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Abstract

Large language models have shown promise
in clinical decision making, but current ap-
proaches struggle to localize and correct er-
rors at specific steps of the reasoning process.
This limitation is critical in medicine, where
identifying and addressing reasoning errors is
essential for accurate diagnosis and effective
patient care. We introduce Med-PRM, a pro-
cess reward modeling framework that lever-
ages retrieval-augmented generation to verify
each reasoning step against established medi-
cal knowledge bases. By verifying intermediate
reasoning steps with evidence retrieved from
clinical guidelines and literature, our model
can precisely assess the reasoning quality in
a fine-grained manner. Evaluations on five
medical QA benchmarks and two open-ended
diagnostic tasks demonstrate that Med-PRM
achieves state-of-the-art performance, with im-
proving the performance of base models by
up to 13.50% using Med-PRM. Moreover, we
demonstrate the generality of Med-PRM by
integrating it in a plug-and-play fashion with
strong policy models such as Meerkat, achiev-
ing over 80% accuracy on MedQA for the first
time using small-scale models of 8 billion pa-
rameters. Our code and data are available at
Med-PRM.github.io.

1 Introduction

Clinical decision making (CDM) is a complex,
multi-step process involving the assessment of pa-
tient symptoms, retrieval of relevant clinical evi-
dence, and formulation of diagnostic and treatment
strategies. Unlike simple factual recall, CDM re-
quires integrating diverse clinical findings and dy-
namically refining hypotheses as new information
becomes available. Effective CDM entails not only
selecting the most probable differential diagnoses
but also determining what additional information

* Equal contribution.
† Corresponding authors.

is needed to reduce uncertainty and guide the next
best diagnostic and therapeutic steps in a patient’s
clinical trajectory (Moor et al., 2023a).

While CDM spans a broad sequence of clinical
decisions, a core subcomponent is the step-by-step
reasoning that underlies each decision point. This
sequential structure makes CDM reasoning well-
suited to process reward modeling (PRM) (Light-
man et al., 2023; Uesato et al., 2022; Setlur et al.,
2024), which evaluates and rewards intermediate
steps of a process rather than solely its final out-
come. In medical practice, sound intermediate rea-
soning is critical to ensuring safety, reliability, and
adherence to the standard of care. This creates a
strong clinical motivation for models that support
stepwise verification and feedback.

Recent advances in large language models
(LLMs) have substantially improved performance
in medical applications through pre-training (Chen
et al., 2023; Moor et al., 2023b), post-training (Kim
et al., 2025), retrieval (Zakka et al., 2024; Jeong
et al., 2024; Sohn et al., 2025), tool augmentation,
and agentic systems (Tang et al., 2024; Schmidgall
et al., 2024). More recently, emerging reasoning
models (OpenAI, 2024; Guo et al., 2025) have
demonstrated the ability to decompose complex
tasks into interpretable steps and exhibit meta-
cognitive skills such as planning and error correc-
tion. However, such abilities are underexplored in
clinical domains, where transparency, robustness,
and alignment with medical standards are critical
for delivering high-quality care.

Despite PRM’s potential for medical reason-
ing, its application to the medical domain poses
key challenges. Chief among these is the need
for high-quality, step-level supervision, which is
both expensive and labor-intensive to obtain. Early
studies (Lightman et al., 2023) relied on human
annotation, which is not scalable (Setlur et al.,
2024). More recent works employed automatic la-
beling strategies such as Monte Carlo Tree Search
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(MCTS) (Wang et al., 2024b), which estimate the
quality of reasoning step quality based on the prob-
ability of reaching the correct final answer from
that step. Notably, MedS3 (Jiang et al., 2025), a
domain-specific PRM for clinical QA, also adopts
an MCTS-based approach. However, these strate-
gies often undervalue early reasoning steps that are
logically sound but fail to lead to the correct out-
come. This limitation is especially problematic as
penalizing valid early steps can distort the learning
signal and ultimately hinder the model’s ability to
evaluate intermediate reasoning accurately.

Second, medical reasoning requires extensive
domain knowledge that may not be fully captured
within language model’s parameters alone. Thus,
it necessitates a robust method to incorporate medi-
cal knowledge to generate factual, evidence-based
outcomes and prevent hallucinations. In particular,
training reward models solely on labels without
medical context is insufficient for learning the ra-
tionale behind those labels. To overcome this, it
is essential to provide relevant medical informa-
tion, such as clinical guidelines, during training,
enabling a more accurate interpretation of stepwise
reward signals grounded in medical reasoning.

To address these challenges, we propose Med-
PRM, a retrieval-augmented process reward model-
ing framework for clinical reasoning. Our method
employs a RAG-AS-A-JUDGE approach to per-
form stepwise evaluation conditioned on both the
clinical question and retrieved medical documents.
This retrieval-augmented evaluation aligns more
closely with expert physician annotations than
sampling-based auto-labeling methods used during
training. By incorporating relevant clinical knowl-
edge at both the training and inference stages, Med-
PRM enables more accurate assessment of inter-
mediate reasoning and outperforms existing PRM
baselines by an average of 3.44% across seven med-
ical benchmarks.

Our experiments demonstrate that test-time scal-
ing, where Med-PRM is used as a verifier alongside
a fine-tuned policy model, achieves state-of-the-art
performance. Moreover, Med-PRM exhibits strong
plug-and-play generality, achieving further gains
when applied to top-performing models such as
UltraMedical (Zhang et al., 2024b). In contrast to
UltraMedical, which was trained on data costing
approximately $20,000, our reward model relies on
a curated dataset costing less than $20, highlight-
ing both the cost-efficiency and scalability of our
approach.

Our contributions are as follows:

1. We propose Med-PRM, a retrieval-augmented
process reward modeling framework that eval-
uates each reasoning step in the context of
both the clinical question and retrieved ev-
idence, enabling fine-grained and evidence-
grounded assessment.

2. We demonstrate that Med-PRM achieves state-
of-the-art performance across six out of seven
medical QA benchmarks, outperforming all
baseline language, reasoning, and medical
models. Our verifier improves base model
performance by up to 13.50% at test time and
reaches 80.35% on MedQA (4 options) using
only 8B-parameter models.

3. Through in-depth qualitative analysis and col-
laboration with medical experts, we show that
Med-PRM closely aligns with clinical experts,
addressing key limitations of prior training
methods of PRMs in both logical consistency
and factual accuracy.

2 Related Work

For a more detailed overview of related work, refer
to Appendix E. LLMs have shown increasing profi-
ciency in medical reasoning, effectively handling
domain-specific terminology and multimodal data.
Using corpora like PubMed, MIMIC-III/IV (John-
son et al., 2023), and UMLS, recent models go
beyond surface-level recall to complex inference.

Med-PaLM (Singhal et al., 2023) demonstrates
promising performance on expert-level medical
QA benchmarks, while methods such as CoT
prompting (Wei et al., 2022; Xu et al., 2024; Kim
et al., 2025), agentic frameworks (Kim et al., 2024;
Tang et al., 2024; Schmidgall et al., 2024), and
PRM (Jiang et al., 2025) further enhance reason-
ing. Reinforcement learning (Wang et al., 2024b)
and verifier feedback (Chen et al., 2024) have been
applied to refine reasoning traces, emphasizing the
need for stepwise supervision.

MedS3(Jiang et al., 2025) applies PRM using
MCTS-based auto-labeling. Our approach, Med-
PRM, also leverages process-level rewards but dif-
fers by incorporating retrieval-augmented genera-
tion and an LLM-as-a-Judge framework. As shown
in Section 6 and Section 7, this yields superior
performance compared to MCTS-based methods.

Hao et al. (2024) explore the use of LLMs as ver-
ifiers for CoT reasoning. Med-PRM adopts RAG-

16555



AS-A-JUDGE for stepwise supervision, diverging
from earlier PRM approaches that rely on auto-
matic scoring. In mathematics, RAG-PRM (Zhu
et al., 2025) has been proposed to retrieve similar
QA pairs for few-shot prompting with PRM. In con-
trast, Med-PRM retrieves medical knowledge and
evidence, enabling integration of diverse sources
like textbooks or clinical guidelines.

3 Preliminaries

3.1 Reward Model
Reward models have emerged as central to ad-
vancing LLMs beyond pre-training and fine-tuning,
driven by two key developments in reinforcement
learning (RL) and test-time compute scaling. RL
methods such as Proximal Policy Optimization
(PPO) rely on carefully designed reward func-
tions to optimize model behavior in settings where
ground-truth supervision is sparse or costly. Addi-
tionally, test-time strategies like best-of-N (Light-
man et al., 2023) have proven highly effective
as alternatives to majority voting, such as self-
consistency (Wang et al., 2022), using reward mod-
els to rank and select high-quality outputs. These
trends clearly highlight the growing importance of
accurate, context-aware reward models not only
during training but also at inference time.

Outcome Reward Model (ORM) Given a ques-
tion q and a model-generated reasoning trace S
the ORM assigns a sigmoid score rS ∈ [0, 1] indi-
cating the correctness of the entire trace. ORM is
trained with the following cross-entropy loss:

LORM = − (yS log rS + (1− yS) log(1− rS)) ,

where yS is the gold label of the reasoning trace S,
yS = 1 if S is correct, and yS = 0 otherwise.

Process Reward Model (PRM) Given a rea-
soning trace S = (s1, s2, · · · , sK) where K is
the number of reasoning steps, a PRM assigns
score rsi ∈ [0, 1] for each step si. Gold labels
ysi ∈ {0, 1} indicate whether each step is correct.
To compute these scores, the model predicts logits
for the special tokens + (correct) and - (incorrect)
appended to each reasoning step. The confidence
score rsi is defined as the softmax probability of
the + token over the logits of both tokens. The
model is trained to minimize the cross-entropy loss
over all reasoning steps:

LPRM = −∑K
i=1 (ysi log rsi + (1− ysi) log(1− rsi))

PRM takes as input the concatenation of the
question q and the reasoning trace S, and pro-
duces stepwise confidence scores as follows:
(rs1 , rs2 , · · · , rsK ) And the minimum step score
is defined as the score of the solution S:

RM(q, S) = rS , where rS = min(rs1 , rs2 , · · · , rsK )

PRM Auto-Labeling Wang et al. (2024b) pro-
posed an auto-labeling method to address the
cost of human annotations ysi . Inspired by
MCTS, a completer model generates N sub-
sequent reasoning processes from each partial
trace up to step si, producing sequences of the
form

{
(si+1,j , · · · , sKj ,j , aj)

}N

j=1
, where aj is the

final answer of the j-th continuation. Let a∗ denote
the gold answer to the question q. A hard label is
assigned to step si as follows:

yHE
si =

{
1 if ∃j such that aj = a∗,

0 otherwise.

A soft label is computed as the empirical proba-
bility of reaching the correct answer:

ySEsi =
1

N

N∑

j=1

I(aj = a∗)

This auto-labeling approach enables scalable
PRM training without human supervision. How-
ever, it is prone to false negatives—particularly
in complex questions—where factually correct
and logically coherent intermediate steps are mis-
labeled as incorrect (or assigned low soft-label
scores) simply because none of their sampled con-
tinuations lead to the correct final answer. To
mitigate false negatives, we incorporate retrieval-
based fact-checking into the labeling process, as
described in Section 4.

4 Method

4.1 RAG-AS-A-JUDGE

We use RAG-AS-A-JUDGE with a labeling strat-
egy that differs from conventional PRMs. Given a
question q, golden answer a∗, a set of retrieved doc-
uments D, and a sequence of reasoning steps S =
(s1, . . . , sK), RAG-AS-A-JUDGE performs binary
classification on each step si to determine whether
it is correct, producing labels yRAG

si ∈ {0, 1}:

RAG-AS-A-JUDGE(D, q, a∗, S) = yRAG
S

16556



Q:
A:

Q:
A:

Medical Q&As 

Q A

Reasoning traces External knowledge

retrieve
Documents

2. Labeling

1. Trace generation

Step-wise annotation Expert validation

3. Training
Med-PRM

4. Use cases

Inference:

 training:π

Q A
Q A

 model  π Med-PRM

Q A

LLM 

Q A

Q A

Q A

Step 1

LLM

Med-PRM

Step 2 . . . 

🔥 ❄

🔥

❄

❄

+ + -

+ + -

+ + +
Response

+/-

+ + -
+ + +

+/-

LLM 
(Large)  

❄

Figure 1: Overview of the MED-PRM. (1) An LLM generates reasoning traces for medical questions, and relevant
documents are retrieved from external corpora. (2) A large LLM assigns stepwise labels (+/–) for each reasoning
step. (3) These labeled traces are used to train the Med-PRM reward model. (4) Med-PRM reward model is used for
inference-time evaluation or further train the policy model.

These labels yRAG
S are plugged in LPRM in order

to train our PRM. Each score rsi reflects the like-
lihood that step si is correct, following Lightman
et al. (2023). During both training and evaluation,
PRM receives the same input: question q, retrieved
documents D, and reasoning trace S. The key dif-
ference from prior PRM models is the inclusion of
the retrieved documents D as part of the input.

RM(D, q, S) = rS

To construct the retrieval query, we concatenate
the question with the reasoning trace:

D = Retriever(q, S)

During training, the correct reasoning trace
among multiple inferences is used as the query.
During inference, a randomly sampled reasoning
trace is used as the query instead. Further imple-
mentation details of document retrieval are pro-
vided in Appendix B.

Scaling Test-time Computation Following
Lightman et al. (2023), we define a reasoning
trace’s final score as the minimum reward across
its steps. The best-of-N approach selects an answer
among the traces with the highest final score. Let

C = {S1, S2, · · · , SN} be the set of reasoning
traces and {aS1 , aS2 , · · · , aSN

} the corresponding
answers. Then, we have

arm = aS∗ , where S∗ = arg max
Sj∈C

rSj ,

and where rSj is a final score of reasoning trace
Sj We also adopt a hybrid method following Li
et al. (2022) that combines self-consistency and re-
ward scoring, noted as SC+RM (Self-Consistency
+ Reward Model). Traces are grouped by their fi-
nal answers, and the answer with the highest total
reward is selected:

asc+rm = argmax
a

N∑

j=1

I(aSj = a) · RM(q, Sj),

where RM(q, Sj) is the reward score of the j-th
reasoning trace assigned by PRM for question q. A
strong reward model improves selection by assign-
ing higher scores to correct reasoning traces.

4.2 Policy Model Fine-tuning
We fine-tune the policy model using a rejection
sampling guided by Med-PRM. For each question
in the training set, multiple reasoning traces are
generated, and Med-PRM assigns stepwise reward

16557



scores. Traces are ranked by their minimum step
score, and only top-ranked traces are retained for
supervised fine-tuning.

Following Qwen et al. (2025), we exclude ques-
tions consistently answered correctly to concentrate
training on more challenging examples. After fine-
tuning, Med-PRM is again used at inference time
to rescore multiple generations and select the best
one. This bootstraps the policy model to produce
reasoning paths aligned with Med-PRM, improving
performance on complex medical QA tasks.

5 Experimental Setup

5.1 Training of Med-PRM

Model We perform full fine-tuning of the Llama-
3.1-8B-Instruct model on a single NVIDIA A100
(80GB VRAM) with a maximum sequence length
of 4096 tokens. We use the AdamW optimizer
with a learning rate of 2 × 10−6, cosine decay,
and 5% warmup ratio. Training is performed in
bfloat16 precision with gradient checkpointing and
Flash Attention V2 with gradient accumulation to
global batch size of 64. We designate the EOS
token as the padding token and introduce a special
marker to segment reasoning steps for process-level
supervision. More details on the hyperparameters
used are described in Appendix C.

Data Filtering and Labeling Training uses
MedQA (Jin et al., 2021), MedMCQA (Pal
et al., 2022), PubMedQA (Jin et al., 2019), and
MMLU (Hendrycks et al., 2020). We use the full
MedQA training set (10,178 questions) and sample
500 instances from each of the remaining datasets.
For each question, we sample 16 candidate rea-
soning traces and filter out traces with fewer than
three or more than nine reasoning steps to avoid
overly shallow or degenerate reasoning. To main-
tain label balance, the number of correct reasoning
traces per question was limited to no more than
the number of incorrect traces or two, whichever
is greater. To ensure the total number of tokens
to not exceed 4096, 1024 tokens were reserved
for the question and reasoning, and the remaining
3072 tokens were used to sequentially include rele-
vant documents. Retrieved documents (truncated
to 3072 tokens) are prepended to the question and
a reasoning trace with each step separated using
a special token to form the input. stepwise binary
supervision is applied at each marker using labels
from RAG-AS-A-JUDGE.

5.2 Evaluation of Med-PRM
Benchmarks We evaluate Med-PRM on MedQA
(4 and 5 options), MedMCQA (validation set),
six medical MMLU subsets (Singhal et al., 2023),
DDXPlus (Fansi Tchango et al., 2022), and two
open-ended AgentClinic variants (Schmidgall et al.,
2024) based on NEJM and MedQA. AgentClinic
adopts an open-ended format and is evaluated using
Gemini-2.0-flash. Detailed descriptions of bench-
marks are in Appendix F.

Baselines We benchmark Med-PRM against
proprietary and open-source models, including
general-purpose, reasoning, medical, and process
reward models. Table 1 summarizes performance
across both multiple-choice and open-ended ques-
tion answering benchmarks widely used in the med-
ical domain.

We further compare our method against inter-
nal baselines in the ablation study: (1) PRMsoft
and (2) PRMhard, both using MCTS-style auto-
labeling (Wang et al., 2024b), and (3) Med-PRM
without retrieval. Our final method, (4) Med-PRM
with retrieval, is also included for comparison.
Each baseline is evaluated under two strategies:
Best-of-N and SC+RM.

Scaling Test-Time Computation We gradually
increase the number of reasoning traces generated
by the policy model up to N = 64 per question.
The final answer is selected using two strategies:
Best-of-N, which chooses the trace with the highest
rSj score, and SC+RM, which selects the answer
group with the highest sum total reward score.

6 Results

6.1 Main Results
Table 1 summarizes the performance of Med-PRM
compared to several baselines across seven med-
ical benchmarks. We evaluate Med-PRM using
two test-time strategies: Best-of-N and SC+RM,
achieving average accuracy of 72.59% and 73.50%,
respectively. These results outperform all exist-
ing open-source language, reasoning, medical, and
medical process reward models with fewer than
10 billion parameters. With SC+RM, Med-PRM
achieves state-of-the-art results on 4 out of 7 bench-
marks and on 2 out of 7 benchmarks under the
Best-of-N setting.

We observe larger performance improvements
on benchmarks requiring complex clinical reason-
ing compared to knowledge-centric tasks such as
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Multiple-Choice QA Open-Ended QA

Category Model Size MedQA-4 MedQA-5 MedMCQA MMLU-Med DDXPlus Agent Clinic
NEJM *

Agent Clinic
MedQA * Average

Proprietary
Language Models

Gemini Flash 2.0 – 87.51 85.23 72.60 92.01 75.00 70.83 87.74 81.56
GPT-4o-mini – 79.03 74.31 68.20 87.79 76.00 58.33 79.44 74.73
GPT-3.5 turbo – 69.91 65.44 57.00 76.77 73.80 51.72 77.93 67.51

Proprietary
Reasoning Models

o4-mini – 93.95 91.12 79.60 93.99 79.80 76.67 94.86 87.14
o3-mini – 92.69 90.97 75.50 93.01 79.80 78.33 96.26 86.65

Open-source
Language Models

Llama3.1 8B 70.93 65.20 61.60 78.97 68.80 35.83 71.96 64.76
Gemma 2 9B 64.73 60.25 53.00 77.87 64.40 41.67 66.36 61.18
Ministral 8B 56.17 50.43 49.20 67.22 51.80 34.17 62.62 53.09

Open-source
Reasoning Models

DeepSeek-R1 671B 90.34 89.87 78.80 94.40 79.60 79.83 91.12 86.28
QwQ 32B 85.31 81.62 70.20 88.89 74.00 63.33 85.51 78.41
Sky-T1-Preview 32B 77.77 73.53 66.20 88.34 74.00 53.33 81.31 73.50
R1-Distill-Llama 8B 34.96 30.16 43.60 64.19 36.80 30.83 57.01 42.51
R1-Distill-Qwen 7B 24.82 19.56 36.40 47.47 36.80 8.33 35.51 29.84
Sky-T1 7B 34.09 30.64 36.20 53.17 47.40 6.67 29.91 34.01
Marco-o1 7B 39.36 34.80 49.20 69.15 38.40 30.83 63.55 46.47

Open-source
Medical Models

TX-Gemma 9B 41.56 35.11 36.00 52.34 57.80 20.00 50.00 41.83
Meditron3 8B 59.94 52.95 48.20 67.86 67.80 42.50 67.29 58.08
Meerkat 8B 71.25 69.13 56.40 76.40 70.00 43.33 76.40 66.13
UltraMedical 8B 72.66 68.34 62.60 79.61 72.60 45.83 70.56 67.46
HuatuoGPT-o1 8B 72.19 63.24 63.60 75.30 64.00 40.00 71.50 64.26

Open-source
Medical Process
Reward Models

MedS3

Best-of-N 8B 71.56 68.42 64.20 80.18 75.40 52.50 74.30 69.51
SC+RM 8B 75.64 71.41 64.20 81.79 74.60 55.00 74.77 71.06

Med-PRM
Best-of-N 8B 76.76 72.43 64.20 82.37 77.80 54.17 80.37 72.59
SC+RM 8B 79.18 75.49 67.40 83.29 77.20 52.50 79.44 73.50

Table 1: Accuracy of proprietary and open-source models across multiple-choice and open-ended medical QA
benchmarks. We use instruction-tuned models for Llama3.1, Gemma2, and Ministral. Best scores are shown in
bold, and second-best scores are underlined among small-scale models (< 10B parameters). We report results on
AgentClinic*, simplified variants of the original benchmarks (see Appendix F for details).

MedMCQA. Notably, on the AgentClinic bench-
mark, which closely mirrors real-world diagnostic
workflows, Med-PRM achieves accuracy gains of
12.50% and 10.75% under the SC+RM and Best-
of-N settings, respectively.

Compared to MedS3, the previous state-of-the-
art process reward model at the 8B scale, Med-
PRM achieves an average improvement of 2.44%
across all benchmarks using the SC+RM strategy.
Even under the Best-of-N strategy, Med-PRM out-
performs MedS3 by 3.08%.

These results demonstrate the strong capability
of Med-PRM in identifying clinically sound reason-
ing paths. We further explore its effectiveness when
paired with stronger, fine-tuned language models
such as Meerkat-8B and UltraMedical-8B in Sec-
tion 6.2

6.2 Reward Model as Verifier

To assess the model-agnostic utility of Med-PRM,
we apply it as a plug-and-play verifier during infer-
ence across various policy models on MedQA. As
shown in Table 2, Med-PRM consistently improves
performance, regardless of the underlying base or
fine-tuned model.

Model MedQA (4 options)

Llama-3.1-8B-Instruct 68.79
+ SC 74.86 (+6.07)
+ SC + RM (Med-PRM RM ) 78.24 (+9.45)
+ Best-of-N (Med-PRM RM ) 76.98 (+8.19)

Llama-3.1-8B-Instruct* (Med-PRM π) 67.22
+ SC 75.02(+7.80)
+ SC + RM (Med-PRM RM ) 79.18 (+11.96)
+ Best-of-N (Med-PRM RM ) 76.76 (+9.54)

UltraMedical-8B† 67.51
+ SC 75.63 (+8.12)
+ SC + RM (Med-PRM RM ) 79.87 (+12.36)
+ Best-of-N (Med-PRM RM ) 76.42 (+8.91)

Meerkat-8B† 66.65
+ SC 76.04 (+9.39)
+ SC + RM (Med-PRM RM ) 80.35 (+13.70)
+ Best-of-N (Med-PRM RM ) 79.95 (+13.30)

Table 2: Performance improvements from using the
Med-PRM reward model as a verifier on MedQA (4
options). For each policy model, the first row shows
the average score over 64 sampled solutions. Subse-
quent rows apply Self-Consistency (SC), SC with re-
ward model verification (SC+RM), and Best-of-N using
the same 64 solutions.

To further demonstrate the effectiveness of Med-
PRM, we train a policy model using supervised
fine-tuning (SFT) on a rejection-sampled dataset

constructed with our reward model, following the
Entropy-Regularized PRM (Zhang et al., 2024a).
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Figure 2: Comparison of scaling test-time computation performance between Med-PRM and conventionally trained
PRMs across overall medical benchmarks.

This policy model, denoted as Med-PRM π, lever-
ages high-quality reasoning traces selected by Med-
PRM and achieves 79.18% accuracy on MedQA
with 10.39% improvement over the base Llama-
3.1-8B-Instruct model alone.

Moreover, when Med-PRM is used as a veri-
fier on top of strong, fine-tuned models such as
Meerkat-8B and UltraMedical-8B, we observe ad-
ditional gains. Notably, pairing Med-PRM with
Meerkat-8B yields 80.35% accuracy on MedQA,
marking the first time that an 8B-scale model has
surpassed the 80% threshold on this benchmark.
These results highlight the generalizability of our
reward model as a plug-and-play component for
enabling more accurate medical reasoning across
diverse models. A comprehensive table of full
benchmark results, including CoT, SC, and PRM
baselines (hard label, soft label, MedS3, and Med-
PRM) is provided in Appendix J.

7 Analysis

7.1 Ablation Study

We conduct a comprehensive ablation study to eval-
uate the contribution of each component in Med-
PRM. The results are visualized in Figure 2. We
assess performance improvements under test-time
scaling using 64 sampled solutions from the Llama-
3.1-8B-Instruct model, evaluated with both Best-
of-N and SC+RM strategies across the benchmark.

We compare Med-PRM to Self-Consistency and
two PRMs trained with conventional auto-labeling
methods: PRMsoft and PRMhard. The results in-
cluding MedS3 are provided in Appendix G.

To analyze the impact of our design, we incre-

mentally add key components. First, we replace
conventional labeling with using an LLM to di-
rectly evaluate the reasoning steps. This is used to
train a variant named “Med-PRM without RAG”.
Second, we incorporate retrieval for the full Med-
PRM framework.

Results show that each component yields consis-
tent gains across both test-time strategies. Notably,
Med-PRM without retrieval already outperforms
conventional PRMs, and adding retrieval further
boosts performance. This demonstrates the critical
role of grounding in external knowledge.

Under the SC+RM setting, conventional
PRMs achieve modest improvements over Self-
Consistency. However, in the more stringent Best-
of-N setting, where only the top solution is se-
lected, conventional PRMs underperform relative
to Self-Consistency. In contrast, Med-PRM con-
sistently outperforms Self-Consistency in both set-
tings, underscoring that LLM-based step-level su-
pervision is more effective than sampling-based
auto-labeling. These findings also suggest that
Best-of-N serves as a more discriminative setting
for comparing reward model performance.

7.2 Open-Ended Clinical Tasks

We evaluate Med-PRM on AgentClinic* with Best-
of-N strategy, a diagnostic benchmark designed
in an open-ended QA format to closely resemble
real-world clinical settings.

Although this dataset was not introduced during
the training phase, Med-PRM achieves a signifi-
cant 11.81% improvement in accuracy through scal-
ing test-time computation. It further outperforms
other baseline methods by a clear margin, achiev-
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Hyperthyroidism -- History and Physical. Eye signs of lid lad or lid retraction
can be seen in all causes of hyperthyroidismdue to a hyperadrenergic state.
[41] Eye symptoms and signs of \"true orbitopathy' are only seen in patients
with Graves disease. These include diplopia, excessive tearing, conjunctival
injection,andorbitalorretro-orbitalpressureproptosis

Question
A46-year-oldwoman comes to the physician because of a 2-weekhistory of diplopia and ocular pain
when reading the newspaper. She also has a 3-month history of amenorrhea, hot flashes, and
increased sweating. She reports that she has been overweight all her adult life and is happy to have
lost 6.8-kg (15-lb) ofweight in the past 2months.Her pulse is 110/min, andbloodpressure is 148/98
mmHg. Physical examination showsmoist palms and a nontender thyroid gland that is enlarged to
two times its normal size. Ophthalmologic examination shows prominence of the globes of the eyes,
bilateral lid retraction, conjunctival injection, andan inability to converge theeyes.There isnopainon
movement of the extraocular muscles. Visual acuity is 20/20 bilaterally. Neurologic examination
shows a fine resting tremor of the hands. Deep tendon reflexes are 3+ with a shortened relaxation
phase.Whichof the following is themost likelycauseof thispatient'socularcomplaints?

(A) Granulomatous inflammationof thecavernoussinus
(B)Abnormalcommunicationbetweenthecavernoussinusandthe internal carotidartery
(C)Glycosaminoglycanaccumulation in theorbit
(D)Bacterial infectionof theorbital contents
(E)Sympathetichyperactivityof levatorpalpebraesuperioris

𝑅𝑀!"#

Hyperthyroidism -- History and Physical. Eye signs of lid lad or lid
retraction can be seen in all causes of hyperthyroidism due to a
hyperadrenergic state. [41] Eye symptoms and signs of \"true
orbitopathy' are only seen in patients with Graves disease. These
include diplopia, excessive tearing, conjunctival injection, and orbital or retro-
orbitalpressureproptosis

Reasoning
Step 1: The patient presents with diplopia, ocular pain, amenorrhea, hot flashes, increased sweating,
weight loss, tachycardia, hypertension, and an enlarged thyroid gland. These symptoms collectively point
towardsasystemicconditionthataffectsmultiplebodily systems.
Step 2: The ocular symptoms include prominence of the globes of the eyes, bilateral lid retraction,
conjunctival injection,andan inability toconverge theeyes.Thesesignsarecharacteristicof exophthalmos,
which isoftenassociatedwith thyroiddisease.

⋮
Step5: Given the combinationofocular symptomsandsignsofhyperthyroidism, themost likely causeof
the patient's ocular complaints is related to the increased sympathetic activity associated with
hyperthyroidism.
Step 6: The sympathetic hyperactivity affects the levator palpebrae superioris muscle, leading to lid
retractionand,asaresult, the inability toconverge theeyes. Theanswer isE.
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Figure 3: Case study comparison of labeling strategies for reward model training. This example illustrates how
MED-PRM labeling yields more clinically accurate judgments than both rule-based and auto-completed annotations.

ing 4.87% higher accuracy than Self-Consistency
and 4.32% higher than PRMs trained with conven-
tional approaches.

While multiple-choice question answering
(MCQA) benchmarks provide a convenient mea-
sure of LLM performance, they do not fully capture
real-world medical scenarios. Open-ended diag-
nostic tasks more closely reflect practical settings;
however, scaling test-time strategies such as ma-
jority voting are less applicable, as no predefined
answer options exist. PRMs provide a promising
solution in this context by selecting the most clini-
cally plausible answer rather than relying on option-
based voting, making them particularly effective
for open-ended medical reasoning.

7.3 Expert Alignment

To assess the alignment between Med-PRM and
medical experts, we calculate the Pearson corre-
lation between model-generated labels and expert
annotations on step-level reasoning quality. We
select three questions each from an easy subset
(where Llama-3.1-8B-Instruct achieves over 10%
accuracy) and a hard subset (accuracy below 10%)
from the PRM training set. For each question, five
model-generated reasoning traces were annotated
by human experts, resulting in 180 step-level anno-
tations in total.

As shown in Table 3, Med-PRM shows high cor-
relation with human judgments across both easy
and hard subsets (0.74 and 0.71, respectively). In
contrast, the performance of soft and hard label-
ing strategies drops significantly on hard examples,

Subset Med-PRM Soft label Hard label

Easy 0.74 0.64 0.70
Hard 0.71 0.34 0.31

Table 3: Pearson correlation between model-generated
labels and human annotations on reasoning steps for
easy and hard subsets.

dropping from 0.64 to 0.34 and 0.70 to 0.31, respec-
tively. This suggests that Med-PRM produces more
robust and consistent labels even in more challeng-
ing reasoning scenarios, making it better suited for
constructing high-quality training sets.

7.4 Case Study

Training Data Labeling Figure 3 presents an
example from the MedQA training dataset concern-
ing a patient suspected of having Graves’ ophthal-
mopathy. Although diplopia and ocular pain are
commonly associated with Graves’ disease, they
result from autoimmune orbitopathy rather than
sympathetic overactivity.

Step 1 and Step 2 of the policy model’s reason-
ing appropriately integrate the patient’s symptoms
to suspect thyroid-related exophthalmos, demon-
strating sound medical reasoning. However, in Step
5, the model incorrectly attributes ocular symptoms
to sympathetic overactivity, ultimately leading to
the selection of an incorrect final answer.

The retrieved document clarifies that diplopia
and conjunctival injection are characteristic only of
autoimmune orbitopathy in Graves’ disease. This
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Figure 4: Case study comparison of step-wise reward assignment between conventional PRM and Med-PRM.
Med-PRM assigns more appropriate and clinically grounded rewards than conventional PRM by leveraging evidence
from retrieved documents, enabling more accurate evaluation of intermediate reasoning steps.

distinction is key to differentiating the incorrect
choice (E) from the correct one (C). Leveraging
this evidence, Med-PRM assigns step-level labels
of 1 to Step 1 and Step 2, and 0 to Step 5 and Step
6, aligning exactly with expert annotations.

In contrast, the ORM data labeling pipeline as-
signs an overall incorrect label to the entire rea-
soning trace, as it only considers the final answer,
missing the valid reasoning steps in Steps 1 and
2. Similarly, the conventional PRM data labeling
pipeline assigns low scores to Steps 1 and 2, incor-
rectly marking them as poor reasoning, since the
final answer derived from these steps is incorrect.
As a result, both ORM and PRM fail to correctly
evaluate the quality of intermediate reasoning steps,
mislabeling valid reasoning as low quality.

Test-Time Labeling Figure 4 presents an exam-
ple from the MedQA dataset concerning a patient
suspected of polyhydramnios. Duodenal atresia
can cause polyhydramnios, while posterior urethral
valve (PUV) typically leads to oligohydramnios.

Steps 1 to 4 of the reasoning trace appropriately
integrate the patient’s clinical findings to analyze
the polyhydramnios context. However, in Step 5,
the model incorrectly reasons that posterior ure-
theral valve can cause polyhydramnios, ultimately
leading to an incorrect answer in Step 6.

The retrieved document explicitly states that
PUV leads to oligohydramnios due to urinary out-
flow obstruction. This serves as a clear rationale
for why the incorrect answer choice (D) is invalid.

Conventional PRM models assign relatively high

rewards to Step 5 and Step 6 in the absence of
helpful external documents. In contrast, Med-PRM
uses the retrieved document to detect the error more
precisely, providing high rewards up to Step 4 and
then sharply reducing rewards from Step 5 onward.

These examples show that Med-PRM can iden-
tify and localize errors in medical reasoning steps
more effectively than auto-labeling trained PRM,
highlighting the value of document-grounded, step-
wise evaluation in capturing nuanced reasoning
quality by referring to relevant clinical documents.

8 Conclusion

In this study, we present Med-PRM, a process re-
ward modeling framework that advances medical
reasoning in language models with RAG-AS-A-
JUDGE approach. Med-PRM addresses key limi-
tations of existing PRMs by verifying intermedi-
ate reasoning steps against retrieved medical docu-
ments rather than relying on outcome-based auto-
labeling. Our experiments show that Med-PRM
consistently outperforms prior methods across both
multiple-choice and open-ended clinical bench-
marks, with notable gains in complex diagnostic
tasks. Furthermore, the retrieval-based step ver-
ification produces scalable, expert-aligned labels
that support effective policy training and verifier
in test-time scaling. Together, these contributions
establish Med-PRM as a robust and generalizable
approach for improving the accuracy, transparency,
and trustworthiness of medical AI systems.
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Limitations

Our work has a few limitations that warrant dis-
cussion. First, our evaluation is currently con-
fined to the medical domain, though the method-
ology could potentially generalize to other do-
mains requiring stepwise reasoning verification and
retrieval-augmented generation. Second, due to
computational constraints, we limited our exper-
iments to small language models like Llama 3.1
8B and Meerkat 8B, though there remains signifi-
cant potential to explore scalability across different
model architectures and sizes Third, while our re-
ward model demonstrates strong performance, we
did not extensively explore diverse reinforcement
learning methods that could further enhance our
method’s capabilities. Future work should investi-
gate these aspects through broader domain cover-
age, model scaling experiments, and more sophisti-
cated reinforcement learning training strategies.
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A Notation

Symbol Description

q medical question
D retrieved documents
K number of reasoning steps
Kj number of reasoning steps in trace Sj

i step index (1, ... ,K)
N number of reasoning traces
j trace index (1, ... , N )
C set of reasoning traces
S reasoning trace
Sj reasoning trace j

si step i of reasoning trace S

si,j step i of reasoning trace Sj

ySj gold label for trace j

ysi gold label for step si

ySE
si soft label for step si

yHE
si hard label for step si

yRAG
si label made by RAG-AS-A-JUDGE for step si

ysi,j gold label for step si,j of trace j

rSj reward (sigmoid) score for trace j

rsi reward (sigmoid) score for step si

rsi,j reward (sigmoid) score for step si,j of trace j

a∗ gold answer of q
aSj decoded answer of trace j

aRM answer selected by reward model
RM (D, q, Sj) reward score of trace j

HE Hard Label
SE Soft Label
SC Self Consistency

Table 4: Summary of notations

Table 4 summarizes the notations used through-
out the manuscript for the convenience of readers
based on Wang et al. (2024b)

B Retrieval

We use MedCPT (Jin et al., 2023) bi-encoder and
cross-encoder for dense retrieval and reranking
from four biomedical corpora:

• Clinical Guidelines (Chen et al., 2023)

• StatPearls (Xiong et al., 2024)

• Medical Textbooks (Singhal et al., 2025)

• Rare Disease Corpus (Wang et al., 2024a)

Retrieval is performed on AWS EC2 c5.9xlarge
with Milvus (Wang et al., 2021) using Max Inner
Product Search (MIPS); reranking uses an NVIDIA

RTX 3090. For each query, 100 documents per cor-
pus (400 total) are retrieved, with top 32 selected
after reranking, following (Sohn et al., 2025).

C Hyperparameters

Hyperparameter Reward Policy

Learning Rate 2e-6 1e-5
Learning Rate Scheduler Type cosine cosine
Warmup Ratio 0.05 0.05
Batch Size 64 64
Epochs 3 1
Max Token Length 4096 4096
Precision bfloat16 bfloat16
Optimizer AdamW AdamW

Table 5: Hyperparameters used for training Med-PRM

Table 5 shows the hyperparameters used for
training our models of Med-PRM framework

D API Usage and Cost

We utilized the Gemini-2.0-flash model via the
Google Generative AI API. The model was em-
ployed as a RAG-AS-A-JUDGE, specifically for
generating training labels for the PRM and for scor-
ing responses in the AgentClinic benchmark. All
API calls were made using the official endpoint,
with the temperature set to 0 and standard rate lim-
its applied. The total API cost incurred for curating
the training set of PRM was approximately $20.

E Related Works

Medical Reasoning Large language models
(LLMs) have shown growing competence in medi-
cal reasoning, which presents unique challenges be-
yond general language tasks, including specialized
terminology, multimodal patient data, and high de-
mands for factual accuracy. Leveraging biomedical
corpora such as PubMed, MIMIC-III/IV (Johnson
et al., 2023), and UMLS, recent models have pro-
gressed from surface-level recall to more complex
diagnostic and therapeutic inference. Pioneered
by Med-PaLM (Singhal et al., 2023), demonstrates
strong performance on expert-level medical ques-
tions.

Advances in Chain-of-Thought (CoT) prompting
and training (Wei et al., 2022; Xu et al., 2024; Kim
et al., 2025), Retrieval-Augmented Generation (Za-
kka et al., 2024; Sohn et al., 2025; Zheng et al.,
2025), agentic systems (Kim et al., 2024; Tang
et al., 2024; Schmidgall et al., 2024; Tang et al.,
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2025) further extend this paradigm by orchestrat-
ing multiple specialized agents to collaboratively
solve complex clinical tasks. PRM (Lightman et al.,
2023; Jiang et al., 2025), and Reinforcement Learn-
ing (Wang et al., 2024b) have enabled LLMs to
generate structured reasoning traces. Similarly,
HuatuoGPT-o1 (Chen et al., 2024) incorporates
verifier feedback to iteratively refine multi-step rea-
soning traces.

These trends highlight the growing importance
of process reward mechanisms. Like mathematical
problem solving, clinical reasoning often requires
multi-step inference, where a single incorrect step
can invalidate the final outcome. Thus, stepwise
supervision is not only applicable to medicine but
also critical for ensuring transparency and reliabil-
ity in clinical decision-making.

PRM in Medical Domain A recent study has
been made to apply PRM in the medical domain.
MedS3 (Jiang et al., 2025) constructs a PRM
training dataset with similar approaches to exist-
ing PRM frameworks, using MCTS-based auto-
labeling. Med-PRM also provides process rewards
for medical reasoning, but mainly differs in the way
of constructing the training set, leveraging retrieval-
augmented generation and LLM-as-a-Judge. Sec-
tion 6 and Section 7 show that our approach is more
effective than MCTS-based methods.

LLM-as-a-Judge for Reasoning Evaluation
Recent research actively explores the use of LLM-
as-a-Judge as a PRM or as a Process Explana-
tion Model (PEM). In Hao et al. (2024), LLMs
are employed to evaluate the quality of Chain-of-
Thought (CoT) reasoning. Med-PRM uses RAG-
AS-A-JUDGE as a labeling strategy for reasoning
steps, which differs in terms of how it is utilized,
and this also contrasts with the automatic labeling
approaches used in prior PRM research.

Retrieval-Augmented PRM in Mathematics In
the mathematical domain, a recent work has ex-
plored combining retrieval with PRM (Zhu et al.,
2025). RAG-PRM retrieves semantically similar
sets of questions and answers to enable PRM to gen-
eralize against out-of-distribution questions. While
both Med-PRM approaches incorporate retrieval,
Med-PRM differs in that it retrieves medical evi-
dence and knowledge rather than similar QA pairs
for few-shot-style prompting. Moreover, our re-
trieval method supports scalable integration, rang-
ing from curated sources such as medical textbooks

and clinical guidelines to potentially broader cor-
pora like PubMed in other deployments.

F Benchmarks

Below are detailed descriptions of the medical
benchmark datasets used in our study.

MedQA MedQA is a comprehensive medical
question answering dataset derived from profes-
sional medical board examinations. The dataset
spans three languages: English, simplified Chi-
nese, and traditional Chinese. Our work focuses
exclusively on the English subset, which contains
12,730 questions from the United States Medical Li-
censing Examination (USMLE). Our method was
evaluated on questions with both four and five op-
tions. MedQA evaluates diverse aspects of medical
knowledge, encompassing diagnostic procedures,
treatment protocols, and fundamental medical con-
cepts. The questions are designed to test both fac-
tual medical knowledge and clinical reasoning ca-
pabilities.

MedMCQA MedMCQA (Pal et al., 2022) is an
extensive multiple-choice dataset comprising over
194,000 high-quality questions from Indian medi-
cal entrance examinations (AIIMS and NEET PG).
Our evaluation incorporates 500 questions from
this dataset, with an average token length of 12.77
tokens per question. Each question presents four an-
swer choices. The dataset demonstrates remarkable
topical diversity, covering 2,400+ healthcare topics
across 21 medical subjects. MedMCQA’s com-
prehensive coverage and focus on entrance exam
questions make it particularly valuable for assess-
ing both theoretical knowledge and practical clini-
cal reasoning abilities in medical problem-solving
scenarios.

MMLU (Medical Subset) The Massive
Multitask Language Understanding benchmark
(Hendrycks et al., 2020) contains specialized
medical knowledge subsets that we incorporate
into our evaluation. Our benchmark utilizes 1,089
medical-related questions from MMLU. Each
question presents four multiple-choice options.
The medical subsets encompass diverse domains
including anatomy, clinical knowledge, college
medicine, medical genetics, and professional
medicine. MMLU’s comprehensive coverage
spans both fundamental and advanced medical
concepts, testing knowledge across a wide spec-
trum of difficulty levels from basic to professional
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expertise. The benchmark’s standardized assess-
ment format enables meaningful comparisons
between medical reasoning capabilities and other
knowledge domains.

DDXPlus DDXPlus (Fansi Tchango et al., 2022)
is a large-scale synthetic dataset containing approx-
imately 1.3 million patient cases, designed to ad-
vance research in Automatic Symptom Detection
(ASD) and Automatic Diagnosis (AD) systems.
Unlike traditional medical datasets that only in-
clude binary symptoms and antecedents, DDXPlus
incorporates categorical and multi-choice symp-
toms, along with hierarchical symptom organiza-
tion. Each case includes comprehensive informa-
tion such as differential diagnoses, ground truth
pathologies, symptoms, and relevant antecedents.
This dataset enables the development of more so-
phisticated medical reasoning systems that can in-
teract with patients in a logical manner and provide
differential diagnoses, which is crucial for help-
ing doctors understand the reasoning process of AI
systems.

AgentClinic* AgentClinic (Schmidgall et al.,
2024) is a multimodal agent benchmark designed
to evaluate large language models (LLMs) in sim-
ulated clinical environments. Unlike traditional
static question answering benchmarks, AgentClinic
captures the complex, sequential nature of clinical
decision making by integrating diverse clinical find-
ings derived from patient interactions, multimodal
data collection, and tool usage. The benchmark
spans nine medical specialties and seven languages,
providing a comprehensive evaluation framework.
Notably, when MedQA problems are presented
in AgentClinic’s sequential decision making for-
mat, diagnostic accuracies can drop significantly
compared to traditional formats. The benchmark
enables novel patient-centric metrics and supports
various tools including experiential learning, adap-
tive retrieval, and reflection cycles. AgentClinic’s
interactive environment allows for in-depth eval-
uation of clinical reasoning capabilities through
real-world electronic health records and clinical
reader studies.

In this work, we adopt a simplified variant of
the benchmark, referred to as AgentClinic*, which
reformulates the task into a single step inference
problem. This adaptation is motivated by prac-
tical considerations: conducting multiple reason-
ing steps would incur excessive API calls and
computational overhead in large-scale experiments.

Moreover, techniques like self-consistency, which
are important for evaluating model reliability, are
less applicable in multi-turn settings due to non-
deterministic agent trajectories. AgentClinic* thus
strikes a balance between realism and tractability
while preserving the core challenge of evidence-
grounded clinical reasoning.

Training We train our model using four widely
adopted medical datasets: MedQA, MedMCQA,
PubMedQA, and MMLU-Med. For MedQA, we
utilize the entire training set comprising 10,178
questions. For the remaining three datasets, we ran-
domly sampled 500 examples from each training
set to construct a lightweight yet diverse training
corpus, encompassing a variety of question formats
and clinical topics. This setup ensured data effi-
ciency while enabling the model to learn from a
broad range of medical problem types.

Evaluation Model performance was evaluated
on MedQA, MedMCQA, PubMedQA, and six
medical-related subsets of MMLU (Anatomy,
Clinical Knowledge, College Biology, College
Medicine, Medical Genetics, and Professional
Medicine). Additionally, we conducted out-of-
domain evaluations that required more complex
clinical reasoning. These included DDXPlus and
two variants of AgentClinic based on NEJM case
reports and MedQA. For DDXPlus, we randomly
sampled 500 examples due to its extensive size,
and reformulated the task to focus on differential
diagnosis by providing supporting evidence and re-
quiring the model to select the correct disease from
a list of up to five candidates. AgentClinic, in con-
trast, presented an open-ended question-answering
format without predefined answer choices, sim-
ulating real-world clinical scenarios through the
analysis of diverse clinical findings (multi-turn dia-
logues were not included). To evaluate responses
in open-ended settings, we adopted an LLM-as-a-
judge framework (Gemini-2.0-flash), following a
similar approach to HuatuoGPT-o1 (Chen et al.,
2024).

G Full Ablation Study of PRMs vs SC

As shown in Figure 5, Med-PRM outperforms
MedS3 when scaling test-time computation.
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Figure 5: Comparison of scaling test-time computation
performance between Med-PRM and PRMs trained with
conventional approach across overall medical bench-
marks(including MedS3 in the same setting).

H Prompts

Multiple Choice Questions CoT Prompt
system_message

Solve the following question step-by-step.
Do not analyze individual options in a single
step. Each step of your explanation must
start with ’Step number: ’ format. You
must provide the answer using the phrase
’the answer is (option alphabet)’ at the end
of your step.

Open-Ended Questions CoT Prompt
system_message

Solve the following question step-by-step.
Each step of your explanation must start
with ’Step number: ’ format. The final
answer must output a concise and clearly
defined diagnostic term. You must provide
the final answer using the phrase ’## Fi-
nal Diagnosis: Disease name’ at the end of
your final step. Please refer to the follow-
ing example. ## Final Diagnosis: Multiple
Sclerosis

System Message for Open-Ended Ques-
tion Evaluation Using LLM-AS-A-JUDGE
system_message

The following presents a short-answer ques-
tion along with its Ground Truth and the
Model’s Answer. Evaluate the Model’s An-
swer strictly based on its correctness. Your
output must be either 1 or 0 only. Output 1 if
the answer is correct, and 0 if it is incorrect.

Generating PRM Training Data Labels Us-
ing RAG-AS-A-JUDGE system_message

You are an evaluator responsible for assess-
ing the quality of **wrong solutions** to
medical questions in a stepwise manner.
Each question is accompanied by relevant
documents, a question, and the correct an-
swer, and the quality of reasoning at each
step must be evaluated. Give a score of 0
if the response lacks logical coherence or is
not based on medical evidence, and 1 if this
is not the case. Please note that if the expla-
nation does not match the provided ground
truth, it must be scored as 0. Critically as-
sess the reasoning at each step. At the end
of your evaluation, you must include a fi-
nal summary of the scores in the following
format:
## Step 1: 0 or 1
## Step 2: 0 or 1
## Step 3: 0 or 1 ...

Med-PRM system_message

You are an evaluator assessing the logicality
and validity of the reasoning in each step of
the given explanation. In order to support
the evaluation, the relevant documents, the
question, and the explanation are provided
sequentially. If the reasoning contains er-
rors, output - after that step. If the reasoning
in a step is logical and valid, output + after
that step.

PRM system_message

You are an evaluator assessing the logicality
and validity of the reasoning in each step of
the given explanation. In order to support
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the evaluation, the question and the explana-
tion are provided. If the reasoning contains
errors, output - after that step. If the reason-
ing in a step is logical and valid, output +
after that step.

I Human Evaluation Details

The evaluation was conducted by one physician
with four years of clinical experience and two se-
nior medical students. Each of the two medical stu-
dents independently annotated all reasoning steps,
and all annotations—including those with disagree-
ments—were subsequently reviewed and adjudi-
cated by the physician. The evaluation followed
the guidelines described below.

Human Evaluation Guidelines

The following content presents a stepwise
explanation of a medical problem. Provide
a critical evaluation of each step based on
an integrated assessment of the following
criteria.

Evaluation Criteria
- Factual Accuracy:Does the step accurately
reflect established medical knowledge? Are
there any inconsistencies or factual inaccu-
racies?

- Problem-Solving Relevance: Does the step
contribute meaningfully to solving the prob-
lem? Does it avoid diverging into irrelevant
or tangential reasoning?

- Logical Coherence: Is the reasoning based
on appropriate medical knowledge and logi-
cally consistent within the clinical context?

Scoring Method
- Assign 1 point or 0 points to each step.

- 1 point: Awarded when the step is gener-
ally factually accurate, contributes to solv-
ing the problem, and demonstrates coherent
medical reasoning.

- 0 points: Assigned when the step contains
significant factual errors or involves reason-
ing that critically undermines the problem-
solving process.

- If a step contains a critical error, any sub-
sequent steps that rely on or are influenced
by that error should also be scored as 0.
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J Scaling Test-Time Computation with PRMs Across Multiple Models

Multiple-Choice QA Open-Ended QA

Category Model MedQA-4 MedQA-5 MedMCQA MMLU-Med DDXPlus Agent Clinic
NEJM *

Agent Clinic
MedQA * Average

Open-source
Language Models

with Scaling
Test-time

Computation
(Best-of-N)

Llama3.1
CoT 70.93 65.20 61.60 78.97 68.80 35.83 71.96 64.76
SC 74.86 70.70 63.40 81.63 75.20 49.17 75.23 70.03
PRMsoft 72.19 67.48 64.40 78.97 74.40 51.67 73.83 68.99
PRMhard 71.09 67.48 61.80 76.49 70.60 48.33 76.64 67.49
MedS3 70.15 65.99 62.80 77.78 77.60 49.17 78.04 68.79
Med-PRM 76.98 73.06 63.40 81.18 78.00 57.50 76.64 72.39

UltraMedical
CoT 72.66 68.34 62.60 79.61 72.60 45.83 70.56 67.46
SC 75.63 71.80 64.20 81.91 76.20 49.17 76.64 70.79
PRMsoft 75.65 71.80 63.00 81.36 73.60 55.00 77.57 71.14
PRMhard 76.28 71.48 63.40 80.99 72.80 48.33 74.77 69.72
MedS3 74.00 68.66 63.00 80.62 75.80 48.33 74.77 69.31
Med-PRM 76.42 74.94 64.40 83.20 75.40 55.00 77.10 72.35

Med-PRM π
CoT 67.16 64.26 57.20 75.48 67.20 40.00 68.69 62.86
SC 76.04 71.80 62.20 82.00 74.80 50.83 78.04 70.82
PRMsoft 72.58 68.81 60.20 78.97 74.60 49.17 77.10 68.78
PRMhard 72.27 69.05 60.40 78.33 71.40 45.83 73.83 67.30
MedS3 69.60 67.09 60.00 78.79 74.80 48.33 71.50 67.16
Med-PRM 76.76 73.06 64.40 82.46 77.80 54.17 80.37 72.72

Open-source
Language Models

with Scaling
Test-time

Computation
(SC+RM)

Llama3.1
CoT 70.93 65.20 61.60 78.97 68.80 35.83 71.96 64.76
SC 74.86 70.70 63.40 81.63 75.20 49.17 75.23 70.03
PRMsoft 75.49 72.19 65.00 82.28 75.00 50.83 76.17 70.99
PRMhard 75.33 71.09 64.20 81.73 75.20 51.67 75.23 70.64
MedS3 73.84 70.15 64.40 81.36 75.80 54.17 76.64 70.91
Med-PRM 78.24 73.53 66.40 83.29 76.80 53.33 77.10 72.67

UltraMedical
CoT 72.66 68.34 62.60 79.61 72.60 45.83 70.56 67.46
SC 75.63 71.80 64.20 81.91 76.20 49.17 76.64 70.79
PRMsoft 77.14 72.43 65.40 82.46 75.60 51.67 78.50 71.89
PRMhard 76.90 72.19 64.40 82.37 75.80 50.00 78.04 71.39
MedS3 75.41 72.03 63.00 81.36 76.60 54.17 75.23 71.11
Med-PRM 79.87 75.26 65.50 82.83 77.60 52.50 77.57 73.02

Med-PRM π
CoT 67.16 64.26 57.20 75.48 67.20 40.00 68.69 62.86
SC 76.04 71.80 62.20 82.00 74.80 50.83 78.04 70.82
PRMsoft 76.51 72.51 63.60 82.55 75.80 54.17 78.97 72.02
PRMhard 77.06 72.58 63.00 82.19 75.60 53.33 79.44 71.89
MedS3 75.26 72.03 63.40 81.82 75.60 52.50 78.04 71.24
Med-PRM 79.18 75.49 67.40 83.29 77.20 52.50 79.44 73.50

Table 6: Accuracy of open-source language models with scaling test-time computation. Three models were
evaluated: Llama 3.1 8B Instruct, Llama-3-8B-UltraMedical (best performing model below 10B parameters), and
Med-PRM π, for solution sampling. The sampling outputs were assessed using Self-Consistency (SC) and various
PRM methods under both Best-of-N and SC+RM settings. Across different scaling test-time computation strategies
for each sampling, the best scores are shown in bold, and second-best scores are underlined. Med-PRM achieved
the highest average score across test-time computation scaling methods.
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