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Abstract

We present Speech Vecalign, a parallel speech
document alignment method that monotoni-
cally aligns speech segment embeddings and
does not depend on text transcriptions. Com-
pared to the baseline method Global Min-
ing (Duquenne et al., 2023a), a variant of
speech mining, Speech Vecalign produces
longer speech-to-speech alignments. It also
demonstrates greater robustness than Local
Mining, another speech mining variant, as it
produces less noise. We applied Speech Ve-
calign to 3,000 hours of unlabeled parallel
English-German (En-De) speech documents
from VoxPopuli, yielding about 1,000 hours
of high-quality alignments. We then trained
En-De speech-to-speech translation models on
the aligned data. Speech Vecalign improves
the En-to-De and De-to-En performance over
Global Mining by 0.37 and 0.18 ASR-BLEU,
respectively. Moreover, our models match or
outperform SpeechMatrix model performance,
despite using 8 times fewer raw speech docu-
ments.!

1 Introduction

Speech-to-speech translation (S2ST) is the task of
translating speech in one language into speech in
another language. Conventional S2ST systems con-
catenate automatic speech recognition (ASR), ma-
chine translation (MT), and text-to-speech (TTS)
models (Lavie et al., 1997; Nakamura et al., 2006;
Wabhlster, 2013). These components can be trained
individually with datasets for the different compo-
nents. Direct S2ST models, which translate source
speech into target spectrograms or discrete units
with a single architecture, have been recently pro-
posed to alleviate error propagation and to reduce
inference latency (Jia et al., 2019; Lee et al., 2022a).
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Figure 1: A comparison between Speech Vecalign
(above) and speech mining (below). Speech Vecalign
aligns each pair of speech documents individually and
aligns segments in chronological order, while speech
mining aligns bags of segments and ignores the struc-
ture of parallel speech documents.

Despite the advantages, performance of direct mod-
els is limited by the amount of speech-to-speech
aligned data, which is much more scarce than the
data used for components of cascaded systems.
There have been efforts to automatically curate
alignments from multilingual speech documents.
In this paper, we define a speech document as a file
containing more than one utterance and typically
comprising several paragraphs, analogous to a fext
document. VoxPopuli (Wang et al., 2021a) is one
such corpus containing a large number of parallel
speech documents, which are pairs of documents
that have the same content but differ in language.
Speech-to-speech alignment methods align short
speech clips called segments, and can be either
transcription-based or transcription-free. When
transcriptions are available, segments in parallel
speech documents can be aligned through speech-
to-text and text-to-text alignments. Inspired by
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text mining (Schwenk et al., 2021), speech min-
ing (Duquenne et al., 2021, 2023a) was proposed
as a transcription-free method that aligns speech
segments by finding segment pairs with the high-
est embedding similarity. It scales well as it does
not rely on the availability of text transcriptions.
When speech mining is applied to a large amount
of speech documents, as in all previous work, it
is referred to as Global Mining. Another variant,
Local Mining, which applies speech mining to a
single pair of parallel speech documents, has not
been well explored. As we formally define in Sec-
tion 2, both Global Mining and Local Mining treat
documents as bags of unordered segments.

Since speech mining methods do not leverage the
document pair structure, we wonder, can we obtain
better alignments by aligning speech segments
within document pairs and preserving their time
order? This allows us to utilize the extra knowl-
edge that (1) segments within parallel document
pairs are likely to be translations of each other, and
(2) segment pairs right next to already aligned pairs
are also likely to be aligned. We draw inspiration
from parallel fext document alignment methods,
which have been popular to create sentence-aligned
bitext for training MT systems. Unlike mining,
they align sentences for each document pair while
maintaining the sentence order. Our work is based
on the text alignment method Vecalign (Thompson
and Koehn, 2019), which aligns parallel sentences
by applying fast dynamic time warping (Salvador
and Chan, 2007) to sentence embeddings. With
the advances of extending sentence embeddings
to the speech modality (Duquenne et al., 2021),
we can readily apply Vecalign to parallel speech
documents.

In this paper, we introduce Speech Vecalign, a
method that aligns parallel speech documents us-
ing speech segment embeddings. Instead of mining
from bags of segments, our method aligns individ-
ual document pairs and maintains the chronolog-
ical order of segments, as illustrated in Figure 1.
Additional preprocessing and postprocessing strate-
gies are applied to improve alignment quality. We
compare Speech Vecalign with Local Mining and
Global Mining and show that Speech Vecalign pro-
duces higher-quality alignments. We further pro-
vide extensive analysis for all three methods, which
could be useful for future research.

2 Speech Mining Overview

We formally describe the speech mining methods in
this section. Other related work is in Appendix A.

Speech Mining, first proposed by Duquenne et al.
(2021), encodes speech segments into language-
and modality-agnostic fixed-size embeddings, and
then uses margin-based similarity search (Artetxe
and Schwenk, 2019a) to find the closest embedding
pairs. Depending on the search scope, it can be
categorized as Global Mining or Local Mining.

Raw data. The input data is a list of speech doc-
uments X = [X7, Xo,..., X,] in the source lan-
guage and a list Y = [Y7, Y5, ..., Y}, ] in the target
language, where n and m are the numbers of docu-
ments. Each document can contain between a few
seconds to a few hours of speech.

Speech segmentation. Voice activity detec-
tion (VAD) is applied to each document to ob-
tain short segments, typically lasting a few sec-
onds. For instance, X; is segmented into X; =
(2%, %, ..., % ], where n; is the number of seg-
ments. To have segments at different granularities,
consecutive segments are progressively concate-
nated. X; becomes X; = [#}, 75, ... , &% |, where
Z denotes a concatenated segment and 7; denotes
the number of resulting segments. The same pro-
cess applies to Y}, producing YJ

Speech segment embedding. Each segment is en-
coded into a fixed-size embedding using an embed-

ding model. The segment embeddings for X; are
represented as Eg = [e{(i, eg(i e ,eﬁXf]. Simi-
larly, the segments in }7j are encoded as Egj .

Bag of embeddings. In Global Mining, em-

beddings are grouped by language. We de-
fine Gx = {EleE)Zg?"'vEXn} and Gy =
{Ei,1 By, By } where G x collects all seg-

ment embeddings in the source language and Gy
collects those in the target language. In Local Min-
ing, embeddings are grouped by document pairs.
Suppose there are s parallel documents, with X;
paired with Y; for 1 <17 < s. Documents without
a parallel one are ignored. In this case, EXi and
EYj are bags of embeddings themselves.

Embedding alignment. Speech mining is per-
formed by finding the most similar embedding pairs
between two bags of segment embeddings. The
margin-based similarity, or margin-score, between
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Figure 2: An illustration of the complete Speech Vecalign pipeline using a simple example. Each pair of speech
documents need to go through 3 steps: Speech Preprocessing (Section 3.1), Segment Alignment (Section 3.2), and

Alignment Postprocessing (Section 3.3).

any two embeddings a and b is computed as

sim(a,b) =
cos(a b)

cosaz

ey

cos(b,z)

+ 2 LeNNL(b) 2R

ZZGNNk(a)

where a and b are in different languages and
NNy (a) denotes k nearest neighbors of a in the
other language. The denominator combats the hub-
ness problem. A higher margin-score indicates
better quality. Then, the mining function for em-
bedding a from a bag of embeddings B is

2

mine(a, B) = argmax sim(a, b)
beB

More generally, given two bags of embeddings
U= {ul,uQ, ey ulu} and V = {’Ul, V2, ... 7'Ulv}’
where [,, and [,, are number of embeddings, the
collection of all speech mining alignments is
align(U, V')

= {(u1, mine(us, V)),...,

U {(mine(v1,U),v1), ...,

(uy, , mine(uy,, V))}
(mine(vy,,U),v,)}
(3)

Finally, we define Local Mining and Global Mining
as

Global-Mine(X,Y) = align(GX7 Gy)

U align(Ey , By )

3 Proposed Method: Speech Vecalign

4)
Local-Mine(X,Y") ®))

The Speech Vecalign pipeline consists of three
steps: speech preprocessing (Section 3.1), segment

alignment with Vecalign (Section 3.2), and align-
ment postprocessing (Section 3.3). An illustration
of our method is shown in Figure 2.

3.1 Speech Preprocessing

Speech preprocessing consists of document seg-
mentation and detection of identical untranslated
segments.

Segmentation. Same as speech mining, we first
segment each speech document by VAD. We apply
Silero VAD (Silero Team, 2021).

Detection of identical untranslated segments. As
mentioned by Wang et al. (2021a), some source
and target segments contain identical untranslated
content due to recording issues. We introduce this
additional step to detect such pairs of segments
prior to applying the alignment algorithms, in order
to make sure they are not aligned.

To find potentially identical untranslated seg-
ment pairs, we use a location heuristic that they
tend to locate in roughly the same position within
the source and target documents. For instance,
within each pa1r of parallel documents for a source
segment x; spanning timestamp s; to e; , we
search for a target segment Up Whose mldpomt

. +él
% is closest to Tx“ midpoint of x¢, since

the untranslated target segment is very hkely to

HI ; T o~ b T ol
have a similar time span (s;, ~ s, €, ~ €; ).

If the two segments have both similar durations
and filterbank features, we classify them as identi-
cal. For durations, we compute the time difference.
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For filterbank feature, we compute Equation 6:

sim(A, B)

1
= i —— ||A = B.:: Rt
ie{la“-r,l%;I}Tl-Fl} {NT I Sl Ta 1”F}
(6)

A ¢ R¥*Tt and B € RM*XT2 are filterbank
features” with N = 80 mel-frequency bins. T}
and 75 are numbers of frames. Without loss of
generality, we assume T < T5. B.;iim,-1 €
RN*T1 denotes a slice of B from frame i to frame
i+ Ty — 1. || - || r denotes the Frobenius norm, and
ﬁHA — B.iitT,-1/|% is the mean squared error
between A and a slice of B. We check if A could
be identical to any slice of B, tolerating the leading
and/or trailing noise or silence frames in B.

We empirically determine 0.1 second and
sim(A,B) = 5.0 as the thresholds for duration
and filterbank similarities. Note that we cannot
depend on speech embeddings for detection, as
speech encoders are multilingual and their embed-
dings are language-agnostic.

3.2 Speech Segment Alignment

We perform segment alignment based on the simi-
larity between speech segment embeddings. Unlike
speech mining, which solely relies on similarity
scores, we use a dynamic programming (DP) algo-
rithm to align segments in chronological order.
Segment concatenation. Speech segments do
not necessarily correspond to complete sentences.
Same as speech mining, we first progressively con-
catenate each segment with the subsequent ones.
Each concatenated segment can contain up to 5
original segments and span a maximum of 20 sec-
onds.

Obtaining segment embeddings. After concate-
nations, we obtain speech segment embeddings us-
ing SpeechLASER models (Duquenne et al., 2021,
2023a). Identical untranslated segments detected in
Section 3.1, along with all concatenated segments
that include them, are skipped and replaced with
0-valued vectors.

Applying Vecalign to embeddings. We fol-
low Thompson and Koehn (2019) to define the
cost of aligning two segment embeddings, which
serves as the cost function for DP:

(1 — cos(z,y))nSegs(x)nSegs(y)
255:1 1—c023ém,y5) + 2511 1—c0§éx5,y)

(N

C(.%‘,y) =

2We use torchaudio.compliance.kaldi.fbank.

x and y are segment embeddings. cos(-,-) com-
putes the cosine similarity. x; and y; are uniformly
sampled source and target embeddings, and S is
the sample size. nSegs(x) is used to denote the
number of original segments in z, which penalizes
aligning long concatenations.

The embedding alignment algorithm is recursive
DP. Given a document pair and corresponding em-
beddings, the algorithm recursively averages every
two consecutive embeddings, halving the sequence
length until it reaches a small threshold. At the bot-
tom level, standard DP is applied to obtain an initial
alignment. Subsequently, at each recursion level
bottom-up, DP refines the alignment by search-
ing within a small window around the alignment
path from the previous level. By constraining the
search space and reducing the sequence length at
each level, the algorithm achieves a linear time and
space complexity. The recursive DP algorithm runs
on CPU and takes a few seconds on average per
document pair. We direct the readers to Thompson
and Koehn (2019) for a complete description.

Because of DP, the resultant alignments strictly
follow chronological order. We use ', to de-
note the concatenation of consecutive segments x
through }. For any two alignments (2, ., , ¥, ., )
and (azészce,ygs: 4.)» Speech Vecalign guarantees
that i = j = k and that either a, < ¢s,b. < ds
or ag > Ce, bs > d.. In contrast, Local Mining en-
sures ¢ = j = k but has no constraints on a, b, ¢, d,
while Global Mining makes no guarantees at all.

3.3 Alignment Postprocessing

The goal of postprocessing is to clean the raw align-
ments and construct alignments with longer dura-
tions to improve S2ST models.

Removing low-quality alignments. First, we
remove unaligned segments and high-cost align-
ments. The unaligned segments are due to dele-
tions in the DP algorithm. Identical untranslated
segments detected in Section 3.1 may fall into ei-
ther category due to their 0-valued vectors.
Detection of identical untranslated segments,
again. Occasionally, the location heuristic in
Section 3.1 may fail, resulting in a small num-
ber of low-cost alignments with identical untrans-
lated source and target segments. Searching is
not needed at this step, as we already have the
alignments. We apply Equation 6 to remaining
alignments, where A and B are source and tar-
get segments in each alignment. We use the same
thresholds in Section 3.1 to remove alignments.
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Alignment concatenation. Another issue is that
the raw alignments are too short: the average du-
ration is 4.25 seconds, with 66% shorter than 5
seconds. To cover more context, we progressively
concatenate each alignment with the subsequent
ones. This can be easily done as alignments are in
chronological order. Each concatenated alignment
can contain up to 3 original alignments and span
up to 20 seconds.

Global margin-scores computation. The raw
alignments only have alignment costs as a quality
indicator, which are computed within each docu-
ment pair. To assess alignment quality across doc-
ument pairs, we train FAISS (Johnson et al., 2019)
indexes and compute margin-scores (Artetxe and
Schwenk, 2019a) using Equation 1 for all obtained
alignments, following the common strategy in MT
dataset curation (Sloto et al., 2023).

Removing highly-overlapped alignments. Fi-
nally, we remove alignments that have too much
overlap with others, following Duquenne et al.
(2023a). For any two consecutive alignments, we
compute the ratio of the overlapped source duration
to the maximum duration of the two source seg-
ments. If the ratio exceeds a threshold, we discard
the one with a lower margin-score. We train S2ST
models with multiple threshold values to determine
the best one. Our experiments in Appendix D.1 sug-
gest that 0.4 work best for Global Mining and 0.8
work best for Local Mining and Speech Vecalign.

4 Experiments & Results

We apply Speech Vecalign, Global Mining, and
Local Mining to the same raw data and train S2ST
models on each type of alignments, providing a fair
comparison.

4.1 Training Data

Data source. We use the unlabeled, unseg-
mented English and German plenary session
recordings from VoxPopuli vl (Wang et al.,
2021a) as raw data. VoxPopuli contains Euro-
pean Parliament plenary session recordings in
each of the 23 European Union languages, paired
with spoken interpretations into the other lan-
guages. The document names are formatted
as ${session_id}_${language?}.ogg, and paired
documents have the same ${session_id}. To
avoid overlapping with the test set (Section 4.2), we
only choose sessions from year 2013 to 2020. We
also exclude sessions in the development set (Sec-

tion 4.2). For En-to-De, the remaining data has
4,880 documents totaling about 3,000 hours for
each language. For De-to-En, there are 5,782 doc-
uments totaling 3,400 hours per language. The
difference is due to the different dev and test sets.
All documents are in pairs, allowing all methods to
have exactly the same raw data.

Speech Vecalign. We apply Speech Vecalign to
each pair of speech documents and obtain align-
ments sorted by margin-scores. Training data is
chosen in descending order of margin-scores. We
train models on different data sizes and report the
best results in Section 4.5. More details on data
size optimization can be found in Appendix D.2.
Speech mining baselines. We apply Global Min-
ing and Local Mining to the same raw data and
embeddings as Speech Vecalign. The implemen-
tation is based on stopes> (Andrews et al., 2022).
After mining, we apply the same postprocessing
strategies in Section 3.3, except for alignment con-
catenation which is not applicable. Training data is
chosen in descending order of margin-scores and
details on data size optimization can be found in
Appendix D.2.

4.2 Evaluation Data

Development set. Following Duquenne et al.
(2023a), we choose 1000 samples from the highest
scored sessions from the Voxpopuli S2ST dataset.
Additionally, we avoid choosing sessions that occur
on the same dates as the test set.

Test set. We use the Europarl-ST (EPST) test
set (Iranzo-Sanchez et al., 2020) as an in-domain
test set to evaluate the S2ST models. EPST is a
multilingual S2TT dataset built on European Par-
liament debates from year 2008 to 2012. We also
adopt FLEURS (Conneau et al., 2023) as an out-of-
domain test set.

4.3 Experiment Setup

We train speech-to-unit translation (S2UT) mod-
els (Lee et al., 2022a) with fairseqg* (Ott et al.,
2019; Wang et al., 2020) on each type of align-
ments. The S2UT model takes source speech as
input and predicts a sequence of target discrete
units. The discrete units are obtained by applying
a k-means model to the 11™ layer features of a Hu-
BERT model (Hsu et al., 2021). For English, we
use the mHuBERT from Lee et al. (2022b), and
for German, we use the Germanic mHuBERT from

3https: //github.com/facebookresearch/stopes
*https://github.com/facebookresearch/fairseq
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Duquenne et al. (2023a). Consecutive duplicated
units are removed. Our S2UT model architecture
follows exactly Duquenne et al. (2023a). The ar-
chitecture details and training hyperparameters are
in Appendix B.

4.4 Evaluation Metrics

With the discrete units generated by S2UT mod-
els, we resynthesize speech using pretrained unit-
based HiFi-GAN vocoders (Polyak et al., 2021)
from Duquenne et al. (2023a). We then evaluate
the resynthesized speech using both transcription-
based and transcription-free methods.

For the transcription-based method, we tran-
scribe the speech output using the same ASR mod-
els as Duquenne et al. (2023a). We evaluate the
transcriptions using SacreBLEU? (Post, 2018) to
compute BLEU® and chrF2++7 scores. We apply
the significance test using paired bootstrap resam-
pling (Koehn, 2004) with 1000 bootstrap resam-
ples.

We also adopt BLASER 2.0 (Dale and Costa-
jussa, 2024) to directly evaluate speech out-
put. We compute the referenced score using
blaser-2.0-ref® for input and output speech,
as well as the text reference. We compute the
reference-free score using blaser-2.0-qge” for in-
put and output speech only.

4.5 Main Results

As mentioned in Section 4.1, we train models on
data of various sizes. Table 1 presents the best En-
to-De and De-to-En results on the EPST test set,
along with the corresponding data sizes. Additional
results on the FLEURS test set are in Appendix E.

Intriguingly, for both directions, Speech Ve-
calign and speech mining models are competitive
with or outperform SpeechMatrix (Duquenne et al.,
2023a) models, despite the latter being mined from
about 24k hours of speech per language, § times
more than our raw data.' For En-to-De, our Global

5https ://github.com/mjpost/sacrebleu

SSignature: nrefs:1 + case:mixed + effino + tok:13a +
smooth:exp + version:2.2.0

"Signature: nrefs:1 + case:mixed + eff:yes + nc:6 + nw:2 +
space:no + version:2.2.0

8https ://huggingface.co/facebook/blaser-2.
0-ref

https://huggingface.co/facebook/blaser-2.
0-qe

%We do not aim for state-of-the-art performance. Our re-
sults are not directly comparable to SpeechMatrix. We report
SpeechMatrix results only to show the performance gap.

Mining and Speech Vecalign models achieve im-
provements of 0.94 and 1.31 BLEU, respectively.
Our Local Mining model achieves even 1.64 BLEU
improvement. We suspect that SpeechMatrix has
not removed identical untranslated segments prior
to and after mining, which significantly hurts model
performance. Further discussion is in Section 5.5.

While Local Mining has not been previously ex-
plored, our results suggest that it is a potentially
useful method. Local Mining achieves the highest
BLEU score in En-to-De, and only slightly under-
performs Global Mining in De-to-En, indicating
that constraining the mining scope to document
pairs does not necessarily have a negative impact on
alignment quality. Yet we note that Local Mining
requires more training data to achieve its optimal
performance, as shown in Appendix D.2.

Our Speech Vecalign models outperform both
speech mining models in both directions. For En-
to-De, the Speech Vecalign model achieves 12.58
BLEU, comparable with our strong Global Mining
and Local Mining baselines. In terms of chrF2++,
it surpasses Global Mining and Local Mining by
1.69 and 0.26, respectively. It also significantly im-
proves their referenced BLASER 2.0 by 0.08 and
0.03. For De-to-En, Speech Vecalign and Global
Mining models achieve comparable BLEU (16.14
vs. 15.96), but Speech Vecalign surpasses Global
Mining by 0.57 in chrF2++. Speech Vecalign
significantly outperforms Local Mining under all
metrics. These results demonstrate that Speech
Vecalign produces higher-quality alignments than
both speech mining baselines.

S Analysis

We analyze properties of speech mining methods
and compare them with Speech Vecalign. Although
we show that speech mining methods produce align-
ments similar to those of Speech Vecalign, the lat-
ter offers advantages of producing longer and less
noisy alignments.

5.1 Speech Mining Mostly Locally Aligns
Segments in Time Order

First, we show that Global Mining mostly locally
aligns speech documents. While Global Min-
ing searches for the best matching segment pairs
among roughly 10 million segments, one might
expect its alignments to cover the spread of the
entire dataset. On the contrary, we find that Global
Mining alignments are concentrated within docu-
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Training Data ASR-BLEU  ASR-chrF2++ BLASER 2.0
Alignment Method # Hours w/ textref  w/o text ref
English-to-German
SpeechMatrix' 1451 10.1 - - -
State-of-the-art g ¢ echMatrix’ 1451 11.27 39.98 3.52 3.86
Baseline Local Mining 1500 1291 44.08 3.70 4.02
Global Mining 1000 12.21 42.65 3.65 3.97
Our Method Speech Vecalign 750 12.58 44.34 3.73 4.05
p-value w.r.t Local Mining 0.1069 0.0999 0.0050" 0.0020"
p-value w.r.t Global Mining 0.0769 0.0010" 0.0010" 0.0010°
German-to-English
SpeechMatrix' 1456 163 - - -
tate-of-the-art
State-of-the-art o ¢ echMatrix’ 1456 16.62 43.77 81 11
Baseline Local Mining 1250 15.64 42.85 3.70 4.02
Global Mining 750 15.96 43.14 3.74 4.04
Our Method Speech Vecalign 1000 16.14 43.71 3.76 4.07
p-value w.r.t Local Mining 0.0030" 0.0010" 0.0010" 0.0010"
p-value w.r.t Global Mining 0.1449 0.0030" 0.0030" 0.0010°

Table 1: Results for En-to-De and De-to-En on EPST test sets. Bold means better than speech mining baselines.
Underline means the best overall. TResults from Duquenne et al. (2023a). *Models trained by ourselves. “p-value
< 0.05. Results show that Speech Vecalign models perform better than baselines under almost all metrics in both

directions.

ment pairs, each typically containing hundreds to
thousands of segments.

To quantify this, we examine the 1000-hour
Global Mining data and count alignments whose
source and target segments come from different
document pairs. As shown in Figure 3, fewer
than 6% fall into this category, while the major-
ity (> 93%) are within paired documents.

Second, we analyze the time order of alignments
produced by both speech mining methods. Bor-
rowing the notation from Section 3.2, we define
two pairs of alignments to be in-order if either
Qe < Cs,be < dgorags > ce,bs > dg; otherwise,
they are out-of-order. Figure 3 shows that only
around 1% alignments are out-of-order for both
speech mining methods.

Observations above indicate that speech mining
alignments are mostly within paired documents and
preserve time order. We hypothesize that speech-
to-speech alignments are sparse and high-quality
ones mostly exist in paired documents.

As a by-product, this property can be leveraged
to identify parallel documents. If Global Mining
finds many alignments between two documents,
they are likely to be parallel. It is particularly useful
when the pairing metadata is not readily available.

Local Mining Global Mining

93.5%

1.3%
5.9%

. #Within-pair & in-order 0.7%

mm #Within-pair & Out-of-order
#Out-of-pair

Figure 3: For both 1000-hour speech mining datasets,
we compute percentages of En-De alignments that come
from different document pairs, and those are within
paired documents but out-of-order. Global Mining has
5.9% out-of-pair alignments, and both methods have
only around 1% out-of-order alignments.

5.2 Speech Mining Methods Produce Similar
Alignments as Speech Vecalign

Following the observations in Section 5.1 that
speech mining produces mostly local, in-order
alignments, we analyze the similarity between
them and Speech Vecalign alignments.

We employ the alignment evaluation method'!
from Thompson and Koehn (2019), which com-
putes precision and recall by comparing system
alignments to a reference. There are two modes:
Strict, which counts only exact matches as true pos-
itives, and Lax, which considers an alignment as
true positive if both its source and target segment

11https: //github.com/thompsonb/vecalign/blob/
master/score.py.
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overlap with the reference. If not true positive, an
alignment is false positive. Recall is computed by
swapping the reference and the system alignments.

Without loss of generality, we use Speech Ve-
calign En-De alignments as the reference, and eval-
uate speech mining ones. We choose 700k highest-
scoring alignments from all three methods to ensure
a fair comparison. Table 2 shows that about 30% of
speech mining alignments are exactly the same as
those of Speech Vecalign, and about 90% overlap
with Speech Vecalign alignments. This high sim-
ilarity explains why Speech Vecalign and speech
mining models have similar performance.

Mode Global Mining Local Mining
Precision Recall Precision Recall

Strict 0.325 0.326 0.305 0.305

Lax 0.865 0.965 0.963 0.814

Table 2: Precision and Recall for speech mining align-
ments when Speech Vecalign is used as the reference.
The high precision and recall in the Lax mode indicate
the methods produce similar alignments.

5.3 Speech Vecalign Produces Longer
Alignments

As speech mining and Speech Vecalign produce
similar alignments, we explore why Speech Ve-
calign models still perform better. A key advan-
tage of Speech Vecalign is that it first produces
fine-grained alignments and then constructs align-
ments with different amounts of context, thanks to
the alignment concatenation strategy. Speech min-
ing methods, on the other hand, solely depend on
margin-scores and tend to favor shorter alignments.

With the best En-to-De models and correspond-
ing data sizes from Section 4.5, Figure 4 presents
the average sentence-level chrF2++ scores on the
test set and the percentage of training alignments
for different source speech duration ranges. No-
tably, Speech Vecalign has a large portion of long
training samples: the blue bars are highest for du-
rations longer than 12 seconds. Specifically, the
average source duration of Speech Vecalign is 8.51
seconds, while Global Mining and Local Mining
have average durations of 7.50 and 8.53 seconds, re-
spectively. As a result, the Speech Vecalign model
performs better on test samples longer than 10 sec-
onds, while having comparable performance on
shorter ones. This highlights that Speech Vecalign
is able to produce longer, context-rich alignments
which help to improve S2ST model performance.

Interestingly, Local Mining surpasses the Global
Mining model on long inputs, which could be also
attributed to its longer training samples.

55
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10% A —&— Global Mining avg chrf++
Local Mining avg chrf++
r50
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Figure 4: Average sentence-level chrF2++ on En-to-
De test set and the corresponding portion of training
samples with respect to duration ranges. The Speech
Vecalign model consistently performs better on longer
inputs.

5.4 Speech Vecalign Produces Less Noise than
Local Mining

We visualize alignments produced by different
methods for the same document pair, which is
about 10 minutes long and contains around 200
segments. For reference, we manually created a
gold segment-level alignment, with detailed pro-
cedure in Appendix F. We illustrate the best 80
alignments for each of the speech mining methods.

As Figure 5 shows, Speech Vecalign produces
the most fine-grained alignments and is most simi-
lar to the gold reference. Global Mining also per-
forms well, aligning closely with the groundtruth
path, whereas Local Mining produces more noise
and misses more alignments along the correct path.
We hypothesize Local Mining has limited num-
ber of segments in a single document pair, making
nearest neighbors less effective normalizers in the
margin-score computation.

5.5 Removing Identical Untranslated
Segments is Critical

As presented in Section 4.5, our reproduced speech
mining models achieve comparable or even better
results than SpeechMatrix models. By listening
to samples of SpeechMatrix alignments, we ob-
served many cases where the source and target
segments contained identical untranslated content,
which is an issue mentioned in Section 3.1. Using
the method described in Section 3.1, we identified
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Figure 5: Visualizations of gold and 3 system alignments for 20180313-0900-PLENARY-15. The red lines indicate
the gold alignment. Figures from left to right are: (a) Gold alignment manually created by us. (b) Raw Speech
Vecalign alignments without alignment concatenation. (c) Global Mining. (d) Local Mining. Speech Vecalign and
Global Mining follow closely with the gold alignment, while Local Mining produces more noise.

approximately 100k out of 630k alignments with
untranslated source and target segments, totaling
181 hours.

To evaluate the impact of untranslated segments,
we trained models on the original SpeechMatrix
En-De alignments and on a version with untrans-
lated alignments removed. The training data is
chosen with a margin-score threshold of 1.09, fol-
lowing the original setup. As shown in Table 3, the
cleaned data produces better models, improving
BLEU score by 1.00 for En-to-De and 0.11 for De-
to-En, despite having 13% less training data. The
smaller gain on De-to-En may be due to most un-
translated segments being in English, which have
smaller impact on into-English translation.

We also re-produced our alignment pipelines
without removing identical untranslated segments,
referred to as “noisy" in Table 4. We trained mod-
els on 500 hours of this data. Although these un-
translated segments account for less than 1% of the
training data, performance degrades noticeably.

Overall, the experiments highlight that removing
untranslated alignments is essential for S2ST train-
ing, corroborating Khayrallah and Koehn (2018),
who found that the untranslated sentences are most
catastrophic in neural machine translation.

6 Conclusion

We present Speech Vecalign, a parallel speech doc-
ument alignment method that aligns speech seg-
ment embeddings within document pairs and in
chronological order. We apply Speech Vecalign to
parallel English-German VoxPopuli speech docu-
ments and conduct S2ST experiments to demon-
strate its superiority over two strong speech min-
ing baselines. Our analysis reveals that although
speech mining methods primarily align documents

Dataset Hours ASR-BLEU
English-to-German
SpeechMatrix 1451 11.27
SpeechMatrix cleaned 1265 12.27
German-to-English
SpeechMatrix 1456 16.62
SpeechMatrix cleaned 1276 16.73

Table 3: Performance of models trained on SpeechMa-
trix, before and after removing identical untranslated
alignments. Results are measured on En-to-De and
De-to-En EPST test sets. The removal of untranslated
segments boosts model performance.

Dataset #Noisy/All Aligns.  ASR-BLEU
Local Mining - 11.18
Local Mining noisy 2.66k/236k 10.76
Global Mining - 11.54
Global Mining noisy 1.46k/254k 11.27
Speech Vecalign - 11.78
Speech Vecalign noisy 1.48k/222k 11.69

Table 4: Results for En-to-De on EPST test sets. “noisy"
means the steps of removing identical untranslated seg-
ments are not applied. All datasets have 500 hours of
training data.

locally and in-order, Global Mining falls short of
producing long alignments, and Local Mining in
particular produces more noise. For long-term fu-
ture work, we plan to extend Speech Vecalign to
other language pairs or other data sources. We can
also explore aligning speech and text embeddings
to construct S2TT datasets.

Limitations

Speech features for identical untranslated seg-
ment detection could be improved. Our current
approach uses filterbank features, which are based
on power spectrum, to detect identical untranslated
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segments. However, filterbank features are likely
to fail for segments that have identical content but
differ in signal power. As one of the anonymous
reviewers pointed out, cepstral features may be a
more robust alternative.

Limited language pair. We have only conducted
experiments for English and German speech from
the VoxPopuli dataset. As Speech Vecalign heavily
relies on the quality of speech embeddings, the
performance is unclear for other language pairs
and other domains of speech.

Dependency on parallel speech documents.
Speech Vecalign requires parallel speech docu-
ments, which is often not available. We may rely
on Global Mining to discover parallel documents,
as Section 5.1 suggests, but doing so will introduce
extra computation costs.
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2006; Wahlster, 2013). Direct S2ST models have
recently been proposed to alleviate error propaga-
tion, support unwritten languages, and improve
inference speed. Translatotron models (Jia et al.,
2019, 2022a) are trained with spectrograms as tar-
gets, while the S2UT model (Lee et al., 2022a) out-
puts discrete units. UnitY (Inaguma et al., 2023)
and UnitY2 (Seamless Communication et al., 2023)
are two-pass direct S2ST models that predict both
subwords and discrete units with a single model.
Despite advances in architectures, the amount of
supervised training data is still insufficient and thus
limits model performance.

Bilingual text sentence alignment. Text align-
ment is very related to speech alignment. Meth-
ods apply dynamic programming (Bellman, 1954)
and mainly differ in the design of scoring func-
tions. Early works (Brown et al., 1991; Gale
and Church, 1993) are based on sentence lengths.
Later methods incorporate translations in vari-
ous ways (Moore, 2002; Varga et al., 2007; Sen-
nrich and Volk, 2010; Gomes and Lopes, 2016).
Our work is inspired by Vecalign (Thompson and
Koehn, 2019), which utilizes margin-based cosine
similarities between multilingual sentence embed-
dings like LASER (Artetxe and Schwenk, 2019b;
Heffernan et al., 2022) and LaBSE (Feng et al.,
2022). Vecalign is also more efficient than pre-
vious methods. By applying fast dynamic time
warping (Salvador and Chan, 2007), it has a lin-
ear time and space complexity with respect to the
number of input sentences. The recent progress of
extending multilingual sentence embeddings to the
speech modality (Duquenne et al., 2021; Khurana
et al., 2022; Duquenne et al., 2023a,b) enables us to
align speech segments by their speech embeddings
using the same algorithm.

S2ST datasets. There are two common ways to
automatically build an S2ST dataset: (1) building
alignments from multilingual speech data; (2) syn-
thesizing speech for text translations from exist-
ing speech-to-text translation (S2TT) corpora. The
first line of work has human spoken speech on
both source and target sides. VoxPopuli (Wang
et al., 2021a) aligns multilingual speech documents
based on text transcriptions, yielding 17.3k-hour
alignments between 15 source and target languages.
SpeechMatrix (Duquenne et al., 2023a) applies
Global Mining with SpeechLASER embeddings
on VoxPopuli. It obtains alignments for 136 lan-
guage pairs with an average of 1537 hours per direc-
tion. Seamless Communication et al. (2023) apply

Global Mining to web-crawled speech data with
SONAR embeddings. Seamless Communication
et al. (2023) also mine a SeamlessAlignExpressive
dataset with expressively- and semantically-aligned
segment pairs, based on a blend of both seman-
tic and prosodic similarity score (Heffernan et al.,
2024).

The second line of work has synthesized speech
on the target side. Fisher (Post et al., 2013) is
a Spanish-English S2TT dataset containing about
170 hours of Spanish telephone conversations and
English translations which are used to synthesize
English speech. CVSS (Jia et al., 2022b) is an S2ST
dataset covering utterances from 21 languages to
English, obtained by synthesizing the text trans-
lations in CoVoST 2 (Wang et al., 2021b). Be-
sides automatic methods, FLEURS (Conneau et al.,
2023) has collected human read speech covering
102 languages. But it contains only about 12 hours
per language and is intended for evaluation.

B Speech-to-Speech Translation

We describe the model architecture in Appendix
B.1 and the experiment hyperparameters in Ap-
pendix B.2.

B.1 S2UT Model Architecture

The S2UT model (Lee et al., 2022a) adopts
the Transformer encoder-decoder architec-
ture (Vaswani et al., 2017). It has 2 convolutional
layers, 12 transformer encoders, and 6 transformer
decoders for target unit prediction. Additionally, 2
transformer decoders for source unit prediction are
attached to the 6™ encoder layer. All embedding
dimensions are 512, except for the source unit
decoder, which has a dimension of 256. The
forward dimensions are 2048. The model has a
total of 70M trainable parameters.

B.2 Training Hyperparameters

We train the models using a learning rate of
0.0005 with the inverse_sqrt scheduler. We use
the adam optimizer (Kingma and Ba, 2017) with
betas (0.9,0.98). We apply a dropout rate of 0.3
and a label smoothing weight of 0.2.

Due to limited computing resources, we adopt
different training strategies for different purposes.
The 500-hour datasets are used for hyperparame-
ter optimization, and larger datasets are used for
reporting main results. All models are trained for
up to 400k steps, with the first 10,000 steps as
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a warmup stage. For experiments on a 500-hour
dataset, we use a batch size of 320k tokens and
apply early-stopping if there is no improvement
on the development set for 30 epochs. These mod-
els are trained on 4 NVIDIA GeForce GTX 1080
Ti GPUs for approximately 15 days. For larger
datasets, we increase the batch size to 640k tokens
and early-stopping is not applied. These models are
trained on 2 NVIDIA A100-SXM4-80GB GPUs
for approximately 15 days. The best checkpoint
is selected based on the development set loss. All
experiments are conducted in fp32, as we found
training with fp16 and amp very unstable.

C Computation Costs for Alignment

Segment embedding. This is the most time-
consuming step. We use a mixture of NVIDIA
GeForce GTX 1080 and 2080 Ti GPUs. Embed-
ding about 6,000 hours of speech (3,000 hours
for each language) took approximately 1,100 GPU
hours.

Alignment. Local Mining and Global Mining run
on a single GPU. They take about 2 hours. Speech
Vecalign runs on a single CPU and takes about 2
hours.

D Training Data Optimization

There are two hyperparameters that affect training
data: (1) the maximum source duration overlap
ratio between alignments, max_overlap, which is
mentioned in Section 3.3, and (2) the data size.

max_overlap controls the trade-off between
overlapped durations and data quality. For instance,
a lower max_overlap reduces the overlap but also
discards alignments more aggressively. Overlapped
alignments usually have similar margin-scores, so
more high-quality alignments are lost. The data
size controls the trade-off between data size and
data quality cutoff. For instance, a larger dataset
will have a lower quality cutoff, as alignments
are selected in descending order of margin-scores.
In this section, we optimize the combination of
max_overlap and data size by training S2UT mod-
els on different datasets. Note that the raw data
stays the same.

D.1 Optimizing max_overlap

We first experiment with different values of
max_overlap. We apply different max_overlap
thresholds during the postprocessing stage, and al-
ways choose the best 500 hours as the training data.

The optimal value is determined based on devel-
opment set ASR-BLEU. Figure 6 shows that 0.8
works best for Speech Vecalign and Local Mining
and 0.4 works best for Global Mining. The test set
performance is also drawn in Figure 6, exhibiting a
similar trend.

ASR-BLEU on dev and test set
12.00

11.60 1
11.20 1

10.80 1

.60 1 —e— Speech Vecalign dev
—8— Global Mining dev
9.20 A —&— Local Mining dev
—-@- Speech Vecalign test
8.80 —@- Global Mining test

—@- Local Mining test
8.40

= =
o o
=3 B
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ASR-BLEU

©
o
o

0.20 0.40 0.60 0.80 1.00
Overlap ratio

Figure 6: ASR-BLEU on En-to-De EPST dev and test
set. All models are trained with 500-hour data. Only
maz_overlap varies.

D.2 Optimizing Training Data Size

Next we optimize the training data size. We fix
maz_overlap at 0.4 for Global Mining and 0.8 for
Speech Vecalign and Local Mining during postpro-
cessing, only lowering the quality cutoff to include
more training data. The models are trained on
different amounts of data until we find the peak
performance. Results are shown in Figure 7.

For En-to-De, the best Speech Vecalign model
is trained on the 750-hour dataset, achieving 12.58
BLEU. It outperforms the best Global Mining
model which achieves 12.21 BLEU. The best Local
Mining model achieves 12.91 BLEU. However, we
note that it requires a lot more data than the other
two methods to achieve the peak performance.

For De-to-En, the 1000-hour dataset works best
for Speech Vecalign while the 750-hour dataset
works best for Global Mining. Local Mining
achieves the peak performance when the data size is
1250 hours, still requiring more data than the other
methods. The Speech Vecalign performs better
than both the Global Mining and the Local Mining
models.

E Evaluation Results on FLEURS

We provide evaluation results on the FLEURS test
set in Table 5. Similar to Section 4.5, our results
match or outperform SpeechMatrix results. For
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Training Data ASR-BLEU  ASR-chrF2++ BLASER 2.0
Alignment Method # Hours w/ textref  w/o text ref
English-to-German
SpeechMatrix' 1451 2.7 - - -
State-of-the-art & chMatrix* 1451 3.36 25.65 2.50 2.87
Baseline Local Mining 1500 3.93 28.86 2.53 291
Global Mining 1000 3.42 27.84 2.49 2.86
Our Method Speech Vecalign 750 3.73 28.69 2.55 2.94
p-value w.r.t Local Mining 0.1638 0.1938 0.0659 0.0610
p-value w.r.t Global Mining 0.0939 0.0050" 0.0020" 0.0010°
German-to-English
SpeechMatrix' 1456 8.3 - - -
State-of-the-art ¢ hMatrix* 1456 12.18 35.08 3.16 3.51
Baseline Local Mining 1250 11.52 37.88 3.09 3.46
Global Mining 750 11.55 38.24 3.12 3.49
Our Method Speech Vecalign 1000 11.39 38.34 3.16 3.53
p-value w.r.t Local Mining 0.2468 0.0829 0.0010" 0.00IOf
p-value w.r.t Global Mining 0.2907 0.2118 0.0160" 0.0120

Table 5: Results for En-to-De and De-to-En on FLEURS test sets. Bold means better than speech mining baselines.
Underline means the best overall. TResults from Duquenne et al. (2023a). *Models trained by ourselves. “p-value
< 0.05. Results show that Speech Vecalign models perform better than baselines under most metrics in both
directions.

En-to-De test ASR-BLEU
13.00

rics. For De-to-En, Speech Vecalign is significantly
better than Local Mining when using BLASER 2.0
metrics.
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Overall, we can show that Speech Vecalign per-
forms better than both Local Mining and Global
Mining.
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The manual alignment procedure is as follows:
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1. We apply Whisper (Radford et al., 2023) to
transcribe the German and English speech
documents;

Figure 7: ASR-BLEU on En-to-De (above) and De-
to-En (below) EPST test set. Models are trained on
different amounts of training data. The best Speech
Vecalign models outperform the other speech mining

models. 2. We manually select the corresponding words

for each speech segment from the obtained

. transcriptions;
both En-to-De and De-to-En, Speech Vecalign and

Global Mining achieve comparable performance
when using the transcription-based metrics ASR-
BLEU and ASR-chrF2++. Their performance is
especially close on De-to-En. However, Speech
Vecalign is significantly better than Global Mining
when using the BLASER 2.0 metrics, achieving an
improvement of 0.06 and 0.04 referenced BLASER
2.0 scores on En-to-De and De-to-En, respectively.

3. We used Google Translate to translate the Ger-
man transcriptions into English, as the author
does not speak German;

4. We align the German and English segments
based on the corresponding English transcrip-
tions and translations.

For En-to-De, Speech Vecalign achieves compa-
rable performance with Local Mining on all met-

Although this process depends on models such as
Whisper and Google Translate, we argue that they
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should perform extremely well on German and En-
glish and should produce almost perfect transcrip-
tions and translations.

G Evaluation of System Alignments using
the Manual Alignments

We use the same alignment evaluation method as
Section 5.2, but we use the manual alignments as
the reference. There are 144 raw Speech Vecalign
alignments, and we choose the same number of
alignments from Global Mining and Local Mining
in descending order of margin-scores. The Recall
and Precision of raw Speech Vecalign, Local Min-
ing, and Global Mining alignments are presented
in Table 6.

The three methods have similar Lax Precisions,
while that of Local Mining and Global Mining are
slightly higher. Speech Vecalign has the highest
recall values than both the speech mining baselines.
Among the three methods, Local Mining has the
worst performance in general. This follows Fig-
ure 5 that both Speech Vecalign and Global Mining
have good performance but Local Mining does not
perform well.

Precision Recall

Strict Lax Strict Lax

raw Local Mining 0.139 0993 0.147 0.676
Global Mining 0.188 0.993 0.199 0.868
raw Speech Vecalign 0.597 0.979 0.632 0.978

Table 6: Precision and Recall for raw Speech Vecalign,
Global Mining and raw Local Mining alignments when
manual alignments are used as the reference.

H Statistics for Intermediate Procedures

As our proposed alignment pipeline consists of
several intermediate steps, we report numbers of
segments or alignments in Table 7. We use English-
to-German alignment as an example.
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Stage # En Segments  # De Segments  # Alignments

Segmentation 4,113,319 3,056,797 -
Detection of identical untranslated segments 47,008 47,008 -
Segment concatenation 19,331,307 13,012,502 -
Vecalign - - 2,597,796
After removing low-quality alignments - - 1,968,141
After removing untranslated alignments - - 1,962,032
Alignment concatenation - - 3,661,860
After removing short alignments (< 1 second) - - 2,810,697
After removing highly—overlapp.ed alignments ) ) 851.446
(max_overlap < 0.8 and duration < 2 seconds) ’
Choose the best 750 hours - - 317,293

Table 7: Number of segments or alignments at each stage.
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