
units to simplify tasks have been explored in vari-
ous areas of NLP (Kamoi et al., 2023; Chen et al.,
2022; Wright et al., 2022; Krishna et al., 2023;
Nenkova and Passonneau, 2004; Liu et al., 2024).
Recent studies have shown that breaking down con-
tent into atomic units reduces subjectivity in fac-
tual consistency judgment (Liu et al., 2023c; Min
et al., 2023). Atomic units represent elementary in-
formation that cannot be further divided. Similarly,
CheckEval decomposes evaluation criteria into fine-
grained Boolean QA Checklists to enhance clarity
and reduce ambiguity in the evaluation process.

2.3 Reliability of Evaluation

Reliability is an important yet often overlooked
component of evaluation. Many LLM-as-a-Judge
methods focus only on correlation with human
scores, often neglecting consistency and stabil-
ity across different LLMs. Recent studies have
highlighted several reliability concerns. Xiao et al.

3Recent studies (Wu et al., 2024a; Wang et al., 2024) use
LLM-as-a-Judge as a reward signal in alignment training with
RLHF (Ouyang et al., 2022). However, this approach primarily
aims to optimize model training rather than enhance evaluation
robustness and explainability. Our work focuses on improving
evaluation frameworks, and integrating evaluation signals into
model training is beyond our scope.
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Figure 1: Overall process of CheckEval. CheckEval consists of three stages: (1) Defining Dimensions of Evaluation,
where humans select specific dimensions and define sub-dimensions; (2) Checklist Generation, which incorporates
two augmentation methods—question diversification (green) and elaboration (blue); and (3) Checklist-based
Evaluation, where the model responds to the checklist with yes/no answers.

(2023) demonstrate that LLMs fail to reliably as-
sess subtle quality differences in text. Similarly,
Bavaresco et al. (2024) find these models often
assign highly variable ratings to identical inputs.
Furthermore, IEA remains low across models, com-
promising evaluation reliability (Stureborg et al.,
2024). Our work addresses these issues by evaluat-
ing not only correlation but also IEA and score vari-
ance across evaluator models, showing that Check-
Eval improves reliability across diverse LLMs.

3 Method

CheckEval consists of three stages, (1) Defining Di-
mensions of Evaluation, (2) Checklist Generation,
and (3) Checklist-Based Evaluation, as shown in
Figure 1. The framework translates high-level eval-
uation criteria into a Boolean QA checklist, each
question in the checklist expecting a binary (yes/no)
response. This format improves clarity and allevi-
ates ambiguity compared to Likert-scale scoring
(discussed further in Section 7.2).

3.1 Defining Dimensions of Evaluation

The first stage defines the dimensions of text quality
(e.g., consistency, fluency) to be evaluated by
either adopting predefined dimensions from bench-
marks or specifying custom dimensions for the task.
For each dimension, we then define sub-dimensions
that break down the high-level dimensions further
into distinct and detailed components. The sub-
dimensions are grounded in the original definitions

of the dimensions from benchmark datasets and
can also also informed by related work (Liu et al.,
2023c; Laban et al., 2023; Tang et al., 2019). For
instance, the original SummEval paper proposes
that fluency in summarization should include
sub-dimensions such as formatting, grammar,
completeness, and readability.

Sub-dimensions must be carefully designed to
align with benchmark definitions and to prevent in-
consistencies with the intended evaluation criteria.
While LLMs can be used to automate the gener-
ation of sub-dimensions and questions, we found
that fully relying on them often led to misalign-
ment with the criteria defined by the benchmark
(e.g., conflating coherence and fluency). This leads
to evaluation that is not grounded in the bench-
mark design, potentially producing incorrect as-
sessments. To address this, we only allowed human-
selected sub-dimensions in our work, following
prior work that recommends human oversight as
an effective way to maintain alignment with bench-
mark objectives (Szymanski et al., 2024; Pan et al.,
2024).

3.2 Checklist Generation

Seed Question Writing We create Boolean ques-
tions that correspond to the sub-dimensions defined
in the first step. Each question requires a ‘yes’ or
‘no’ answer, where ‘yes’ indicates adherence to
the evaluation criterion corresponding to the target
sub-dimension. This binary format simplifies the
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judgment process, ensuring that evaluation crite-
ria are explicitly defined and consistently applied
(Laban et al., 2023; Liu et al., 2023c). This format
also helps LLMs generate more reliable responses
by constraining the answer space, minimizing re-
sponse variability and reducing ambiguity. For ex-
ample, the question “Are all words in the sentence
spelled correctly?” elicits a clearer and more direct
response than a more open-ended alternative like

“How well does the sentence adhere to or deviate
from standard grammar rules?”.

Question Augmentation Manually designing a
comprehensive set of evaluation questions would
be ideal for ensuring a high-quality checklist. How-
ever, this approach faces scalability limitations,
making it impractical to generate a sufficiently
large and diverse set of questions for evaluation.
This challenge becomes even more significant
when extending to individual application scenar-
ios, each requiring its own comprehensive set of
questions. To this end, we expand the seed ques-
tions using LLMs, enhancing both the diversity
and granularity of evaluation. Augmentation en-
ables broader coverage while refining questions to
capture a wider range of lexical and semantic vari-
ations. This process follows two strategies, each
extending the coverage of seed questions. (1) Ques-
tion Diversification expands evaluation diversity
by introducing variations that explore different per-
spectives of sub-dimensions and contexts of the
seed question. (2) Question Elaboration increases
granularity by expanding the seed questions into
more specific and detailed questions. To ensure that
the augmented questions remain grounded in the
seed questions, Question Diversification and Elab-
oration are performed independently rather than
sequentially. For example, the seed question “Are
all words in the sentence spelled correctly?” can
be expanded into “Are all sentences complete, with
no fragments or missing components?” (diversifi-
cation) or specified into “Are proper nouns (names
of people, places, etc.) spelled correctly?” (elabo-
ration).

Question Filtering LLM-based augmentation ex-
pands the question set, but it can also generate
questions that do not fully align with the intended
evaluation criteria. Some questions may reflect mis-
interpretations of dimension definitions or add un-
necessary redundancy, which can affect evaluation
reliability. To filter out such questions, we apply
an LLM-based minimal filtering process that evalu-

ates a combined pool of seed and augmented ques-
tions for each dimension. This filtering step applies
three main criteria for retaining relevant questions:
(1) alignment, verifying that a ‘yes’ response to
the question indicates higher quality; (2) dimen-
sion consistency, confirming that the question ad-
heres to the original definition of the evaluation
dimension; and (3) redundancy removal, eliminat-
ing semantically overlapping questions to avoid
unnecessary repetition. While there is no direct
metric to measure filtering effectiveness, we ob-
serve improved correlation with human judgments
after filtering, suggesting that the filtering is func-
tioning as intended. We further validated the quality
of the checklist via a human study, where annota-
tors scored the augmented and filtered questions
(Section 6.1).

3.3 Checklist-based Evaluation
In the final stage, LLMs evaluate the target text
using the completed checklist (see Table 17 and 18
for the number of checklist questions and Table 26
and 27 for the dimensions, sub-dimensions, and cor-
responding seed question for each dataset). To im-
prove efficiency, we ask multiple questions simulta-
neously rather than asking each question separately.
We compared single-question and multi-question
inference in our pilot experiments and found no
noticeable difference in performance. Therefore,
we evaluated multiple questions together to reduce
the computational cost. The questions are grouped
by sub-dimensions, ensuring that related questions
are presented together to aid model comprehen-
sion. For each question in the checklist, the LLM
generates a ‘yes’ or ‘no’ response. The final qual-
ity score is computed as the proportion of ‘yes’
responses among all questions (e.g., 15 ‘yes’ out
of 20 questions yields 0.75). We note that the fi-
nal score is computed by uniformly weighting the
checklist questions: each ‘yes’ response contributes
equally to the final score. We discuss an alternative
weighting strategy in Appendix C.2. More imple-
mentation details about the evaluation process are
described in Section 4.4.

This approach enhances explainability by explic-
itly tracking how specific criteria are met, mak-
ing evaluation decisions more interpretable without
requiring additional rationale generation. Unlike
existing LLM-as-a-Judge approaches such as G-
Eval and SEEval (our main comparison points)
that generate numerical scores without explanation
(e.g., “Based on the conversation history, the cor-
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responding context, and the response, here is the
evaluation: ‘Naturalness’: 2”), the reasoning be-
hind the evaluation score is easily traceable from
the checklist responses.

4 Experimental Setup

4.1 Datasets and Metrics

Following Liu et al. (2023b), We use three
meta-evaluation benchmarks spanning various
tasks to measure the effectiveness of CheckE-
val. SummEval (Fabbri et al., 2021) is a bench-
mark designed for the meta-evaluation of sum-
marization. SummEval includes human evalua-
tions for each generated summary across four
dimensions: coherence, consistency, fluency,
and relevance. Topical-Chat (Gopalakrishnan
et al., 2019) is a benchmark for meta-evaluating
evaluation methods for knowledge-grounded di-
alogue systems. Following Zhong et al. (2022),
we evaluate our method using human ratings
across four dimensions: naturalness, coherence,
engagingness, and groundedness. QAGS (Wang
et al., 2020) is another widely used benchmark, but
since it focuses solely on factual consistency in
summarization, we only report the results in Ap-
pendix B.1. We report Pearson’s r, Spearman’s ρ,
Kendall’s τ on each benchmark. For SummEval,
correlations are calculated at the sample-level (per
summary), while for Topical-Chat, they are calcu-
lated at the turn-level (per conversational response).

4.2 Baselines

We selected G-Eval (Liu et al., 2023b) and SEE-
val (Wu et al., 2025) as our main baselines. G-
Eval adopts chain-of-thought prompting (Wei et al.,
2022) and a form-filling paradigm to generate eval-
uation scores on a Likert scale. We selected it
based on three factors: (1) its widespread adop-
tion as a representative baseline in LLM-as-a-
judge research, (2) the availability of publicly re-
leased prompts that facilitate reproducibility, and
(3) its relatively simple setup that avoids confound-
ing performance-enhancing techniques—such as
prompt optimization (e.g., self-correction), train-
ing meta-evaluators, preference learning, or multi-
agent frameworks. SEEval follows a similar Likert-
style scoring procedure to G-Eval but augments it
with a self-explanation step, prompting the model
to generate brief justifications before producing its
rating. This strategy is intended to improve evalua-
tion quality without additional training.

Like G-Eval and SEEval, CheckEval is also de-
signed to rely solely on a binary checklist mecha-
nism, without introducing additional optimization
techniques beyond standard prompting. Although
they are not apples-to-apples comparisons, we also
include comparisons to several strong methods sur-
veyed in Gu et al. (2024) and Gao et al. (2024b),
showing that CheckEval remains competitive even
in light of more recent developments. Further de-
tails on the baseline implementations are provided
in Appendix A.1.

4.3 Models

We test both open-source models of varying sizes
and closed-source GPT models as evaluators. The
models included in each category are as follows:4

(1) Large models (70–123B): LLama3.1-70B,
Mistral-Large (123B), Qwen2.5-72B. (2)
Medium models (22–32B): Mistral-Small
(22B), Gemma2-27B, Qwen2.5-32B. (3) Small
models (7–9B): LLama3.1-8B, Gemma2-9B,
Qwen2.5-7B, (4) GPT models: GPT-4-Turbo,
GPT-4o, GPT-4o-mini (Achiam et al., 2023;
Dubey et al., 2024; Jiang et al., 2023; Yang et al.,
2024; Riviere et al., 2024).

4.4 Implementation Details

Following prior work (Liu et al., 2023b), we set
temperature = 0, n = 1, and fix the random seed
for both G-Eval, SEEval and CheckEval. Addition-
ally, We set max_length to 20 for G-Eval as it gen-
erates a single score, 500 for SEEval following the
original implementation and 200 for CheckEval as
it needs to generate responses to multiple checklist
questions. We used the original prompts provided
by the authors of G-Eval and SEEval without any
modifications. Example prompts for CheckEval are
provided in the Appendix F. We evaluated multiple
questions in the checklist within a single prompt
to enhance efficiency and practicality rather than
evaluating each question individually, as discussed
in Section 3.3.

We used GPT-4o for both the question augmen-
tation and filtering steps in the checklist generation
stage. The total number of generated questions at
each step is provided in Appendix D. Our exper-
iments on open-weights models were conducted
using vLLM 0.6.3 (Kwon et al., 2023) with four
A100 GPUs (or eight A6000 GPUs). The API cost
to evaluate the 1,600 SummEval samples was ap-

4The links for each model are provided in Appendix E.
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Model Evaluation
Methods

SummEval (Avg.) Topical-Chat (Avg.)
ρ τ ρ r

non-LLM-as-a-Judge

ROUGE-L 0.17 0.13 0.24 0.24
BERTScore 0.23 0.18 0.25 0.24
MOVERScore 0.47 0.38 0.22 0.24
BARTScore 0.19 0.15 0.29 0.29
UniEval 0.39 0.31 0.28 0.26

LLM-as-a-Judge

Llama3.1-70B G-Eval 0.40 0.36 0.45 0.39
SEEval 0.41 0.35 0.55 0.54
CheckEval 0.46 0.40 0.57 0.57

Mistral-Large G-Eval 0.52 0.47 0.64 0.62
SEEval 0.54 0.50 0.64 0.63
CheckEval 0.55 0.48 0.65 0.65

Qwen2.5-72B G-Eval 0.43 0.39 0.62 0.61
SEEval 0.47 0.41 0.60 0.60
CheckEval 0.50 0.44 0.59 0.60

Mistral-Small G-Eval 0.18 0.16 0.58 0.52
SEEval 0.22 0.20 0.17 0.17
CheckEval 0.45 0.39 0.47 0.49

Gemma2-27B G-Eval 0.44 0.39 0.31 0.29
SEEval 0.44 0.39 0.41 0.44
CheckEval 0.51 0.44 0.53 0.52

Qwen2.5-32B G-Eval 0.50 0.45 0.46 0.38
SEEval 0.49 0.44 0.47 0.51
CheckEval 0.52 0.44 0.56 0.56

Llama3.1-8B G-Eval 0.24 0.21 0.11 0.09
SEEval 0.16 0.13 0.17 0.17
CheckEval 0.41 0.34 0.46 0.45

Gemma2-9B G-Eval 0.38 0.34 0.46 0.35
SEEval 0.49 0.40 0.49 0.50
CheckEval 0.43 0.37 0.49 0.50

Qwen2.5-7B G-Eval 0.41 0.38 0.45 0.39
SEEval 0.39 0.34 0.48 0.46
CheckEval 0.42 0.37 0.48 0.47

GPT-4 Turbo G-Eval 0.51 0.46 0.59 0.58
SEEval 0.50 0.46 0.60 0.61
CheckEval 0.52 0.46 0.63 0.64

GPT-4o G-Eval 0.32 0.29 0.52 0.43
SEEval 0.39 0.37 0.56 0.47
CheckEval 0.50 0.44 0.64 0.63

GPT-4o-mini G-Eval 0.45 0.40 0.58 0.56
SEEval 0.46 0.41 0.57 0.56
CheckEval 0.49 0.42 0.59 0.59

Table 1: Average correlation scores across dimensions
on the benchmarks. For SummEval, we report sample-
level ρ and τ . For Topical-Chat, we report turn-level
ρ and r. Colors indicate model groups: large (pink),
medium (blue), small (green) and GPT (purple). The
best score per model category is bolded, and the highest
overall score is marked with an underline.

proximately $66 with GPT-4 Turbo, $22 with GPT-
4o, and $1.30 with GPT-4o-mini.

5 Results

5.1 Correlation with Human Evaluation

Table 1 shows the correlation between various eval-
uation methods and human judgments on the Sum-
mEval and Topical-Chat datasets (detailed corre-
lation results for all dimensions are shown in Ta-
ble 22, 24 and 7 in the Appendix). We compare both
non-LLM-as-a-Judge and LLM-as-a-Judge meth-
ods, with an emphasis on how CheckEval compares
against G-Eval and SEEval across 12 LLMs.

Excluding MOVERScore, most non-LLM-as-a-

Model
Group

Evaluation
Methods

SummEval (Avg.) Topical-Chat (Avg.)

α κ α κ

All G-Eval 0.09 0.19 0.06 0.34
SEEval 0.08 0.14 0.07 0.31
CheckEval 0.48 0.48 0.45 0.45

Large G-Eval 0.05 0.16 0.01 0.51
SEEval 0.06 0.19 0.55 0.61
CheckEval 0.67 0.67 0.67 0.67

Medium G-Eval 0.04 0.14 0.07 0.22
SEEval 0.09 0.13 0.06 0.34
CheckEval 0.56 0.56 0.50 0.50

Small G-Eval 0.06 0.10 0.04 0.16
SEEval 0.02 0.07 0.16 0.15
CheckEval 0.24 0.24 0.17 0.17

GPT G-Eval 0.08 0.20 0.04 0.50
SEEval 0.13 0.32 0.12 0.51
CheckEval 0.56 0.56 0.54 0.54

Top-3∗ G-Eval 0.07 0.23 0.03 0.56
SEEval 0.09 0.19 0.06 0.34
CheckEval 0.65 0.65 0.57 0.57

Table 2: Inter-evaluator agreement (IEA) results for
SummEval and Topical-Chat, comparing G-Eval, SEE-
val and CheckEval across different model groups. Top-3
refers to the three models with the highest correlation
to human judgments (∗ see Appendix A.3 for the list
of top-3 models for each evaluation method). The best
score per model category is bolded.

Judge metrics exhibit very low correlation with
humans. Among LLM-as-a-Judge methods, Check-
Eval consistently achieves higher correlation with
human judgments than G-Eval and SEEval, with
only a few exceptions of Qwen2.5 and Mistral-
Small. These results suggest that CheckEval’s fine-
grained, checklist-based design more effectively
captures subtle differences in text quality, leading
to improved correlation with human judgments.
When analyzing model sizes, large open-source
models show strong performance, with Mistral-
Large combined with CheckEval achieving the
highest correlation among all models (ρ = 0.55 on
SummEval and r = 0.65 on Topical-Chat). Even
in medium- and small-sized models—where eval-
uation capacity tends to be weaker—CheckEval
maintains its advantage over G-Eval. Notably, some
medium-sized models perform particularly well on
SummEval, achieving correlations comparable to
larger models. For GPT models, CheckEval consis-
tently yields stronger correlations than G-Eval and
SEEval, particularly with GPT-4o.

5.2 Inter-evaluator Agreement (IEA)

Table 2 compares the IEA of G-Eval, SEEval and
CheckEval on the SummEval and Topical-Chat
datasets. We measure IEA using Krippendorff’s
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Figure 2: Human validation scores for the checklist gen-
eration process, averaged across all dimensions on both
SummEval and Topical-Chat. ‘Augmentation’ refers to
the percentage of augmented questions that fulfilled the
specified quality criteria, and ‘Filtering’ refers to the
percentage for filtered questions.

α and Fleiss’ κ, treating different LLMs within the
same group (large, medium, small, GPT) as annota-
tors. While correlation with human judgments is a
main metric in LLM-as-a-Judge, high correlation
alone does not guarantee reliability. Reliability
is a desirable property for evaluation methods, as it
ensures that different evaluator models (of similar
capacity) assign similar scores/rating to the same
input. This reliability is critical yet overlooked in
existing frameworks.

Both G-Eval and SEEval demonstrate this lim-
itation. They achieve fairly good correlation with
human judgments but show much lower IEA in
general. Table 2 shows a clear gap between the
IEA of G-Eval and SEEval and IEA of CheckE-
val, particularly for the Large and Top-3 models.
This indicates inconsistent scoring across different
LLM evaluator models of similar capacity. We spec-
ulate that existing protocols like G-Eval’s mainly
lend themselves to inconsistencies in the following
two ways: (1) the evaluation dimensions adopted
encompass multiple distinct fine-grained criteria,
making it difficult for LLMs to generate a consis-
tent holistic score, and (2) adjacent Likert scale
scores lack clear distinctions (e.g., 3 vs. 4) and
are not calibrated well across models (Laban et al.,
2023).

CheckEval’s fine-grained checklist approach im-
proves upon this limitation greatly. For the large
models, CheckEval achieves best IEA scores of
0.67 (α and κ), on SummEval, which is compara-
ble to IEA among human raters (κ ≈ 0.7) (Fabbri
et al., 2021), and 0.67 (α and κ) on Topical-Chat.
Crucially, CheckEval maintains both high corre-
lation and IEA across different LLMs and tasks.
These results demonstrate that CheckEval provides
a more reliable evaluation than G-Eval and SEEval

Model Evaluation
Method

SummEval (Avg.)

ρ τ

Mistral-Large CheckEval 0.5486 0.4797
CheckEval # 0.5486 0.4797

Topical-Chat (Avg.)

ρ r

CheckEval 0.6451 0.6453
CheckEval # 0.6443 0.6412

QAGS (Avg.)

r ρ

CheckEval 0.6681 0.6558
CheckEval # 0.6680 0.6558

Table 3: Effect of applying additional human filtering to
Mistral-Large. # indicates that filtering was applied.

(See Table 23 and 25 for a detailed per-dimension
IEA). We furthermore show that this improvement
in IEA is not solely due to the format of the output
(Likert vs. binary) in Appendix C.3.

6 Human Validation

We conducted two distinct human evaluation stud-
ies to validate our approach: (1) an assessment of
our automated checklist generation process, and
(2) a direct comparison between LLM and human
scores using the CheckEval protocol.

6.1 Validation of Checklist Generation
Process

To verify that each stage of the checklist genera-
tion process worked as intended, we conducted an
additional human evaluation focused on checklist
quality. This evaluation validates the augmentation
stage (seed questions, augmented questions), and
filtering stage (seed questions, filtered questions)
on both the SummEval and Topical-Chat datasets.
Human evaluators are tasked with assessing each
question on a binary (yes/no) basis, determining
whether it satisfies the augmentation and filtering
criteria. Figure 2 shows the average scores derived
from the checklist validation evaluation for both
the SummEval and Topical-Chat datasets. The aug-
mentation stage consistently achieves very high
average scores across both datasets (above 90%),
which suggests that the question augmentation pro-
cess of CheckEval is highly effective. The filter-
ing stage yields slightly lower scores but remains
competitive. We observed that annotators often ex-
pected 1–2 additional questions per dimensions to
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Correlation ρ τ

Mistral-large (C) vs. Humans (C) 0.73∗∗ 0.58∗∗

Qwen2.5-72B (C) vs. Humans (C) 0.72∗∗ 0.59∗∗∗

Llama3.1-70B (C) vs. Humans (C) 0.73∗∗ 0.58∗∗

Humans (L) vs. Humans (C) 0.69∗∗ 0.54∗∗∗

Agreement (dim: Relevance) # Annotators κ

Humans 3 0.53
LLMs (Large) & Humans 6 0.49

Table 4: Human validation of the CheckEval protocol
on SummEval. C denotes CheckEval, L denotes Likert
(original SummEval Score). We use the LLM results
from the large model group. (∗∗: p < .01, ∗∗∗: p < .001)

be filtered. Comments from annotators suggest that
these questions were mostly semantically overlap-
ping questions that the filter failed to capture.

To test whether removing these remaining ques-
tions would affect evaluation results, we conducted
a follow-up experiment by applying an additional
human-curated filtering step. We used Mistral-
Large, the best-performing model, for this experi-
ment. As shown in As shown in Table 3, the corre-
lation scores after applying the additional filtering
were extremely similar to the original results, with
only minor drops. This indicates that removing one
or two additional questions per evaluation dimen-
sion does not meaningfully impact the evaluation
behavior, suggesting that CheckEval’s automatic
filtering is functioning effectively in practice.

6.2 Validation of CheckEval Protocol

To further assess the validity of CheckEval proto-
col, we asked human annotators to manually apply
the same checklist. We then used these human-
generated scores to perform two analyses: a cor-
relation analysis against scores from LLMs, and
an inter-rater agreement analysis (Table 4). Details
of the human validation setup are provided in Ap-
pendix A.4.

Correlation We sampled 20 summaries from the
SummEval dataset. The random sampling was strat-
ified based on original annotation scores to ensure
balanced coverage of a wide range of quality levels.
Three annotators evaluated each summary using the
checklist, which contains approximately 25 binary
(yes/no) questions per evaluation dimension. This
resulted in roughly 2,000 binary annotations per an-
notator. For each summary, we aggregated checklist
scores by summing the number of ‘yes’ responses
per dimension, following the same method used
for LLM outputs. We then computed correlation

Figure 3: Kernel density estimation (KDE) of correla-
tions with human judgments for G-Eval (purple) and
CheckEval (pink) across different evaluator models on
SummEval and Topical-Chat. Dashed lines indicate
mean correlation values.

between these aggregated human scores and those
from three large LLMs: Mistral-Large, Qwen2.5-
72B, and Llama3.1-70B. In addition, we calculated
correlation between the original Likert-scale scores
from SummEval and the checklist-based human
scores. All correlations are statistically significant,
indicating that CheckEval scores successfully cap-
ture human judgments.

Agreement Due to the high annotation cost, we
focused on relevance for agreement analysis. We
collected binary annotations on 100 summaries
(sample size selected based on a power analysis
targeting 95% confidence interval width of ≤ 0.2
for IEA scores). Each annotator answered approxi-
mately 10,000 questions. We report inter-annotator
agreement among the three human annotators, as
well as agreement between the human group and
the large LLM group. We observe high agreement
between humans as well as between humans and
LLMs, showing that CheckEval elicits consistent
scores across both human and LLM raters.
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Conversation history (source)

A: Hello, how are you today? Do you like to go to concerts?
B: Not as much as I used to, but I do.
A: Yeah, same here! Creed gave a concert so bad there were lawsuits against the band.
...
B: I have no idea. I’m sure that someone has video of it. Do you enjoy the music of the Foo Fighters?
A: Oh yes, I love them. I love the video of all the drummers and other instruments playing at the same
time. People came from all over the world to be in that.
B: They are pretty amazing. They performed a concert so loud that it showed up on New Zealand’s
seismic monitors!

Context - In 2002, a Creed concert was so bad that four concertgoers filed a lawsuit against the band.

System Response - I know, I think I have heard that before, I think it was really cool.

Checklist

Questions Answer

Does the response avoid unnecessary repetition of the same content between sentences? Yes
Does each sentence directly relate to the topic being discussed? No
Is the overall message clear and easy to understand? Yes
Does each sentence in the response convey a clear meaning? Yes
Is the tone consistent throughout? Yes
Does the response avoid using jargon or overly complex words that might confuse the
listener?

Yes

Are there no major grammatical errors? Yes
Are there no ambiguous terms or phrases that could confuse the reader? Yes

Raw Scores - Human: 3 (1-3), G-Eval: 2 (1-5), CheckEval: 0.88 (0-1)

Normalized Scores - Human: 1 (0-1), G-Eval: 0.25 (0-1), CheckEval: 0.88 (0-1)

Table 5: Case study on the naturalness dimension in
the Topical-Chat.

7 Analysis

7.1 Stability Analysis of Evaluation Methods

We further analyze the stability of evaluation meth-
ods by examining the distribution of correlations
with human judgments across different evaluator
models. While the agreement metric (Section 5.2)
focuses on how consistently models assess the
same samples, stability evaluates whether an eval-
uation method maintains reliable alignment with
human annotations across all evaluator models.
As shown in Figure 3, CheckEval achieves higher
mean correlation and lower variance than G-Eval
on both datasets, demonstrating more stable evalu-
ation across different models. Detailed correlation
statistics, including full mean and variance values,
are available in Table 15.

7.2 Case Study

We conduct a case study on the naturalness di-
mension in the Topical-Chat dataset to illustrate
how CheckEval enhances explainability by explic-
itly showing which evaluation criteria contribute to
the final score (see Table 5). We evaluate system
responses generated by Mistral-large, the model
with the strongest correlation with human judg-
ments. For this case study, we normalize all scores
to a 0–1 scale for direct comparison. On evaluat-
ing the given text on naturalness, CheckEval (0.88)
aligns more closely with human judgments (1.0),
rating the response as natural. In contrast, G-Eval
(0.25) assigned a much lower naturalness score.
More importantly, while G-Eval provides only a
score without explanation, CheckEval’s systematic

SummEval Topical-Chat

CheckEval 0.48 0.55
w/o filtering 0.48 0.54
w/o augmentation 0.46 0.53

Table 6: Effect of filtering and augmentation compo-
nents in CheckEval

decomposition into specific sub-questions helps
us attribute the high score to individual questions
with a ‘yes’ answer (e.g., the response is natural
because it avoids repetition, the message is clear,
etc.). An additional case study on low-quality sam-
ples from benchmark datasets is presented in Ap-
pendix C.1, further demonstrating how CheckEval
operates across a wider range of text qualities.

7.3 Ablation Study
We conducted an ablation study to assess the con-
tribution of each component in the CheckEval
pipeline. Table 6 reports results when removing
filtering and augmentation step. Both components
contribute to overall performance, with the augmen-
tation stage showing a slightly larger impact. We
also explore whether the performance gap can be
closed by increasing the baseline inference budget
in Appendix C.4.

8 Conclusion

We propose CheckEval, a fine-grained Boolean QA
Checklist framework that addresses key limitations
in existing LLM-as-Judge approaches for evaluat-
ing text generation. By decomposing evaluation
criteria into structured binary questions, Check-
Eval enables reliable evaluation of (open-ended)
text. Our experiments across various models and
datasets demonstrate that CheckEval outperforms
widely-adopted Likert scale-based methods like G-
Eval, achieving higher correlation to human evalua-
tion and IEA across different LLM evaluators. The
framework shows particular strength in evaluating
high-quality texts by effectively capturing subtle
qualitative differences while maintaining explain-
ability. Additionally, CheckEval enhances evalu-
ation stability through reduced variance across
LLMs. This shows that our framework offers a
promising solution for constructing more reliable
evaluation benchmarks across diverse NLG tasks.

9 Limitations

CheckEval improves the reliability of LLM-as-a-
Judge evaluation, but it has several limitations.
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First, while automating checklist generation is a
promising direction for improving scalability, it
introduces challenges that are common to many
automatic evaluation methods. CheckEval uses
task-specific, human-written seed questions, which
helps ground the evaluation in task-relevant crite-
ria. However, as an automatic evaluation method,
there may be factors beyond our control that lead
to potential misalignment. In such cases, human
involvement may be necessary to ensure alignment
with task-specific goals. This is not a limitation
of CheckEval specifically, but a broader challenge
inherent to automatic evaluation approaches.

Second, this study focused on analyzing model-
wise evaluation trends and comparing Likert-scale
evaluation with Boolean QA checklist-based eval-
uation. However, recent LLM-as-a-Judge studies
have introduced various techniques to enhance hu-
man alignment. Methods such as prompt optimiza-
tion (e.g. chain-of-thought (Wei et al., 2022), self-
correction (Xu et al., 2023)), multi-agent debate
(Chan et al., 2024; Kim et al., 2024), and meta-
evaluator training (Kim et al., 2023; Wu et al.,
2024b; Zhu et al., 2025) enable LLMs to make
more enhanced judgments. Therefore, future work
should compare it against these approaches and
analyze how it differs in terms of reliability. This
would also help determine whether CheckEval can
be combined with such techniques to build a more
robust evaluation framework.

Third, while CheckEval’s boolean-style decision
improves evaluation reliability, not all NLG tasks
and evaluation criteria can be strictly answered
with a yes/no response. This limitation becomes
more apparent when considering evaluation scenar-
ios involving texts two to three times longer than
those in the current benchmarks. As text length
increases, some parts of a response may be strong
while others are weak. For example, the first half
of a response may be well-written and coherent,
while the latter half is unclear or contains errors.
This makes binary decisions insufficient for cap-
turing subtle quality differences. The constraints
of a yes/no format may become more pronounced
in long-form evaluations, suggesting that future
research should explore ways to mitigate this limi-
tation while preserving the strengths of CheckEval.

Fourth, CheckEval’s efficacy should be tested
on a wider range of NLG tasks. While this study
primarily focused on summarization and dialogue
response generation, additional experiments are
needed to validate CheckEval’s applicability to

tasks such as story generation, long-form ques-
tion answering, machine translation, and dialogue
generation. Given that evaluation criteria vary by
domain, it is important to examine how well Check-
Eval generalizes across different task settings. We
note that generalizability of CheckEval is already
actively being tested in follow-up work: for in-
stance CheckEval has been used for tasks such
as essay scoring (Chu et al., 2025), creative writ-
ing evaluation (Lee et al., 2024), and healthcare
evaluation (Mallinar et al., 2025).

Finally, improving the automation of checklist
design and evaluation processes would enhance
CheckEval’s usability. Currently, checklist con-
struction is a manual process tailored to specific
tasks, making it difficult to predict the time and
effort required for new evaluation domains. One
potential solution is to pre-build a large-scale ques-
tion database for NLG tasks and develop a system
that automatically assembles relevant checklists
based on task requirements. Future research should
explore LLM-assisted checklist generation and re-
configuration methods to ensure that CheckEval
can be efficiently applied to a broader range of
tasks.
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A Detailed Experimental Setup

A.1 Baselines

Baselines for main comparison (Table 1) (1)
BERTScore (Zhang et al., 2019) calculates text
similarity by contextual embeddings of BERT (De-
vlin et al., 2018). (2) MoverScore (Zhao et al.,
2019) extends BERTScore by incorporating soft
alignments, allowing words to be dynamically
matched across texts. It refines similarity computa-
tion through an improved aggregation strategy that
accounts for word importance and semantic shifts.
(3) BARTScore (Yuan et al., 2021) evaluates text
quality by computing the average likelihood of a
generated output under a BART-based conditional
probability model. (4) UniEval (Zhong et al., 2022)
is a multi-dimensional evaluation framework that
assesses various dimensions of text generation by
leveraging both reference-based and reference-free
evaluation. (5) G-Eval (Liu et al., 2023b) is an
LLM-based method, using chain-of-thought (Wei
et al., 2022) and a form-filling paradigm to gener-
ate evaluation scores on a Likert scale. We select
G-Eval as the main comparison point due to its
widespread adoption (Liu et al., 2023a, 2024), as
well as considering the similarity between G-Eval
and CheckEval that neither approach involves com-
plex prompt engineering, additional model training
or multi-agent evaluation. (6) SEEval (Wu et al.,
2025) is a prompt-based evaluator that incorporates
self-explanation, guiding the model to justify its
rating decisions without additional training.

Baselines for Comparative Analysis (Table 10)
(1) TIGERScore (Jiang et al., 2024) is a Llama 2
fine-tuned evaluation method that uses LLM to per-
form an explainable text evaluation. (2) GPTScore
(Fu et al., 2023) evaluates text by computing the
conditional log-likelihood of reference or output
generated under LLM. (3) Analyze-Rate (Chi-
ang and Lee, 2023) analyzes how specific design
choices in LLM-based evaluation, such as explana-
tion prompting and output format, affect alignment
with human judgment and finds that encouraging
explanation improves correlation. (4) HD-EVAL
(Liu et al., 2024) decomposes the evaluation into
fine-grained criteria and trains a regression model
to aggregate them in alignment with human prefer-
ences through iterative preference-based optimiza-
tion.

A.2 Detailed Process of Seed Question
Writing

We constructed seed questions based on prede-
fined evaluation criteria (e.g., coherence, consis-
tency), aiming for atomic, conceptually clear, and
non-overlapping formulations. Each evaluation di-
mension was first decomposed into finer-grained
sub-dimensions, and a set of seed questions was
written to cover each sub-dimension. This ensured
both conceptual coverage and balance across di-
mensions. To guide this process, we consulted
prior task-specific literature (e.g., summarization
evaluation papers) and followed established guide-
lines where available. We observed that overly fine-
grained seed questions often led LLMs to generate
augmented variants that deviated from the original
intent. Therefore, we intentionally maintained an
appropriate granularity level to preserve alignment
throughout augmentation. All seed questions were
cross-validated by our team to ensure clarity, con-
sistency, and relevance across different evaluation
dimensions.

A.3 Top-3 Models per Evaluation Method

The following models achieved the highest corre-
lation with human judgments for each evaluation
method: CheckEval (SummEval: GPT-4-Turbo,
Mistral-Large, Gemma2-27B; Topical-Chat:
GPT-4-Turbo, GPT-4o, Mistral-Large), G-
Eval (SummEval: GPT-4-Turbo, GPT-4o-mini,
Mistral-Large; Topical-Chat: GPT-4-Turbo,
Mistral-Large, Qwen2.5-72B), and SEEval
(SummEval: Mistral-Large, GPT-4-Turbo,
Qwen2.5-32B; Topical-Chat: Mistral-Large,
Qwen2.5-72B, GPT-4-Turbo).

A.4 Human Validation

To validate CheckEval, we conducted three hu-
man evaluation studies (correlation, agreement
study: Section 6.2 and Checklist Validation Fig-
ure 2). For these studies, summaries were randomly
sampled from the SummEval dataset using stratifi-
cation based on original human annotation scores
to ensure balanced coverage across quality levels.
Each study involves three Ph.D student-level eval-
uators. We recruited three human evaluators with
Ph.D. student-level qualifications or above in Com-
puter Science, all of whom had a background in
evaluation research and summarization/dialogue
tasks. Each participant was compensated with a
gift card equivalent to approximately 10,000 KRW
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Model Evaluation
Methods

CNN Xsum Average

r ρ τ r ρ τ r ρ τ

Llama3.1-70B G-Eval 0.5097 0.4559 0.4261 0.2317 0.2317 0.2317 0.3707 0.3438 0.3289
CheckEval 0.7002 0.6747 0.5683 0.5394 0.5018 0.4355 0.6198 0.5883 0.5019

Mistral-Large G-Eval 0.5617 0.6104 0.5705 0.5834 0.5834 0.5834 0.5726 0.5969 0.5770
CheckEval 0.7472 0.7291 0.6277 0.5889 0.5825 0.5352 0.6681 0.6558 0.5815

Qwen2.5-72B G-Eval 0.6830 0.7154 0.6686 0.5236 0.5236 0.5236 0.6033 0.6195 0.5961
CheckEval 0.7312 0.7013 0.6078 0.4931 0.4898 0.4197 0.6122 0.5956 0.5138

Mistral-Small G-Eval 0.5656 0.5425 0.5070 0.4833 0.4833 0.4833 0.5245 0.5129 0.4952
CheckEval 0.6563 0.6211 0.5239 0.4950 0.4496 0.3890 0.5757 0.5354 0.4565

Gemma2-27B G-Eval 0.6124 0.6543 0.6115 0.5644 0.5644 0.5644 0.5884 0.6094 0.5880
CheckEval 0.6975 0.6493 0.5397 0.4547 0.4040 0.3482 0.5761 0.5267 0.4440

Qwen2.5-32B G-Eval 0.6487 0.6357 0.5941 0.4290 0.4290 0.4290 0.5389 0.5324 0.5116
CheckEval 0.7286 0.7132 0.6145 0.5532 0.5231 0.4547 0.6409 0.6182 0.5346

Llama3.1-8B G-Eval 0.2785 0.2228 0.2082 0.0614 0.0614 0.0614 0.1700 0.1421 0.1348
CheckEval 0.6100 0.5995 0.4924 0.4244 0.4292 0.3669 0.5172 0.5144 0.4297

Gemma2-9B G-Eval 0.6599 0.7002 0.6544 0.5546 0.5546 0.5546 0.6073 0.6274 0.6045
CheckEval 0.5353 0.5713 0.4597 0.4502 0.4529 0.3875 0.4928 0.5121 0.4236

Qwen2.5-7B G-Eval 0.4688 0.4307 0.4025 0.2137 0.2137 0.2137 0.3413 0.3222 0.3081
CheckEval 0.6157 0.5672 0.4775 0.4419 0.4681 0.4063 0.5288 0.5177 0.4419

GPT-4 Turbo G-Eval 0.4941 0.5402 0.5049 0.5560 0.5560 0.5560 0.5251 0.5481 0.5305
CheckEval 0.7155 0.7211 0.6363 0.5922 0.5658 0.4961 0.6539 0.6435 0.5662

GPT-4o G-Eval 0.2864 0.3100 0.2897 0.0582 0.0582 0.0582 0.1723 0.1841 0.1740
CheckEval 0.6724 0.6601 0.5452 0.5448 0.5282 0.4564 0.6086 0.5942 0.5008

GPT-4o-mini G-Eval 0.5424 0.5833 0.5136 0.4591 0.4591 0.4212 0.5008 0.5212 0.4674
CheckEval 0.6175 0.6340 0.5451 0.4394 0.4831 0.4591 0.5285 0.5586 0.5021

Table 7: Average correlation scores across dimensions on the QAGS-CNN and QAGS-Xsum. we report r, ρ and τ .
Colors indicate model groups: large (pink), medium (blue), small (green) and GPT (purple).

(≈ 7 USD) per hour.5

For the correlation study (Table 4 - Correlation),
20 summaries are randomly sampled from the Sum-
mEval dataset. These summaries are subsequently
evaluated on a binary (yes/no) basis against a
checklist comprising four dimensions: coherence,
consistency, fluency, and relevance.

For the agreement study (Table 4 - Agreement),
100 summaries are sampled from the SummEval
dataset. These summaries are then evaluated on a
binary (yes/no) basis concerning only relevance
due to practical cost constraints (evaluation this
dimension alone already requires each annotator to
answer approximately 10K questions). The sample
size of 100 was calculated from a power analysis
based on a pilot study.

For the checklist validation study (Figure 2),
each annotator saw the same set of items, with ap-
proximately 28 questions per evaluation dimension
in SummEval and 26 in Topical-Chat.

5Note that the annotation was conducted in South Korea,
where the compensation level is slightly above the local mini-
mum wage.

Model
Group

Evaluation
Methods

CNN Xsum

α κ α κ

All
G-Eval 0.2215 0.3624 0.2873 0.2853
CheckEval 0.4149 0.4149 0.3416 0.3416

Large
G-Eval 0.1595 0.3345 0.1166 0.3772
CheckEval 0.6420 0.6420 0.5189 0.5189

Medium
G-Eval 0.0526 0.5612 0.0546 0.3458
CheckEval 0.5971 0.5970 0.4074 0.4074

Small
G-Eval 0.0805 0.0761 0.1796 0.0440
CheckEval 0.0846 0.0846 0.1881 0.1880

GPT
G-Eval 0.0625 0.3920 0.1674 0.2156
CheckEval 0.4720 0.4719 0.2998 0.2997

Top-3
G-Eval 0.0489 0.4845 0.0349 0.4381
CheckEval 0.5234 0.5234 0.5066 0.5066

Table 8: IEA - QAGS

B Additional Results

B.1 Additional experiments with QAGS

Table 7 shows the correlation between various
evaluation methods and human judgments on the
QAGS dataset. The results show that CheckEval
outperforms G-Eval for 9 out of the 12 LLMs (com-
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SummEval Coh. Con. Flu. Rel. Avg.

EM 0.7330 0.6920 0.7100 0.5710 0.6765

Topical-Chat Coh. Eng. Gro. Nat. Avg.

EM 0.6470 0.6670 0.6300 0.5910 0.6338

Table 9: Agreement (Exact Match) for each dimension
in checklist validation.

parable to results on the other two datasets reported
in the main text), indicating its effectiveness as an
evaluation Framework. Furthermore, Table 8 com-
pares the IEA of G-Eval and CheckEval on the
QAGS dataset. Across all model groups, CheckE-
val consistently achieves a higher IEA than G-Eval,
demonstrating its advantage in robustness.

B.2 Comparative performance of various
LLM-as-a-Judge methods

We also included a broader comparison with recent
evaluation methods surveyed in Gu et al. (2024);
Gao et al. (2024b). For CheckEval and G-Eval,
we use scores using the best-performing evalua-
tor in our experiments (Mistral-large). Table 10
shows that CheckEval performs well overall on
both datasets, and remains competitive even com-
pared to more recent approaches. However, we
would like to emphasize again that our main goal
is not to propose the best-performing LLM-as-a-
judge method. Instead, our focus is on building a
more reliable evaluation process and analyzing its
consistency across different LLMs, and that is why
comparison to G-Eval is the most directly relevant
result.

B.3 Checklist Validation

To quantify the reliability of human annotations
in the checklist validation study, we adopted Ex-
act Match as our IAA metric over more common
alternatives like Fleiss’s Kappa. This choice was
motivated by two characteristics of our data. The
evaluation results showed a response distribution
heavily concentrated on ’Yes’ (or 1) due to the high
quality of the items (see Figure Figure 2), which
can make Kappa’s chance correction misleading.
Furthermore, the small number of items per dimen-
sion (fewer than 30) can impact the stability of
Kappa scores. Given these factors, we report Exact
Match scores of 0.677 for SummEval and 0.634 for
Topical-Chat (see Table 9).

Evaluation
Methods

Model SummEval (Avg.) Topical-Chat (Avg.)
ρ τ ρ r

TIGERScore LLaMA 2–13B† 0.39 0.31 0.28 0.26
GPTScore GPT-4 0.39 0.34 0.36 0.34
G-Eval Mistral-large 0.52 0.47 0.64 0.62
Analyze-Rate Claude 3 Sonnet 0.53 0.44 0.64 0.64
HD-EVAL GPT-4 0.53 – 0.62 0.63
SEEval Claude 3 Sonnet 0.52 0.47 0.65 0.64
CheckEval Mistral-large 0.55 0.48 0.65 0.65

Table 10: Comparative performance of various LLM-as-
a-Judge methods. Models marked with † are fine-tuned.

C Discussion

C.1 Analysis of Performance on High and
Low-Quality Texts

As LLMs improve, their high-quality outputs be-
come more fluent and coherent, making it increas-
ingly difficult for evaluation methods to differen-
tiate subtle quality differences. Meanwhile, low-
quality text poses a different challenge, as its over-
all readability is low, obscuring distinctions be-
tween evaluation criteria and making it harder to
properly assess all target dimensions of quality.
Given these differences, it is important to assess
how evaluation methods handle varying levels of
text quality. To this end, we conduct a detailed
dimension-wise analysis by dividing the data into
high-quality and low-quality groups based on hu-
man annotation scores (e.g., on a 1–5 scale, treat
scores ≥3 as High, <3 as Low). We compute the
average correlation across 12 LLMs to analyze
how CheckEval and G-Eval align with human judg-
ments for different levels of text quality.

As shown in Figure 4, CheckEval consistently
achieves higher correlations with human judgments
than G-Eval in high-quality texts across all dimen-
sions. Notably, for SummEval, CheckEval shows
much stronger alignment in fluency (0.34 vs.
0.16). For Topical-Chat, it outperforms G-Eval in
engagingness (0.60 vs. 0.42) and naturalness
(0.44 vs. 0.35) by a large margin.

However, for low-quality texts, while CheckE-
val generally maintains stronger correlations com-
pared to G-Eval, it exhibits performance drops in a
small number of cases, notably in fluency (Sum-
mEval) and groundedness (Topical-Chat). From
our additional analysis of the results, one possible
explanation is that discrepancies between bench-
mark definitions and actual human annotations of
these dimensions may have contributed to the ob-
served performance drop in CheckEval. For exam-
ple, while SummEval defines fluency as the ab-
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(a) SummEval

(b) Topical-Chat

Figure 4: dimension-wise correlation analysis of G-Eval
(purple) and CheckEval (pink), with samples divided
based on human annotator ratings into High-Quality
(human ratings ≥3) and Low-Quality (human ratings
<3) groups. Each bar represents correlation with human
judgments across different quality dimensions.

sence of formatting issues, capitalization errors, or
ungrammatical sentence structures that hinder read-
ability, human annotators often prioritized over-
all readability over strict grammatical correctness.
Since CheckEval relies on fine-grained Boolean
QA decisions aligned with predefined criteria, the
correlation with human scores may be impacted
when human annotation practices deviate from the
exact evaluation guidelines. In the groundedness
dimension of Topical-Chat, a different issue arises.
For low-quality texts, CheckEval’s strict yes/no
framework often results in uniformly low scores,
making it difficult to distinguish between vary-
ing degrees of poor responses. In contrast, G-Eval,
which allows for more gradient judgments, showed
advantages in these cases. This suggests potential
refinements to the Boolean QA framework to better
handle annotation inconsistencies while preserving
its fine-grained evaluation capability.

C.2 Does CheckEval need question
weighting?

We conducted an additional analysis to investigate
whether incorporating question-specific weights
improves the reliability of CheckEval scores. Mo-
tivated by HD-Eval (Liu et al., 2024), we trained
a linear regression model using 20% of the Sum-
mEval data to estimate the relative importance (i.e.,

Model Aggregation
Strategy

SummEval (Avg.)

ρ τ

Llama3.1-70B original 0.4628 0.4037
weighted 0.4674 (±0.015) 0.4046 (±0.016)

Mistral-Large original 0.5486 0.4797
weighted 0.5320 (±0.021) 0.4622 (±0.021)

Qwen2.5-72B original 0.5024 0.4413
weighted 0.5002 (±0.0130) 0.4360 (±0.006)

Mistral-Small original 0.4473 0.3938
weighted 0.4424 (±0.029) 0.3920 (±0.029)

Gemma2-27B original 0.5108 0.4426
weighted 0.5063 (±0.008) 0.4361 (±0.006)

Qwen2.5-32B original 0.5193 0.4566
weighted 0.5093 (±0.006) 0.4422 (±0.005)

Llama3.1-8B original 0.4342 0.3654
weighted 0.3752 (±0.009) 0.3191 (±0.008)

Gemma2-9B original 0.4186 0.3607
weighted 0.4561 (±0.005) 0.3920 (±0.003)

Qwen2.5-7B original 0.4162 0.3652
weighted 0.4026 (±0.023) 0.3545 (±0.019)

GPT-4 Turbo original 0.5212 0.4633
weighted 0.5182 (±0.003) 0.4563 (±0.001)

GPT-4o original 0.5042 0.4377
weighted 0.4771 (±0.026) 0.4113 (±0.023)

GPT-4o-mini original 0.4913 0.4157
weighted 0.4817 (±0.013) 0.4032 (±0.008)

Table 11: Effect of question weighting strategy on Sum-
mEval.

weights) of each checklist question. These weights
were then used to compute a weighted CheckE-
val score. To assess robustness, the process was
repeated across five random seeds, each sampling
a different 20% subset of the data. Table 11 reports
the average results and standard deviation across
seeds. “original” denotes the unweighted CheckE-
val score, while “weighted” denotes the score after
applying the learned question-specific weights. The
overall results were mixed. A couple of evaluator
models benefited from learning the weights, but
most others did not. Since there were no reliable
gains from weighting the questions, we ultimately
chose not to incorporate weighted aggregation into
our results. While we only experimented with a sim-
ple linear weighting strategy here, we could explore
more sophisticated methods of estimating question
importance as well as learning weights that are
generalizable across different evaluator models in
future work.

C.3 Does Binarizing Likert-Scale Outputs
Close the IEA Gap?

We conducted an additional analysis to investigate
whether the observed IEA gap is a fundamental dif-
ference between the evaluation protocols or simply
an artifact of their different output formats (binary
vs. Likert). One way to test this would be to directly
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Dataset Dimension Original Binary Binary
Scale Conversion 1 Conversion 2

SummEval All 1–5 [4,5] → 1 [3,4,5] → 1
[1,2,3] → 0 [1,2] → 0

Topical Chat Coh./Eng./Nat. 1–3 [3] → 1 [2,3] → 1
[1,2] → 0 [1] → 0

Topical Chat Gro. 0–1 – –
QAGS All 0–1 – –

Table 12: Binary conversion schemes applied to G-
Eval’s Likert-scale outputs to enable fairer IEA compar-
ison.

binarize the Likert scores derived from the evalu-
ator models. We conducted this experiment with
G-Eval’s Likert-scale outputs–that is, we converted
the Likert scores (1-5 scale for SummEval and 1-3
scale for Topical-Chat) to binary (0/1) scores by
mapping the lower values to 0 and higher values
to 1. To ensure that the results are not affected
by the mapping choice of the middle value on the
scale, we tested both possible versions of the map-
ping schemes: treating the middle value as 0 and 1,
respectively, as detailed in Table 12. Scores of eval-
uation dimensions that already employed a binary
scoring scheme were not converted.

The results, shown in Tables 13 and 14, are clear
and consistent. While binarizing the outputs does
improve G-Eval’s IEA scores compared to using
the original Likert scale scores, a large performance
gap to CheckEval remains across all model groups.
We therefore conclude that the performance differ-
ence is not solely an effect of the output format but
stems from the fundamental improvements in our
proposed checklist-based evaluation protocol.

C.4 Does Increasing the Inference Budget
Strengthen the Baselines?

To address the possibility that our performance
gains stem from differences in the inference bud-
get, we increased the budget for the baseline. One
straightforward way to do this is to sample multiple
outputs and aggregate the results. We applied this
method to G-Eval on Topical-Chat, setting ‘tem-
perature=1.0’ to enable diverse generations and
using ‘n=3’ samples before averaging the scores.
As shown in Table 16, the resulting correlations
changed minimally (r 0.6387 vs. 0.6389; ρ 0.6169
vs. 0.6176), indicating that this aggregation does
not close the performance gap with our checklist-
based approach.

Model Size Method α κ

All G-Eval 0.0929 0.1859
G-Eval (binary [4,5]→1) 0.1063 0.2812
G-Eval (binary [3,4,5]→1) 0.1074 0.2835
CheckEval 0.4803 0.4803

Best G-Eval 0.0731 0.2266
G-Eval (binary [4,5]→1) 0.0666 0.4650
G-Eval (binary [3,4,5]→1) 0.0666 0.4647
CheckEval 0.6471 0.6471

GPT G-Eval 0.0841 0.2018
G-Eval (binary [4,5]→1) 0.0693 0.3012
G-Eval (binary [3,4,5]→1) 0.0676 0.3016
CheckEval 0.5575 0.5575

Large G-Eval 0.0512 0.1586
G-Eval (binary [4,5]→1) 0.3204 0.4646
G-Eval (binary [3,4,5]→1) 0.3228 0.4575
CheckEval 0.6731 0.6731

Medium G-Eval 0.0430 0.1411
G-Eval (binary [4,5]→1) 0.0606 0.2758
G-Eval (binary [3,4,5]→1) 0.0658 0.2821
CheckEval 0.5617 0.5617

Small G-Eval 0.0635 0.0998
G-Eval (binary [4,5]→1) 0.1450 0.1984
G-Eval (binary [3,4,5]→1) 0.0835 0.1995
CheckEval 0.2387 0.2387

Table 13: IEA on SummEval after converting G-Eval’s
Likert-scale outputs to binary formats.

D The number of questions at each stage

We provide a step-by-step breakdown of the num-
ber of questions, from the initial seed questions
through the augmentation and filtering stages to
the final checklist, with the number of questions
varying across different dimensions. Before and
after filtering, the correlation shows slight varia-
tions. For the SummEval, Spearman’s ρ changed
from 0.4790 to 0.4816, while Kendall’s τ changed
from 0.4143 to 0.4163. In the Topical-Chat, Pear-
son’s r remained unchanged at 0.5553, whereas
Spearman’s ρ increased from 0.5446 to 0.5546. The
number of questions for each dataset is reported in
Table 17 and 18, respectively.

E Open-source model information

Table 19 provides links to all open-source models
used in our experiments. Table 20 lists each model
along with its corresponding license. Table 21 sum-
marizes the datasets used and their associated li-
censes. If a dataset is publicly available but no
explicit license is provided, we denote the license
as ‘–’ in the table.
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Model Size Method α κ

All G-Eval 0.0589 0.3407
G-Eval (binary [3]→1) 0.0565 0.3841
G-Eval (binary [2,3]→1) 0.1711 0.3893
CheckEval 0.4494 0.4494

Best G-Eval 0.0255 0.5593
G-Eval (binary [3]→1) 0.0181 0.5799
G-Eval (binary [2,3]→1) 0.0181 0.5806
CheckEval 0.5736 0.5736

GPT G-Eval 0.0385 0.4971
G-Eval (binary [3]→1) 0.0231 0.5196
G-Eval (binary [2,3]→1) 0.0240 0.5151
CheckEval 0.5395 0.5395

Large G-Eval 0.0145 0.5088
G-Eval (binary [3]→1) 0.0090 0.5749
G-Eval (binary [2,3]→1) 0.0092 0.5753
CheckEval 0.6736 0.6736

Medium G-Eval 0.0688 0.2231
G-Eval (binary [3]→1) 0.0585 0.2450
G-Eval (binary [2,3]→1) 0.0613 0.2410
CheckEval 0.5044 0.5043

Small G-Eval 0.0372 0.1636
G-Eval (binary [3]→1) 0.0635 0.1713
G-Eval (binary [2,3]→1) 0.0674 0.1591
CheckEval 0.1669 0.1668

Table 14: IEA on Topical-Chat after converting G-Eval’s
Likert-scale outputs to binary formats.

Dataset Correlation Method Mean Variance

SummEval Spearman G-Eval 0.3989 0.0100
SEEval 0.4116 0.0129
CheckEval 0.4808 0.0019

Kendall G-Eval 0.3647 0.0084
SEEval 0.3684 0.0111
CheckEval 0.4163 0.0016

Topical-Chat Spearman G-Eval 0.4342 0.0220
SEEval 0.4759 0.0245
CheckEval 0.5553 0.0043

Pearson G-Eval 0.4797 0.0205
SEEval 0.4679 0.0231
CheckEval 0.5546 0.0042

Table 15: Mean and variance for each dataset and corre-
lation method

Aspect Metric ρ r

Mistral-Large

G-Eval 0.6389 0.6176
G-Eval aggregation (n=3) 0.6387 0.6169
SEEVal 0.6352 0.6323
CheckEval 0.6451 0.6453

Table 16: Comparison of Evaluation Methods under
Different Inference Budgets.

Coherence Consistency Fluency Relevance

Seed Questions 3 3 4 5
Diversification 7 12 11 5
Elaboration 13 14 24 21
Filtered Questions 0 0 4 5
Final Checklist 23 29 35 26

Table 17: The number of questions - SummEval.

Naturalness Coherence Engagingness Groundedness

Seed Questions 5 4 4 5
Diversification 9 6 10 6
Elaboration 14 11 17 15
Filtered Questions 0 1 0 0
Final Checklist 28 20 31 26

Table 18: The number of questions - Topical-Chat.

Model Link

Llama3.1-70B https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
Mistral-large (123B) https://huggingface.co/mistralai/Mistral-Large-Instruct-2411
Qwen2.5-72B https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
Mistral-Small (22B) https://huggingface.co/mistralai/Mistral-Small-Instruct-2409
Gemma2-27B https://huggingface.co/google/gemma-2-27b-it
Qwen2.5-32B https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
Llama3.1-8B https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
Gemma2-9B https://huggingface.co/google/gemma-2-9b-it
Qwen2.5-7B https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

Table 19: Model Links.

Models License

meta-llama/Llama-3.1-70B-Instruct llama3.1
mistralai/Mistral-Large-Instruct-2411 mrl
Qwen/Qwen2.5-72B-Instruct qwen
mistralai/Mistral-Small-Instruct-2409 mrl
google/gemma-2-27b-it gemma
Qwen/Qwen2.5-32B-Instruct Apache license 2.0
meta-llama/Llama-3.1-8B-Instruct llama3.1
google/gemma-2-9b-it gemma
Qwen/Qwen2.5-7B-Instruct Apache license 2.0
GPT-4 Turbo Proprietary
GPT-4o Proprietary
GPT-4o-mini Proprietary

Table 20: List of models and their corresponding li-
censes.

Datasets License

SummEval MIT license
Topical-chat CDLA-Sharing-1.0
QAGS -

Table 21: List of datasets and their corresponding li-
censes.

F Prompts

Figure 5 and 6 shows the detailed evaluation
prompt. Figure 7 and 8 shows the detailed augmen-
tation prompt. Figure 9 shows the filtering prompt.
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Model Evaluation
Method

Coherence Consistency Fluency Relevance Average
ρ τ ρ τ ρ τ ρ τ ρ τ

LLM-as-a-judge

Llama3.1-70B G-Eval 0.5206 0.4459 0.3513 0.3306 0.3104 0.2924 0.4371 0.3800 0.4048 0.3622
SEEval 0.5836 0.4821 0.4188 0.3878 0.2287 0.2043 0.4037 0.3295 0.4087 0.3509
CheckEval 0.6222 0.5264 0.5406 0.4913 0.2637 0.2288 0.4248 0.3682 0.4628 0.4037

Mistral-Large G-Eval 0.5892 0.5078 0.6153 0.5824 0.3611 0.3435 0.5026 0.4368 0.5171 0.4676
SEEval 0.5472 0.5132 0.6065 0.5782 0.4563 0.4352 0.5406 0.4581 0.5377 0.4962
CheckEval 0.6439 0.5424 0.6132 0.5668 0.4563 0.3926 0.4811 0.4169 0.5486∗ 0.4797∗

Qwen2.5-72B G-Eval 0.3937 0.3420 0.5248 0.4903 0.3202 0.3050 0.4762 0.4178 0.4287 0.3888
SEEval 0.4761 0.4002 0.5156 0.4742 0.3746 0.3452 0.5118 0.4390 0.4695 0.4147
CheckEval 0.5778 0.4932 0.5490 0.5047 0.4113 0.3582 0.4717 0.4092 0.5025 0.4413

Mistral-Small G-Eval 0.2885 0.2463 0.2748 0.2532 0.0134 0.0126 0.1629 0.1343 0.1849 0.1616
SEEval 0.1260 0.1003 0.2040 0.1823 0.3822 0.3519 0.1829 0.1468 0.2238 0.1953
CheckEval 0.5297 0.4531 0.5113 0.4712 0.3098 0.2670 0.4381 0.3837 0.4472 0.3937

Gemma2-27B G-Eval 0.5731 0.4951 0.5111 0.4684 0.1596 0.1520 0.5239 0.4515 0.4419 0.3917
SEEval 0.5892 0.5021 0.4829 0.4552 0.3629 0.2132 0.5193 0.4361 0.4886 0.4017
CheckEval 0.6199 0.5244 0.4924 0.4485 0.4402 0.3756 0.4906 0.4220 0.5108 0.4426

Qwen2.5-32B G-Eval 0.5361 0.4682 0.5550 0.5199 0.3606 0.3420 0.5363 0.4703 0.4970 0.4501
SEEval 0.5731 0.4681 0.5578 0.5267 0.3893 0.3460 0.4352 0.4371 0.4889 0.4445
CheckEval 0.6056 0.4938 0.5311 0.4767 0.4879 0.4157 0.4605 0.3797 0.5213 0.4415

Llama3.1-8B G-Eval 0.2689 0.2253 0.2988 0.2763 0.0088 0.0087 0.3644 0.3139 0.2352 0.2060
SEEval 0.2684 0.2190 0.0508 0.0483 0.1623 0.1472 0.1488 0.1251 0.1576 0.1349
CheckEval 0.5045 0.4048 0.4561 0.3887 0.3040 0.2654 0.3933 0.3168 0.4145 0.3439

Gemma2-9B G-Eval 0.5649 0.4895 0.4555 0.4206 -0.0252 -0.0221 0.5272 0.4602 0.3806 0.3370
SEEval 0.5636 0.4843 0.4045 0.3935 0.2876 0.2510 0.4520 0.4548 0.4269 0.3959
CheckEval 0.5777 0.4876 0.3979 0.3450 0.2798 0.2358 0.4590 0.4003 0.4286 0.3672

Qwen2.5-7B G-Eval 0.3785 0.3270 0.5343 0.5020 0.3309 0.3146 0.4154 0.3617 0.4148 0.3763
SEEval 0.3950 0.3259 0.4767 0.4373 0.2595 0.2352 0.4350 0.3623 0.3916 0.3402
CheckEval 0.4068 0.3398 0.4214 0.3800 0.4598 0.4226 0.3768 0.3183 0.4162 0.3652

GPT-4 Turbo G-Eval 0.4912 0.4251 0.6498 0.6229 0.3878 0.3668 0.5064 0.4397 0.5088 0.4636
SEEval 0.5292 0.4621 0.6351 0.6031 0.3551 0.3327 0.4728 0.4501 0.4981 0.4620
CheckEval 0.5807 0.4901 0.6232 0.5872 0.4611 0.4058 0.4197 0.3713 0.5212 0.4636

GPT-4o G-Eval 0.1896 0.1581 0.4219 0.3911 0.2862 0.2676 0.3969 0.3421 0.3237 0.2897
SEEval 0.3391 0.3618 0.4421 0.4162 0.3665 0.3512 0.4021 0.3617 0.3875 0.3727
CheckEval 0.5564 0.4644 0.5304 0.4738 0.4699 0.4125 0.4602 0.4001 0.5042 0.4377

GPT-4o-mini G-Eval 0.4826 0.4197 0.5243 0.4837 0.2734 0.2598 0.5192 0.4524 0.4499 0.4039
SEEval 0.5149 0.4221 0.4831 0.4567 0.3552 0.3005 0.4882 0.4681 0.4604 0.4119
CheckEval 0.5854 0.4829 0.4939 0.4286 0.3883 0.3314 0.4975 0.4199 0.4913 0.4157

Table 22: Sample-level Spearman (ρ) and Kendall tau (τ ) correlations on the SummEval. The best score per model
category is bolded, and the highest overall score is marked with *.

Model
Group

Evaluation
Methods

Coherence Consistency Fluency Relevance Average
α κ α κ α κ α κ α κ

All G-Eval 0.0751 0.2706 0.0539 0.1625 0.1626 0.0699 0.0799 0.2407 0.0929 0.1859
SEEval 0.0713 0.1332 0.0837 0.1457 0.0789 0.1391 0.0861 0.1420 0.0800 0.1400
CheckEval 0.4242 0.4242 0.2963 0.2963 0.4422 0.4422 0.7584 0.7584 0.4803 0.4803

Large G-Eval 0.0448 0.2170 0.0476 0.0057 0.0621 0.2372 0.0502 0.1745 0.0512 0.1586
SEEval 0.0531 0.1827 0.0674 0.1965 0.0592 0.1884 0.0603 0.1924 0.0600 0.1900
CheckEval 0.7154 0.7154 0.5757 0.5757 0.5207 0.5206 0.8806 0.8806 0.6731 0.6731

Medium G-Eval 0.0096 0.3742 0.0229 0.1306 0.0970 -0.1462 0.0424 0.2057 0.0430 0.1411
SEEval 0.0826 0.1234 0.0947 0.1361 0.0883 0.1292 0.0944 0.1313 0.0900 0.1300
CheckEval 0.6455 0.6455 0.2723 0.2723 0.5851 0.5851 0.7440 0.7440 0.5617 0.5617

Small G-Eval 0.0704 0.2237 0.0044 0.1351 0.1089 -0.1161 0.0702 0.1564 0.0635 0.0998
SEEval 0.0117 0.0628 0.0265 0.0741 0.0189 0.0663 0.0229 0.0768 0.0200 0.0700
CheckEval 0.0827 0.0826 0.0237 0.0237 0.1746 0.1746 0.6739 0.6739 0.2387 0.2387

GPT G-Eval 0.1425 0.1513 0.0984 0.0823 0.0064 0.3388 0.0889 0.2347 0.0841 0.2018
SEEval 0.1196 0.3097 0.1338 0.3289 0.1275 0.3158 0.1391 0.3256 0.1300 0.3200
CheckEval 0.5081 0.5081 0.4135 0.4135 0.5473 0.5473 0.7612 0.7612 0.5575 0.5575

Top-3 G-Eval 0.1104 0.2360 0.1002 0.0544 0.0171 0.3751 0.0647 0.2407 0.0731 0.2266
SEEval 0.0812 0.1786 0.0973 0.1962 0.0884 0.1927 0.0931 0.1925 0.0900 0.1900
CheckEval 0.6236 0.6236 0.4836 0.4836 0.6698 0.6698 0.8114 0.8114 0.6471 0.6471

Table 23: IEA - SummEval.
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Model Evaluation
Methods

Coherence Engagingness Groundedness Naturalness Average
ρ r ρ r ρ r ρ r ρ r

LLM-as-a-judge

Llama3.1-70B G-Eval 0.4089 0.3622 0.3968 0.3501 0.6190 0.5553 0.3684 0.2991 0.4483 0.3917
SEEval 0.5160 0.4923 0.6384 0.6312 0.6091 0.6164 0.4223 0.4238 0.5465 0.5409
CheckEval 0.5517 0.5360 0.6547 0.6551 0.4706 0.4917 0.6065 0.6082 0.5709 0.5727

Mistral-Large G-Eval 0.5709 0.5699 0.7135 0.6996 0.6217 0.5703 0.6494 0.6307 0.6389 0.6176
SEEval 0.6207 0.6146 0.7128 0.7055 0.6132 0.6139 0.5941 0.5950 0.6352 0.6323
CheckEval 0.6269 0.6174 0.7215 0.7206 0.5806 0.5766 0.6512 0.6664 0.6451∗ 0.6453∗

Qwen2.5-72B G-Eval 0.5650 0.5507 0.6944 0.6870 0.6122 0.6217 0.5927 0.5812 0.6161 0.6102
SEEval 0.5448 0.5419 0.6605 0.6552 0.5942 0.6066 0.5879 0.5896 0.5969 0.5983
CheckEval 0.5551 0.5506 0.7204 0.7199 0.4769 0.4873 0.6252 0.6398 0.5944 0.5994

Mistral-Small G-Eval 0.4439 0.4215 0.6550 0.6411 0.6939 0.5102 0.5103 0.4996 0.5758 0.5181
SEEval 0.2531 0.2478 0.1768 0.1971 0.1276 0.1238 0.1169 0.1274 0.1686 0.1740
CheckEval 0.3925 0.4225 0.6061 0.5914 0.4789 0.4826 0.4191 0.4777 0.4742 0.4935

Gemma2-27B G-Eval 0.4086 0.4337 0.3286 0.2928 0.2680 0.2361 0.2173 0.1953 0.3056 0.2895
SEEval 0.4551 0.4621 0.4212 0.4512 0.3551 0.3795 0.4627 0.4215 0.4235 0.4286
CheckEval 0.5036 0.4952 0.6390 0.6323 0.3794 0.3718 0.5825 0.5714 0.5261 0.5177

Qwen2.5-32B G-Eval 0.4834 0.4515 0.3663 0.2697 0.4616 0.3082 0.5367 0.4924 0.4620 0.3804
SEEval 0.4551 0.4351 0.4116 0.4642 0.4531 0.3621 0.5517 0.5921 0.4679 0.4634
CheckEval 0.4918 0.4702 0.6914 0.6806 0.4139 0.4363 0.6300 0.6350 0.5568 0.5555

Llama3.1-8B G-Eval 0.1109 0.1013 0.1031 0.0813 0.1702 0.0959 0.0667 0.0765 0.1127 0.0887
SEEval 0.2531 0.2478 0.1768 0.1971 0.1276 0.1238 0.1169 0.1274 0.1686 0.1740
CheckEval 0.5046 0.4986 0.5200 0.5069 0.3972 0.3934 0.4050 0.3876 0.4567 0.4466

Gemma2-9B G-Eval 0.4357 0.3879 0.5512 0.4123 0.4742 0.3055 0.3681 0.2969 0.4573 0.3507
SEEval 0.4130 0.4303 0.6116 0.6016 0.4334 0.4441 0.5020 0.5087 0.4900 0.4962
CheckEval 0.3943 0.4232 0.6520 0.6588 0.4167 0.4136 0.4971 0.5137 0.4900 0.5023

Qwen2.5-7B G-Eval 0.4625 0.4540 0.5496 0.5111 0.3346 0.1429 0.4459 0.4421 0.4481 0.3875
SEEval 0.4130 0.3918 0.5747 0.5735 0.4681 0.4551 0.4648 0.4322 0.4802 0.4632
CheckEval 0.3704 0.3840 0.6329 0.6266 0.4712 0.4247 0.4489 0.4486 0.4809 0.4710

GPT-4 Turbo G-Eval 0.4924 0.4719 0.7026 0.6900 0.6112 0.6126 0.5724 0.5512 0.5947 0.5814
SEEval 0.5012 0.5162 0.7123 0.7221 0.6232 0.6231 0.5829 0.5922 0.6049 0.6134
CheckEval 0.5209 0.5232 0.7367 0.7438 0.6292 0.6341 0.6425 0.6476 0.6323 0.6372

GPT-4o G-Eval 0.5917 0.5669 0.6111 0.5770 0.3903 0.1655 0.4770 0.4255 0.5175 0.4337
SEEval 0.6011 0.5881 0.6551 0.5822 0.4512 0.2620 0.5331 0.4627 0.5601 0.4738
CheckEval 0.5889 0.5790 0.7362 0.7354 0.5869 0.5761 0.6462 0.6448 0.6395 0.6338

GPT-4o-mini G-Eval 0.5424 0.5333 0.6024 0.5623 0.5748 0.5744 0.5977 0.5756 0.5793 0.5614
SEEval 0.5426 0.5277 0.6051 0.5771 0.5831 0.5651 0.5441 0.5569 0.5687 0.5567
CheckEval 0.5140 0.5171 0.5980 0.5984 0.6362 0.6241 0.6038 0.6160 0.5880 0.5889

Table 24: Turn-level Spearman (ρ) and Pearson (r) correlations on Topical-Chat. The best score per model category
is bolded, and the highest overall score is marked with *.

Model
Group

Evaluation
Methods

Coherence Engagingness Groundedness Naturalness Average
α κ α κ α κ α κ α κ

All G-Eval 0.0651 0.3051 0.0418 0.3263 0.0825 0.4443 0.0462 0.2871 0.0589 0.3407
SEEval 0.0741 0.3123 0.0668 0.3185 0.0674 0.3089 0.0717 0.3032 0.0700 0.3100
CheckEval 0.4796 0.4796 0.4354 0.4354 0.3995 0.3995 0.4830 0.4830 0.4494 0.4494

Large G-Eval 0.0070 0.4550 0.0110 0.5134 0.0030 0.7288 0.0371 0.3378 0.0145 0.5088
SEEval 0.5573 0.6091 0.5416 0.6074 0.5528 0.6137 0.5482 0.6085 0.5500 0.6100
CheckEval 0.6486 0.6486 0.6626 0.6626 0.6263 0.6263 0.7569 0.7569 0.6736 0.6736

Medium G-Eval 0.1680 0.1361 0.0115 0.2581 0.0572 0.2907 0.0384 0.2074 0.0688 0.2231
SEEval 0.0527 0.3426 0.0614 0.3362 0.0595 0.3407 0.0659 0.3393 0.0600 0.3400
CheckEval 0.3635 0.3635 0.5338 0.5338 0.4486 0.4486 0.6715 0.6715 0.5044 0.5043

Small G-Eval 0.0357 0.1535 0.0287 0.1528 0.0603 0.2139 0.0242 0.1343 0.0372 0.1636
SEEval 0.1615 0.1487 0.1553 0.1511 0.1628 0.1494 0.1674 0.1542 0.1600 0.1500
CheckEval 0.4040 0.4040 0.2127 0.2127 0.0218 0.0218 0.0289 0.0289 0.1669 0.1668

GPT G-Eval 0.0079 0.4970 0.0698 0.3936 0.0225 0.6910 0.0536 0.4067 0.0385 0.4971
SEEval 0.1191 0.5057 0.1217 0.5123 0.1175 0.5148 0.1283 0.5021 0.1200 0.5100
CheckEval 0.5651 0.5651 0.2452 0.2452 0.6124 0.6124 0.7352 0.7352 0.5395 0.5395

Top-3 G-Eval 0.0234 0.4389 0.0015 0.6510 0.0020 0.7701 0.0752 0.3773 0.0255 0.5593
SEEval 0.0597 0.3375 0.0614 0.3401 0.0558 0.3418 0.0579 0.3405 0.0600 0.3400
CheckEval 0.6215 0.6215 0.2481 0.2480 0.6435 0.6434 0.7813 0.7812 0.5736 0.5736

Table 25: IEA - Topical-Chat.
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Evaluation Prompt for SummEval

<Task Overview>
Your task is to read a provided news article and its summary, then answer ‘yes’
or ‘no’ to specific questions. These questions will relate to a particular
dimension of the summary.

<dimension Definition>
<dimension>- <definition>

<Instructions>

1. Read these instructions thoroughly.

2. Carefully read both the Article and the Summary.

3. Understand the given questions and the definition of the <dimension>.

4. Respond to each question with ‘yes’ or ‘no’. Base your answers on a clear
rationale.

5. Follow the specified format for your answers.

<Answer Format>
Q1: [Your Answer]
Q2: [Your Answer]
...

# Article #
<source>

# Summary #
<summary>

# Questions #
<questions>

# Response #
Provide your answers to the given questions, following the specified Answer
Format.

Figure 5: Evaluation Prompt - SummEval
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Evaluation Prompt for Topical-Chat

<Task Overview>
You will be given a conversation between two individuals. You will then be given
one potential response for the next turn in the conversation. The response
concerns an interesting fact, which will be provided as well.
Your task is to read a provided conversation history, corresponding fact, and
response, then answer ‘yes’ or ‘no’ to specific questions. These questions will
relate to a particular dimension of the response.

<dimension Definition>
<dimension>- <definition>

<Instructions>

1. Read these instructions thoroughly.

2. Carefully read the Conversation History, the Corresponding Fact, and the
Response.

3. Understand the given questions and the definition of the <dimension>.

4. Respond to each question with ‘yes’ or ‘no’. Base your answers on a clear
rationale.

5. Follow the specified format for your answers.

<Answer Format>
Q1: [Your Answer]
Q2: [Your Answer]
...
# Conversation History #
<document>

# Corresponding Fact #
<fact>

# Response #
<response>

# Questions #
<questions>

# Your Answer #
Provide your answers to the given questions, following the specified Answer
Format.

Figure 6: Evaluation Prompt - Topical-Chat

15794



Augmentation - Question Diversification Prompt

<Task Overview>
You will be provided with: 1) Information about the benchmark to be evaluated,
2) The main concept being assessed in the benchmark, and 3) Seed questions that
include key components and sub-questions related to this concept.
Your task is to create additional sub-questions for the key components to
comprehensively assess the main concept. Each sub-question must meet given
conditions to ensure a high-quality question set.

1) Benchmark Information:
{benchmark description}

2) Main Concept in the Benchmark:
{concept}: {description}

3) Key Components and Seed Questions:
{seed questions}

<Conditions for a Good Question List>
{conditions}

<Constraints>
- Each sub-question must be answerable with a simple ‘yes’ or ‘no’.
- A ‘yes’ answer should indicate that the sentence improves the specified
evaluation criterion (e.g., Coherence, Relevance).
- Each question should assess only a single dimension or concept.
- Each question should not ask about more than one topic or concept.

Figure 7: Augmentation - Question Diversification Prompt
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Augmentation - Question Elaboration Prompt

<TASK OVERVIEW>
Your task is to generate multiple additional questions to evaluate benchmark
performance under specific constraints. You will receive the key component
and sub-component evaluating {dimension} and the question related to it. The
definition of {dimension} is as follows: {def}. The evaluation for dimension
{dimension} will be centered around the key component {key components}.

<TASK>
# Your role: You have to break down sub-questions into 3 to 10 sub-sub-questions
considering {dimension} when pairs of seed name and question are given.
# Benchmark information: {benchmark info}

<CONSTRAINTS>
{constraints}

<Conditions for a Good Question List>
{conditions}

<FORMAT>
1. sub_component_name_1:
1-1. q1-1_origin_question
1-1-1. q1-1-1_aug_question
1-1-2. q1-1-2_aug_question
...
1-2. q1-2_origin_question
1-2-1. q1-2-1_aug_question
1-2-2. q1-2-2_aug_question
...

2. sub_component_name_2:
2-1. q2-1_origin_question
2-1-1. q2-1-1_aug_question
...
2-2. q2-2_origin_question
...

<EXAMPLE>
{example}

Figure 8: Augmentation - Question Elaboration Prompt
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Filtering Prompt

<Task Overview>
Your task is to filter out questions from a list based on the following criteria:

1) dimension Alignment:
- dimension definition: {dimension def}
- Remove questions that deviate from the given dimension’s definition.
- Remove questions that are more closely related to other dimensions than the
current one.

2) Redundancy:
- Remove questions that:
* Ask for the same or very similar information (even if phrased differently).
* Convey very similar meanings without adding unique insight.

3) Style:
- Remove questions that:
* Use overly exaggerated wording.
* Focus on excessively detailed or minor points that don’t meaningfully affect
overall quality.

4) Benchmark Context
- Name: Topical-Chat
- Purpose: Evaluation of knowledge-grounded dialogue systems
- Key Metrics: Naturalness, Coherence, Engagingness, Groundedness
- Do not modify any of the remaining questions or generate new ones.
- Keep questions in their original dictionary format.

5) Sub-dimensions and Questions:
{format_sub_dimensions(sub_dimensions)}

6) Output Requirements:
- Output format: JSON only
- Structure:

{"Sub-dimension Name": [
"Filtered Question 1",
"Filtered Question 2"]}

<Important Note>
- Do not modify the content of remaining questions
- Do not generate new questions
- Maintain the original dictionary format
- Only remove questions that fail the above criteria
- Do not remove entire sub-dimensions or their keys unless no valid questions
remain.

Figure 9: Filtering Prompt
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Dimension Sub-dimension Seed Questions

Coherence
Topic Maintenance Does the summary consistently focus on the central topic without deviat-

ing into unrelated areas?

Logical Flow Does the summary present information in a logical order?

Consistent Point of View Is the point of view or perspective in the summary consistent with the
source?

Consistency
Factual Consistency Does the summary accurately represent the facts from the source?

No New Information Does the summary avoid introducing information not present in the
original source?

Contextual Accuracy Does the summary preserve the original purpose or intent of the source
document?

Fluency

Formatting Is the summary free from formatting issues and correctly capitalized
throughout?

Grammar Are all sentences grammatically correct and free from errors?

Completeness Are all sentences complete, with no fragments or missing components?

Readability Is the summary easy to read, without unnecessary complexity?

Relevance

Content Coverage Does the summary encapsulate all critical points of the source document?

Topic Consistency Does the summary maintain the main topic of the source?

Consistent Use of Terminology Does the summary use the same terminology or jargon as the source?

Use of Key Terms and Phrases Does the summary incorporate key terms and phrases from the source
material effectively?

Importance Is each point mentioned in the summary important to the overall under-
standing of the original text?

Table 26: Dimensions, sub-dimensions, and corresponding seed questions for SummEval.

Dimension Sub-dimension Seed Questions

Coherence
Logical Flow Does the response logically follow from the earlier part of the conversa-

tion, maintaining a clear flow of ideas?

Relevance Is the response directly relevant to the content and context of the previous
dialogue?

Continuity
Does the response stay consistent with the topic discussed in the previous
dialogue?

Does the response integrate smoothly with the ongoing conversation,
ensuring a coherent progression?

Engagingness
Informative Does the response add meaningful value to the conversation?

Emotional Engagement Is the response friendly, polite, and empathetic?

Interest Level
Does the response capture interest or intrigue, making the conversation
more engaging?

Does the response actively contribute to keeping the conversation lively
and engaging?

Groundedness Relevance
Does the response appropriately address the preceding question or state-
ment?

Does the answer provide new information while maintaining the flow of
the conversation?

Does it effectively utilize the key information that has been mentioned
in the conversation?

Consistency
Does the response remain consistent with previous utterances?

Does it avoid contradicting previously provided information?

Naturalness

Avoid repetition Does the response avoid unnecessary repetition of the same content
between sentences?

Context relevance Are all the sentences relevant to the topic of conversation and used
naturally within the context?

Clarity Is the overall message clear and easy to understand?

Word choice and tone
Is the tone consistent throughout?

Are there no major grammatical errors?

Table 27: Dimensions, sub-dimensions, and corresponding seed questions for Topical-Chat.
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