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Abstract

Automating Exploratory Data Analysis (EDA)
is critical for accelerating the workflow of
data scientists. While Large Language Mod-
els (LLMs) offer a promising solution, current
LLM-only approaches often exhibit limited ac-
curacy and code reliability on less-studied or
private datasets. Moreover, their effective-
ness significantly diminishes with open-source
LLMs compared to proprietary ones, limiting
their usability in enterprises that prefer local
models for privacy and cost. To address these
limitations, we introduce RAGvis: a novel
two-stage graph-guided Retrieval-Augmented
Generation (RAG) framework. RAGvis first
builds a base knowledge graph (KG) of EDA
notebooks and enriches it with structured EDA
operation semantics. These semantics are ex-
tracted by an LLM guided by our empirically-
developed EDA operations taxonomy. Sec-
ond, in the online generation stage for new
datasets, RAGvis retrieves relevant operations
from the KG, aligns them to the dataset’s struc-
ture, refines them with LLM reasoning, and
then employs a self-correcting agent to gen-
erate executable Python code. Experiments
on two benchmarks demonstrate that RAGvis
significantly improves code executability (pass
rate), semantic accuracy, and visual quality in
generated operations. This enhanced perfor-
mance is achieved with substantially lower to-
ken usage compared to LLM-only baselines.
Notably, our approach enables smaller, open-
source LLMs to match the performance of pro-
prietary models, presenting a reliable and cost-
effective pathway for automated EDA code
generation.

1 Introduction

Exploratory Data Analysis (EDA) is a foundational
data science step for understanding datasets and
uncovering patterns. Its significance is underscored
by surveys indicating EDA constitutes a primary
responsibility for 57% of data scientists (Kaggle,
2022) and consumes up to 40% of their time
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(Anaconda, 2022). Consequently, automating
EDA code generation is critical to accelerating
data science workflows. However, this automation
presents challenges distinct from general coding
tasks. It requires not only reliably generating code
for specific operations but, more critically, involves
autonomously identifying relevant data columns to
analyze and selecting appropriate EDA operations
(e.g., chart types) for each column directly from
a raw dataset—navigating a vast combinatorial
search space.

Current approaches for automating EDA pri-
marily leverage Large Language Models (LLMs)
(Dibia, 2023; Ma et al., 2023). While LLMs have
shown promising results for general code genera-
tion tasks (Jiang et al., 2024; Zan et al., 2023; Hou
et al., 2024), their direct application to EDA au-
tomation reveals specific limitations. For instance,
LLMs often perform well with well-studied public
datasets, likely reflecting patterns seen in their vast
training corpora. However, their accuracy (e.g., in
selecting relevant EDA operations) and reliability
(e.g., in generating consistently executable code)
have been shown to significantly diminish when
applied to private or enterprise datasets, which may
feature unique structures or domain-specific con-
ventions (Kayali et al., 2025). Furthermore, the ef-
ficacy of these LLM-only methods is primarily tied
to the use of large-scale, proprietary models such
as Google Gemini or OpenAI GPT (Gemini-Team
et al., 2024; OpenAI et al., 2024). However, such
performance may not readily translate to smaller,
open-source LLMs, which are often preferred in
enterprise settings for privacy, control over local
deployment, and cost. Therefore, the usability and
scalability of LLM-only methods is restricted in
many practical scenarios.

To address these challenges, we introduce
RAGvis, a novel Retrieval-Augmented Generation
(RAG) framework designed for generating exe-
cutable EDA code. RAGvis’ retrieval is based on
a knowledge graph linking EDA operations code
to their semantics and the utilized data columns.
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Figure 1: Overview of RAGvis’ KG generation & enrichment (Sec. 2) and EDA notebook generation (Sec. 3).

Our approach operates in two stages as shown in
Figure 1.

The first is offline Knowledge Graph (KG)
Generation and Semantic Enrichment. Initially,
a large corpus of Kaggle EDA notebooks is
processed to generate a base KG capturing
statement-level notebook information (e.g., code
dependencies, library usage) and associated dataset
column embeddings. This base KG, however,
lacks explicit EDA operations semantics (e.g.,
the specific chart type or columns an operation
analyzes), a critical input for effective retrieval. To
systematically define which semantics to collect,
given the wide diversity of EDA operations, we
first develop our structured EDA taxonomy (Figure
2). The core of the enrichment stage is then our
novel KG-guided EDA semantic extraction: for
each EDA operation in the notebooks, we provide
an LLM with the operation’s code script contex-
tualized by relevant parent statements derived
from the base KG’s data flow dependencies. The
LLM is then tasked to predict the operation’s
semantic attributes according to our taxonomy.
After validation and correction, these extracted
EDA semantics are augmented to the base KG.

In the subsequent online EDA notebook
generation stage, RAGvis takes an unseen dataset
as input. First, it retrieves relevant EDA operations
from the augmented KG using column embed-
dings, and aligns their column specifications to the
unseen dataset. Next, an LLM refines this set of
candidate operations based on the unseen dataset’s
characteristics. Finally, an EDA coding agent takes
these refined operation specifications to generate
and iteratively self-correct Python code through
execution feedback, and assembles the verified
snippets into a notebook. By leveraging the en-
riched KG to guide the selection of EDA operations
tailored to the input dataset, and using an agent for
robust code generation, RAGvis overcomes key
limitations of relying solely on LLMs.

To validate our approach, we conducted exten-
sive experiments on two benchmarks, comparing

RAGvis to a state-of-the-art LLM-based baseline
(Dibia, 2023). RAGvis demonstrates significant im-
provement on EDA retrieval accuracy (up to 0.35
higher recall), code reliability (near 100% pass
rate), visual chart quality (LLM-as-a-judge score),
and cost (64% less LLM tokens consumed). More-
over, RAGvis enables small, open-source models
such as Gemma 3 to achieve performance compa-
rable to proprietary models such as GPT 4o-mini.

This paper makes the following contributions:

• We introduce RAGvis1, a novel RAG frame-
work for EDA code generation, featuring: a)
an empirically-driven universal taxonomy of
EDA operations that categorizes visualiza-
tions by their semantic intent, b) a KG-guided
semantic extraction method to guide an LLM
in building an EDA-aware KG from note-
books, c) an online process that integrates
EDA-specific retrieval, alignment, and refine-
ment to tailor EDA operations for unseen
datasets, and d) a self-correcting EDA coding
agent that iteratively generates and validates
Python code to ensure reliability.

• Through comprehensive experiments on two
benchmarks, we demonstrate that RAGvis sig-
nificantly outperforms a state-of-the-art LLM-
only baseline, achieving substantial improve-
ments in semantic accuracy, code reliability,
visual chart quality, and LLM token costs.

• We show that RAGvis empowers smaller,
open-source models to achieve comparable
performance to that of large, proprietary mod-
els, making automated EDA more feasible in
low-resource and privacy-sensitive scenarios.

2 Knowledge Graph Generation and
Semantic Enrichment

The retrieval in RAGvis relies on a Knowledge
Graph (KG) that links EDA operations to their im-
plementing code and the specific data columns they

1Code and datasets available at: https://github.com/
google/ragvis
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Figure 2: Our taxonomy of EDA operations based on a
survey of EDA notebooks on the Kaggle platform.

analyze. As such an EDA-specific KG is not avail-
able, we first utilize a base KG built from a large
corpus of EDA notebooks and datasets. The base
KG captures essential statement-level information
about the code and its use of dataset columns but
lacks EDA information. Therefore, we system-
atically augment it with EDA-specific semantics,
yielding an EDA-aware KG crucial for retrieval.

2.1 Base Knowledge Graph Generation

To generate the base KG, we first collected a cor-
pus comprising approximately 1600 EDA note-
books associated with 911 distinct datasets sourced
from the Kaggle platform. To ensure quality, these
notebooks were selected based on their high vote
counts by the Kaggle community (meta-kaggle,
2022; Plotts and Risdal, 2023).

To process this corpus into a structured KG, we
built upon recent advances in building KGs from
code repositories (Venkataramanan et al., 2025)
and generating embeddings for tabular data (Jiang
et al., 2025). We employed KGLiDS (Helali et al.,
2024), a platform designed for generating KGs
from data science pipelines and their associated
datasets, integrating both statement-level code
information and column embeddings. Nodes in the
KG include code statements and dataset columns,
while edges denote code dependencies and data
reads by statements. For instance, considering the
example in Figure 3, the base KG represents all
code statements (lines 1-25) as code statement
nodes. These are connected by code flow edges
that capture both logical sequence (e.g., line 2
follows line 1) and data dependencies (e.g., the df
variable from line 4 is used in line 24). Columns
from the dataset, like "Openings" and "Company",
are also represented as column nodes. These are
linked to code statement nodes by column read
edges whenever a statement uses them (e.g., line
2 is connected to the "Openings" and "Company"

nodes). This base KG, however, does not identify
EDA operations in a notebook and lacks explicit
EDA-specific semantics required for our task such
as the type of an EDA operation and its intent.
Figure 4 shows the base KG corresponding to the
example in Figure 3 before and after enrichment.

The KGLiDS platform also analyzes datasets at
the column level, generating embeddings based on
the column name, raw value, and a concatenation
of both. We utilize these embeddings for accurate
EDA retrieval (Section 3.1).

2.2 Taxonomy of EDA Operations
To systematically enrich the KG with EDA-specific
semantics, we first need a structured way to define
and categorize the wide variety of EDA operations
found in practice. Simply instructing an LLM to
"extract EDA semantics" without a clear definition
would lead to inconsistent and incomplete infor-
mation. Therefore, we developed a comprehensive
taxonomy of EDA operations derived from an ex-
tensive survey of notebooks on the Kaggle plat-
form. While empirically derived, this taxonomy is
designed to be broadly generalizable beyond Kag-
gle; its core structure (Figure 2) is based on fun-
damental analytical concepts rather than specific
implementation details (such as plotting libraries
or cosmetic variations).

Our taxonomy is hierarchical, first categoriz-
ing operations by the number of primary columns
involved: Univariate (one column), Bivariate
(two columns), and Multivariate (three or more
columns). Further distinctions consider grouping
and analysis types (observed frequencies: Univari-
ate 36.3%, Bivariate 44.9%, Multivariate 18.8%).

Univariate operations, in our taxonomy, are Un-
grouped. They typically involve Distribution plots
(1) or Box plots (2) for Numerical columns, and
Bar charts (3) or Pie charts (4) for Categorical
columns. Bivariate operations relate two variables.
Ungrouped forms include Scatter plots (5) or Line
charts (6) for two numerical columns, or Bar charts
(3) for comparing a numerical column against a cat-
egorical one (e.g., ’Total Population’ per ’City’). A
key subtype is Grouped Univariate analysis. This
involves performing a univariate analysis (using
charts 1-6) on a value column for each segment
defined by a grouping column (typically categori-
cal). An example is grouping ’Employee’ data by
’Department’ and showing the average ’Income’.
Notably, 23.6% of analyzed operations involved a
grouping column, representing a common pattern.
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1: df = pd.read_csv("DataAnalyst.csv")

2: df = df.rename(columns={"Openings":"Jobs",

3:           "Company":"Employer"})

4: df["Jobs"] = df["Jobs"].fillna("missing")

5: feature_selector = SelectKBest(k=20)

                        …
24: data = df.groupby("Employer")["Jobs"].sum()

25: chart = sns.barplot(data,x="Employer",y="Jobs")

{"chart_type": "Bar", "analysis_type": "Bivariate",
 "chart_columns": ["Openings"],
 "grouping_column": "Company"}

Figure 3: Top: EDA script, where a dataset is loaded,
preprocessed (Lines 2-5), and used to visualize a Bar
Chart showing the number of jobs per employer (Lines
24-25). Bottom: corresponding EDA semantics ex-
tracted using the taxonomy in Figure 2.

Multivariate operations analyze three or more
columns. Ungrouped examples include Heatmaps
(7), Column Correlation (8) computations, and Pair-
wise Distributions (9). Grouped Multivariate op-
erations use one column for grouping (e.g., for
color or faceting) while visualizing relationships
between two or more other columns (e.g., using
faceted/colored Scatter (5) or Line (6) charts, or
potentially grouped Bar charts (3)). This might
explore how the relationships vary across data seg-
ments (e.g., average ’Income’ vs. ’Happiness In-
dex’, colored by ’State’).

It is important to note that functionally similar
charts are grouped into categories; for instance,
the "Box" category includes Box and Violin plots,
while "Distribution" contains Histograms and KDE
plots. Each level in the taxonomy corresponds to a
semantic attribute of an EDA operation. Figure 3
shows a sample EDA operation and the correspond-
ing EDA semantics per this taxonomy.

2.3 KG-Guided EDA Semantic Extraction

The base KG, while capturing statement-level
details, initially lacks explicit EDA operation
semantics, a critical input for EDA retrieval and
code generation. We enrich the KG by extracting
the EDA-specific semantics from collected Kaggle
notebooks. This extraction occurs per EDA cell
using an LLM with few-shot prompting, guided
by our EDA taxonomy. The LLM prompt includes:
1) the target EDA code snippet (contextualized as
detailed below); 2) a dataset sample; 3) expected
semantic fields based on our taxonomy (as shown
in Figure 3); and 4) few-shot (code snippet, dataset
sample, EDA semantics) examples. The LLM then
extracts chart columns, grouping column, chart
type, and analysis type.
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Figure 4: The base KG (grey) and enriched KG (blue)
corresponding to the script in Figure 3.

A key challenge is providing sufficient yet con-
cise source code context for the LLM, as EDA
notebooks often preprocess data (e.g., renaming
"Openings" to "Jobs" in Figure 3, lines 1-5) be-
fore visualization (lines 24-25). Providing only
the EDA cell (lines 24-25) to the LLM can lead to
incorrect column identification (e.g., user-defined
names like "Jobs" instead of the correct original
name, "Openings"). In contrast, providing the full
script as context is often too costly or might exceed
the context size of some LLMs. Our solution is to
provide the LLM with relevant context by query-
ing the KG for data flow parent statements of the
EDA cell. The data flow parents include all state-
ments that define or modify data variables used
within the EDA cell (e.g., lines 1-4 are parents for
lines 24-25 in Figure 3). We prepend the data flow
parents in order to the EDA cell code within the
LLM prompt. This KG-assisted contextualization
(summarized in Algorithm 2 in Appendix) ensures
accurate semantic extraction with minimal added
token consumption. Figure 3 (bottom) shows the
extracted EDA semantics for the sample operation.

The format of the LLM-extracted semantics is
validated by enforcing a JSON schema, while the
semantic correctness is validated via heuristic rules
(e.g. checking that column names exist in the orig-
inal dataset); if an operation fails validation, the
LLM is asked for regeneration, and operations re-
maining incorrect after set retries are discarded.

2.4 Knowledge Graph Augmentation

To transform the base KG into an EDA-aware re-
source, we augment it with the extracted seman-
tics. For each successfully analyzed EDA opera-
tion, we create a new EDA operation node and
store its semantic attributes (e.g., chart_type,
analysis_type) as node properties, as shown at
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the bottom of Figure 3. This new node is then
linked via edges to: 1) the code statement nodes
that perform the analysis (lines 24-25), and 2) the
nodes of the original dataset columns it analyzes
("Openings" and "Company"). This explicit link-
ing between an EDA operation and its columns is
vital, as it directly facilitates the targeted retrieval
of EDA operations for a given column in the subse-
quent notebook generation phase.

3 EDA Notebook Generation

The objective of this stage is to generate a compre-
hensive EDA notebook given an unseen dataset.

3.1 Embedding-based EDA Retrieval

Our retrieval approach operates on the premise that
similar datasets are often effectively analyzed using
similar EDA operations. Retrieval in RAGvis (Al-
gorithm 1, Lines 2-6) utilizes the EDA-augmented
KG to fetch relevant EDA operations for an unseen
dataset Du. It does so by querying the KG for oper-
ations that were applied to columns in seen datasets
similar to those in Du. This utilizes the explicit
links between EDA operations and data columns
added in the KG enrichment.

However, measuring column similarity is chal-
lenging. Using column names alone is often insuf-
ficient as columns with identical names can have
vastly different data types or value distributions.
For example, a "rating" column could contain
strings like "Good", integers on a 1-100 scale, or
floats from 1-5. To address this, RAGvis utilizes
column embeddings for similar column matching.
These embeddings (generated in the base KG) are
concatenations of column name embeddings and
column raw value embeddings, resulting in accu-
rate retrieval of EDA operations.

The retrieval process operates at the column
granularity. For each column Cu ∈ Du, we query
the KG column embeddings using cosine similarity.
The query targets seen columns that share Cu’s data
type (e.g. our EDA-augmented KG recognizes 7
types: integers, floats, booleans, dates, natural lan-
guage text, named entities, and generic strings).
The set of top N most similar seen columns,
Ctop−N , are retrieved, where N is a configurable
parameter influencing recall. Subsequently, for
each retrieved seen column Cs ∈ Ctop−N , RAGvis
queries the KG to fetch its associated EDA opera-
tions. Crucially, these operations are presented in
the context of the seen datasets from which they

were retrieved (i.e., they reference columns in the
original seen dataset). To render these operations
directly executable on the unseen dataset Du, a
subsequent EDA Alignment step is necessary.

3.2 EDA Alignment
The goal of the alignment step is to find a suitable
mapping for a retrieved EDA operation (applied
on a seen dataset) to the unseen dataset Du. EDA
alignment in RAGvis (Lines 7-17 in Algorithm
1) uses a two-factor criterion: column data type
compatibility and embedding similarity. For each
seen column Cs used in an operation O, the system
searches within the unseen dataset Du for a poten-
tial target column Calign that has a matching data
type with Cs, highest embedding similarity, and
was not previously selected as an alignment target
for the same operation (to ensure 1:1 mapping to
Du). Alignment for univariate operations applied
to Cs is straightforward, mapping Cs directly to Cu.
For bivariate and multivariate operations involving
other columns than Cs, however, all participating
columns from the seen dataset must also be aligned
to suitable columns in the unseen dataset Du us-
ing the same process. If, for a given operation O,
a suitable alignment cannot be found for all seen
columns to which O was historically applied, then
O is deemed unalignable in the context of Du and
is discarded from the candidate set.

After this alignment process, all remaining EDA
operations are now expressed in terms of columns
within Du and are considered directly applicable.
This procedure, applied across all retrieved Ctop−N

columns for each Cu, may result in duplicate EDA
operations being suggested. RAGvis regards the
frequency of each unique operation as an estima-
tion of the system confidence in recommending
said operation. The frequency is utilized in the sub-
sequent stage to inform the LLM about the relative
importance of each EDA operation.

3.3 EDA Refinement
The EDA Refinement step leverages LLM rea-
soning to curate prior aligned operations. Its in-
put includes aligned EDA operations, sorted by
increasing frequency count (the LLM is explic-
itly informed of this order), alongside key seman-
tic details of the unseen dataset (column names,
data types, and basic statistics). Using a one-shot
prompt, the LLM is instructed to select k most
suitable EDA operations, considering both the pro-
vided candidates and the dataset semantics, with
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Algorithm 1: EDA Retrieval and Alignment
Input: Unseen Dataset: Du, EDA-Augmented KG: G

No. similar cols to retrieve: N
1 EDAAligned = { }
2 for unseen column Cu ∈ Du:
3 Ctop−N ← {SELECT C FROM G WHERE C.type=Cu.type
4 ORDER BY Embsim(C,Cu) LIMIT N}
5 for similar seen column Cs ∈ Ctop−N :
6 OCs ← {SELECT EDA FROM G WHERE EDA↔ Cs }
7 for EDA operation O{Cs...} ∈ OCs :
8 aligned_Du_cols← { }
9 for seen column Cseen used in O{Cs...}

10 Calign ← {SELECT C FROMDu

11 WHERE C.type = Cseen.type
12 AND C NOT IN aligned_Du_cols
13 ORDER BY Embsim(C,Cseen) LIMIT 1}
14 aligned_Du_cols.add(Calign)
15 if all columns in O{Cs...} are aligned:
16 EDAAligned.add(O(aligned_Du_cols))

17 return Counter(EDAAligned)

the possibility of suggesting novel operations not
present in the input list. To ensure reliable output
structure, we utilize the LLM’s constrained genera-
tion (e.g., JSON mode), using our EDA taxonomy
as a schema. This yields k refined EDA operations
in JSON format, aligned to Du and ready for code
generation; k is user-defined. This refinement step
is optional, particularly for smaller models with
limited reasoning ability. If disabled, the top k op-
erations ranked by frequency from the alignment
step are passed directly to the EDA coding agent.

3.4 EDA Coding Agent

The EDA Coding Agent generates verified
Python snippets for the k refined EDA operations
applicable to the unseen dataset Du. For each input
operation (provided as JSON specification) paired
with Du’s summary, an LLM generates a corre-
sponding Python code snippet designed to produce
exactly one data visualization (a single chart).
The agent then attempts to execute this generated
snippet in a local environment containing Du to
verify it runs without compile-time or runtime
errors. If execution fails, the agent captures the
resulting error message and feeds it back into the
original code generation session, prompting the
LLM to regenerate the code specifically addressing
the reported error. This initiates an automated,
iterative debugging loop of generation, execution,
and correction which continues until the code runs
successfully or a predefined maximum number
of retries is reached. Any operation whose code
cannot be fixed within the retry limit is ultimately
excluded. Therefore, the output of this stage is a set
of up to k Python code snippets, each successfully

executed and verified error-free on Du, corre-
sponding to one of the refined EDA operations.
These snippets can then be assembled into a single
executable file (e.g. a Jupyter Notebook) using an
LLM prompt to deduplicate redundant setup code.

4 Experimental Evaluation

We conduct a comprehensive evaluation between
RAGvis and two baseline systems on two indepen-
dent data visualization benchmarks.

4.1 Benchmarks

KaggleVisBench2: We collected a high-quality
benchmark from 132 EDA notebooks associated
with 50 Kaggle datasets. The notebooks are
the most voted among Kaggle users for each
dataset, with at least 20 votes. We extracted
the set of EDA operations per dataset using the
EDA semantic extraction described in Section
2.3. To ensure a fair evaluation and prevent
information leakage, we verified that none of the
50 datasets in this benchmark were present in the
corpus of notebooks used to build our knowledge
graph. The benchmark features an average of
20 EDA operations per dataset, totalling 999
operations. Samples in this benchmark consist
of pairs of a dataset and the list of corresponding
EDA operations, where each EDA operation has
the following semantic attributes: chart_type,
chart_columns, and grouping_column .

VisEval: To assess our system’s ability to gen-
eralize to EDA patterns beyond the Kaggle ecosys-
tem, we also evaluate on VisEval (Chen et al.,
2025); This is a natural language to visualization
(NL2VIS) benchmark consisting of high-quality
datasets manually annotated by human experts, pro-
viding an out-of-domain test for our approach.
Original samples in VisEval consist of a visualiza-
tion query for a dataset and the corresponding chart
metadata, including chart type (Bar, Pie, etc.), chart
columns, and query difficulty. We grouped the sam-
ples by datasets and considered the set of charts for
each dataset as ground truth. In addition, we filter
out the 462 multi-table operations as they are out of
the scope of this study. This results in an average
of 2.9 EDA operations per dataset, totalling 688
operations for 239 datasets.

2The benchmark is available for the research community
at: https://github.com/google/ragvis
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4.2 Baselines

LIDA: We consider LIDA (Dibia, 2023) as our
primary baseline. LIDA is a multi-step prompt-
based automated data visualization system. LIDA
takes a raw dataset as input and i) summarizes the
dataset information, ii) explores k potential EDA
operations specifications, iii) generates the corre-
sponding Python code, and iv) executes each visual-
ization code to generate k visualizations. Here, k is
a parameter to control the number of charts. Steps
i through iii are carried out using LLM prompting.

Data2Vis: To contextualize the performance
of modern LLM-based approaches, we evaluate
against Data2Vis (Maddigan and Susnjak, 2023),
a traditional AutoVis system. Data2Vis utilizes a
BiLSTM to generate visualizations in the Vega-Lite
declarative specification language (Satyanarayan
et al., 2017). A full comparison is not feasible, as it
does not generate source code. To enable a partial
comparison, we mapped its outputs to our EDA
taxonomy to compute accuracy using Recall@k.

4.3 Evaluation Metrics

Recall@k: There is no standard metric to mea-
sure the “goodness” of a generated chart as data
visualization is inherently subjective. In this work,
we developed the EDA taxonomy described in Sec-
tion 2.2 and utilize it to measure the semantic ac-
curacy of the generated charts in an automated and
reproducible manner. Recall is measured by match-
ing the semantic attributes in our taxonomy shown
in Figure 3. A true positive for a particular dataset
is a predicted EDA operation that exists in the set
of operations in the ground truth. We use exact
matching for all attributes of the taxonomy; if, for
instance, a correct chart type (e.g. Bar) is pre-
dicted but applied on or grouped by incorrect set of
columns, the prediction is regarded as a false pos-
itive. Specifically, we calculate Recall@k, where
k is the desired number of EDA operations. We
selected practical values of k ∈ [5, 30], resembling
real-world notebooks of varying lenghts. Recall@k
is then averaged for all datasets in a benchmark.

Pass Rate@k: Similar to previous works (Chen
et al., 2025; Dibia, 2023), we measure source code
reliability using pass rate, which is the percentage
of generated EDA operations with source code ex-
ecuting without compile-time or run-time errors.
We calculate Pass Rate@k at varying k values and
average it for all datasets in a benchmark.

VLM Score: To assess the visual quality of the

generated charts, we use a Vision Language Model
(VLM) as a judge, following the same procedure
reported by the authors of VisEval (Chen et al.,
2025). This automated metric, was shown to highly
correlate with human expert ratings, providing a
practical alternative to a user study. The score con-
sists of two components: Readability evaluates
the aesthetic and functional quality of a chart, in-
cluding its layout, scales, ticks, and the clarity of
titles and labels. The Quality Score then adjusts
the readability score by penalizing any charts that
are invalid or contain errors. We used Gemini 2.5
Pro as the judge given its advanced reasoning capa-
bilities. The VLM judge prompt is shown in A.5.

LLM Tokens: We calculate the number of LLM
tokens used in the generation stage of both systems.

4.4 EDA Retrieval Accuracy

Table 1 (left) shows the average Recall@k of
RAGvis compared to LIDA on both benchmarks.
RAGvis significantly outperforms LIDA for
all values of k and LLMs with a difference in
Recall@30 reaching up to 0.33 on VisEval and
0.29 on KaggleVisBench. This demonstrates the
effectiveness of our EDA retrieval and refinement
compared to LLM prompting used in LIDA.
By grounding the EDA selection process in the
knowledge graph, RAGvis effectively navigates
the large search space of the auto EDA problem.
Prompt-based techniques like LIDA solely depend
on LLM reasoning for EDA selection, which is not
as effective for this task even with thinking models
such as Gemini 2.5 Pro.

Furthermore, our comparison against Data2Vis
highlights the significant performance gap between
prior methods and LLM-based approaches for this
task. As shown in Table 1, RAGvis substantially
outperforms Data2Vis on both benchmarks.

4.5 EDA Code Reliability

Table 1 (right) shows the pass rates of RAGvis and
LIDA on both benchmarks for different values of
k and LLMs. RAGvis maintains an impressive
∼100% pass rate across all values of k with Gem-
ini 2.5 Pro and GPT 4o-mini. This illustrates the
effectiveness of our EDA coding agent, which exe-
cutes the generated source code and performs self
correction if needed. While LIDA requires strong
coding models such as Gemini 2.5 Pro to achieve
acceptable pass rate of 95%+, RAGvis achieves
competitive pass rates even with Gemma 3 12b.
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Table 1: A comparison between the average Recall@k (R@k) and average Pass Rate@k (PR@k) for all systems
on two benchmarks with different open source and commercial large language models.

Method
VisEval KaggleVisBench VisEval KaggleVisBench

R@5 R@15 R@30 R@5 R@15 R@30 PR@5 PR@15 PR@30 PR@5 PR@15 PR@30
Gemini 2.5 Pro (25/03)

RAGvis 0.5 0.67 0.77 0.12 0.29 0.43 99.9% 100% 100% 99.2% 99.9% 99.5%
LIDA 0.15 0.36 0.49 0.01 0.06 0.14 95.6% 90.3% 96.3% 89.2% 92.4% 93.5%

GPT-4o mini
RAGvis 0.33 0.59 0.68 0.07 0.18 0.3 99.6% 100% 99.8% 99.8% 99.2% 99.1%
LIDA 0.24 0.40 0.52 0.06 0.12 0.18 93.2% 88.4% 89.3% 84.4% 81.6% 72.3%

Gemma 3 12b
RAGvis 0.34 0.63 0.7 0.07 0.18 0.22 98.5% 97.7% 95.0% 96.8% 96.3% 95.7%
LIDA 0.14 0.28 0.43 0.02 0.09 0.13 88.9% 88.7% 91.1% 78.4% 82.9% 66.5%

Gemma 3 4b
RAGvis 0.22 0.46 0.61 0.05 0.10 0.15 98.3% 98.6% 98.2% 92.0% 89.2% 87.3%
LIDA 0.03 0.15 0.28 0.01 0.06 0.11 86.6% 93.3% 90.3% 79.2% 77.9% 68.3%

Data2Vis 0.02 0.05 0.12 0.01 0.02 0.04 - - - - - -

Table 2: Readability and Quality scores of RAGvis and
LIDA with k = 15 using a VLM as a judge on VisEval.

Model Method Readability Quality

GPT 4o-mini RAGvis 2.93 2.93
LIDA 2.55 2.34

Gemma 3 12b RAGvis 2.72 2.72
LIDA 2.42 2.22

4.6 EDA Visual Quality

To evaluate the visual quality of the generated
charts, we conducted an analysis using the VLM
Score metric on the VisEval benchmark with k =
15. We ran both RAGvis and LIDA using GPT-
4o-mini and Gemma 3 12b, with Gemini 2.5 Pro
as the VLM judge. The results, summarized in
Table 2, show that RAGvis consistently achieves
higher Readability and Quality scores. This is be-
cause RAGvis selects more accurate chart types
and columns, resulting in more readable and aes-
thetically pleasing charts. A paired t-test confirms
the results are statistically significant (with p < 5e-
10 for all settings).

4.7 Open vs. Commercial LLMs

A primary goal of our work is to enable effective
and reliable EDA code generation with small, open-
source models. While RAGvis is able to utilize the
advanced reasoning of Gemini 2.5 Pro to obtain the
best recalls and pass rates as shown in Table 1, it
achieves comparable performance with Gemma 3

12b to GPT 4o-mini and a competitive performance
with the small Gemma 3 4b. LIDA, on the other
hand, is entirely dependent for its performance on
the LLM reasoning capabilities of proprietary mod-
els, showing a significant drop in recalls and pass
rates with the Gemma models. Similarly, for vi-
sual quality shown in Table 2, RAGvis produces
higher-quality visualizations with Gemma 3 12b
than LIDA with GPT 4o-mini. This is because
RAGvis decouples the task of EDA selection from
code generation; by grounding the former in the
KG, it transforms the latter into a well-defined task
where even smaller models can excel.

4.8 LLM Token Usage
We compared the number of LLM tokens utilized
by RAGvis and LIDA on VisEval. Table 3 shows
the input, output, and thought tokens used in eval-
uation. RAGvis significantly reduces token con-
sumption, using 56%-64% less input tokens and
59%-68% less output tokens. This efficiency stems
largely from RAGvis’s RAG architecture offload-
ing data summarization and EDA retrieval tasks to
non-LLM components. Moreover, RAGvis avoids
the high token overhead seen in LIDA, which often
relies on long, detailed system prompts (increas-
ing input tokens) and requires the generation of
verbose rationale with each EDA specification (in-
creasing output tokens). Our approach achieves
better results without these token-intensive steps.
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Table 3: A comparison with LIDA in terms of number
of tokens incurred to evaluate both systems on VisEval.

Model Gemini 2.5 Pro GPT 4o-mini
Method RAGvis LIDA RAGvis LIDA
Input Tokens 14.46 M 33.13 M 10.43 M 30.19 M
Output Tokens 7.38 M 18.08 M 2.36 M 7.53 M
Thought Tokens 30.97 M 24.3 M - -
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Figure 5: Ablations of the impact of LLM refinement
on Recall@k (left) and EDA coding agent on PassRate.

4.9 Ablation Studies

We analyze the impact of key design choices. Ad-
ditional ablations are included in the Appendix.

4.9.1 Impact of LLM Refinement
We first quantify the LLM refinement impact on
RAGvis’s recall. Figure 5 (left) shows three set-
tings: full RAGvis pipeline with refinement of
Gemini 2.5 Pro (Gemini-Refined), GPT 4o-mini
(GPT-Refined), and the retrieved and aligned EDA
operations without applying any LLM refinement
(Retrieved). Crucially, the figure reveals the com-
petitive recall achieved with retrieval only, validat-
ing the effectiveness of our retrieval and alignment
processes. Further, RAGvis takes advantage of ad-
vanced reasoning models, showing higher recalls
with Gemini 2.5 Pro compared to GPT 4o-mini.

4.9.2 Impact of EDA Coding Agent
To assess the contribution of the EDA coding agent,
we conducted an ablation study where this com-
ponent was replaced with a single LLM prompt
without any execution feedback. The results, de-
picted in Figure 5 (right), demonstrate the agent’s
significant role in enhancing the pass rate of gener-
ated code. Notably, the EDA coding agent provides
a considerable boost in pass rates for open-sourced
models reaching approximately 6%. While strong
coding models such as Gemini 2.5 Pro also benefit
from the agent, the magnitude of this improvement
is comparatively smaller (1.7%) than that observed
for other models.

5 Related Work

Automated Data Visualization (AutoVis) fo-
cuses on automatically generating appropriate data
visualizations (charts) directly from raw datasets.
Traditional AutoVis systems use techniques like
reinforcement learning (Bar El et al., 2020),
sequence-to-sequence models (Dibia and Demi-
ralp, 2019), or heuristic-based recommendations
(Wongsuphasawat et al., 2017; Ma et al., 2021),
but often rely on brittle heuristics, support a lim-
ited set of EDA operations, and produce declara-
tive specifications (e.g., Vega-Lite (Satyanarayan
et al., 2017)) instead of executable code. More re-
cent LLM-only methods like LIDA (Dibia, 2023)
generate code directly but lack explainability and
suffer from hallucinations. RAGvis employs a hy-
brid RAG approach to mitigate these limitations:
grounding recommendations in a knowledge graph
enhances accuracy and provides implicit explain-
ability, while LLM capabilities enable flexible EDA
refinement and code generation.

Natural Language to Visualization (NL2Vis)
systems generate visualizations from a dataset
guided by a natural language query specifying
the desired analysis or target columns (Hu et al.,
2024; Yang et al., 2024; Maddigan and Susnjak,
2023; Zhang et al., 2024), often using LLMs
for interpretation and generation. This task is
distinct from and largely orthogonal to ours. While
NL2Vis receives the analytical specification via
the query, a core challenge for RAGvis is the
automatic selection and prioritization of relevant
EDA operations directly from the raw dataset itself.

6 Conclusion

We introduced RAGvis, a novel RAG approach
designed to automatically generate comprehen-
sive and executable EDA notebooks directly from
raw datasets. RAGvis utilizes an EDA-augmented
knowledge graph built offline from real-world EDA
notebooks. Given a new dataset, RAGvis performs
novel EDA retrieval and alignment, LLM-based re-
finement, and generates the corresponding Python
code via a self-correcting agent. Our comprehen-
sive evaluation shows significant improvements
over an LLM-only baseline in recall, pass rate,
visual quality, and cost. Notably, RAGvis allows
smaller, open-source models to achieve highly com-
petitive results, highlighting the practical benefits
of combining structured knowledge with LLM gen-
eration for automating complex data science tasks.
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Limitations

While RAGvis demonstrates promising results,
we identify several avenues for future expansion.
Firstly, our current implementation primarily
addresses EDA for single-table tabular datasets.
Extending RAGvis to effectively handle multi-table
relational datasets or non-tabular data modalities
(e.g., images, time series) would require significant
adaptations to our EDA taxonomy, semantic
extraction, and the EDA retrieval and alignment
processes. Secondly, our EDA taxonomy was
developed through an empirical survey of Kaggle
notebooks. While it was designed to be broad, it
might not cover the entire spectrum of all possible
EDA operations, particularly those that are highly
specialized or unique to domains not extensively
represented on Kaggle. Therefore, it could be ex-
panded further. Exploring EDA patterns from other
domains, such as private industry settings, could
enrich the concrete chart types in our taxonomy.
Finally, evaluating EDA quality is inherently chal-
lenging due to its subjectivity. We utilized metrics
for semantic accuracy (recall) and visual quality
(VLM score). However, dimensions like the
insightfulness an EDA operation or the cognitive
load required to understand it might not be fully
covered. Developing more comprehensive and
nuanced evaluation metrics remains an important
direction for future research in automated EDA.
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Victor Dibia and Çağatay Demiralp. 2019. Data2vis:
Automatic generation of data visualizations us-
ing sequence-to-sequence recurrent neural net-
works. IEEE Computer Graphics and Applications,
39(5):33–46.

Gemini-Team, Rohan Anil, Sebastian Borgeaud, Jean-
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan
Schalkwyk, Andrew M. Dai, Anja Hauth, Katie
Millican, David Silver, Melvin Johnson, Ioannis
Antonoglou, Julian Schrittwieser, Amelia Glaese,
Jilin Chen, Emily Pitler, Timothy Lillicrap, Ange-
liki Lazaridou, and 1331 others. 2024. Gemini: A
family of highly capable multimodal models.

Mossad Helali, Niki Monjazeb, Shubham Vashisth,
Philippe Carrier, Ahmed Helal, Antonio Cavalcante,
Khaled Ammar, Katja Hose, and Essam Mansour.
2024. Kglids: A platform for semantic abstraction,
linking, and automation of data science. In 2024
IEEE 40th International Conference on Data Engi-
neering (ICDE), pages 179–192.

Xinyi Hou, Yanjie Zhao, Yue Liu, Zhou Yang, Kailong
Wang, Li Li, Xiapu Luo, David Lo, John Grundy,
and Haoyu Wang. 2024. Large language models for
software engineering: A systematic literature review.
ACM Trans. Softw. Eng. Methodol., 33(8).

Xueyu Hu, Ziyu Zhao, Shuang Wei, Ziwei Chai, Qianli
Ma, Guoyin Wang, Xuwu Wang, Jing Su, Jingjing
Xu, Ming Zhu, Yao Cheng, Jianbo Yuan, Jiwei Li,
Kun Kuang, Yang Yang, Hongxia Yang, and Fei Wu.
2024. InfiAgent-DABench: Evaluating agents on
data analysis tasks. In Proceedings of the 41st Inter-
national Conference on Machine Learning, volume
235 of Proceedings of Machine Learning Research,
pages 19544–19572. PMLR.

Jun-Peng Jiang, Si-Yang Liu, Hao-Run Cai, Qile Zhou,
and Han-Jia Ye. 2025. Representation learning for
tabular data: A comprehensive survey.

Juyong Jiang, Fan Wang, Jiasi Shen, Sungju Kim,
and Sunghun Kim. 2024. A survey on large lan-
guage models for code generation. arXiv preprint
arXiv:2406.00515.

Kaggle. 2022. Kaggle ml survey 2022. accessed: 2025-
05-01.

Moe Kayali, Fabian Wenz, Nesime Tatbul, and Çağatay
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A Appendix

This section contains additional details of experi-
ments and method design.

A.1 KG-Assisted EDA Abstraction
Algorithm

Algorithm 2 illustrates the approach described in
Section 2.3.

Algorithm 2: KG-Guided EDA Semantic Extraction
Input: EDA NotebookN consisting of n EDA blocks

{b1, ..., bn},
Data Science Knowledge Graph G, Large Language Model
LLM

1 for b ∈ N :
2 block_context = { }
3 for Statement: s ∈ b :
4 parents = {SELECT p FROM G WHERE p

DataFlow{1...*}−−−−−−−−→ s}
5 block_context.add(parents)
6 block_context.sort() . Sort by statement order
7 backtracked_block = block_context + b
8 EDA_OPb = LLM(“Abstract EDA Code”,

backtracked_block)
9 G ← G ⋃

EDA_OPb

10 return G

A.2 Benchmark Comparison

We utilized two benchmarks in our evaluation: Vi-
sEval (Chen et al., 2025) and our own KaggleVis-
Bench. Table 4 illustrates the differences between
the two benchmarks.

Table 4: A comparison between the utilized bench-
marks. While VisEval has more tables, KaggleVis-
Bench has higher variety and number of EDA opera-
tions. Median values shown between brackets.

VisEval KaggleVisBench

# Tables 239 50
Avg. # EDA Ops. 2.9 (2) 20.0 (16)

Supported Charts
Bar, Pie,
Scatter, Line

Bar, Pie, Scatter, Line,
Box, ColumnCorr.,
Histogram, HeatMap,
PairwisePlot

Annotation Manually-labelled Automatically-labelled

Total Size (MB) 4.2 1,547.3
Avg. # Rows 291.6 (12) 16,514.9 (4,500)
Avg. # Columns 6.2 (6) 13.2 (12)

A.3 Supplementary Experiments

A.3.1 Impact of EDA Retrieval Methods
This study investigates how different strategies for
retrieving similar columns—which subsequently
determines the retrieved EDA operations—affect
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Figure 6: Ablation studies on VisEval (Chen et al.,
2025) with different embedding retrieval methods (left)
and different numbers of similar columns to retrieve, N
(right).

performance. We compare four settings: i) LLM-
Refined: The full RAGvis pipeline output, using
Gemini 2.5 Pro for the refinement step, ii) Content-
Label Retrieval: Uses the direct output after re-
trieving and aligning EDA operations based on col-
umn similarity calculated using both column name
and raw values embeddings. This is the default
retrieval strategy in RAGvis, presented here with-
out LLM refinement, iii) Content Retrieval: Uses
only raw value embeddings for column similar-
ity (no LLM refinement), and iv) Label Retrieval:
Uses only column name embeddings for column
similarity (no LLM refinement).

Observing the results for the retrieval-only meth-
ods in Figure 6 (left). Comparing the three retrieval
strategies on VisEval, using only Label embed-
dings performs slightly worse than using Content
or Content-Label embeddings, indicating that cell
values are better predictors of column similarity in
the benchmark. Notably, our default Content-Label
approach performs consistently well across both
datasets among the retrieval-only methods.

A.3.2 Number of Retrieved Similar Columns
We also analyzed the sensitivity of RAGvis’s Re-
call to N, the number of similar columns retrieved
per target column, testing values from 2 to 32 while
fixing the retrieval method to Content-Label em-
beddings. Although larger N retrieves more initial
EDA operation candidates, we select the final top-
k based on frequency to have a fair comparison
between the different settings, meaning N primar-
ily impacts the confidence and ranking of the sug-
gested EDA operations. Figure 6 (right) illustrates
the results. On VisEval, Recall@k clearly benefits
from larger N, plateauing around N=8-32. These
results suggest N=8, used in other experiments, is a
suitable default.
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A.3.3 Evaluation of Different LLMs
The following table shows a comparison between the Recall (R@k) and Pass Rate (PR@k) for RAGvis
and LIDA with more LLMs on the two benchmarks used.

Method VisEval KaggleVisBench
R@5 R@15 R@30 PR@5 PR@15 PR@30 R@5 R@15 R@30 PR@5 PR@15 PR@30

Gemini 2.5 Pro (25/03)

RAGvis 0.5 0.67 0.77 99.9% 100% 100% 0.12 0.29 0.43 99.2% 99.9% 99.5%
LIDA 0.15 0.36 0.49 95.6% 90.3% 96.3% 0.01 0.06 0.14 89.2% 92.4% 93.5%

Gemini 2.0 Flash

RAGvis 0.46 0.66 0.72 100% 99.9% 100% 0.12 0.23 0.34 100% 100% 99.8%
LIDA 0.16 0.44 0.48 92.5% 90.7% 91.0% 0.03 0.11 0.17 77.6% 81.6% 84.2%

Claude Sonnet 3.7

RAGvis 0.43 0.66 0.74 100% 100% 100% 0.1 0.27 0.43 100% 100% 100%
LIDA 0.12 0.28 0.38 90.3% 91.6% 91.8% 0.02 0.06 0.16 78.0% 82.5% 88.0%

GPT-4o mini

RAGvis 0.33 0.59 0.68 100% 99.8% 99.8% 0.07 0.18 0.3 99.6% 99.2% 99.1%
LIDA 0.24 0.40 0.52 93.2% 88.4% 89.3% 0.06 0.12 0.18 84.4% 81.6% 72.3%

Gemma 3 12b

RAGvis 0.34 0.63 0.7 98.5% 97.7% 95.0% 0.07 0.18 0.22 96.8% 96.3% 95.7%
LIDA 0.14 0.28 0.43 88.9% 88.7% 91.1% 0.02 0.09 0.13 78.4% 82.9% 66.5%

Gemma 3 4b

RAGvis 0.22 0.46 0.61 98.3% 98.6% 98.2% 0.05 0.1 0.15 92.0% 89.2% 87.3%
LIDA 0.03 0.15 0.28 86.6% 93.3% 90.3% 0.01 0.06 0.11 79.2% 77.9% 68.3%
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A.4 RAGvis Prompt Templates

EDA Semantic Extraction Prompt
Your task is to analyze an EDA code snippet and extract answers for the following questions:

1. Is the analysis in the code univariate, bivariate, or multivariate?
2. What is the high level chart category? Possible chart category types: Bar, Pie, Distribution (e.g. Histogram, KDEPlot), Box (e.g.
BoxPlot, ViolinPlot), Scatter (e.g. ScatterPlot, RegressionPlot), Line, ColumnCorrelation, HeatMap, Pairwise.
3. Which columns in the original table are used in the chart axes?
4. Is the data grouped by a certain column before plotting (different from chart axes)?

The response must be in JSON in the following format:

{
"analysis_type": "univariate | bivariate | multivariate",
"chart_type": "Bar | Pie | Distribution | Box | Scatter | Line | ColumnCorrelation | HeatMap | Pairwise",
"chart_axes_columns": ["<COLUMN_NAME>", ...],
"grouping_column": "<COLUMN_NAME>", // null if no grouping column
}

If the code snippet contains multiple EDA operations, return a list of json objects, one for each operation. If the previous information is not
available or the code snippet is not an EDA code, return an empty json object. return only the raw json object without any code.

Here is some example inputs and outputs:

EXAMPLE 1:
EXAMPLE 1 Input:

Table:
Country name,Regional indicator,Ladder score,upperwhisker,lowerwhisker,Log GDP per capita,Social support,Healthy life
expectancy,Freedom to make life choices,Generosity,Perceptions of corruption,Dystopia + residual
Finland,Western Europe,7.741,7.815,7.667,1.844,1.572,0.695,0.859,0.142,0.546,2.082
Denmark,Western Europe,7.583,7.665,7.500,1.908,1.520,0.699,0.823,0.204,0.548,1.881
Iceland,Western Europe,7.525,7.618,7.433,1.881,1.617,0.718,0.819,0.258,0.182,2.050
Sweden,Western Europe,7.344,7.422,7.267,1.878,1.501,0.724,0.838,0.221,0.524,1.658

Code:
```
df2024 = pd.read_csv("/kaggle/input/world-happiness-report-2024-yearly-updated/World-happiness-report-2024.csv", encoding='latin-1')

plt.figure(figsize = (15,8))
sns.kdeplot(x=df2024['Ladder score'], hue = df2024['Regional indicator'], fill = True, linewidth = 2)
plt.axvline(df2024['Ladder score'].mean(),c= 'black')
plt.title('Ladder Score Distribution by Regional Indicator')
plt.show()
```

EXAMPLE 1 Output:
[{
"analysis_type": "bivariate",
"chart_type": "Distribution",
"chart_axes_columns": ["Ladder score"],
"grouping_column": "Regional indicator",
}]

EXAMPLE 2:
EXAMPLE 2 Input:

Table:
year_film,year_award,ceremony,category,nominee,film,win
1943,1944,1,Best Performance by an Actress in a Supporting Role in any Motion Picture,Katina Paxinou,For Whom The Bell Tolls,True
1943,1944,1,Best Performance by an Actor in a Supporting Role in any Motion Picture,Akim Tamiroff,For Whom The Bell Tolls,True
1943,1944,1,Best Director - Motion Picture,Henry King,The Song Of Bernadette,True
1943,1944,1,Picture,The Song Of Bernadette,,True
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Code:
```
df = pd.read_csv('/kaggle/input/golden-globe-awards/golden_globe_awards.csv')

film_awards_year = df.groupby(['film', 'year_award'])['win'].sum()

film_award_df = pd.DataFrame(film_awards_year).reset_index()
film_four_awards = film_award_df[film_award_df['win'] >= 4].sort_values(ascending = False, by='win')

film_four_awards = film_four_awards.rename({'film': 'movie', 'win': 'awards'})

plt.figure(figsize=(20,8))
sns.set_style('whitegrid')
sns.barplot(x='movie', y='awards', data=film_four_awards, palette='hls')
plt.title('Movies with atleast 4 awards in a single year', fontsize=12)
plt.xlabel('Movie', fontsize=12)
plt.ylabel('Award Count', fontsize=12)
plt.xticks(rotation=90, fontsize=12)
plt.yticks(rotation=90, fontsize=12)
plt.show()
```

EXAMPLE 2 Output:
[{
"analysis_type": "bivariate",
"chart_type": "Bar",
"chart_axes_columns": ["film", "win"],
"grouping_column": null,
}]

EXAMPLE 3:
EXAMPLE 3 Input:

Table:
#,Name,Type 1,Type 2,Total,HP,Attack,Defense,Sp. Atk,Sp. Def,Speed,Generation,Legendary
1,Bulbasaur,Grass,Poison,318,45,49,49,65,65,45,1,False
2,Ivysaur,Grass,Poison,405,60,62,63,80,80,60,1,False
3,Venusaur,Grass,Poison,525,80,82,83,100,100,80,1,False
3,VenusaurMega Venusaur,Grass,Poison,625,80,100,123,122,120,80,1,False

Code:
```
measurements = pd.read_csv('/kaggle/input/air-pollution-in-seoul/AirPollutionSeoul/Original Data/Measurement_info.csv')
measures = measurements.pivot_table(index=['Measurement date', 'Station code', 'Instrument status'], columns='Item code',
values='Average value').reset_index()

measures = measures.loc[measures['Status'] == 'Normal', :]
overview = measures.groupby('Date').mean().loc[:, 'SO2 (ppm)':'PM2.5 (mircrogram/m3)']
for pol, func in evaluators.items():
    overview[pol.split()[0] + ' Level'] = overview[pol].map(func)

level_counts = pd.concat([overview[col].value_counts() for col in overview.loc[:, 'SO2 Level':]], axis=1, join='outer', sort=True).fillna(0.0)
level_counts = level_counts.loc[['Very bad', 'Bad', 'Normal', 'Good'], :]

level_counts.T.plot(kind='bar', stacked=True, figsize=(8,6), rot=0,
                    colormap='coolwarm_r', legend='reverse')
plt.title('Levels of pollution in Seoul from 2017 to 2019', fontsize=16, fontweight='bold')
plt.show()
```

EXAMPLE 3 Output:
[]

Keeping in mind the previous examples, what is the corresponding output for the following table sample and code snippet?

Table:
{{TABLE_SAMPLE}}

Code:
```
{{SOURCE_CODE}}
```
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EDA Refinement Prompt
I have a dataset in CSV format with the following information about its columns:

{{COLUMN_INFO}}

Your task is to predict a list of EDA operations that comprehensively analyze the dataset.
Each EDA operation consists of the chart type and the columns to analyze.

The following are suggestions based on historical EDA operations for similar datasets, sorted from the least to the most frequent:

{{EDA_OPERATIONS}}

The previous are suggestions for EDA operations. They might have incorrect columns or chart types. You may remove EDA operations
that are not suitable for this dataset. You may also add EDA operations that are are not in the previous list.
Before predicting the EDA operations, think about the following:
1. Which are the most important columns in the dataset to analyze?
2. What univariate, bivariate and multivariate analyses are suitable for this dataset?
3. Which EDA operations in the previous list are applicable to this dataset?
4. Are there any relevant or infrormative EDA operations not in the previous list?
5. The EDA operations in the previous list are sorted from the least to the most frequent.
6. You must generate EXACTLY {{NUM_EDA_OPERATIONS}} DISTINCT EDA operations.

The generated EDA operations must be in the following JSON format:
[{"chart_type": "<CHART_TYPE>", 
  "chart_columns": ["<COLUMN_NAME>", "<COLUMN_NAME>", ...]}]

Possible values for <CHART_TYPE>: Bar | Pie | Distribution | Box | Scatter | Line | ColumnCorrelation | HeatMap | Pairwise

For exapmle, a bar chart with columns `name` and `age` would have the following corresponding JSON:
[{"chart_type": "Bar", "chart_columns": ["name", "age"]}]

You must generate exactly {{NUM_EDA_OPERATIONS}}  EDA operations. Return only the JSON list.

{{COLUMN_INFO}} Example:

Column `Age` contains values of type integer. It has 30 unique values and 2 missing values.
Column `Name` contains values of type natural language. It has 2300 unique values and 0 missing values.
...

{{EDA_OPERATIONS}} Example:

A Bar Chart using the using the column(s): {`Age`, `Gender`, `City`}.
A Scatter Plot using the column(s): {`Age`, `Salary`} grouped by the column `City`.
...
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EDA Coding Agent - Code Generation Prompt
I have a dataset in CSV format with the following information about its columns:

{{COLUMN_INFO}}

Your task is to write the Python code that generates the following chart:
A {{CHART_TYPE}} chart showing the column(s): {{CHART_COLUMNS}}

Instructions:
- import all necessary libraries
- read the dataset from the following file: `{{DATASET_FILE_NAME}}`
- perform only the requested analysis. The code should generate EXACTLY ONE chart that uses the specified columns.
- You may group by any of the given columns if suitable.
- DO NOT include plt.show() or any other blocking statement in the code.
- DO NOT save the figure to a file.
- DO NOT create user-defined functions. Have all the code in the top-level code.
- Write only the Python code without any explanation or comments.

{{COLUMN_INFO}} Example:

Column `Age` contains values of type integer. It has 30 unique values and 2 missing values.
Column `Name` contains values of type natural language. It has 2300 unique values and 0 missing values.
...

EDA Coding Agent - Code Repair Prompt
The code has produced the following error:

```
{{ERROR_STACK_TRACE}}
```

Change your code to fix the error. DO NOT include explanation of the error or fix.
Write only the fixed code.

EDA Notebook Assembly Prompt

I have a dataset in CSV format saved in the following file: `{{DATASET_FILE_NAME}}`

The following are code segments that perform EDA analysis on the dataset.
Your task to combine all the code segment into a single notebook.

Code Segments:

{{EDA_CODE_SNIPPETS}}

Instructions:
- Combine the previous code into a single notebook. Remove the redundant code.
- Add plt.show() after each plot.
- Include the necessary imports.
- You may add comments to explain the code.
- DO NOT change the EDA analysis code itself.
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A.5 VLM-as-Judge Prompt Template
The following is the prompt template for using a Vision Language Model (VLM) as a judge for evaluating
the generated chart quality. This prompt is proposed by the authors of VisEval (Chen et al., 2025) and was
shown to highly correlate with human expert ratings.

Vision Language Model Judge Prompt Proposed By VisEval (Chen et al., 2025)

Visualization Requirement: {{EDA_OPERATION}}
Visualization image: {{CHART_IMAGE}}

Please assess the readability, taking into account factors such as layout, scale and ticks, title and labels, colors, and ease of extracting
information. Do not consider the correctness of the data and order in the visualizations, as they have already been verified.

{{EDA_OPERATION}} Example:

A Scatter Plot using the column(s): {`Age`, `Salary`} grouped by the column `City`.

System Instructions

Your task is to evaluate the readability of the visualization on a scale of 1 to 5, where 1 indicates very difficult to read and 5 indicates very
easy to read. You will be given a visualization requirement and the corresponding visualization created based on that requirement.
Additionally, reviews from others regarding this visualization will be provided for your reference. Please think carefully and provide your
reasoning and score.
```
    {
        "Rationale": "a brief reason",
        "Score": 1-5
    }
```

Examples:
- If the visualization is clear and information can be easily interpreted, you might return:
```
    {
        "Rationale": "The chart is well-organized, and the use of contrasting colors helps in distinguishing different data sets effectively. The
labels are legible, and the key insights can be understood at a glance.",
        "Score": 5
    }
```
- Conversely, if the visualization is cluttered or confusing, you might return:
```
    {
        "Rationale": "While there is no overflow or overlap, the unconventional inverted y-axis and the use of decimal numbers for months
on the x-axis deviate from the standard interpretation of bar charts, confusing readers and significantly affecting the chart's readability.",
        "Score": 1
    }
```

Prompt
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