
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 15999–16019
November 4-9, 2025 ©2025 Association for Computational Linguistics

ConstraintLLM: A Neuro-Symbolic Framework for Industrial-Level
Constraint Programming

Weichun Shi1,6*, Minghao Liu2*, Wanting Zhang3, Langchen Shi4,6

Fuqi Jia4,6, Feifei Ma1,5,6†, Jian Zhang1,4,6†

1Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
2University of Oxford, Oxford, UK

3University of Science and Technology Beijing, Beijing, China
4SKLCS and Key Laboratory of System Software, ISCAS, Beijing, China

5Laboratory of Parallel Software and Computational Science, ISCAS, Beijing, China
6University of Chinese Academy of Sciences, Beijing, China

shiweichun24@mails.ucas.ac.cn, minghao.liu@cs.ox.ac.uk

Abstract

Constraint programming (CP) is a crucial tech-
nology for solving real-world constraint op-
timization problems (COPs), with the advan-
tages of rich modeling semantics and high
solving efficiency. Using large language mod-
els (LLMs) to generate formal modeling au-
tomatically for COPs is becoming a promis-
ing approach, which aims to build trustwor-
thy neuro-symbolic AI with the help of sym-
bolic solvers. However, CP has received
less attention compared to works based on
operations research (OR) models. We intro-
duce ConstraintLLM, the first LLM specif-
ically designed for CP modeling, which is
trained on an open-source LLM with multi-
instruction supervised fine-tuning. We pro-
pose the Constraint-Aware Retrieval Module
(CARM) to increase the in-context learning
capabilities, which is integrated in a Tree-of-
Thoughts (ToT) framework with guided self-
correction mechanism. Moreover, we con-
struct and release IndusCP, the first industrial-
level benchmark for CP modeling, which
contains 140 challenging tasks from vari-
ous domains. Our experiments demonstrate
that ConstraintLLM achieves state-of-the-art
solving accuracy across multiple benchmarks
and outperforms the baselines by 2x on the
new IndusCP benchmark. Code and data
are available at: https://github.com/
william4s/ConstraintLLM.

1 Introduction

Constraint Optimization Problems (COPs) are
prevalent in real-world applications, such as
scheduling, resource allocation, routing, and lo-
gistics optimization (Puget, 1995; Wallace, 1996;
Simonis, 1999). Constraint Programming (CP)
is a powerful paradigm for solving these complex

* Equal contribution.
† Corresponding authors. {maff,zj}@ios.ac.cn

combinatorial problems. Traditionally, CP involves
two main steps: modeling and solving (Marriott
and Stuckey, 1998).

The goal of the modeling step is to translate a
real-world problem into a formal constraint satis-
faction or optimization problem, which is typically
defined by a set of variables, domains for these vari-
ables, and constraints that must be satisfied among
them (Please refer to Appendix A for a broader
background on symbolic reasoning paradigms).

The significance and uniqueness of CP are un-
derscored by its fundamental differences from OR
and mainstream Mathematical Optimization (MO)
approaches, such as Linear Programming and In-
teger Programming. Unlike OR/MO, which pri-
marily relies on algebraic formulations, CP funda-
mentally employs a declarative approach. This
means developers focus more on clearly describing
the problem’s inherent structure and constraints,
rather than pre-specifying the concrete steps to find
a solution. CP’s strong expressive power allows
for the natural and compact modeling of complex
combinatorial structures and logical conditions, A
representative example is presented in Figure 6 (in
Appendix). This is particularly effective for prob-
lems such as scheduling and resource allocation,
which can become exceedingly cumbersome or re-
sult in overly large models if expressed purely us-
ing LP/IP formulations, leading to less intuitive and
potentially more complex implementations. This
declarative nature, establishes CP as an indispens-
able and highly valuable alternative optimization
paradigm for tackling industrial challenges.

However, despite CP’s powerful modeling capa-
bilities, the manual CP modeling process can be
time-consuming, error-prone, and requires signif-
icant domain expertise (Freuder and O’Sullivan,
2014; O’Sullivan, 2010). Recently, to overcome
these limitations, researchers have begun to explore

15999

https://github.com/william4s/ConstraintLLM
https://github.com/william4s/ConstraintLLM

the use of Large Language Models (LLMs) for auto-
mated or semi-automated constraint modeling. For
instance, CP-LLM-ICL (Michailidis et al., 2024)
exemplifies this trend; however, this work relies
solely on RAG for CP modeling without leverag-
ing Supervised Fine-Tuning (SFT) to improve the
model’s inherent modeling abilities.

Despite some progress in LLM-based constraint
modeling, existing approaches still face several
challenges when dealing with tasks of industrial-
level complexity. These challenges include the
potential for generated models to contain syntactic
errors, logical inconsistencies, or fail to effectively
capture the core constraints of the problem descrip-
tion. Furthermore, current methods may struggle
to generalize to diverse and large-scale industrial
application scenarios.

Hao et al. (2024) also explore using LLMs for
formal modeling, but our approach differs signifi-
cantly from theirs. Their method relies on an inter-
active, prompt-driven workflow using static exam-
ples for the specific domain of travel planning. In
contrast, we introduce a fully automated pipeline
powered by a fine-tuned model and a dynamic re-
trieval module (CARM). Furthermore, we validate
our approach on the broad, multi-domain IndusCP
benchmark, addressing a much wider scope of in-
dustrial problems.

To address these challenges, we propose
ConstraintLLM, a powerful LLM-based neuro-
symbolic framework specifically designed to es-
tablish and solve industrial-level CP models.
We design a Constraint-Aware Retrieval Mod-
ule (CARM) to replace the embedding-based re-
trieval component typically found in standard
Retrieval-Augmented Generation (RAG) frame-
works. Furthermore, we integrate CARM into Tree-
of-Thoughts (ToT) (Yao et al., 2023). To address
both code and logical errors in the model’s output,
we employ an Iterative Self-Correction mechanism
with Guided Retrieval. Finally, we perform multi-
instruction SFT on an open-source LLM to com-
prehensively enhance its capabilities throughout
the CP model construction process. Our neuro-
symbolic approach deeply integrates the strengths
of LLMs in understanding and generation with the
strengths of symbolic solvers in precise solution
and verification.

To comprehensively evaluate the performance
of ConstraintLLM, we introduce IndusCP, the first
industrial-level benchmark for CP modeling. This
benchmark comprises 140 curated problem in-

stances from various domains, including schedul-
ing, packing, and pathfinding, designed to reflect
the complex scenarios encountered in industrial
applications.

Our primary contributions can be summarized
as follows:

(1) To the best of our knowledge, we are pioneer-
ing the training of open-source LLMs specifi-
cally for CP modeling (Section 2.4).

(2) We construct and release the IndusCP bench-
mark (Section 3), the first benchmark of its
kind designed to assess LLMs on solving real-
world, industrial-level CP problems.

(3) We innovatively propose CARM (Section 2.1),
which significantly enhancing the In-Context
Learning (ICL) capabilities of LLMs by pro-
viding contextual exemplars that are better
aligned with the target problem in terms of
logical structure and mathematical principles.

(4) Our ConstraintLLM demonstrates state-of-
the-art performance (Section 4.2) across mul-
tiple COP benchmarks, including NL4OPT,
LGPs, LogicDeduction, and the more chal-
lenging IndusCP.

2 Methodology

To enhance the capability of LLMs in modeling
and solving Constraint Satisfaction/Optimization
Problem (CSP/COP), we propose a comprehensive
framework centered on Multi-Instruction Super-
vised Fine-Tuning (SFT, Section 2.4) to bolster
model performance on key sub-tasks: constraint
extraction, model generation, and self-correction.
Diverging from traditional RAG, we introduce
a Constraint-Aware Retrieval Module (CARM,
Section 2.1). CARM analyzes the constraint pro-
file of a problem to retrieve exemplars with stronger
logical and mathematical relevance in problem
structure and solving logic, thereby guiding sub-
sequent ICL. This module is further integrated
with a Constraint-Aware Exploration with Tree-of-
Thoughts (ToT) framework (Section 2.2), enabling
the main modeling LLM (Lcoder) to systematically
explore diverse modeling paths, with search opti-
mized by evaluating branch models on test cases.

To address code errors, we design an Iterative
Self-Correction with Guided Retrieval mechanism
(Section 2.3), activated upon external solver valida-
tion failure. This mechanism leverages CARM to

16000

Used for

train mode

(b) Training(a) Data
Natural Language Description

CP model code

and

Data Augmentation

IndusCP SFT data

A benchmark

① Data for Modeling

Modeling: Learning to

generate CP code

② Data for CARM

CARM: Learning to

extract constraint type

③ Data for self-correction

Learning to correct

wrong code

SFT

Pre-trained LLM

LLMSFT

Knowledge

source/

(c) Pipeline

Constraint types

Problem LLMSFT CP Model Feedback Results

Retriever

CARM

Solver

Correction-path CARM

Problem and Model

Errors

Self-Correction

Figure 1: The framework of ConstraintLLM. (a) Illustrates the process of constructing IndusCP and preparing the
training data. (b) Depicts the training phase, where we employ multi-instruction SFT to teach the model skills in
CP modeling, constraint type extraction, and self-correction. (c) Outlines the inference pipeline of ConstraintLLM:
a problem, augmented with ICL examples provided by CARM, is fed to the LLM to formulate a CP model. This
CP model is then processed by the solver. The feedback from the solver is used to either derive the final answer or
to initiate a self-correction process.

retrieve relevant exemplars from a case library E
containing correction paths, guiding the LLM in re-
pairing the code. The entire framework undergoes
multi-instruction SFT using Parameter-Efficient
Fine-Tuning (PEFT) techniques, utilizing metic-
ulously constructed data for each sub-task to com-
prehensively enhance the model’s proficiency in
solving constraint problems. Overall, our frame-
work integrates the powerful generative and under-
standing capabilities of LLMs with the precise vali-
dation of external symbolic solvers and the explicit
utilization of structured knowledge , thereby con-
stituting a neuro-symbolic approach aimed at more
robustly and efficiently solving complex problems.

To provide a clearer illustration of our pipeline,
we present a step-by-step walkthrough of solv-
ing the Traveling Salesman Problem (TSP) in Ap-
pendix B.

2.1 Constraint-Aware Retrieval Module

Motivation. Retrieval-augmented generation
(RAG) (Lewis et al., 2020) is a successful
technique for boosting LLM performance on
complex, knowledge-intensive tasks. However,
conventional exemplar retrieval methods, whether
based on keyword matching or dense vector

similarity, primarily focus on lexical overlap or
generalized semantic proximity. This limitation
is particularly acute for CP modeling; indeed, our
experiments showed that standard prompting meth-
ods, including Chain-of-Thought and conventional
RAG, struggle to handle the logical complexity of
industrial-scale problems (see results in Table 3).

To bridge this gap, we designed the Constraint-
Aware Retrieval Module (CARM) to operate on a
deeper, more structural level. Instead of matching
surface-level text, CARM is designed to capture
the underlying logical structure of problems. It
achieves robust generalization by matching prob-
lems based on their "constraint profiles"—the core
set of constraints required for a valid model. For
example, a factory scheduling problem and a
nurse rostering problem, despite their vastly dif-
ferent textual descriptions, might both rely on
Cumulative and AllDifferent constraints.
By retrieving exemplars based on this shared logi-
cal foundation, CARM can generalize effectively
across diverse domains, providing the model with
truly relevant reasoning patterns.

Module Design. To effectively enhance the ICL
capabilities of the primary modeling LLM (denoted

16001

as Lmodeling, designated for generating the solution,
e.g., constraint modeling code or planning steps)
when tackling complex problems, we design and in-
tegrate a CARM. The core objective of this module
is to transcend traditional representation similarity-
based retrieval paradigms. By performing a deeper
analysis of the problem’s intrinsic logical struc-
ture, specifically its Constraint Patterns, it aims
to accurately match and provide Lmodeling with ex-
emplars that exhibit high similarity at the constraint
level. We posit that the constraints form the essen-
tial backbone of a problem’s solution logic; thus,
retrieving exemplars based on constraint pattern
similarity is more likely to ensure their effective-
ness and relevance. The module comprises the
following two key steps:

Step 1. LLM-Powered Constraint Type Extrac-
tion This step aims to transform the input natural
language problem description QNL into structured
constraint information, which we denote as C. We
employ an auxiliary LLM, Lanalyzer (which could be
a general-purpose LLM guided by specific prompts
P , or a fine-tuned specialized model), acting as a
Semantic Parser. This parsing process maps QNL
to its structured representation C. This transforma-
tion can be formalized as:

C = Lanalyzer(QNL, P) (1)

where the output C(Q) is a set of constraint types
drawn from a predefined constraint ontology O:

C(QNL) = {c1, c2, ..., cn} ∀i ∈ {1, ..., n}, ci ∈ O
(2)

Here, QNL denotes the input query problem
described in natural language. The goal is to
identify the underlying constraint types within
the query, collectively represented as C(Q), the
Constraint Profile of Q. Specifically, C(QNL) =
{c1, c2, ..., cn}, where each ci denotes the i-th
identified constraint type, and n is the total
number of such types, with n ≥ 0. These
constraint types are drawn from a predefined
Constraint Ontology O, which includes cate-
gories such as AllDifferent, Cumulative,
LexDecreasing, NoOverlap, and others.

To extract these constraints, the model Lanalyzer
is guided by carefully designed prompts to perform
deep semantic analysis on QNL. Through this pro-
cess, various constraints are identified and mapped
to standardized types within O, resulting in the
final Constraint Profile C(Q).

Step 2. Constraint Profile-Driven Similarity
Matching and Retrieval In this step, the ex-
tracted constraint profile C(Q) is used to identify
the most relevant cases from a pre-built case library
D = {D1, D2, . . . , Dm}. Each case Dj in the li-
brary consists of its original description Dj,NL and
the corresponding reference solution Dj,Sol, with
its own pre-computed and indexed constraint pro-
file C(Dj).

To determine which cases are most relevant, the
similarity between the query’s constraint profile
C(Q) and each case’s constraint profile C(Dj) is
evaluated using the Jaccard similarity coefficient.
This coefficient measures the overlap between the
sets of constraint types:

Sim(C(Q), C(Dj)) =
|C(Q) ∩ C(Dj)|
|C(Q) ∪ C(Dj)|

(3)

Once the similarity scores are computed, the
cases in D are ranked in descending order. The top-
k cases, {Dr1 , Dr2 , . . . , Drk}, are then selected as
the final set of relevant exemplars to be provided
to Lmodeling.

By employing CARM, we aim to provide the
main model Lmodeling with exemplars that are not
only potentially relevant in terms of surface text but,
more crucially, possess stronger logical and mathe-
matical relevance in terms of problem structure and
solving logic,as reflected by the constraints. This
strategy, based on deep logical matching, aims to
maximize the efficiency of ICL, guiding Lmodeling
towards more effective Analogical Reasoning and
solution strategy transfer, thereby improving its
performance on the target complex tasks.

2.2 Constraint-Aware Exploration with
Tree-of-Thoughts

Motivation. Constraint modeling code is charac-
terized by its highly structured nature, strict syntax,
and strong logical requirements. Its generation pro-
cess is essentially a complex search problem involv-
ing numerous decision points. To systematically
explore this vast search space, we introduce a Tree-
of-Thoughts (ToT) framework and integrate it with
our proposed CARM. This module replaces tradi-
tional embedding-based retrieval, enabling more
effective guidance of the exploration process.

Exploring Diverse Modeling Choices. The ToT
framework simulates modeling via an exploration
tree, rooted at the initial problem or an empty

16002

model. From any node representing a partial solu-
tion, ToT generates parallel "thoughts." In our con-
text, a "thought" is a concrete modeling decision
or code snippet extending the current solution, pri-
marily including: (1): Global Constraint Selection:
Leveraging CARM to explore different global con-
straints (e.g., AllDifferent, Cumulative);
(2): Variable Definition Strategies: Exploring di-
verse variable definitions (e.g., array vs. named
variables, integer vs. Boolean variables); (3): Aux-
iliary Variable Introduction: Investigating auxil-
iary variables to simplify constraints or aid solver
pruning, with CARM recommending relevant con-
struction patterns. CARM is central to this ToT
process. Instead of relying on fuzzy semantic sim-
ilarity, it retrieves syntactically correct, logically
relevant code snippets or modeling patterns satis-
fying specific constraint structures, based on the
current modeling context and structured queries.
This enables ToT to generate high-quality, diverse
"thought branches. More details of ToT are pro-
vided in Appendix J.

2.3 Iterative Self-Correction with Guided
Retrieval

To rectify logical flaws beyond syntactic errors,
we employ an iterative self-correction mechanism
triggered by failures during validation with exter-
nal solvers (e.g., Choco, ACE). Solver feedback
pinpoints logical inconsistencies, guiding the cor-
rection process.

Central to this mechanism is a two-stage retrieval
strategy for selecting relevant correction exemplars
from a pre-constructed database E . Each exemplar
e ∈ E contains a problem description, incorrect
code, a correction path, and the correct code. Given
the current error context cerr (derived from solver
feedback and erroneous code), we first identify a
candidate set C based on embedding similarity, and
then re-rank these candidates using our CARM
based on constraint relevance. The top-ranked ex-
emplar e∗ is selected as:

C = Top-ke∈E (Semb(cerr, e)) (4)

e∗ = argmax
e∈C

(Scarm(cerr, e)) (5)

where Semb denotes the embedding similarity score
(e.g., cosine similarity between embeddings of cerr
and error info in e), and Scarm is the relevance
score assigned by the CARM, prioritizing exem-
plars whose correction paths address constraints
pertinent to cerr.

The retrieved exemplar e∗ provides an in-context
learning example for the LLM. The LLM receives
the original problem description, the current incor-
rect code, the solver feedback, and the components
of e∗ (incorrect code, correction path, correct code)
to generate a revised model code.

This process iterates: (1) Generate code, (2) Val-
idate with solver, (3) If failure, retrieve exemplar e∗

using Eqs. 4-5, (4) Generate corrected code using
LLM with e∗ for in-context learning, (5) Repeat val-
idation. We typically perform 4 rounds of iteration,
which substantially improves code correctness by
enabling the model to learn from targeted feedback
and relevant correction strategies.

2.4 Multi-Instruction Supervised
Fine-Tuning

We employ PEFT with three primary objectives:
(1) enhancing the model’s core CP modeling ca-
pability; (2) improving its ability to accurately ex-
tract constraint types from problem descriptions
for CARM; and (3) strengthening its capacity to
correct syntactic and logical code errors during
Self-Correction (Section 2.3).

Our training data primarily originates from a
reserved subset of our IndusCP benchmark, aug-
mented using techniques like EDA (Wei and Zou,
2019) and variable renaming (Yu et al., 2022) for
both problem descriptions and code to enhance
diversity and robustness. We specifically con-
struct paired data for constraint type extraction (for
CARM) and an exemplar database E containing
{problem description, incorrect code, correction
path, correct code} (see Section 2.3) to bolster error
correction capabilities. For a detailed methodology
on data augmentation and construction, please refer
to Appendix H.

3 IndusCP: A New Industrial-Level
Benchmark for Constraint Satisfaction
Problems

Recent advancements have applied LLMs to solve
CP problems (Michailidis et al., 2024). However,
these initial explorations often focus on specific
problem types or simplified settings, not yet fully
addressing the diverse and generalized scenarios
encountered in practical, industrial-scale CP ap-
plications. This gap is partly due to the limita-
tions of existing benchmarks in comprehensively
evaluating LLM capabilities on complex CSPs/-
COPs. For instance, while NL4OPT (Ramamonji-

16003

Table 1: Distribution of the IndusCP dataset

Category Number Percentage
Scheduling & Sequencing 31 23.8%

Routing & Logistics 12 9.2%
Resource Allocation & Assignment 23 17.7%

Layout, Packing & Cutting 10 7.7%
Design & Configuration 16 12.3%

Combinatorial Puzzles & Games 21 16.2%
Data-Driven Optimization & Analytics 6 4.6%
Cryptography & Algorithmic Puzzles 4 3.1%
Manufacturing & Production Planning 4 3.1%

Telecommunications & Network Design 2 1.5%
Others 1 0.8%

son et al., 2023) provides natural language descrip-
tions for linear optimization problems, its inherent
focus on the linear programming (LP) modeling
paradigm and its associated, relatively simpler con-
straint types renders it unsuitable for assessing an
LLM’s ability to handle CP. CP are typically char-
acterized by intricate combinatorial structures and
a rich variety of constraints, especially powerful
global constraints, which are not central to LP for-
mulations. Similarly, the LGPs dataset (Mitra and
Baral, 2015), consisting of logical puzzles, primar-
ily involves basic logical and arithmetic constraints
(such as AllDifferent, Xor, LogicalAnd,
and comparison operators) when formulated as
CSPs. While useful for certain reasoning tasks,
LGPs also falls short in providing the compre-
hensiveness and complexity needed to benchmark
LLMs on the intricate industrial-grade constraints
found in real-world CSPs.

To address these limitations, we introduce In-
dusCP, a new industrial-level benchmark for CP,
specifically designed to enable a comprehensive
evaluation of frameworks for solving CP problems,
particularly those leveraging LLMs for modeling
and solution, and to better reflect real-world appli-
cation scenarios. It aims to bridge the significant
gap between the relatively simplified CP instances
common in academic research and the multifaceted,
complex problems encountered in industry. All
problems in the IndusCP benchmark are NP-hard.

We compare IndusCP with several existing
benchmarks in Table 2. As the table clearly demon-
strates, IndusCP operates on a vastly different scale
in terms of both the number and complexity of con-
straints and variables, providing a much more chal-
lenging and realistic testbed for evaluating modern

solvers.
IndusCP comprises 140 curated problem in-

stances. Each instance includes 2 to 5 distinct test
cases to assess model robustness across different
scales and conditions. The problems cover a wide
range of classic constraint satisfaction and opti-
mization domains, primarily including: Scheduling
and Sequencing, Packing and Cutting, Routing and
Pathfinding, Allocation and Assignment, and Com-
binatorial Design and Puzzles. The distribution is
shown in Table 1.

The detailed curation process for the benchmark
is described in Appendix F.

4 Experiments

4.1 Experimental Setup

Evaluation Benchmarks and Metrics. We use
NL4OPT (Ramamonjison et al., 2023), LGPs (Mi-
tra and Baral, 2015), LogicDeduction (Pan et al.,
2023) and IndusCP as evaluation benchmarks. In-
dusCP includes 140 COPs in its test set. NL4OPT
is the most widely used benchmark for linear opti-
misation. We select 271 instances for the test set
and 731 instances for knowledge sources. LGPs
consist of logical puzzles described with clues and
entities, which can be formulated as CSPs. We
select 50 instances as knowledge sources and 100
instances as test data. LogicDeduction is a com-
plex logical inference task that can be expressed
as CSPs. For our experiments, we randomly select
200 instances for the test set and 100 instances for
the knowledge sources. Detailed descriptions of
these datasets are provided in Appendix L.1. We
use Solving Accuracy (SA) to measure the propor-
tion of problems for which an approach, after its
full processing, outputs a verified correct solution.

16004

Table 2: Comparison of IndusCP with existing benchmarks.

Benchmark # Probs Avg. Const. Avg. Vars. Problem Type

LogicDeduction 200 5.06 6.00 Positional Reasoning
LGPs 100 12.62 12.00 Puzzles
NL4OPT 271 4.25 2.02 Linear Programming

IndusCP (Ours) 140 240.14 101.24 Diverse Combinatorial

Table 3: Performance comparison across models and methods using SA(%) metric. Best results per dataset are
bolded and underlined. “*” indicates results from original papers, “‡” marks previous SOTA. For CoT (one-shot)
and RAG/ConstraintLLM (four-shot) methods. Improvement rates show gains over CoT baselines.

LLM Method Benchmarks

IndusCP NL4OPT LGPs LogicDeduction
SA (%) SA (%) SA (%) SA (%)

Baseline Methods

Qwen2.5-Coder-32B
Direct Solving 23.3 10.1 3.3 51.0
CoT (one-shot) 20.9 85.6 2.0 83.5
RAG (four-shot) 24.3 91.7 86.0 17.2

Previous Work
CP-LLM-ICL (Michailidis et al., 2024) 22.7 87.5* 76.0*‡ 93.5
LLMOPT* (Jiang et al., 2024) 3.3 93.0*‡ 0.0 16.0
Logic-LM* (Pan et al., 2023) / / / 87.6*‡

Model Comparisons

ChatGPT-4o
CoT 26.5 82.3 41.0 67.0
RAG 33.5 91.5 87.0 97.0
ConstraintLLM (w/o ToT) 49.8 96.3 90.0 97.0

DeepSeek-V3
CoT 38.5 84.9 42.0 85.0
RAG 51.0 96.7 87.0 99.0
ConstraintLLM (w/o ToT) 57.8 96.7 92.0 100.0

Qwen2.5-Coder-32B

CoT 17.5 85.2 2.0 84.5
RAG 21.8 88.6 82.0 92.0
ConstraintLLM (w/o ToT) 40.0 95.2 91.0 96.0
ConstraintLLM (w/ ToT) 51.3 99.26 92.0 100.0

CP Solver Implementation Details. All mod-
els were implemented in Python 3.12 us-
ing the PyCSP3 (Lecoutre and Szczepanski,
2020) library, which interfaces with the Choco
Solver (Prud’homme and Fages, 2022). We set
a 20-second solver time limit for each test instance.

Training Details. Due to limited GPU resources,
we only use 3 NVIDIA RTX A6000 GPUs
for training and inference, which is highly cost-
effective. We utilize Qwen2.5-Coder-32B-Instruct
(Hui et al., 2024) as our base model to train
our Qwen2.5-ConstraintLLM-32B. Model train-
ing is conducted using the framework presented
in Llamafactory (Zheng et al., 2024), employing
QLoRA (Dettmers et al., 2023). For more details,
please see Appendix D.

Baselines. We compare ConstraintLLM to three
baselines: (1) Direct Solving: This is the most
straightforward baseline. We provide the problem

description to the LLM and instruct it to analyze
the problem and output the answer. (2) Chain of
Thought (CoT) (Wei et al., 2022): To enhance
the reasoning abilities of the LLMs, we employ the
CoT prompting strategy. The model is prompted to
first output a step-by-step thought process before
generating the final CP model. Since LLMs can
rarely generate successfully executable CP mod-
els under zero-shot conditions, we adopted a one-
shot setting for the CoT evaluation. (3) Retrieval-
Augmented Generation (RAG) (Lewis et al.,
2020): This baseline aims to evaluate the utility
of a general-purpose retrieval mechanism in aiding
LLMs in solving CSPs/COPs. Given a target prob-
lem description QNL, we first retrieve k most simi-
lar "problem description-model code" pairs from a
pre-constructed knowledge base. Retrieval is based
on the embedding similarity between QNL and the
problem descriptions in the knowledge base.

16005

IndusCP NL4OPT LGPs LogicDeduction
30

40

50

60

70

80

90

100

S
ol

vi
ng

 A
cc

ur
ac

y
(S

A
) (

%
)

34.7

94.1

68.0

95.0

40.0

95.2

91.0

97.0

+5.3%

+1.1%

+23.0%

+2.0%Qwen2.5-coder-32B
Qwen2.5-ConstraintLLM-32B

(a) Comparison between Qwen2.5-coder-32B and the model
with SFT under ConstraintLLM framework.

IndusCP NL4OPT LGPs LogicDeduction
20

30

40

50

60

70

80

90

100

S
ol

vi
ng

 A
cc

ur
ac

y
(S

A
) (

%
)

26.5

85.1

78.0

93.0

40.0

95.2

91.0

98.0

+13.5%

+10.1%

+13.0%

+5.0%RAG
CARM

(b) Comparison between RAG and CARM under Con-
straintLLM framework.

IndusCP NL4OPT LGPs LogicDeduction
20

30

40

50

60

70

80

90

100

S
ol

vi
ng

 A
cc

ur
ac

y
(S

A
) (

%
)

29.2

94.1

68.0

95.0

40.0

95.2

91.0

97.0

+10.8%

+1.1%

+23.0%

+2.0%w/o Self-Correction
w/ Self-Correction

(c) Ablation of Self-Correction

Figure 2: Contribution analysis of key ConstraintLLM components: Comparing the impact of SFT, CARM vs.
RAG, and Self-Correction on SA.

Computational Cost. In terms of practical via-
bility, solving a typical problem from the IndusCP
benchmark takes approximately 3 minutes with our
framework (w/o ToT) and 7 minutes (w/ ToT). A
detailed breakdown of the computational overhead,
including LLM inference and solver calls, is pro-
vided in Appendix O.

4.2 RQ1: How does ConstraintLLM
Compare to State-of-the-Art Models and
Methods

To comprehensively evaluate the performance of
ConstraintLLM, we benchmark it against two dis-
tinct categories of State-of-the-Art (SOTA) ap-
proaches:

1. Comparison with Large-Scale General-
Purpose LLMs: We first contextualize Con-
straintLLM by comparing it against industry-
leading, larger-scale general-purpose LLMs, in-
cluding OpenAI’s GPT-4o and Deepseek-V3-
685B (Liu et al., 2024). Our goal was to assess their
CP-solving abilities under relatively "out-of-the-
box" or minimally prompted conditions. We pri-
marily employed three strategies to elicit CP model
code generation: (1) CoT Modeling with one-shot
prompting; (2) RAG with four-shot prompting;
and (3) our ConstraintLLM framework with four-
shot prompting and four rounds of iterative Self-

Correction. All comparative experiments were con-
ducted on four datasets: IndusCP, NL4OPT (Ra-
mamonjison et al., 2023), LGPs (Mitra and Baral,
2015), and LogicDeduction (Pan et al., 2023), us-
ing SA as the core evaluation metric. The compre-
hensive results are presented in Table 3.

Despite the DeepSeek-V3 LLM having 21.4
times the parameter count of our ConstraintLLM-
Qwen2.5-32B model, the latter achieves SOTA
performance on three datasets with our Con-
straintLLM (w/ ToT) configuration. This demon-
strates that ConstraintLLM enables smaller mod-
els to exhibit capabilities approaching or even sur-
passing those of much larger models, significantly
bridging the gap in their reasoning abilities.

To provide a more granular view of our model’s
performance on the IndusCP benchmark, we also
analyzed its accuracy across different problem cat-
egories. Our model demonstrates stable perfor-
mance on major categories like scheduling and re-
source allocation. A detailed breakdown, which
also discusses performance on outlier categories
with fewer instances or extreme complexity (e.g.,
Cryptography), is available in Appendix E.

2. Comparison with Published SOTA CP
Modeling Methods: To further position Con-
straintLLM within the broader landscape of au-

16006

tomated CP modeling and assess its competitive-
ness, we also benchmarked its performance against
several notable SOTA methods published in re-
cent literature. This comparison was conducted
on the same established public benchmarks rele-
vant to constraint modeling and reasoning. The
comparative results, including performance figures
reported in the original publications of these SOTA
approaches where direct re-implementation was
not feasible, are presented in Table 3.

4.3 RQ2: Contribution Analysis of Key
Components in ConstraintLLM

To answer RQ2, as illustrated in Figure 2, we dis-
sect the individual contributions of the core com-
ponents and strategies within the ConstraintLLM
framework to its overall performance through a se-
ries of meticulous ablation studies. This section
aims to quantify the pivotal roles played by SFT,
the CARM, and the iterative Self-Correction mech-
anism in enhancing the model’s ability.

All ablation experiments were performed on the
datasets described in Section 4.1, using SA as the
primary evaluation metric. We primarily conducted
three sets of comparisons: first, we compared the
performance of models with and without our spe-
cific SFT within the framework to validate SFT’s
effectiveness; second, we contrasted generic RAG
with our proposed CARM to reveal CARM’s ad-
vantage in providing high-quality contextual ex-
amples; finally, by comparing performance with
the self-correction mechanism enabled versus dis-
abled, we quantified its role in fixing errors and
improving final solution rates. To further isolate
the contribution of SFT, we conducted an additional
ablation study comparing our fine-tuned model di-
rectly against its base model. The results, detailed
in Appendix C.

The experimental results demonstrate the posi-
tive impact of each component. Specifically, SFT
significantly enhances the model’s foundational
modeling and understanding capabilities; CARM,
compared to generic RAG, retrieves more rele-
vant exemplars, thereby guiding model generation
more effectively; and the self-correction mecha-
nism shows strong capabilities in rectifying poten-
tial errors in the initial code, all contributing to the
superior performance of ConstraintLLM.

4.4 RQ3: To what extent does
ConstraintLLM improve Solving
Accuracy in solving CP problems?

As shown in Table 3, our ConstraintLLM consis-
tently outperforms all previous methods across mul-
tiple challenging benchmarks. Compared to Chain
of Thought (CoT) with one-shot prompting, Con-
straintLLM achieves significant improvements in
Solving Accuracy (SA). Specifically, when lever-
aging ChatGPT-4o as the inference model, Con-
straintLLM leads to an average SA improvement
of 29.07%.

Similarly, with DeepSeek-V3 as the inference
model, the average SA improvement is 24.02%.
Furthermore, on our fine-tuned Qwen2.5-Coder-
32B model, ConstraintLLM (with ToT) demon-
strates an average SA improvement of 38.47% over
its corresponding CoT baseline. Notably, the most
substantial SA improvement rate, reaching 90%,
is observed on the LGPs dataset when applying
ConstraintLLM.

5 Conclusion and Future Work

This work introduces ConstraintLLM, a novel
neuro-symbolic framework for industrial-level CP
modeling that uses a large language model with
multi-instruction SFT, a CARM, and a ToT frame-
work with guided self-correction to improve in-
context learning and accuracy. Key contributions
are the pioneering training of an open-source LLM
for CP modeling and the IndusCP benchmark,
where ConstraintLLM achieved SOTA solving ac-
curacy, significantly outperforming baselines.

Future work will expand ConstraintLLM’s capa-
bilities through broader problem domains, refined
self-correction, training on larger models, and ap-
plying it to more real-world challenges while ex-
tending the IndusCP benchmark.

Limitations

First, while ConstraintLLM is designed as a general
framework for CP modeling, evaluation is only
done on the Python API of PyCSP3 library due to
the lack of data in other forms of code.

Second, we trained and evaluated our methods
based on the Qwen2.5 series of models. It will be
beneficial to extend the baseline model to a broader
range of open-source LLMs.

Third, our ConstraintLLM framework relies on
CARM (a retrieval-augmented mechanism) to pro-
vide in-context exemplars. Ideally, the model

16007

should be capable of high-quality CP modeling
directly under zero-shot or few-shot conditions,
thereby completely obviating the need for an exter-
nal retrieval database.

Acknowledgments

We thank Shenghua Feng, Rui Han, Yu Zhang, and
Yuhang Dong for their efforts in dataset annotation.
We are also grateful to Hang Gao and the anony-
mous reviewers for their insightful comments and
suggestions, which greatly improved the quality of
this paper.

This work was partially supported by NSFC
grant No. 62132020.

References
2024. CSPLib: A problem library for constraints.
https://www.csplib.org/.

2024. MiniZinc challenges. https://github.
com/MiniZinc/mzn-challenge.

2025. PyCSP3-models. https://github.com/
xcsp3team/PyCSP3-models.

2025. XCSP competitions. https://xcsp.org/
competitions/.

Clark Barrett and Cesare Tinelli. 2018. Satisfiability
modulo theories. In Handbook of model checking,
pages 305–343. Springer.

Armin Biere, Marijn Heule, and Hans van Maaren.
2009. Handbook of satisfiability, volume 185. IOS
press.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and
Luke Zettlemoyer. 2023. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information
Processing Systems, 36:10088–10115.

Eugene C Freuder and Barry O’Sullivan. 2014. Grand
challenges for constraint programming. Constraints,
19:150–162.

Yilun Hao, Yongchao Chen, Yang Zhang, and Chuchu
Fan. 2024. Large language models can solve real-
world planning rigorously with formal verification
tools. arXiv preprint arXiv:2404.11891.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang,
Dayiheng Liu, Lei Zhang, Tianyu Liu, Jiajun
Zhang, Bowen Yu, Keming Lu, and 1 others. 2024.
Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186.

Fuqi Jia, Yuhang Dong, Rui Han, Pei Huang, Ming-
hao Liu, Feifei Ma, and Jian Zhang. 2025. A com-
plete algorithm for optimization modulo nonlinear
real arithmetic. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 39, pages
11255–11263.

Fuqi Jia, Yuhang Dong, Minghao Liu, Pei Huang,
Feifei Ma, and Jian Zhang. 2023a. Suggesting vari-
able order for cylindrical algebraic decomposition
via reinforcement learning. Advances in Neural In-
formation Processing Systems, 36:76098–76119.

Fuqi Jia, Rui Han, Pei Huang, Minghao Liu, Feifei Ma,
and Jian Zhang. 2023b. Improving bit-blasting for
nonlinear integer constraints. In Proceedings of the
32nd ACM SIGSOFT International Symposium on
Software Testing and Analysis, pages 14–25.

Caigao Jiang, Xiang Shu, Hong Qian, Xingyu Lu,
Jun Zhou, Aimin Zhou, and Yang Yu. 2024. Ll-
mopt: Learning to define and solve general opti-
mization problems from scratch. arXiv preprint
arXiv:2410.13213.

Christophe Lecoutre and Nicolas Szczepanski. 2020.
PYCSP3: modeling combinatorial constrained prob-
lems in python. arXiv preprint arXiv:2009.00326.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio
Petroni, Vladimir Karpukhin, Naman Goyal, Hein-
rich Küttler, Mike Lewis, Wen-tau Yih, Tim Rock-
täschel, and 1 others. 2020. Retrieval-augmented
generation for knowledge-intensive NLP tasks. Ad-
vances in Neural Information Processing Systems,
33:9459–9474.

Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang,
Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, and 1
others. 2024. Deepseek-v3 technical report. arXiv
preprint arXiv:2412.19437.

Minghao Liu, David M Cerna, Filipe Gouveia, and An-
drew Cropper. 2025. Scalable knowledge refactor-
ing using constrained optimisation. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 39, pages 15049–15057.

Minghao Liu, Pei Huang, Fuqi Jia, Fan Zhang, Yuchen
Sun, Shaowei Cai, Feifei Ma, and Jian Zhang. 2023a.
Can graph neural networks learn to solve the maxsat
problem? (student abstract). In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 37, pages 16264–16265.

Minghao Liu, Kunhang Lv, Pei Huang, Rui Han, Fuqi
Jia, Yu Zhang, Feifei Ma, and Jian Zhang. 2023b.
Nrago: Solving smt (nra) formulas with gradient-
based optimization. In 38th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, pages 2046–2049. IEEE.

Minghao Liu, Fan Zhang, Pei Huang, Shuzi Niu, Feifei
Ma, and Jian Zhang. 2020. Learning the satisfia-
bility of pseudo-boolean problem with graph neural
networks. In International Conference on Princi-
ples and Practice of Constraint Programming, pages
885–898. Springer.

Kim Marriott and Peter J Stuckey. 1998. Programming
with constraints: an introduction. MIT press.

16008

https://www.csplib.org/
https://github.com/MiniZinc/mzn-challenge
https://github.com/MiniZinc/mzn-challenge
https://github.com/xcsp3team/PyCSP3-models
https://github.com/xcsp3team/PyCSP3-models
https://xcsp.org/competitions/
https://xcsp.org/competitions/

Kostis Michailidis, Dimos Tsouros, and Tias Guns.
2024. Constraint modelling with llms using in-
context learning. In 30th International Conference
on Principles and Practice of Constraint Program-
ming.

Arindam Mitra and Chitta Baral. 2015. Learning to
automatically solve logic grid puzzles. In Proceed-
ings of the 2015 Conference on Empirical Methods
in Natural Language Processing, pages 1023–1033.

Barry O’Sullivan. 2010. Automated modelling and
solving in constraint programming. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 24, pages 1493–1497.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023. Logic-lm: Empower-
ing large language models with symbolic solvers for
faithful logical reasoning. In The 2023 Conference
on Empirical Methods in Natural Language Process-
ing.

Charles Prud’homme and Jean-Guillaume Fages. 2022.
Choco-solver. Journal of Open Source Software,
7(78):4708.

Jean-Francois Puget. 1995. Applications of constraint
programming. In International Conference on Prin-
ciples and Practice of Constraint Programming,
pages 647–650. Springer.

Rindranirina Ramamonjison, Timothy Yu, Raymond
Li, Haley Li, Giuseppe Carenini, Bissan Ghaddar,
Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-
Dehkordi, Zirui Zhou, and 1 others. 2023. Nl4opt
competition: Formulating optimization problems
based on their natural language descriptions. In
NeurIPS 2022 Competition Track, pages 189–203.
PMLR.

Francesca Rossi, Peter Van Beek, and Toby Walsh.
2006. Handbook of constraint programming. Else-
vier.

Helmut Simonis. 1999. Building industrial applica-
tions with constraint programming. In International
Summer School on Constraints in Computational
Logics, pages 271–309. Springer.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta,
Adrià Garriga-Alonso, and 1 others. 2022. Beyond
the imitation game: Quantifying and extrapolating
the capabilities of language models. arXiv preprint
arXiv:2206.04615.

Mark Wallace. 1996. Practical applications of con-
straint programming. Constraints, 1:139–168.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting
elicits reasoning in large language models. Ad-
vances in Neural Information Processing Systems,
35:24824–24837.

Jason Wei and Kai Zou. 2019. Eda: Easy
data augmentation techniques for boosting perfor-
mance on text classification tasks. arXiv preprint
arXiv:1901.11196.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran,
Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
2023. Tree of thoughts: Deliberate problem solving
with large language models. Advances in Neural In-
formation Processing Systems, 36:11809–11822.

Shiwen Yu, Ting Wang, and Ji Wang. 2022. Data aug-
mentation by program transformation. Journal of
Systems and Software, 190:111304.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yan-
han Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang
Ma. 2024. Llamafactory: Unified efficient fine-
tuning of 100+ language models. arXiv preprint
arXiv:2403.13372.

A Background on Symbolic Reasoning
Paradigms

This appendix provides a brief overview of three
fundamental paradigms in symbolic reasoning rel-
evant to our work: Boolean Satisfiability (SAT),
Satisfiability Modulo Theories (SMT), and Con-
straint Programming (CP).

A.1 Boolean Satisfiability (SAT)
The Boolean Satisfiability (SAT) problem is foun-
dational, asking whether a satisfying truth assign-
ment exists for a given Boolean formula (Biere
et al., 2009). Modern solvers, based on Conflict-
Driven Clause Learning (CDCL), can efficiently
handle instances with millions of variables. A key
technique is bit-blasting, which translates high-
level constraints (e.g., integer arithmetic) into a
large SAT formula (Jia et al., 2023b). Maximum
Satisfiability (MaxSAT) problem, an optimization
variant of SAT, addresses problems requiring the
satisfaction of a maximum number of clauses,
which has been used in basic tasks of knowledge
representation and reasoning (Liu et al., 2023a,
2025).

A.2 Satisfiability Modulo Theories (SMT)
Satisfiability Modulo Theories (SMT) extends SAT
by integrating specialized "theory solvers" for
richer domains like arithmetic, arrays, and bit-
vectors (Barrett and Tinelli, 2018). An SMT solver
combines a SAT engine for the Boolean structure
with theory solvers that check the consistency of
constraints within their respective domains. A
particularly active area of research is the theory
of Nonlinear Real Arithmetic (NRA), crucial for

16009

formal verification and synthesis tasks (Liu et al.,
2023b; Jia et al., 2023a, 2025).

A.3 Constraint Programming (CP)

Constraint Programming (CP) is a declarative
paradigm distinguished by its highly expres-
sive, high-level modeling language (Rossi et al.,
2006). Unlike SAT/SMT, which operate on low-
level logical formulas, CP allows modelers to
use powerful global constraints that directly en-
capsulate complex combinatorial substructures,
such as AllDifferent, Cumulative, and
Circuit.

This ability to naturally and compactly model
real-world problems is the primary reason we focus
on CP. While powerful, this high-level modeling
process itself presents a significant challenge requir-
ing expertise and precision—the very bottleneck
our work is designed to address. CP solvers then
use this model, typically employing a combination
of search and constraint propagation to efficiently
find solutions. Recent work has also tried to inte-
grate deep learning for solving certain kinds of CP
tasks (Liu et al., 2020).

B A Concrete Walkthrough of the
ConstraintLLM Pipeline

To illustrate the inner workings of our pipeline,
particularly the Constraint-Aware Retrieval Mech-
anism (CARM) and Guided Self-Correction, we
present this step-by-step walkthrough. We use
the Traveling Salesman Problem (TSP) as the tar-
get problem and the Traveling Purchaser Problem
(TPP) as a contrasting example retrieved from the
knowledge base.

B.1 Problem Definitions

Traveling Salesman Problem (TSP) The TSP
is a classic optimization problem where the goal
is to find the shortest possible tour that visits each
city exactly once and returns to the starting city.

• Input Format: A symmetric distance matrix,
distances, where distances[i][j]
is the distance from city i to city j.

Traveling Purchaser Problem (TPP) A com-
pany needs to source a list of materials from sup-
pliers in various cities. The goal is to plan a single
circuit trip, starting and ending at the home base, to
minimize total expenditure (travel costs + purchase
prices). The plan must determine the optimal route

and the best city on that route to purchase each
material.

• Input Format:

– nProducts: The total number of ma-
terials.

– distances: A matrix of travel costs
between cities.

– prices: A matrix where
prices[i][j] is the cost of
material j in city i.

B.2 Pipeline Execution Walkthrough
Given the natural language description of TSP, the
pipeline proceeds as follows:

1. Constraint Profile Generation: The model
first analyzes the TSP description and
generates a "Constraint Profile" containing
key constraints it identifies as relevant:
["Circuit", "Sum", "Element",
"Minimum"].

2. Constraint-Aware Retrieval (CARM): Us-
ing this profile, CARM retrieves similar prob-
lems. For this example, it retrieves four prob-
lems, including TPP, which has a similar pro-
file of [’Circuit’, ’Element’].

3. Guided Self-Correction: This step demon-
strates how the model learns from contrasting
examples. Assume the model initially gener-
ates an incorrect solution for TSP by misap-
plying the Circuit constraint.

(a) Learning from a Contrasting Exam-
ple (TPP): The model analyzes the
retrieved "correction path" for TPP.
In the TPP case, an initial model
using AllDifferent was incorrect.
The correction path explains why:
AllDifferent would force a visit to
every city, but TPP only requires visiting
a subset of cities. The correct TPP model
uses Circuit, as it naturally allows for
unvisited cities (represented as self-loops
where a city variable points to itself, e.g.,
x[i] == i).

(b) Applying the Insight to TSP: Armed
with this understanding, the model re-
evaluates its own TSP model. It rec-
ognizes that its use of Circuit is
flawed for the opposite reason. For

16010

TSP, Circuit is problematic because
it can result in multiple disconnected
sub-tours, failing to create a single tour
of all cities. The model deduces that
AllDifferent is the correct core
constraint for TSP, as it enforces a
single permutation of all cities, thus
eliminating sub-tours. The correction
path then guides the model to replace
the flawed Circuit constraint with
AllDifferent.

By understanding why Circuit is right for
TPP (allowing subsets) and wrong for TSP (allow-
ing sub-tours), the model learns the underlying
modeling principles, not just syntactic patterns.

C Ablation Study on Supervised
Fine-Tuning (SFT)

To isolate and directly measure the performance
contribution of our Supervised Fine-Tuning pro-
cess, we conducted an additional ablation study. In
this experiment, we evaluated our fine-tuned model
without any of the other framework components
(i.e., no CARM-based retrieval and no iterative
self-correction).

We compared our fine-tuned
ConstraintLLM-32B directly against its
base model, Qwen2.5-Coder-32B, on the
direct modeling task. The models were tasked to
generate a CP model from the problem description
alone. The results are presented in Table 4.

These results lead to two key conclusions. First,
our ConstraintLLM-32B outperforms the base
model across all benchmarks, confirming that SFT
effectively enhances the model’s foundational ca-
pabilities. Second, while SFT provides a consis-
tent boost, the standalone performance remains
relatively limited, especially on the complex In-
dusCP benchmark. This finding demonstrates
the necessity of the other synergistic components
in our framework—namely CARM and iterative
self-correction—to achieve robust performance on
industrial-level problems.

D Training Details

We performed SFT on the Qwen2.5-Coder-32B-
Instruct model using the LLaMA Factory frame-
work (Zheng et al., 2024), leveraging three
NVIDIA A6000 GPUs. For model and data con-
figuration, we utilized the our 10K dataset. The

training was with a cutoff length of 3500 tokens,
employing 4 preprocessing workers. The training
spanned 6.0 epochs with a learning rate of 4e-04,
a cosine learning rate scheduler, and 500 warmup
steps. The AdamW optimizer was used with a per-
device train batch size of 2 and 2 gradient accumu-
lation steps, resulting in a total effective batch size
of 12. The maximum gradient norm was capped at
1.0, and gradient checkpointing was enabled. For
fine-tuning, QLoRA was employed with a rank of
32, an alpha of 64, a dropout rate of 0.01, and tar-
geted Wq and Wv modules. BF16 precision was
enabled for hardware and precision settings, and
4-bit quantization was performed using the Bit-
sAndBytes method.

E Per-Category Performance Analysis
on IndusCP

An aggregated accuracy score can mask significant
performance variations across different problem
categories. To provide a more transparent and de-
tailed evaluation, we have broken down the perfor-
mance of our ConstraintLLM (w/ ToT) on
the IndusCP benchmark by category. To further
contextualize these results, we also report the ’Ex-
ternal Knowledge Percentage’ for each category in
Table 6, which is the ratio of problem-code pairs in
that category to the entire knowledge base.

The analysis reveals several key insights. First,
our model demonstrates reasonably stable perfor-
mance across the largest categories.

Crucially, this detailed breakdown provides
strong evidence for the model’s ability to gen-
eralize beyond simple retrieval, a key feature
of our CARM module design. Notably, the
model achieves its highest accuracy (83.33%)
in "Manufacturing & Production Planning,"
a category where the corresponding external
knowledge is limited (2.7%). Similarly, it per-
forms well above average in "Resource Allocation
& Assignment" (53.52% accuracy) with only 8.1%
knowledge representation. This demonstrates the
model’s ability to generalize its reasoning to do-
mains where it has seen very few examples, by
matching underlying logical "constraint profiles"
rather than surface-level text.

Finally, the poor performance in the Cryptogra-
phy & Algorithmic Puzzles category reflects the
inherent complexity of these problems. As shown
in Table 7, instances in this category tend to in-
volve a significantly higher number of constraints

16011

Table 4: Performance comparison of the fine-tuned model against its base model without other framework compo-
nents. Results show the direct impact of SFT.

Model IndusCP NL4OPT LGPs LogicDeduction

Qwen2.5-Coder-32B (Base) 8.31% 79.7% 60% 79%
ConstraintLLM-32B (SFT) 12.31% 82.55% 64% 83%

Table 5: Impact of the number of in-context examples (ICL Shots / CARM Top-K) on Solving Accuracy (SA%)
for CoT and ConstraintLLM (w/o ToT, w/o self-correction, with CARM) on the LGPs dataset.

Method Number of In-Context Examples (Shots / CARM Top-K)

0-shot 1-shot 2-shots 3-shots 4-shots 5-shots

CoT (Static ICL) 0 3 24 33 32 33
ConstraintLLM (CARM Top-K) 0 40 64 71 89 70

Table 6: Per-category performance breakdown of ConstraintLLM (w/ ToT) on the IndusCP benchmark,
contextualized by the proportion of external knowledge available for each category.

Category Solving Acc. (%) # in IndusCP IndusCP (%) External Knowl. (%)

Scheduling & Sequencing 40.26 31 23.8 10.7
Resource Allocation & Assignment 53.52 23 17.7 8.1
Combinatorial Puzzles & Games 48.15 21 16.2 57.0
Design & Configuration 51.02 16 12.3 3.4
Routing & Logistics 47.37 12 9.2 6.0
Layout, Packing & Cutting 52.38 10 7.7 4.7
Data-Driven Opt. & Analytics 40.00 6 4.6 2.0
Cryptography & Algorithmic Puzzles 0.00 4 3.1 3.4
Manufacturing & Production Planning 83.33 4 3.1 2.7
Telecommunications & Network Design 75.00 2 1.5 2.0
Others 100.00 1 0.8 0.0

and decision variables. Moreover, their problem
statements often contain implicit assumptions or
require domain-specific knowledge that make them
especially challenging for LLMs.

F IndusCP Benchmark Construction
Details

The IndusCP benchmark is the result of a rigorous,
multi-stage curation process designed to ensure its
quality, diversity, and relevance to industrial-level
challenges.

F.1 Stage 1: Initial Collection
We began by gathering a comprehensive pool of
over 340 candidate problems from four reputable
and widely recognized sources in the constraint
programming community:

• Minizinc Challenges: Annual competitions
that feature a wide array of complex CP prob-
lems.

• XCSP Competitions: A standard format and
library for combinatorial optimization prob-
lems.

• CSPLib: A library of test problems for con-
straint programming.

• PyCSP3-models: A collection of CP models
written in the Python-based PyCSP3 library.

F.2 Stage 2: Expert-led Curation

The initial pool of problems was then meticulously
curated by domain experts through a multi-step
refinement process. This ensured the final bench-
mark’s quality and consistency. The process in-
volved the following steps:

1. De-duplication and Screening: We care-
fully filtered the collected problems to remove
duplicates and highly similar variations. This
step was crucial for ensuring the diversity of
the problems within the benchmark.

2. Problem Description Optimization: We
employed a human-in-the-loop process to
standardize all problem descriptions. The goal
was to create a clear and consistent two-part
format for every problem: a general overview
followed by a specific input format section.

16012

Table 7: Complexity of instances in the Cryptography & Algorithmic Puzzles category.

Problem # Constraints # Decision Variables

Cryptanalysis 21000 3300
Speck 970 1100
OptCrypto 900 1650
RotationPuzzle 400 350

Table 8: Summary of problem sources for the IndusCP benchmark. We collected problems from well-established
academic and competitive programming platforms.

Source Category # Problems Example Problems

Minizinc (min, 2024) 76 ACCAP, BnnPlanner, CELAR, CarpetCutting, Chessboard, CyclicRCPSP...

XCSP (xcs, 2025) 13 AircraftLanding, ClockTriplet, CoinsGrid, Coloring, LargeScaleScheduling...

PyCSP3-models (pyc, 2025) 29 Amaze, BinPacking, BoardColoration, Bugs, Cutstock, DakotaFurniture...

CSPLib (csp, 2024) 22 Auction, BACP, BusScheduling, CVRP, Diagnosis, GolombRuler, Knapsack...

Domain experts first established this standard-
ized style on a subset of problems. Subse-
quently, we utilized the DeepSeek-V3 model
to rewrite the remaining descriptions based
on this style. Every machine-generated de-
scription underwent a final manual review by
experts to verify its quality, clarity, and con-
sistency.

3. Test Case Expansion: To facilitate a robust
evaluation of solver capabilities, we devel-
oped a comprehensive suite of test cases for
each problem. This typically included 2 to 5
distinct instances per problem, covering dif-
ferent scales and edge conditions.

This structured process resulted in the final se-
lection of 140 problems that constitute the IndusCP
benchmark.The sources of these problems are sum-
marized in Table 8.

G Cross-Domain Knowledge
Generalization Study

To rigorously evaluate the cross-domain general-
ization capability of our framework, particularly
the CARM module, we conducted a challenging
experiment: solving problems from the NL4OPT
and LogicDeduction benchmarks using a knowl-
edge base derived exclusively from the IndusCP
benchmark. This setup forces the model to gen-
eralize logical structures from complex industrial
problems to solve tasks in different domains.

We compared the performance of our Con-
straintLLM (w/o ToT) framework—configured
with out-of-domain CARM-based retrieval

(4 shots) and iterative self-correction (4
rounds)—against two baselines: CoT (one-
shot) and RAG (four-shots). To ensure a fair
comparison, all methods utilized the same
ConstraintLLM-32B model as the underlying
inference engine. We also include the performance
of our framework using an in-domain knowledge
base as a reference. The results are presented in
Table 9.

Even when retrieving knowledge from a com-
pletely different domain (IndusCP), our framework
significantly outperforms the baselines. Notably,
the performance degradation when moving from
in-domain to out-of-domain knowledge is minor
(a 3% drop on NL4OPT and only a 2% drop on
LogicDeduction). This experiment provides evi-
dence that our framework, powered by CARM, is
robust and does not simply rely on retrieving super-
ficially similar problems. Instead, it successfully
generalizes the underlying logical structures and
constraint patterns across diverse domains.

H Data Augmentation Details

Our primary training data comprises a reserved
training subset from our IndusCP benchmark. We
augment both problem descriptions and model
code. Code augmentation (Yu et al., 2022) involves
techniques like variable renaming and equivalent
syntactic transformations to generate functionally
identical yet diverse code. Problem description
augmentation uses EDA (Wei and Zou, 2019) for
semantically consistent textual variations. All aug-
mented code is verified for correctness by solving
the original problem instance. To enhance con-
straint type extraction for CARM, we construct

16013

Table 9: Cross-domain generalization performance. The knowledge base for all methods was derived exclusively
from the IndusCP benchmark.

Method NL4OPT (%) LogicDeduction (%)

CoT (one-shot) 85.6 83.5
RAG (four-shots) 91.7 17.2

ConstraintLLM (OUT-OF-DOMAIN) 92.2 94.0

ConstraintLLM (IN-DOMAIN) 95.2 96.0

paired data from training samples in the format:
Natural Language Problem Description, Set of Con-
straint Types C(Q). Furthermore, for error correc-
tion data, we first use a smaller model, Qwen2.5-
Coder-7B, to generate initial code for training set
problems, collecting diverse erroneous samples
(syntactic or logical) via multiple sampling. Subse-
quently, a larger model, Qwen2.5-coder-32B, syn-
thesizes a detailed "Correction Path" for each pair
of erroneous and correct code, detailing the error
identification and step-by-step correction process.
This dataset, Problem Description, Incorrect Code,
Correction Path, Correct Code, forms the correc-
tion exemplar database E mentioned in Section 2.3.
By integrating these diverse data formats and in-
structions tailored for different objectives (base
modeling, constraint extraction, error correction),
we perform multi-instruction SFT to comprehen-
sively enhance the model’s overall proficiency in
constraint solving tasks, the augmented training
data contains 10k instances

I Generalizability to Other Open-Source
Models

To assess whether the benefits of our framework
extend beyond the fine-tuned Qwen model, we con-
ducted preliminary inference experiments on the In-
dusCP benchmark using other popular open-source
models. Due to resource and time constraints, we
did not perform Supervised Fine-Tuning (SFT) on
these additional models.

We evaluated each model under three distinct
conditions: (1) a one-shot Chain-of-Thought (CoT)
prompt, (2) a standard 4-shot Retrieval-Augmented
Generation (RAG) baseline, and (3) our Con-
straintLLM (w/o ToT) framework, which uses
CARM-based retrieval (4 shots) and iterative self-
correction (4 rounds). The results, presented in
Table 10, demonstrate the standalone contribution
of our framework’s architecture.

J Tree of Thought Details

J.1 Evaluating the Quality of “Thought
Branches”.

To effectively guide the search direction and prune
unpromising branches, ToT needs to evaluate each
generated “thought branch”. We employ a direct
and result-oriented evaluation strategy: the number
of passed test cases from a predefined suite.

Specifically, for the model code M generated
by a “thought branch”, we attempt to compile it
and apply it to a standardized set of test cases
TC = {tc1, tc2, . . . , tcN}. Each test case repre-
sents a concrete instance of the original problem.
We count the number of test cases that the model M
successfully solves, which serves as the evaluation
score V (M) for that branch:

V (M) =

N∑

j=1

Solve(M, tcj)

where Solve(M, tcj) is an indicator function:

Solve(M, tcj) =





1, if model M successfully
pass test case tcj

0, otherwise

V (M) directly quantifies the practical effective-
ness of the modeling approach represented by a
“thought branch”. A higher number of passed test
cases results in a higher score, indicating that the
branch is more promising and closer to a correct
and efficient final model. This evaluation score is
used to guide ToT’s selection strategy (e.g., priori-
tizing branches with higher scores during search)
and pruning operations (discarding branches with
excessively low scores).

J.2 Tree of Thought parameter settings
The number of initial thoughts be set to 2. This
implies that at the outset of problem-solving, the
system will generate two distinct preliminary ideas
or approaches. Subsequently, for the expansion at

16014

Table 10: Results showing the generalizability of the ConstraintLLM framework (w/o ToT) to other open-source
models on the IndusCP benchmark.

Model Method Solving Acc. (%)

Mistral-Small-3.2-24B
CoT one-shot 9.85
RAG 4-shots 14.77
ConstraintLLM (w/o ToT) 38.46

Qwen2.5-Coder-7B
CoT one-shot 3.69
RAG 4-shots 6.15
ConstraintLLM (w/o ToT) 16.31

Llama-3.1-8B
CoT one-shot 1.54
RAG 4-shots 3.69
ConstraintLLM (w/o ToT) 11.08

ConstraintLLM-32B (Ours) ConstraintLLM (w/o ToT) 40.00

each level of thought, the number of branches to
select and further develop from the current level
is set to 2, ensuring that the most promising lines
of reasoning are pursued in greater depth. Con-
currently, the maximum depth of the thought tree
is configured to 2, which limits the total number
of hierarchical levels in the entire thought process,
allowing for an initial set of thoughts followed by
at most one level of subsequent reasoning and re-
finement.

K Analysis of OR and CP

Figure 6 presents a comparison of the correct code
generated for the same Constraint Optimization
Problem when solved using CP and Operations Re-
search (OR), respectively. The OR approach for
solving COPs is often complex and error-prone,
whereas the CP solution is characteristically con-
cise and elegant.

L Experimental Details

We use OpenAI’s
text-embedding-ada-002 model to
generate text embeddings. Furthermore, we
maintain the same prompt and other relevant
hyperparameters as used in ConstraintLLM.

L.1 Dataset Details

IndusCP: As detailed in Section 3, this is our con-
structed industrial-level benchmark for constraint
satisfaction problems comprises 140 curated prob-
lem instances, each instance includes 2 to 5 distinct
test cases to validate the correctness of modeling.

NL4OPT (Ramamonjison et al., 2023): This
dataset provides natural language descriptions of
linear optimization problems. While its focus on
linear programming differs from the declarative

and combinatorial nature of CSPs, it serves as a
relevant reference for evaluating an LLM’s under-
standing of structured optimization problems from
text. We select 271 instances for the test set and
713 instances for the training set.

LGPs (Mitra and Baral, 2015): This dataset con-
sists of logical puzzles described with clues and
entities, which can be formulated as CSPs. We
select 50 instances as train data and 100 instance
as test data.

LogicDeduction (Pan et al., 2023): A complex
logical inference task from the BigBench bench-
mark suite (Srivastava et al., 2022), can be ex-
pressed as CSPs. The core challenge involves de-
termining the correct sequence of objects given a
limited set of premises. For our experiments, we
used the test set of 200 instances.

M Baseline Implementation Details

This section provides the detailed implementa-
tion specifics for the Chain-of-Thought (CoT) and
Retrieval-Augmented Generation (RAG) baselines
used in our experiments. The full prompts used are
detailed in Figure 4 and Figure 5.

M.1 Retrieval-Augmented Generation (RAG)
Baseline

Our RAG implementation is a standard two-stage
process constructed using the LangChain frame-
work.

Stage 1: Retrieval. For the retrieval stage, the
knowledge base for each benchmark was com-
posed of ‘(Problem Description, Correct CP Model
Code)‘ pairs. Problem descriptions were split
into documents (700-token chunk_size, 100-
token chunk_overlap) and vectorized using

16015

IndusCP: We have a circular arrangement of
12 distinct numbers (from 1 to 12) that need to
be rearranged in a specific order. The goal is
to ensure that the sum of any three consecutive
numbers in the circle is as small as possible.
The arrangement must meet the following con-
ditions: the number 1 must be fixed in the first
position, the second number must be smaller
than the last number (to break symmetry), and
every number from 1 to 12 must appear exactly
once.

NL4OPT: A fishery wants to transport their
catch. They can either use local sled dogs or
trucks. Local sled dogs can take 100 fish per trip
while trucks can take 300 fish per trip. The cost
per trip for sled dogs is $50 while the cost per
trip for a truck is $100. The budget is at most
$1000 and the number of sled dog trips must be
less than the number of truck trips. Formulate
an LP to maximize the number of fish that can
be transported.

LGPs: Clues:

• Vicky Estes used the catamaran.

• Debra Decker took 4 fewer days to finish
than the sailor in the trimaran.

• Wendell Orr finished in 278 days.

Entities:

• Days: 270, 274, 278, 282

• Boat types: catamaran, ketch, schooner,
trimaran

• Sailors: Debra Decker, Gil Baxter, Vicky
Estes, Wendell Orr

LogicalDeduction: On a shelf, there are five
books: a green book, a blue book, a white book,
a purple book, and a yellow book. The blue
book is to the right of the yellow book. The
white book is to the left of the yellow book. The
blue book is the second from the right. The
purple book is the second from the left. Which
of the following is true?

A) The green book is the second from the left.

B) The blue book is the second from the left.

C) The white book is the second from the left.

Figure 3: Four representative benchmark examples from our evaluation, showing the diversity of problem types.

OpenAI’s text-embedding-ada-002 em-
bedding model. These embeddings were indexed
in a FAISS vector store. We used Cosine Similar-
ity as the metric to retrieve the top-4 most relevant
pairs for each query.

Stage 2: Generation (Prompting). The four re-
trieved examples were formatted into the few-shot
prompt template shown in Figure 5.

N Number of In-Context Examples

In this appendix, we further investigate the impact
of varying numbers of In-Context Learning exam-
ples on model performance in CP modeling tasks.
We primarily focus on two scenarios: (1) provid-
ing a varying number of static ICL examples under
standard Chain-of-Thought prompting; and (2) the
effect of the number of Top-K examples retrieved
by CARM within our ConstraintLLM framework
(without ToT and self-correction, but with CARM
enabled for dynamic retrieval). All experiments

were conducted on the LGPs dataset, using Solving
Accuracy (SA%) as the evaluation metric.

For the CoT experiments, we directly included
0 to 5 static, task-relevant ICL examples in the
prompt. For the ConstraintLLM (w/o ToT, w/o
self-correction, but with CARM) experiments, the
number of "shots" corresponds to the Top-K most
relevant examples retrieved by CARM and pro-
vided to the LLM. In both cases, 0-shot indicates
that the model relies on no explicitly provided con-
textual examples for inference.

Table 5 presents the impact of different num-
bers of ICL examples on the performance of CoT
and ConstraintLLM (CARM Top-K) on the LGPs
dataset. The results indicate that under zero-shot
conditions, the LLM is unable to generate CP mod-
els that successfully solve the problems, thereby
demonstrating the necessity of using In-Context
Learning.

16016

You are a Python programming expert capable of using the pycsp3 library to solve
Constraint Satisfaction Problems (CSPs). Based on the given input data,

generate a syntactically and semantically correct constraint solving model.
Instructions:
- think step by step,use chain of thought
- Based on data input: Your generated code must assume that a variable named

data exists, which contains the input data required for the problem. The
first step of your code must be to unpack data into meaningful variables. For
example: n, edges, start, end = data or marioHouse, luigiHouse, fuelLimit,

houses = data
- Extraction of necessary inputs from the data
- Use only the pycsp3 library: `from pycsp3 import *`
- code should use ```python your_code_here``` to wrap the code

a example:
Problem Description:
The problem is to assign a set of n nodes to m available rings. Each ring has a

maximum capacity, r, which is the highest number of nodes it can accommodate.
A specific subset of these nodes, identified in a connections list, must be

assigned to exactly one ring. The overall objective is to find a valid
assignment that respects the capacity of each ring and the single-assignment
rule for the specified connection nodes, while minimizing the total number of
node-to-ring assignments. To ensure a unique solution and avoid symmetrical

configurations, the assignments across the rings must follow a
lexicographically increasing order.

Input Format:
n: An integer representing the total number of nodes in the network.
m: An integer representing the number of available rings for assignment.
r: An integer representing the maximum capacity for each ring.
connections: A list of integers specifying the nodes that must be assigned to

exactly one ring.

code:
from pycsp3 import *
n, m, r, connections = data

x = VarArray(size=[m, n], dom={0, 1})
T = {tuple(1 if j // 2 == i else ANY for j in range(2 * m)) for i in range(m)}

satisfy(
[(x[i][conn] for i in range(m)) in T for conn in connections],
[Sum(x[i]) <= r for i in range(m)],
LexIncreasing(x)

)
minimize(

Sum(x)
)

Figure 4: The full one-shot prompt used for the Chain-of-Thought (CoT) baseline.

O Computational Cost Analysis

Understanding the computational cost is essential
to assess the practical viability of our framework.
We analyzed the costs based on our experiments
on the 140 problems in the IndusCP benchmark.
Our analysis was performed on the ConstraintLLM
(w/o ToT) framework, configured with a maxi-
mum of 4 self-correction rounds. The primary
cost drivers are LLM inference and solver calls,
as detailed in Table 11.

Overall Cost and Upper Bound for Con-
straintLLM (w/o ToT). The theoretical upper
bound for the time complexity is given by:

Tupper(P) = O
(
k · Lgen(P) · f(ttoken) + k · Tsolver(P) + k · TCARM

)

(6)
Where:

• P : A specific problem instance.

• k: The maximum number of self-correction
iterations.

• Lgen(P): The maximum number of tokens

16017

You are a Python programming expert capable of using the pycsp3 library to solve
Constraint Satisfaction Problems (CSPs). Based on the given input data,

generate a syntactically and semantically correct constraint solving model.
Instructions:
- Based on data input: Your generated code must assume that a variable named

data exists, which contains the input data required for the problem. The
first step of your code must be to unpack data into meaningful variables. For
example: n, edges, start, end = data or marioHouse, luigiHouse, fuelLimit,

houses = data
- Extraction of necessary inputs from the data
- Definition of the objective function (minimize/maximize)
- Use only the pycsp3 library: `from pycsp3 import *`
- code should use ```python your_code_here``` to wrap the code

Here are some similar questions and codes for reference:
Example 1
Problem: [Retrieved Problem Description 1]
Code: [Retrieved Code 1]

Example 2
... (up to Example 4)

The Problem:
[Current Test Problem Description]

Figure 5: The prompt template used for the Retrieval-Augmented Generation (RAG) baseline.

Table 11: Computational cost breakdown per problem on the IndusCP benchmark for ConstraintLLM (w/o ToT).

Component Avg. # Calls
per Problem

Avg. Time
per Call (s)

Max # Calls
per Problem

Max Time
per Call (s)

LLM Inference 5.0 (700/140) 29.55 6 42.25
Solver 2.9 (411/140) 1.54 5 20.025
CARM Retrievals 2.5 (349/140) 0.000173 5 0.000564
Self-Correction Loops 1.4 rounds (196/140) 41.6 4 rounds 89.74

generated in any single LLM call for problem
P .

• Tsolver(P): The time for a single solver invo-
cation for problem P , subject to a timeout.

• TCARM: The cost of a single CARM retrieval
(typically negligible).

• f(ttoken): The average time to generate a sin-
gle LLM token.

On the IndusCP benchmark, solving a problem
with ConstraintLLM (w/o ToT) takes approxi-
mately 3 minutes on average.

Overall Cost and Upper Bound for Con-
straintLLM (w/ ToT). The upper bound is sig-
nificantly higher due to the tree search:

Tupper(P) = O
(
Nnodes · (k · Lgen(P) · f(ttoken) + k · Tsolver(P) + k · TCARM)

)

(7)
Where Nnodes is the total number of nodes explored
in the Tree of Thoughts, given by W · (mn −

1)/(m− 1) for a tree with initial width W , branch-
ing factor m, and depth n. On the IndusCP bench-
mark, solving a problem with ConstraintLLM (w/
ToT) takes approximately 7 minutes on average.

P Examples of benchmarks

Figure 3 shows four representative benchmark ex-
amples from our evaluation.

16018

Problem Description

We have a circular arrangement of 12 distinct numbers (from 1 to 12) that need to
be rearranged in a specific order. The goal is to ensure that the sum of any three
consecutive numbers in the circle is as small as possible. The arrangement must
meet the following conditions: the number 1 must be fixed in the first position,
the second number must be smaller than the last number (to break symmetry),
and every number from 1 to 12 must appear exactly once. The task is to find the
optimal order that minimizes the largest sum among all possible groups of three
consecutive numbers in the circle.

OR model

...
def assign_value_to_position_rule(model, i):

return sum(model.y[i, v] for v in model.V_set) == 1
model.assign_value_con = pyo.Constraint(model.N_set, rule=

assign_value_to_position_rule)
def use_value_in_position_rule(model, v):

return sum(model.y[i, v] for i in model.N_set) == 1
model.use_value_con = pyo.Constraint(model.V_set, rule=

use_value_in_position_rule)
def get_x_value_at_pos(model, pos_idx):

return sum(val * model.y[pos_idx, val] for val in model.
V_set)

model.subsequence_sum_con = pyo.ConstraintList()
for i in model.N_set:

current_subsequence_sum = sum(get_x_value_at_pos(model, (i
+ k) % n_val) for k in range(r_val))

model.subsequence_sum_con.add(
current_subsequence_sum <= model.z)
model.y[0, 1].fix(1)
if n_val > 2:

val_at_pos_1 = get_x_value_at_pos(model, 1)
val_at_pos_n_minus_1 = get_x_value_at_pos(model, n_val -
1)
model.symmetry_break_order_con = pyo.Constraint(expr=
val_at_pos_1 <= val_at_pos_n_minus_1 - 1)

model.objective = pyo.Objective(expr=model.z, sense=pyo.
minimize)

...

CP model

from pycsp3 import *
r, n = data
x = VarArray(size=n, dom=range(1, n + 1))
z = Var(dom=range(1, n * r + 1))
satisfy(
AllDifferent(x),
x[0] == 1,x[1] < x[-1],
[Sum(x[(i + k) % n] for k in range(r)) <= z for i in range(n)]
)
minimize(z)

Figure 6: A comparative analysis of OR and CP models in terms of their code implementation.

16019

