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Abstract

Faithful free-text explanations are important to
ensure transparency in high-stakes Al decision-
making contexts, but they are challenging to
generate by language models and assess by hu-
mans. In this paper, we present a measure for
Prediction-EXplanation (PEX) consistency, by
extending the concept of weight of evidence.
This measure quantifies how much a free-text
explanation supports or opposes a prediction,
serving as an important aspect of explanation
faithfulness. Our analysis reveals that more
than 62% explanations generated by large lan-
guage models lack this consistency. We show
that applying direct preference optimization
improves the consistency of generated expla-
nations across three model families, with im-
provement ranging from 43.1% to 292.3%. Fur-
thermore, we demonstrate that optimizing this
consistency measure can improve explanation
faithfulness by up to 9.7%.!

1 Introduction

Explainable Al systems are those that can spec-
ify the relationship between an output or predic-
tion and the deductive or nomological process that
led to that prediction through logically consistent
and empirically grounded means (Woodward and
Ross, 2003).> Such explanations are often called
“faithful” in the sense that they accurately reflect a
model’s true reasoning process (Jacovi and Gold-
berg, 2020; Lyu et al., 2024), and faithfulness is of-
ten seen as crucial for trustworthiness, transparency,
and accountability.

Faithfulness, however, is a difficult construct to
measure for complex models (such as deep neu-
ral networks) precisely because we do not know a

! Our code is publicly released at https://github.com/
lingjunzhao/PEX_consistency.

2 Other forms of explanations exist, such as those that
aim to provide useful information for better decision making
(Kayser et al., 2024; Han et al., 2023) or debugging (Ribeiro
et al., 2016; Lundberg and Lee, 2017).
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Review: This is a stunning hotel in an excellent location in the
greatest of US cities. The entrance and lobby of the hotel
indicates its class. The bedrooms are large and comfortable
and the customer service is second to none... Highly
recommended.

Can you explain why Can you explain why this
this review is truthful? review is deceptive?
f Truthful Prediction \ / Deceptive Prediction \

@

Positive Tone: The review
maintains an
overwhelmingly positive
tone. This positive

Overly Positive and Flowery
Language: The review
contains a lot of
exaggeratedly positive
language. This can be an

sentiment without over-
the-top, exaggerated
claims is a good indicator
of an authentic review.

indicator of a fake review
created to promote the
hotel rather than provide
genuine feedback.

T

g Inconsistent explanation

Figure 1: Example of GPT-4 model generating explana-
tions for truthful or deceptive prediction about a hotel
review’s authenticity. While each explanation appears
plausible on its own, they are inconsistent: both the
truthful and deceptive explanations rely on the same
evidence “use a lot of positive language”.

priori exactly how a models combines its input fea-
tures to make a prediction, beyond trivially writing
out the entire computation—which is then impene-
trable to a person. When an explanation is given in
the form of natural language, increasingly common
especially in the context of large language mod-
els (Camburu et al., 2018; Wiegreffe et al., 2022)
the challenge increases because humans often con-
flate faithfulness and plausibility: how convincing
it appears (Jacovi and Goldberg, 2020; Lyu et al.,
2023; Wiegreffe et al., 2022). This leads to models
that produce plausible yet unfaithful accounts of
their reasoning processes (Ye and Durrett, 2022;
Lanham et al., 2023), which risks eroding the very
trustworthiness that they aim to improve.

In this paper, we aim to improve model faith-
fulness by optimizing the consistency between an
explanation and its explanandum (e.g., a model
prediction). Following Miller (2019)’s criterion,
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a necessary condition for faithful explanations is
that an explanation should contrastively refute the
negation of the explanandum. Therefore, for an
explanation to faithfully represent a deductive or
nomological process, it cannot simultaneously sup-
port a prediction y and its negation —y. We formal-
ize this notion as inconsistency. For example, in
Figure 1, a model uses essentially the same expla-
nation (“use a lot of positive language’) to argue
in favor of a hotel review being both authentic and
deceptive in this opinion spam classification task.

Our work proceeds in three steps. First, we
ask how consistent large language model (LLM)-
generated explanations are in practice. To do this,
we introduce a measure of consistency, PEX (for
Prediction-EXplanation consistency), which can
be applied to models that provide probabilities over
their generated outputs. PEX leverages the weight
of evidence framework (Melis et al., 2021; Good,
1985) to quantify how much an explanation speaks
in favor of (vs against) a prediction (§3.1, §3.2). On
two datasets—TripAdvisor hotel review and Ama-
zon product review spam detection (Ott et al., 2013;
Hussain et al., 2020)—we find that 62%—-86% of
explanations from Llama-2 (Touvron et al., 2023),
Mistral (Mistral, 2023), and Yi-1.5 (Young et al.,
2024) are inconsistent, logically implying that they
are also unfaithful (§6.1).

Second, we ask whether we can use our consis-
tency measure PEX to train a model to produce
more consistent—and therefore less unfaithful—
explanations. We show how to apply both super-
vised fine-tuning and direct preference optimiza-
tion (DPO) (Rafailov et al., 2024) to refine pre-
trained LLMs (§3.4). For DPO, we sample expla-
nations from LLMs and rank them according to
PEX; those that score highly are treated as “pre-
ferred” in the optimization, and those that score
lowly are treated as “dispreferred.” Experimentally,
we show this DPO-based approach significantly im-
proves on supervised fine-tuning and can improve
explanation consistency by 43.1%-292.3% (§6.2).

It is, of course, possible that the fine-tuning
leads to more consistent explanations, but not more
faithful explanations. And so finally we measure
whether the explanations that we optimized for
consistency lead to improved faithfulness. We con-
struct a proxy measure of faithfulness by assuming
that a more faithful explanation should be more
useful for an external observer to predict a model’s
behavior (Lyu et al., 2024, see Section 3.4.2). Us-
ing this idea, we adopt a simulatability-based ex-

planation faithfulness evaluation method (Pruthi
et al., 2022) (§4) and show that optimizing for PEX
improves faithfulness by 1.5% to 9.7% (§6.3).

2 Related Work

Challenges in ensuring faithfulness of free-text
explanations. Different from interpretable Al
(Wallace et al., 2018; Selvaraju et al., 2017; Ribeiro
et al., 2016; Briakou et al., 2023), generating ex-
planations is a procedure to explicitly explaining
model decisions to people (Miller, 2019). A faith-
ful explanation should accurately reflect the reason-
ing process behind the model’s prediction (Jacovi
and Goldberg, 2020; Lyu et al., 2024; Ribeiro et al.,
2016). For models that first make a prediction with
a standard black-box predictor and then justify the
prediction with an explainer (Camburu et al., 2018;
Park et al., 2018; Wu and Mooney, 2019), there is
no guarantee for the explanation faithfulness. For
models that first generate an explanation and then
provided as the only input to the predictor, the ex-
planations can still be self-inconsistent (Camburu
et al., 2020; Zhou et al., 2023), or optimized in
terms of plausibility instead of faithfulness (Kumar
and Talukdar, 2020). Most methods that jointly
explain and make prediction (Rajani et al., 2019;
Narang et al., 2020; Ling et al., 2017; Jung et al.,
2022; Ramnath et al., 2024) also do not ensure
faithfulness, as models may ignore explanation dur-
ing prediction. For chain-of-thought style prompt-
ing methods (Wei et al., 2022; Wang et al., 2022;
Zhou et al., 2022a), the explanations can be un-
faithful (Turpin et al., 2024; Lanham et al., 2023).
Wiegreffe et al. (2022); Marasovié et al. (2021)
show potential for generating plausible free-text
explanations with only a few examples, but the ex-
planations can be unfaithful (Ye and Durrett, 2022;
Chen et al., 2024).

Evaluate explanation faithfulness. We do not
assume access to ground-truth explanations for
evaluation, reflecting real-world scenarios; there-
fore white-box faithfulness evaluation (Zhou et al.,
2022b; Chen et al., 2018) is not applicable to
our problem. While robustness (Alvarez-Melis
and Jaakkola, 2018) and perturbation-based eval-
uation methods (Samek et al., 2016) have been
applied in the vision domain, their applicability
to NLP is limited due to the discrete nature of
language inputs, and removing a single word can
render a sentence meaningless (Lyu et al., 2024).
Simulatability-based methods have been employed
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Explanation 1

Question: Can you explain Explanation 2 PEX Reward DPO Explanation
the main reasons why this — | Consistency | — N —_ Faithfulness
review is truthful? . - Ranking Trainer Evaluation
xplanation N
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Figure 2: Our framework for generating more consistent explanations. Given a question and a model predicted
answer, we sample explanations from a language model and rank them using Prediction-EXplanation consistency
(PEX), which measures how well an explanation e supports a given prediction a compared to its negation —a.
This measure serves as a reward signal to construct preference dataset for direct preference optimization (DPO),
improving PEX consistency. Finally, we evaluate whether the consistency-optimized explanations are more faithful.

to evaluate explanation (Hase and Bansal, 2020;
Hase et al., 2020; Doshi-Velez and Kim, 2017).
This method is recommended to evaluate faithful-
ness (Lyu et al., 2024), as the more faithful an
explanation is, the more information it should con-
tain about the model’s decision mechanism, and
thus the easier it would be for an external simulator,
to predict the model’s behavior based on the expla-
nation. The assumption is that if an explanation
leads to a different prediction than that made by
the model it explains, then it is unfaithful (Jacovi
and Goldberg, 2020). Pruthi et al. (2022) propose
a framework for evaluating explanations by mea-
suring accuracy gains in a student model trained
to mimic a teacher. This framework is designed
for system-level evaluation rather than individual-
level, as the student model requires more than one
examples to learn from.

3 Measuring and Improving
Prediction-Explanation Consistency

Faithful explanations that accurately reflect a
model’s reasoning (Jacovi and Goldberg, 2020;
Lyu et al., 2024) promotes Al transparency and
accountability. In this work, we aim to improve the
faithfulness of free-text explanations by optimizing
their consistency. To this end, we first introduce
PEX (Prediction-EXplanation consistency) mea-
sure to quantify how well an explanation speaks
in favor of (vs against) a prediction (§3.2). We
then use this measure as an optimization criterion
to generate more consistent explanations (§ 3.4),
as illustrated in Figure 2. Finally, we evaluate the
efficacy of this optimization in generating more
faithful explanations (§4).

3.1 Problem: Inconsistent Explanations

Our first goal is to develop a measure of whether
a model’s explanations are consistent in justify-
ing its predictions a over an its negation —a, as
a faithful explanation cannot simultaneously sup-
port both predictions (Lipton, 1990; Miller, 2019;
Brassard et al., 2024). We observe that language
model generated explanations can be inconsistent,
e.g. in Figure 1, the explanation “use a lot of pos-
itive language” supports both the truthful and de-
ceptive hypotheses, failing to distinguish why the
model predicted answer a instead of the alternative
prediction —a. As a result, the explanation is not
consistent and, therefore, not faithful. We focus
on generating explanations to justify opinion spam
detection (Ott et al., 2011; Hussain et al., 2020).
We use this task because it requires minimal exter-
nal knowledge while allowing for the generation of
meaningful explanations.

We focus on language models that can answer
questions, where a model M takes a question g
as input and generates an answer a as output with
probability M (a | q). Additionally, we assume
that upon request (e.g. prompting or other mecha-
nisms) that the same model M can generate a poten-
tially faithful explanation of its prediction. We de-
note this as M (e | Q(g, a)), where @ is an appro-
priate prompt, and explanation e = (e, €3, ..., €,)
is a sequence of words. We use a one-shot example
to prompt the model to generate explanation for its
prediction. The explanation usually contains 2-3 ra-
tionales. The explanations in the one-shot example
are generated by GPT-4 (detailed in §A.1).

For example, in opinion spam detection, ques-
tion q is formatted as: ¢ = Is this review truthful
or deceptive? {review}. The output a
is Truthful or Deceptive. If M predicts the an-
swer a as Truthful, the prompt ¢ is formatted

Review:
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as: Q(q,Truthful) = Is this review truthful or
Truthful.

Can you explain the main reasons why

deceptive? Review: {review}. Answer:
Question:
the review is truthful? If M predicts the an-
swer a as Deceptive, the prompt () is formatted
as: Q(q, Deceptive) = Is this review truthful or
deceptive? Review: {review}. Answer: Deceptive.
Question: Can you explain the main reasons why the
review is deceptive? An example of the generated
explanation e 1S No specific examples: The review
does not provide specific examples of the poor

service or quality of the hotel.

3.2 Measuring Prediction-Explanation (PEX)
Consistency

We define explanation inconsistency as failing to
explicate why the model predicted a instead of
its negation —a. To quantify this, we introduce
Prediction-EXplanation consistency (PEX), which
measures how well an explanation supports a given
prediction compared to its negation. We build on
the weight of evidence framework (Melis et al.,
2021; Good, 1985), extending it to to compute prob-
abilities when evidence is given as sequences of
words. The weight of evidence measures the extent
to which an explanation supports or undermines
a hypothesis, making it a reasonable measure of
explanation consistency.

PEX consistency. To measure the PEX consis-
tency of explanation e for a given question q and
model prediction a, we compute a score to com-
pare the likelihood of model M generating e under
different predictions, thereby quantifying how well
the explanation supports the given prediction a
over its negation —a:

M(e | Q(q,a))
M(e | Q(q,~a))
where the text prompt () and explanation genera-
tion M (e | Q(q, a)) are formatted in §3.1. We es-
timate the conditional probability M (e | Q(g, a))
using the chain rule:

C(e) =log

(D

M(e | Q(q,a))) = M(e1 | Q(g,a)))
M(ez2 | Q(q,a)),e1):

- Mlen | Q(g,a)),e1,...,en—1) (2)

where e; is the ¢-th word of the explanation e.
We estimate the conditional probability M (e |
Q(qg,—a)) using the same approach.

If we view M (e | Q(q,a)) as M(e | q,a) by
dropping the text format ), PEX consistency C'(e)
can also be computed using Bayes’ rule as:

log Mle|g,a)
0g
M(e | q,a)
M(a|g,e) M(a | q)
M(-a | q.e) M(-a | q)
where log % is the posterior log-odds ra-

tio between prediction a and —a conditioned on

M(alq) .
i(oalyy 1S the

prior log-odds ratio, where M (a | q) is defined in
§3.1. To compute M(a | g, e) using a language
model M, we format the prompt Q' as: Q'(q, e)
= Is this review truthful or deceptive? Review:
{review}. Analysis: e. Then, we compute adjusted
PEX consistency C’(e) as:

question g and explanation e. log

~ log M(a|Q'(g.€)) ~log

M(-a | Q'(q;e))

M(a | q)
M(-a | q)
(4

C'(e)

We use adjusted PEX consistency (Eq 4) in our
experiments because computing sequence probabil-
ity for the original PEX consistency C'(e) (Eq 2),
requires density estimation, which is often less re-
liable than computing classification probabilities
for C'(e). Additionally, sequence probability is
typically affected by sequence length.

Supervised fine-tuning. We assume access to
language models that provide output probabilities
e.g. M(a | Q'(q,e)), to compute PEX consis-
tency (Eq 4). Pretrained language models, includ-
ing LLama-2 and Mistral, do not perform well on
opinion spam detection, with prediction accuracy
close to random guessing. Thus we fine-tune the
models on the training dataset using supervised
fine-tuning training (SFT) to have better estima-
tion of M (a | q). This is achieved by using the
maximum-likelihood estimation (MLE) objective:

> logM(a|q) )
(¢,a)eD
where the training dataset D consisting of question
answer pairs in the form of (q,a). We use the
fine-tuned models to measure PEX consistency.

3.3 Multiple Sampling for Generating More
Consistent Explanations

The PEX measure (§3.2) can then be applied to
rank language model generated explanations. For
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each question g and the answer a predicted by
model M, we sample explanations e from M using
random sampling from the probability distribution
M(e | Q(q,a)). We compute PEX consistency
score (Eq 4) for each explanation, and rank the
explanations according to the score.

3.4 Optimizing Explanation Consistency with
Direct Preference Optimization

As the language models can generate inconsistent
explanations for their predictions, we train models
Mo using the direct preference optimization (DPO)
objective (Rafailov et al., 2024) to generate more
consistent explanations.

DPO training. Given a question q and answer a,
My is trained to increase the likelihood Mo (e, |
Q(g, a))) of generating consistent explanation e,
as preferred completion, and decrease the likeli-
hood Mo(e; | Q(q,a))) of generating inconsis-
tent explanation e; as dispreferred completion. We
use the language model M (§3.2) as base reference
model, and use the DPO objective L(Mop; M):

Mo(e; | Q(g,a))

E(g,a,e0,e/)~Do []0g0<ﬁ log M(e; | Q(q, a))

_ 10g Molew| Q(q,a»)] ©

M(ew | Q(q,a))

where the weights of M are initalized from the
base reference model M. o is the logistic function,
and [ is a parameter controlling the deviation from
the base reference model M, set to 0.1.

Preference dataset. To construct preference
dataset Do for DPO training, we select e,, and
e; from the explanations generated by the refer-
ence language model M. For each question g and
answer a predicted by model M, we sample and
rank the explanations using PEX consistency score
(Eq 4), as described in §3.3. We consider explana-
tions in the top p% are consistent, and those in the
bottom p% are inconsistent. For each question and
the answer, we use the combinations of the consis-
tent and inconsistent explanations as preferred and
dispreferred completions (e, e;) to train DPO.

4 Explanation Faithfulness Evaluation

To evaluate the efficacy of optimizing PEX consis-
tency (§3) in generating more faithful explanations,
we construct a proxy measure of faithfulness by

Teacher Student Student
MT MS MS
aMr(@) Input g’
.‘ palrs 'ﬁ Evaluate:
1{ Ms(q) =Mr(q) }
a.Mr(@),er Input ¢’
.‘ trlples Evaluate:
1{ Ms(q") =M(q) }

Figure 3: Explanation evaluation framework (figure
reproduced from Pruthi et al., 2022): Student models
learn from a teacher without explanation (top) or with
explanation (bottom) as side information. Explanations
er are effective if they improve student performance to
mimic teacher model’s prediction on unseen examples
during test phase without explanations (right).

assuming that a more faithful explanation should
be more useful for an external observer to predict
a model’s behavior (Lyu et al., 2024, see Section
3.4.2). Using this idea, we adopt a simulatability-
based explanation faithfulness evaluation method
(Pruthi et al., 2022), as shown in Figure 3. In this
framework, a teacher model generates a prediction
and explanation, and a student model is trained to
simulate the teacher’s model prediction. Explana-
tions are available to the student model during train-
ing, but are not available during testing to avoid
label leakage. We use language models as student
models for our evaluation. While human evaluation
is valuable, it is prohibitively expensive at scale,
and may be confounded by humans’ preconceived
notions—especially when conflating explanation
faithfulness with plausibility. While language mod-
els also reflect biases, they offer a consistent and
scalable means of evaluation.

Student model training. Our teacher model M
is a supervised fine-tuned model M optimized for
prediction accuracy (§3.2), and the student model
Mgy is initialized from a pretrained language model.
We fine-tune the student model Mg to simulate the
teacher’s model prediction and explanation: Mg
takes question g as input, and generates answer a
and explanation e autoregressively as its response,
formatted as: R(a,e) = Answer: a. Analysis: e.
The model is trained to estimate Mg(R(a,e) | q)
using the MLE objective:

N
Z Z logMs(R,, | Renyq)  (7)

(g,ar,er)eDr n=1
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where R, is the n-th word of the text response
R(a,e), and R, is the first n — 1 words of the
response. Dataset Dr consisting of samples in
the form of (q,ar,er), where ar = Mrp(q) is
the answer predicted by the teacher model My,
and explanation e is generated by My to justify
its prediction ar to the question g. We generate
the answer before the explanation for the student
model, rather than after, because our preliminary
experiments showed similar performance for both
strategies. However, generating explanations at test
time is computationally expensive. The answer-
first strategy mitigates this overhead by enabling
evaluation based on the likelihood of truthful or
deceptive predictions without requiring explanation
generation during inference.

Evaluation. During testing, the student model
generates prediction ' = Mg(q’) for question
q’, and we measure the simulation performance
by comparing its prediction @’ with the teacher
model’s prediction a/. = Mr(q’).

5 Experimental Setup

Datasets. We fine-tune pre-trained large lan-
guage models to improve their prediction accuracy
on two opinion spam detection datasets: (i) TripAd-
visor hotel review dataset (Ott et al., 2013), which
contains 800 truthful reviews and 800 deceptive
reviews. We randomly split the dataset to obtain
960 pairs of (review, label) for training, 320 pairs
for validation and 320 pairs for testing. (ii) Ama-
zon product review dataset (Hussain et al., 2020),
which we randomly select 1,000 truthful reviews
and 1,000 deceptive reviews. We restrict reviews
to those reviews containing at least 120 words to
ensure that there is sufficient context for explana-
tions. We split the selected reviews to obtain 1,200
pairs of (review, label) for training, 400 pairs for
validation and 400 pairs for testing. We fine-tune
the models on the train split, and select models on
the validation split according to the F1 score.

We generate explanations using the fine-tuned
models on the validation split to compute PEX
consistency score statistics (§ 3.2). To evaluate
explanation faithfulness, we also use the generated
explanations on the validation split to serve as the
teacher model to fine-tune a student model (§4).
We report student model performance on the test
split, evaluated against teacher predictions.

Pretrained-LLMs and SFT. We evaluate three
different LLM architectures to generate expla-
nations for the opinion spam detection datasets:
(1) Mistral-7B-Instruct-v0.3 (Mistral, 2023), (i1)
Llama-2-13B-chat (Touvron et al., 2023), and (iii)
Yi-1.5-9B-chat (Young et al., 2024). We fine-tune
the pretrained models (§3.2), achieving an F1 score
of 94% on the TripAdvisor validation set and 93%
on the Amazon validation set. Details for fine-
tuning the models are given in Appendix §A.3.

DPO training. To construct the preference
dataset for DPO training (§ 3.4), we generate 40
explanations per review-prediction pair in the train-
ing split (§3.3) using a sampling temperature of
1.0. To increase diversity, we sample 40 additional
explanations at a temperature of 1.2. Explanations
are ranked by their PEX consistency score (Eq 4),
which measures how well they justify the predic-
tion over its negation. For TripAdvisor dataset, we
randomly sample 8 explanation pairs: preferred
completions are drawn from the top 10% of scores
and dispreferred from the bottom 10%, excluding
pairs where both scores are above or below zero to
ensure contrast. For Amazon dataset, we sample 8
pairs from the top and bottom 5% without applying
a zero threshold, as many explanations for decep-
tive predictions have low scores. After this process,
we obtain 3,565 training samples on the TripAd-
visor dataset for DPO training with the Llama-2
model, 2,796 samples for the Mistral model, and
4,083 samples for the Yi-1.5 model. On the Ama-
zon dataset, we obtain 9,600 training samples for
each of the three language models. Additional de-
tails on model training are provided in § A.4.

Student model training. We train student mod-
els? using & random examples from the validation
split, where each example includes both the teacher
model’s prediction and its generated explanation
(§4). We perform a five-pass training for £ = 10
and £ = 20. We use small values of k£ because
the student model can learn effectively from the
prediction label alone when k is large. The student
model shares the same architecture as the teacher
model but is not fine-tuned on the training split.
Further details are provided in § A.3.

Evaluation metrics. To measure how well the ex-
planations justifies the prediction over its negation,
we compute PEX consistency (Eq 4) on model

3 Our preliminary experiments do not suggest that using
training-free in-context learning is fruitful.
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generated explanations using the corresponding su-
pervised fine-tuned model. To assess explanation
faithfulness, we evaluate the trained student models
using simulation performance (F1 score) on the
test split, ensuring teacher model’s explanations
are not provided as input to prevent label leakage
(§4). The simulation F1 score is computed by using
the teacher model’s predictions as ground-truth la-
bels. We report average F1 score across all student
model training passes.

6 Experiments

We investigate the following questions:

1. How consistent are the explanations generated
by large language models (LLM)?

2. Can the consistency of LLM-generated expla-
nations be improved?

3. Are explanations optimized for consistency
also more faithful?

To address Q1, we analyze the PEX consistency
score distribution of the explanations. For Q2, we
train models using direct preference optimization
to generate more consistent explanations. For Q3,
we perform explanation faithfulness evaluation.

6.1 How consistent are the explanations
generated by large language models?

Consistency distribution. Figure 4 shows the
distribution of PEX consistency scores (§3.2) for
explanations generated by the Mistral, Llama-2 and
Yi-1.5 models on two opinion spam datasets. Ac-
cording to Good (1985); Melis et al. (2021), weight
of evidence scores above 2 are considered consis-
tent. For the Mistral model, we see that 85.6% of
explanations are inconsistent (with PEX score <
0), 75.4% for the Llama-2 model, and 61.7% for
the Yi-1.5 model. Since inconsistent explanations
do not support the model’s predictions effectively,
they pose a challenge for humans trying to under-
stand how the model arrives at its decisions based
on those explanations.

Sensitivity to prompt format. To assess whether
the PEX consistency score is sensitive to different
prompt formats, we use 3 different prompt formats
(detailed in § A.2) to compute PEX consistency
score and compute Kendall rank correlations be-
tween PEX consistency scores obtained from each
pair of prompt versions. We find that PEX scores

W Mistral ®mLlama-2 ®mYi-1.5
600

500
400

300

200
100 I I
i unf uull unfl _un sl

(-inf,-4) [-4,-2) [2,0) [0,2) [2,4) [4,inf)

Count

Consistency Score

Figure 4: Prediction-EXplanation consistency (PEX)
score distribution for different large language models.
Explanations with PEX score higher than 2 are consid-
ered consistent (Good, 1985). Takeaway: models can
generate 62%-86% inconsistent explanations.

Model V1vs V2 V1vs V3 V2vs V3

Llama-2 (0.42-0.52)"  (0.33-0.44)"  (0.52-0.60)*
Mistral  (0.21-0.33)"  (0.48-0.56)%  (0.38-0.48)"
Yi-1.5 0.37-047)"  (0.50-0.58)*  (0.40-0.50)"

Table 1: Kendall rank correlations of PEX consistency
scores across prompt versions on the validation set.
Ranges indicate 90% bootstrap confidence intervals.
Correlations are moderate (T: mean >0.26) to strong
(*: mean >0.49). Takeaway: PEX scores are relatively
robust to variations in prompt format.

are relatively robust to variations in prompt format,
as shown in Table 1.

6.2 Can the consistency of LLM-generated
explanations be improved?

We use direct preference optimization (DPO) to
enhance explanation consistency (§3.4), the results
are illustrated in Figure 5. For the Mistral model,
DPO improves consistency by 2.8 to 5.1 points
compared to explanations generated from the su-
pervised fine-tuning (SFT) model (§3.2). DPO also
improves 2.6 to 6.6 points for the Llama-2 model,
and 1.8 to 3.8 points for the Yi-1.5 model. These
results demonstrate the effectiveness of DPO in im-
proving the PEX consistency of the generated ex-
planations, by learning the patterns that contribute
to more consistent explanations.

For the Mistral model on the TripAdvisor dataset,
the average consistency scores of DPO-generated
explanations remain below zero. This arises from
the upper bound imposed by the sampled explana-
tions being used to construct preference data: the
highest consistency score among DPO-sampled ex-
planations for this model averages -2.1 across the
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Model TripAdvisor Amazon

Mistral Llama-2 Yi-1.5 ‘ Mistral Llama-2 Yi-1.5
Pred Only 55.5 59.6 63.0 ‘ 83.2 88.6 67.8
+ SFT 66.2 58.3 66.0 85.2 89.2 75.5
+DPO 69.81 63.41 70.9° 86.7° 91.6f 85.21

Table 2: Simulation performance (F1) of student models on the TripAdvisor and Amazon test set, evaluating how
well they approximate the teacher model’s predictions on unseen examples. The student models are trained using
explanations from different teacher models: supervised fine-tuning (SFT) or direct preference optimization (DPO)
with PEX consistency measure. ' indicates results that are significantly higher than those of the SFT model, with
p < 0.05 as determined by a two-related-sample t-test. § A.5 shows confidence intervals across training passes.
Takeaway: optimizing PEX consistency improves explanation faithfulness.

reviews, which is lower than the Llama-2 model’s
highest score of 4.4. Similarly, the highest con-
sistency score among DPO-sampled explanations
for Mistral model averages -2.8 on the Amazon
dataset, which is lower than the Yi-1.5 model’s
highest score of 0.3.
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Figure 5: Explanation average PEX consistency scores
for supervised fine-tuning (SFT) and direct preference
optimization (DPO) models, computed on the TripAd-
visor and Amazon validation datasets. The error bars
represent 95% confidence intervals. DPO model scores
are significantly higher than those of the SFT model
(p < 0.05 from two-related-sample t-test). Takeaway:
DPO training can improve explanation consistency.

6.3 Are explanations optimized for
consistency also more faithful?

Systems. We evaluate the faithfulness of explana-
tions (§4) generated by two systems: (i) SF7, a su-
pervised fine-tuning model (§3.2), and (ii) DPO, a
direct preference optimization model that improves
PEX consistency (§3.4). Additionally, we report
simulation performance for Pred Only, which pro-
vides only the teacher model’s prediction without
any explanations during student model training.
We use the same review across all three systems to
enable a fair comparison.

Consistency-optimized explanations improve ex-
planation faithfulness. Table 2 presents the stu-
dent model’s simulation performance on the test
set, where the student model was trained using ex-
planations generated by different teacher models
on the validation set. The F1 score measures how
well the student model approximates the teacher
model’s predictions on unseen data, averaged over
different number of training samples (§5). On the
TripAdvisor dataset, using DPO-generated expla-
nations improves the F1 score by up to 14.3 points
compared to not using explanations, and up to 5.1
points compared to using SFT explanations. The re-
sults indicate that explanations optimized using the
PEX consistency measure with DPO better enable
the student model to simulate the teacher’s predic-
tions compared to explanations generated by the
corresponding SFT model. On the Amazon dataset,
using DPO-generated explanations improves the F1
score by up to 17.4 points compared to not using
explanations, and up to 9.7 points compared to us-
ing SFT explanations. The DPO explanations from
the Yi-1.5 model result in a larger F1 score gap
compared to the SFT explanations, likely due to
the model’s higher average PEX consistency score
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Review: Booked through Hotwire and consequently was placed in a room where we barely had room to walk around our luggage. The 'view'
was of the 'inner courtyard' of nothing but walls of windows of the other rooms. You were unable to determine what the weather was
outside except that it was either day or night. They no longer have in-room coffee appliances... | would not stay there ever again, nordo |
recommend it to anyone. | have had better stays at any Holiday Inn Express!

Question: Can you explain the main reasons why this review is truthful?

/SFI' output: [reason1] Mentions an alternative hotel: The reviewer suggests an alternative hotel (Holiday Inn Express) that they believe is\
abetter choice, whichis a practical and often truthful element in a hotel review. [reason2] Provides specific details: The reviewer
mentions specific details about the room and its features, such as the 'inner courtyard' of nothing but walls, the in-room coffee
appliances, the business hours of the concierge and center. (Consistency score=-2.7)
DPO output: The review is truthful for the following reasons: [reason1] Specific details provided: The reviewer mentions the room size,
the view, the in-room coffee, the internet access, the business center, and the Concierge services. [reason2] Emotional response: The
reviewer clearly did not enjoy their stay and this is reflected in the language used, for example, using the phrase \"The 'gift' of nothing but
Qvall of windows\" suggests the author found this annoying... (Consistency score=2.0) /

Figure 6: Direct preference optimization (DPO) generates better explanations: The Mistral SFT (supervised fine-
tuning) model predicts the TripAdvisor review as truthful; however, its explanation includes the phrase mentions an
alternative hotel, which is often associated with deceptive prediction (e.g. Comparison to other hotels: The
reviewer mentions other hotels that are "better” or have "better service"), leading to inconsistency. In
contrast, the DPO model produces more faithful explanations with a higher consistency score.

relative to the Mistral and Llama-2 models.

Qualitative examples. Figure 6 presents an ex-
ample where the explanation generated by the DPO
model receives a higher PEX consistency score
than the explanation generated by the SFT model.
The SFT-generated explanation is also less faith-
ful, as it often supports the deceptive prediction.
Additional examples are provided in §A.6.

7 Conclusion

We present a new consistency measure for free-text
explanations as an important aspect of faithfulness.
We optimize explanation consistency using direct
preference optimization, and show that it can im-
prove the consistency and faithfulness of model
generated explanations. We hope this research ad-
vances explanation faithfulness and enhances trans-
parency in Al-assisted decision-making. Another
direction for future research is extending our ap-
proach to chain-of-thought explanations. Since
our consistency measure and evaluation framework
treat explanations and answers as independent vari-
ables, they are applicable regardless of how expla-
nations are generated.

Limitations

Our approach to improving explanation consistency
relies on computing the sequence output’s condi-
tional probability from language models. Conse-
quently, this approach cannot be directly applied
to explanations generated by completely black-box
models. We evaluate explanation faithfulness at the
system level rather than at the individual explana-
tion level, as the faithfulness evaluation framework

we use is designed for system-level assessment.
Our experiments focus on enhancing explanations
for binary classification, but we envision future
work extending this approach to multi-class clas-
sification, as weight of evidence can be applied in
that scenario as well (Melis et al., 2021).
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A Appendices

A.1 Explanation Prompting

We use the following GPT-4 generated explanation
as a one-shot prompt to guide models in explaining
the TripAdvisor hotel review dataset (see §3.1):

Review: We stayed at Hotel Monaco and upgraded to
a suite. I was disappointed with the room layout,
and shabby furniture. I bumped into the coffee

The make up mirror in the bathroom didnt work, the
TV reception was very poor and overall the room
just wasnt worth the $450 we spent there. Next
time, we will go back to Trump Tower across the
street, which is far superior to Hotel Monaco.
Explanation for truthful prediction: [reason1] Suggests
an alternative hotel: The reviewer suggests an
alternative hotel (Trump Tower) that they believe
is superior, which is a practical and often
truthful element in a hotel review. [reason2]
Mentions specific details: The reviewer mentions
specific details about the room, such as the room
layout, shabby furniture.

Review: My stay at the Hotel Monaco recently was
fantastic. We got a very reasonable price for
our stay (especially since we were a AAA member),
and there was plenty of perks to utilize; in-room
spa treatments and an evening wine wine hour to
name a few. Another thing that the kids really
enjoyed was that, upon request, the staff brought
us a fish in its own fishbowl for our room. How
cool is that! The staff were all very helpful and
friendly and our stay was very enjoyable. I would
definitely recommend the Hotel Monaco to anyone in
the downtown Chicago area.

Explanation for deceptive prediction: [reason1] Generic
and overly positive tone: The review maintains
a very positive tone without any specific
details or occurrences that would substantiate
such enthusiasm. The language used is quite
general, lacking specific details or instances
that typically accompany genuine
[reason2] Uncommon or unrealistic details: The
mention of receiving a fish in a fishbowl upon
request is an uncommon and specific
While some hotels do offer unique services, the

presentation of this detail, without further
elaboration or context, seems exaggerated and
implausible, casting doubt on the review’s
authenticity.

table and the top almost crashed to the ground.

experiences.

detail.

To guide models in generating explanations for
the Amazon product review dataset (see §3.1), we
use the following GPT-4 generated explanation as
a one-shot example:

Review: I only wanted to use this to charge two
phones from one adapter. This item at first
seemed to be of decent quality. However, after
3 months of occasional use, the casing of one
of the male plugs just fell apart in my hand
as I was plugging it in. I did not apply undue
force when it happened. After closer inspection,
I could see how weak the plastic was - tiny,
brittle plastic clips hold the case together. I
might have been able to glue or tape it back
together, but given that it charges $500 phones,
not worth the risk of a short. There is a diode
and and two wires soldered inside the housing
that broke that could easilly short circuit. I
do not recommend this product if you value the
items you are charging.

Explanation for truthful prediction: [reasoni]
Firsthand experience: The reviewer shares a
personal account of wusing the product over
three months, offering a credible, real-world
perspective rather than speculation. [reason2]
Safety concerns explained logically: The
reviewer points out that the internal wiring
and diode were exposed after the casing broke,
increasing the risk of a short circuit.

Review: I was looking to downsize from an
otterbox defender (whose holster’s clip failed
after one year) and this fits the bill nicely.
Unlike the defender, the outside of the case is
hard so it slides around (and in and out of your
pocket) easily. You also don’t have to open and
close littler rubber doors to gain access to the
headphone jack and charging/syncing port. The
only hassle is that the rubber lining around the
headphone jack wouldn’t allow some of my older
cheap cords or my good sony MDR 7506 headphones
to plug in. Trimming the rubber solved the cheap
cord problems but I had to replace the cord on
the sonys with a hacked media bridge cord with
a stepped plug on it.

Explanation for deceptive prediction: [reasoni]
Minimizes major flaws: The review glosses over
a serious issue — the case blocks headphone and
charging ports — by treating it as a minor fix.
[reason2] Shifts blame: Suggests the problem is
due to ’older cheap cords’ rather than a design
flaw, misleading readers.

A.2 Sensitivity to Prompt Format

To assess whether the PEX consistency score is
sensitive to different prompt formats, we use 3 dif-
ferent prompt formats to compute the PEX consis-
tency score described in Eq 4, where e is a free-text
explanation to be measured:

VI: Qi(g,e) = Is this review truthful or
deceptive? Review: {review}. Answer: e.
Therefore, this review is

V2: Q4(q,e) = Please classify the following
review as either truthful or deceptive: {review}.
Answer: e. Hence, this review is

V3: Q5(q, e) = Evaluate the authenticity of this
review: {review}. Question: Is the review truthful
or deceptive? Analysis: e. Answer: This review is

We then compute Kendall rank correlations be-
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Model Mistral Llama-2 Yi-1.5
k=10 k=20 Avg k=10 k=20 Avg k=10 k=20 Avg
Pred Only 44.0+7.8 66.9£1.5 55.5 54.7+0.1 64.2+1.4 59.6 62.4+0.0 63.6£0.0 63.0

+ SFT
+ DPO

64.2+1.8 68.1+0.2 66.2
69.1+1.2 70.4+x1.0 69.8

56.0+4.0 60.6+2.2 58.3
61.4+0.9 65.3+2.9 634

66.5+0.0 65.4+0.7 66.0
69.3+0.1 72.5+0.1 70.9

Table 3: Simulation performance (F1) of student models on the TripAdvisor test set, evaluating how well they
approximate the teacher model’s predictions on unseen examples. The student models are trained using explanations
from different teacher models: supervised fine-tuning (SFT) or direct preference optimization (DPO) with PEX
consistency measure. The variable % represents the size of the teacher model’s training samples. The error bars after
+ represent 95% confidence intervals across 5 training passes.

tween PEX consistency scores obtained from each
pair of prompt versions. The results are shown in
Table 1, indicating PEX scores are relatively robust
to variations in prompt format.

A.3 Supervised Fine-tuning and Student
Model Training

For supervised fine-tuning (SFT), we finetune
Llama-2-13b-chat (Touvron et al., 2023), Mistral-
7B-Instruct-v0.3 (Mistral, 2023) and Yi-1.5-9B-
chat (Young et al., 2024) models to improve their
prediction accuracy on two opinion spam classifi-
cation datasets (§3.2).

Hyperparameters and computation. For
Llama-2, Mistral and Yi-1.5 models, we finetune
our models for 20 epochs, using a learning rate
of 2e~4, batch size of 2, and AdamW optimizer.
We use a LoRA adapter (Hu et al., 2021) of
rank 64 and alpha 16. We finetune the models
using 1 RTXA6000 GPU, for ~ 24 hours. We
train the student models for 100 epochs using 10
training examples and 50 epochs using 20 training
examples, due to a small number of training
samples. Training each model takes 1-2 hours.

Tools. We implement our models with Pytorch
2.0.1, Huggingface Transformers 4.31.0, scikit-
learn 1.2.2 and SciPy 1.15.1.

Datasets. We two opinion spam detection
datasets: (i) TripAdvisor hotel review dataset (Ott
etal.,2013) and (ii)) Amazon product review dataset
(Hussain et al., 2020), under their Creative Com-
mons Attribution-NonCommercial-ShareAlike 3.0
Unported License.

A.4 Direct Preference Optimization

Hyperparameters and computation. For
Llama-2, we finetune our models using a learning

rate of 2¢—*. For Mistral and Yi-1.5, we finetune
our models using a learning rate of 2e7°. We
finetune all the models for 5 epochs on the
TripAdvisor dataset, and 1 epoch on the Amazon
dataset. We use batch size of 2, AdamW optimizer,
a LoRA adapter (Hu et al.,, 2021) of rank 32
and alpha 16. We finetune the models using 1
RTXA6000 GPU, for ~ 24 hours.

Tools. We implement DPO training using TRL
(Transformer Reinforcement Learning) 0.14.0.

A.5 Explanation Faithfulness Evaluation

Table 3 and Table 4 show the simulation perfor-
mance for explanation faithfulness evaluation, bro-
ken down by different values of &, which represents
the number of training samples being used to train
the student model.

A.6 Additional Qualitative Examples

Figure 7 shows additional qualitative examples for
the explanations generated by DPO and SFT.
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Model Mistral Llama-2 Yi-1.5

k=10 k=20 Avg k=10 k=20 Avg k=10 k=20 Avg

Pred Only 78.9+0.8 87.4+0.4 832 85.0+1.5 922409 88.6 53.8+11.7 81.8+x1.8 67.8

+ SFT 83.6+0.4 86.8+0.3 85.2 85.6+2.8 92.8+1.8 89.2 68.0+11.8 82.9+27 755
+ DPO 84.0+0.5 89.3+0.7 86.7 89.9+1.6 93.2+1.0 91.6 81.9+8.1 88.4+3.1 85.2

Table 4: Simulation performance (F1) of student models on the Amazon test set, evaluating how well they
approximate the teacher model’s predictions on unseen examples. The student models are trained using explanations
from different teacher models: supervised fine-tuning (SFT) or direct preference optimization (DPO) with PEX
consistency measure. The variable k represents the size of the teacher model’s training samples. The error bars after
+ represent 95% confidence intervals across 5 training passes.

Review: Loved the case, it was good, absorbed impacts well, frosted back cover was nice and showed the battery doors design well. The
camera hole and speaker hole had enough space, small hole for the microphone but it didnt make a difference, feels comfortable when
talking, headphone jack and micro-usb (yes you can slide it) are fully accesible. the point that the physical buttons were covered by the
rubberized part made it a little tough to push them down but it provides security from dust going in there. feels a bit bigger but it slides in
and out of the pockets just fine. provides good grip. covers ALL of the phones edge so dust and liquids are hard to get in there, doesnt mean
they wont, after a while some dust may goin and u have to clean out the frosted area, but nothing tough.mines called it quits after about 9
months because the rubber started seperating from the plastic, it arrived in an extremely great condition, didnt feel cheap and the design
was great down to the way the rubber and plastic are bonded. can be superglued together if it starts to rip (usually after a LONG time of
extensive use). also has a nice hole incase if you put a small ornament or keychain thing on your phone. overall i recommend this. i got it
from accesorygeeks but its the exact same product. love it. great build quality. real comfortable. totally recommended.

Question: Can you explain the main reasons why this review is deceptive?

SFT output: [reason1] Minimizes time of use: The review implies it broke after 9 months, but in reality it broke after a few days of use,
which is a significant difference.\n[reason2] Overstates comfort: The review states it feels comfortable and has slides in and out of
pockets, but in reality the physical buttons are too hard to press and the case does not slide in and out of pockets as easily due to the
added bulk from the case.\n[reason3] Overstates durability: The review states it provides good protection and can be used for a long
time, but in reality it cracks after a few days of use and the crackingis irreversible.\n[reason4] Uses too much superlative: The review
uses too many positive adjectives (great, good, comfortable, slides in and out of pockets) without providing enough substance to
back them up.\n[reason5] Lacks specifics: The review lacks specific details (e.g. how it broke, how long it was used, etc.) which
makes it seem more credible, butinreality it is not. (Consistency score=-6.0)

DPO output: Sure! Here are three main reasons why the review is deceptive:\n1. Overstates the review period: The review claims to
have owned the case for 9 months, but the language used (\"arrived in an extremely great condition, didn't feel cheap...\") and the
praise heaped on the product's build quality suggest that the reviewer is describing a much shorter period of ownership. This is likely
an attempt to make the product appear better than it actually is by falsely claiming a longer period of ownership.\n2. Conceals the
true condition of the product: The reviewer admits that the rubberized part started to separate from the plastic after 9 months of use,
but claims that the problem can be solved by simply super-gluing it back together. This is misleading because it implies that the
product is in good condition and can be easily fixed, rather than acknowledging that the item is actually damaged and should be
replaced.\n3. Fails to provide a meaningful comparison: The reviewer claims that the product is \"totally recommended\" and that it
has \"great build quality,\" but fails to provide any meaningful comparison to other cases on the market. The lack of a meaningful
comparison makes the claim of \"great build quality\" seem artificially inflated, and the statement that the product is \"totally
recommended\" is meaningless without some context. (Consistency score=-0.6)

Figure 7: DPO (Direct Preference Optimization) improves consistency score from the Llama-2 SFT (Supervised
Fine-Tuning) model, but the generated explanation is still not consistent enough for its deceptive prediction on an
Amazon product review.
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