
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 16591–16610
November 4-9, 2025 ©2025 Association for Computational Linguistics

SAMULE: Self-Learning Agents Enhanced by Multi-level Reflection

Yubin Ge1, Salvatore Romeo1, Jason Cai1, Monica Sunkara1, Yi Zhang1

1AWS AI Labs
{yubinge, romeosr, cjinglun, sunkaral, yizhngn}@amazon.com

Abstract

Despite the rapid advancements in LLM agents,
they still face the challenge of generating mean-
ingful reflections due to inadequate error anal-
ysis and a reliance on rare successful trajec-
tories, especially in complex tasks. In this
work, we propose SAMULE, a new frame-
work for self-learning agents powered by a
retrospective language model that is trained
based on Multi-Level Reflection Synthesis. It
first synthesizes high-quality reflections across
three complementary levels: Single-Trajectory
Learning (micro-level) for detailed error cor-
rection; Intra-Task Learning (meso-level) to
build error taxonomies across multiple trials of
the same task, and Inter-Task Learning (macro-
level) to extract transferable insights based on
same typed errors from diverse task failures.
Then we fine-tune a language model serving as
the retrospective model to generate reflections
during inference. We further extend our frame-
work to interactive settings through a foresight-
based reflection mechanism, enabling agents
to proactively reflect and adapt during user
interactions by comparing predicted and ac-
tual responses. Extensive experiments on three
challenging benchmarks—TravelPlanner, NAT-
URAL PLAN, and Tau-bench—demonstrate
that our approach significantly outperforms
reflection-based baselines. Our results high-
light the critical role of well-designed reflec-
tion synthesis and failure-centric learning in
building self-improving LLM agents.

1 Introduction

Modern AI agents (Yao et al., 2023; Fourney et al.,
2024; Zhao et al., 2024a; Wang et al., 2024a) in-
creasingly rely on Large Language Models (LLMs)
as their core reasoning engines, empowering them
to understand natural language instructions, reason
through multi-step processes, and interact with ex-
ternal environments (Ge et al., 2025; Shen et al.,
2025). These models typically undergo pre-training
on extensive text corpora, endowing them with

unprecedented accuracy in predicting the next to-
ken given some context (Ge et al., 2023). How-
ever, LLM agents remain fundamentally limited in
their ability to autonomously improve from expe-
rience, particularly in complex, failure-prone en-
vironments (Ji et al., 2024; Wang et al., 2024c).
This bottleneck severely restricts their utility in sce-
narios where learning from failures is critical for
long-term success.

Existing experiential learning methods for LLM
agents suffer from several core limitations. First,
they sometimes fail to generate meaningful and ac-
tionable reflections after failures due to inadequate
error analysis mechanisms. For example, Reflex-
ion (Shinn et al., 2023) shows limited improve-
ments on complex benchmarks like TravelPlan-
ner (Xie et al., 2024), as it lacks the capacity to
deeply diagnose failure causes and therefore pro-
duces general and useless strategies for correction.

Second, many sophisticated prompting-based
methods, such as Expel (Zhao et al., 2024a), de-
pend heavily on successful trajectories as learning
signals and demonstrate the benefits of utilizing
knowledge (Ge et al., 2021). This reliance on suc-
cessful trails makes them impractical in real-world
settings where task success is rare and failures are
far more prevalent. By failing to harness the rich
information embedded in unsuccessful attempts,
these methods miss critical opportunities for learn-
ing and adaptation, leading to poor generalization
in complex environments.

Besides, advanced approaches like Retro-
former (Yao et al., 2024b) and CTRL (Xie et al.,
2025), which use reinforcement learning (RL) and
rewards based on task improvements from synthe-
sized reflections, are sensitive to the quality of the
synthesized reflections. In complex tasks where
existing reflection algorithms struggle to produce
informative and accurate feedback, these RL-based
methods suffer from learning meaningless policies.

In this work, we propose SAMULE, a framework

16591

for Self-learning Agents enhanced by MUlti-LEvel
reflections that unlocks the learning potential of
past trajectories through training a retrospective
model. Specifically, we first design a Multi-Level
Reflection Synthesis to synthesize high-quality re-
flection data across three complementary levels of
granularity: Single-Trajectory Learning (Micro-
Level): Analyzing individual failed trajectories
against reference plans to identify immediate errors
and generate targeted corrective strategies; Intra-
Task Learning (Meso-Level): Examining multiple
trajectories from the same task query to catego-
rize error types and build an error taxonomy, en-
abling richer, pattern-based feedback; Inter-Task
Learning (Macro-Level): Clustering similar er-
rors across diverse task queries to derive high-level,
transferable insights that improve future decision-
making across tasks. After merge the reflections
from different levels as the final target reflection,
we then train a language model through SFT, which
dynamically generates trajectory-specific reflec-
tions for the agent during inference.

We further extend to the interactive setting,
where agents decide whether and when to re-
flect during interactions with users. We introduce
foresight-based reflection that compares the agent’s
predicted user response with the actual response at
each turn. When the true response is beyond expec-
tation, the agent triggers a reflection step and adds
the generated feedback into its ongoing interaction,
enabling real-time correction and adaptation.

We extensively evaluate our approach across
three challenging benchmarks: TravelPlanner (Xie
et al., 2024), NATURAL PLAN (Zheng et al.,
2024), and Tau-bench (Yao et al., 2024a). Ex-
perimental results consistently demonstrate that
our method substantially outperforms existing
reflection-based baselines, particularly in complex,
failure-dense environments. Notably, we show that
even with simple supervised fine-tuning, our ret-
rospective model—trained on multi-level synthe-
sized reflections—achieves superior performance
compared to advanced methods relying on RL.
These findings underscore the critical role of well-
designed reflection synthesis in efficient learning
from past trajectories without the need for costly
or unstable RL training. Moreover, the strong re-
sults achieved in interactive settings highlight the
generalizability of our framework and its ability to
support real-time adaptive learning. By leveraging
failures as rich learning opportunities and intro-
ducing structured reflection at multiple levels, our

work represents a significant step toward building
more resilient, adaptive, and self-improving agents.

Our contributions are summarized as follows:

• We propose SAMULE, a new self-learning
framework that introduces to training a retro-
spective model based on Multi-Level Reflec-
tion Synthesis spanning from micro-level to
macro-level analysis.

• We introduce foresight-based reflection to
extend our framework to interactive scenar-
ios, enabling agents to proactively reflect and
adapt during user interactions by comparing
predicted and actual user responses.

• Extensive experiments on TravelPlanner, NAT-
URAL PLAN, and Tau-bench show that our
approach significantly outperforms existing
reflection-based baselines, particularly in com-
plex benchmarks, highlighting the value of
failure-centric learning and multi-level reflec-
tion for building self-improving agents.

2 Related Work

Prompt-based self-reflection and self-learning.
One foundational self-reflective capabilities for
Gen AI agents was established by Shinn et al.
(2023), who introduced Reflexion, a framework
enabling language agents to learn from verbal rein-
forcement through self-reflection. Building on this
foundation, research has made significant advances
in developing sophisticated self-reflective capabili-
ties through various prompting strategies (Liu et al.,
2024; Renze and Guven, 2024; Radha et al., 2024;
Zhang et al., 2024). Liu et al. (2024) demonstrated
that self-reflection can enhance model safety and
reduce bias while maintaining ideological neutral-
ity. Further validation came from Renze and Guven
(2024), who documented substantial improvements
in problem-solving performance through structured
reflective processes. To address the challenge of
reflection stability, Zhang et al. (2024) developed
Self-Contrast, introducing a novel approach that
explores and contrasts diverse solving perspectives.
The field has rapidly expanded into experiential
learning, with Zhao et al. (2024b) introducing EX-
PEL for experiential learning in LLM agents with
the support of autonomous experience extraction
from training tasks, while Gao et al. (2024) ad-
vanced the state-of-the-art with a self-evolving
framework enabling life-long experiential learning.

16592

Recent work has also explored novel directions, in-
cluding Qian et al. (2024)’s co-learning framework
for software development, Radha et al. (2024)’s In-
ner Dialogue framework for autonomous reasoning,
and Yin et al. (2024)’s self-referential framework
for recursive self-improvement.

Post-training powered by self-reflection. The
integration of self-reflection into post-training op-
timization has emerged as a powerful approach
for enhancing LLM capabilities (Yao et al., 2024b;
Feng et al., 2025; Qi et al., 2024; Xiong et al.,
2025; Tu et al., 2024; Alabdulkarim et al., 2022).
Yao et al. (2024b) pioneered this direction with
Retroformer, introducing policy gradient optimiza-
tion for retrospective learning in language agents.
Feng et al. (2025) designed a sophisticated two-
stage optimization process combining imitation
learning with reinforcement learning, which en-
hances the data efficiency and training stability.
For web-based applications, Qi et al. (2024) devel-
oped WebRL, demonstrating how self-evolving on-
line curriculum learning can substantially improve
open-source LLM performance. Another promis-
ing direction has emerged in self-rewarding mecha-
nisms, exemplified by Xiong et al. (2025)’s work
on mathematical reasoning, where models simulta-
neously generate and evaluate their reasoning with-
out external feedback. The frontier of autonomous
self-improvement has been further pushed by Chen
et al. (2025), who established a comprehensive
framework for scaling autonomous agents through
automatic reward modeling. Additional advances
include Tu et al. (2024)’s online preference-based
reinforcement learning approach and Alabdulkarim
et al. (2022)’s work on experiential explanations for
reinforcement learning, both contributing to more
robust self-reflection mechanisms.

3 Methodology

3.1 Problem Setup

3.1.1 General Setting

We consider a setting where an agent performs com-
plex tasks over a sequence of time steps. Following
a standard machine learning setup, we assume ac-
cess to training data Dtrain = {(x(i)train, y

(i)
train)}Ni=1,

which allows the agent to learn via task explo-
ration. Each input x(i)train includes an instruction,
a task query, and relevant background information,
while the corresponding output y(i)train represents a
valid response, such as a human-annotated plan to

the input query. We consider y(i)train as a reference.
Particularly, in agentic task completion, y(i)train does
not need to be the unique ground truth but is con-
sidered a valid solution to x

(i)
train. During inference,

the agent receives a test input x(i)test and generates a
predicted output ŷ(i)test for evaluation.

3.1.2 Reflection Setting
We explore two settings for reflection:

Non-Interactive: We follow the self-reflection
setup from Reflexion (Shinn et al., 2023), where the
agent reflects only after completing a trial. If the
trial fails, the corresponding trajectory is reviewed
to generate a reflection. This reflection is then
appended to the input for the next trial.

Interactive: In real-world scenarios, agents of-
ten interact with users through multi-turn conver-
sations to complete tasks. In this setting, the agent
may not be able to try the task multiple times and
therefore cannot defer reflection until after the task
concludes. Instead, it must dynamically decide
whether to reflect during the interaction.

3.2 SAMULE

We propose a framework for self-learning LLM
agents by training a retrospective language model
that is subsequently used to refine the LLM agent
through reflective feedback on its past trajectories.

3.2.1 Stage I: Multi-Level Reflection Synthesis
Prior studies show that learners who engage in self-
explanation while studying examples perform bet-
ter and develop more robust knowledge structures
than those who do not. A key reason is that as learn-
ers explain individual steps (concrete level), they
often invoke domain principles or rules (abstract
level) to justify why a step is correct or incorrect.
This bridges the gap between specific feedback and
general understanding (Wang et al., 2022). In fact,
having to explain why an error is an error forces
learners to integrate the relevant conceptual knowl-
edge with the procedure (Tulis et al., 2016).

Motivated by these findings, we introduce a
multi-level reflection framework that synthesizes
reflections from the micro-level (detailed, instance-
specific) to the macro-level (general, conceptual).
Our design aligns with Kolb’s experiential learning
model, which describes a learning cycle involv-
ing concrete experiences, reflective observation,
and abstract conceptualization for effective knowl-
edge acquisition (McLeod, 2017). The overview is
shown in Figure 1 and Algorithm 1 (the detailed

16593

Task Query

+ Reference

Task Query

Error Taxonomy

Error Classification Error Clustering

Micro Level

Single Trajectory
Learning

Meso Level

Intra-Task
Learning

Macro Level

Inter-Task
Learning

Reflection Rationale
Error

Reflection

Reflection Merge

Final Reflection

Error Type 1

Error Type 2

Error Type 3

Figure 1: The overview of our proposed Multi-level Reflection Synthesis. The circles represents the steps in a
trajectories and the sketched circles in different color, like in red, purple and green, indicating the steps are classified
as different types of errors.

prompts are shown in Appendix § C), and the pro-
cess consists of the following steps:

Single Trajectory Learning (micro-level): At
the micro level, we follow Reflexion (Shinn et al.,
2023) to iteratively retry each training task query at
most K times. Specifically, at the k-th trial, given
the current training instance (x

(i)
train, y

(i)
train) and the

current reflection r (initialized as an empty string),
the agent attempts the task x

(i)
train using ReAct (Yao

et al., 2023) as the base planning algorithm, result-
ing in a trajectory τi,k = LLMReAct(x

(i)
train, r). If

the agent fails, we prompt the LLM to perform
reflection. Inspired by prior work on contrastive
learning from past successes and failures (Sun et al.,
2023), we instruct LLM to compare the failed tra-
jectory with the reference output y(i)train, diagnoses
the cause of failure, and generates a new, concise
plan that addresses the identified issues as the re-
flection ri,k = LLMreflect(τi,k, y

(i)
train). Then in the

next retry, the agent augments its context with the
updated reflection ri,k to attempt the task again.

Intra-Task Learning (meso-level): This stage
focuses on learning from multiple trajecto-
ries—both successful and failed—associated with
the same task query. For each task x

(i)
train we con-

catenate all attempted trajectories and ask the LLM
to identify common failure patterns, incrementally
constructing an error taxonomy E . Specifically,
the LLM first checks the existing taxonomy, ap-
pends any new error types it encounters, E =

E ∪ LLMerror(E , τi,1, . . . , τi,K). Then the LLM re-
views each trajectory τi,k to label each action in the
trajectories with error types (if applicable) to obtain
an error path ϵi,k, along with a rationale zi,k for the
classification, i.e., ϵi,k, zi,k = LLMerror(E , τi,k).

Inter-Task Learning (macro-level): At the
macro level, we process each error type e ∈ E
and group trajectories from different task queries
that exhibit the error e into a cluster gtraj. For each
cluster, the LLM is prompted to generate a reflec-
tion that generalizes across tasks, identifying re-
curring failure modes and proposing strategies to
mitigate these errors beyond individual trajectories,
i.e., re = LLMreflect(gtraj). Then each trajectory is
paired with the error type reflection for the corre-
sponding error types it contains.

Reflection Merge: We concatenate reflections
at all levels for each trajectory τi,k and apply a final
summarization step to produce a merged reflection
rfinal
i,k . This final reflection integrates both instance-

specific feedback and generalized error patterns
derived from related trajectories.

3.2.2 Stage II: Retrospective Model Training
Since our multi-level reflection framework depends
on the reference output y(i)train, it cannot be directly
applied during inference. To overcome this limita-
tion, we train a smaller language model—referred
to as the retrospective model—using the synthe-
sized multi-level reflections.

We construct training examples by concatenat-

16594

Algorithm 1 Multi-Level Reflection Synthesis
Initialize:
Training data Dtrain{(x(i)

train, y
(i)
train)}Ni=1

Trajectory pool P ← {}
Number of training tasks N
Maximum retry number K
Error Taxonomy E ← ∅
// Single Trajectory Learning
for task i = 1 to N do

reflection ri,0 ← ""
for trial k = 1 to K do

trajectory τi,k ← LLMReAct(x
(i)
train, ri,k−1)

P[i]← P[i] ∪ τi,k
if fail(τi,k) then

ri,k ← LLMreflect(τi,k, y
(i)
train))

end if
end for

end for
// Intra-Task Learning
for task i = 1 to N do
E ← E ∪ LLMerror(E , τi,1, . . . , τi,K)
for trial k = 1 to K do

ϵi,k, zi,k ← LLMerror(E , τi,k))
end for

end for
// Inter-Task Learning
for all error e ∈ E do

grouped trajectory gtraj ← ∅
for all trajectory τi,k ∈ P do

if error path ϵi,k ⊃ e then
gtraj ← gtraj ∪ τi,k

end if
end for
error reflection re ← LLMreflect(gtraj)

end for
// Reflection Merge
for all τi,k ∈ P do

grouped error reflection ge ← ∅
for all error e ∈ E do

if error path ϵi,k ⊃ e then
ge ← ge ∪ re

end if
end for
final reflection rfinal

i,k ← LLMsumm(ri,k, zi,k, ge)
end for

ing the instruction, task query, background infor-
mation, and trajectory as the input, and using the
corresponding synthesized reflection as the target
output. The retrospective model is trained via su-
pervised fine-tuning (SFT). During inference, it
takes in an agent’s trajectory and generates a reflec-
tion, thereby enabling reflective feedback without
access to reference outputs.

3.2.3 Foresight-based Reflection
Motivated by prior work that both foresight and
reflection are essential for LLM-based Theory of
Mind (Zhou et al., 2023), we introduce foresight-
based reflection (shown in Algorithm 2) to extend
our framework to the interactive setting, where the
agent engages in an interaction trial with the user.

In this setting, the agent compares its predicted

Algorithm 2 Foresight-based Reflection
Initialize:
Actor LLMReAct
Self-reflection LLMreflect
Current task x(i)

Maximum step numberH
Initialize trajectory τi ← env.reset()
Initialize reflection r ← ""
for step t = 1 toH do

Action at ← LLMReAct(at|τi, r)
Predicted responseRp ← LLM(τi, at)
True responseRt, done← env.step(at)
if LLMdiff(Rp,Rt) then

r ← LLMreflect(τi))
end if
τi ← (at,Rt)
if done then

break
end if

end for

user response with the actual response at each turn.
Specifically, during each step, the agent first pre-
dicts the user’s response Rp by prompting itself
based on the current trajectory. Once the true user
response Rt is observed, the agent is asked to com-
pare Rp and Rt, and then decides whether to re-
flect due to any significant deviation between ex-
pectation and reality. In such cases, the agent is
prompted to perform reflection based on the current
trajectory. This mechanism enables the agent to
detect unexpected user behavior during interaction
and adaptively revise its plan, improving alignment
and task success in real-time settings.

4 Experiments

We introduce experimental details in this section
and add implementation details in Appendix § A.

4.1 Datasets
TravelPlanner (Xie et al., 2024) is a challenging
benchmark focused on travel planning scenarios.
It offers a comprehensive evaluation environment
with nearly four million data records and 1,225
carefully curated planning queries, with each train-
ing instance paired with a reference plan. In our
experiments, we adopt the sole-setting, where rele-
vant background information is provided directly,
rather than the two-staged setting that requires
agents to actively search for information through
tool usage. This choice is motivated by computa-
tional considerations: trajectories generated under
the sole-setting can exceed 10k tokens, while those
in the two-staged setting are even longer, render-
ing training computationally infeasible given our
resources. The experiments are conducted on the

16595

validation set, as the complete test data for evalua-
tion is not completely released and we are not able
to perform reflection based on the task outcomes.

NATURAL PLAN (Zheng et al., 2024) assesses
the planning capabilities of LLMs using complete
information retrieved from real-world tools, includ-
ing Google Flights, Google Maps, and Google Cal-
endar. It emphasizes structured reasoning over tool
outputs to generate feasible and coherent plans. Fol-
lowing prior work (Lee et al., 2025), we exclude
Calendar Scheduling tasks, as these can be trivially
solved through enumeration. We split the dataset
into training and testing sets using an 80:20 ratio.

Tau-bench (Yao et al., 2024a) is used to evalu-
ate agent performance under interactive and non-
interactive settings. It simulates conversations be-
tween a simulated user and an agent equipped with
domain-specific APIs and policy guidelines.

4.2 Baselines
We compare our approach with the following
reflection-based baselines:

Fewshot: For the setting that there is no envi-
ronment that the agent can interact with, such as
NATURAL PLAN, we include successful plans
into the prompt for fewshot learning.

ReAct (Yao et al., 2023): Interleaves reason-
ing traces and task-specific actions, enabling LLM
agents to act and reflect simultaneously.

Reflexion (Shinn et al., 2023): Generates ver-
bal reflections based on task feedback and stores
them in an episodic memory buffer to guide future
decision-making.

Expel (Zhao et al., 2024a): Automatically gath-
ers experience from a set of training tasks and ex-
tracts insights from successful trajectories or paired
successful and failed trajectories.

Inter-task Error Reflection: Uses static, gener-
ated error-type reflections obtained from Inter-Task
Learning to guide agent behavior.

Retroformer Variant (DPO replacement) (Yao
et al., 2024b): Retroformer learns a retrospective
model that tunes language agent prompts based on
environment feedback via supervised fine-tuning
(SFT) and Proximal Policy Optimization (PPO).
However, tasks such as TravelPlanner often involve
input lengths exceeding 10k tokens due to long
trajectories and rich background context, making
PPO-based training memory-intensive. To address
this, we replace PPO with Direct Preference Op-
timization (DPO) for better efficiency. Our com-
parison on HotpotQA shows that this DPO-based

variant achieves performance comparable to the
original Retroformer (see details in Appendix § B).

4.3 Evaluation Metrics
For TravelPlanner and Tau-bench, we adopt the of-
ficial evaluation scripts to compute the Pass Rate.
For NATURAL PLAN, each instance is annotated
with a single ground-truth plan. We follow the orig-
inal work to use EM-based Accuracy: accuracy
is calculated as the proportion of output plans that
exactly match the annotated reference plan.

4.4 Main Results
We first present results and the performance change
across trial numbers on TravelPlanner and NAT-
URAL PLAN with Claude 3.5 Sonnet-v2 as the
actor model in Table 1 and Figure 2. Across both
benchmarks, reflection-based methods significantly
outperform non-reflective baselines. Even the sim-
plest reflective method, Reflexion, consistently im-
proves over non-reflective methods, underscoring
the value of incorporating reflection. Besides, we
can also observe the following key findings:

Cross-Trajectory Reflection Yields Gains. Re-
flection across trajectories—such as Inter-task Er-
ror Reflection and our approach—substantially out-
perform single trajectory reflection (Reflexion). On
TravelPlanner, Inter-task reaches 9.44%, compared
to Reflexion’s 5.56%, while our approach achieves
20%. A similar trend is observed on NATURAL
PLAN, such as with our method at 60.31%, Inter-
Task Error Reflection at 51.56% versus 50% (Re-
flexion) on the Trip domain. These results sug-
gest that structured, cross-trial reflection leads
to more robust improvement by abstracting re-
curring failure patterns across diverse task queries.

Training Methods Comparison. Comparing
our approach to Inter-task Error Reflection reveals
the benefits from training a retrospective language
model via SFT. While both methods leverage cross-
trial reflection, our model is fine-tuned to dynami-
cally generate trajectory-specific reflections. This
leads to improvements from 9.44% to 20% on Trav-
elPlanner, from 51.56% to 60.31% on NATURAL
PLAN Trip and from 42% to 48.5% on NATURAL
PLAN Meeting. In contrast, Inter-task relies on
static, precomputed reflections, which may include
irrelevant errors unrelated to the current context.

Moreover, although the Retroformer variant
adopts more sophisticated RL techniques, it un-
derperforms relative to our simpler SFT. This indi-
cates that high-quality reflection synthesis is criti-

16596

TravelPlanner NATURAL PLAN
Methods Pass Rate Methods Accuracy (Trip) Accuracy (Meeting)

ReAct 4.44 Fewshot 44.06 38.50
Reflexion 5.56 Reflexion 50.00 40.50
Inter-Task Error Reflection 9.44 Inter-Task Error Reflection 51.56 42.00
Expel 0.00 Expel 53.79 41.50
Retroformer variant 12.78 Retroformer variant 47.50 44.00
SAMULE 20.00 SAMULE 60.31 48.50

Table 1: Experimental results on TravelPlanner and NATURAL PLAN with Claude 3.5 Sonnet as the actor model.

1 2 3 4
Trial

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pa
ss

 R
at

e

TravelPlanner
SAMULE
ReAct
Reflexion
Expel
Inter-Task Error Reflection
Retroformer variant

1 2 3 4
Trial

44

46

48

50

52

54

56

58

60

Ac
cu

ra
cy

NATURAL PLAN(Trip)
SAMULE
ReAct
Reflexion
Expel
Inter-Task Error Reflection
Retroformer variant

1 2 3 4
Trial

38

40

42

44

46

48

Ac
cu

ra
cy

NATURAL PLAN (Meeting)
SAMULE
ReAct
Reflexion
Expel
Inter-Task Error Reflection
Retroformer variant

Figure 2: The performance change of different approaches across trials.

cal for training effective retrospective models; even
advanced RL methods struggle if the reflection
data is uninformative. These findings highlight
that well-designed reflection synthesis, even com-
bined with simple SFT, can yield superior results
while being more computationally efficient.

Reflexion Struggles in Complex Tasks. Re-
flexion and its derivatives—Expel and Retroformer
variant—struggle on more challenging benchmarks.
In TravelPlanner, Reflexion achieves 5.56%, Retro-
former variant improves modestly to 12.78%, and
Expel collapses to 0%. These results suggest
that self-reflection alone is insufficient when
agents lack a clear understanding of their fail-
ure modes. While Expel and Retroformer vari-
ant extend Reflexion with additional prompts or
fine-tuning, they remain ineffective under high task
complexity. In contrast, our method focuses on
diverse error types derived from multiple failures
and involve reference to facilitate error analysis, en-
abling more informative and actionable reflection
even in complex, low-success-rate environments.

Failure Provides Stronger Signals. Expel per-
forms well on NATURAL PLAN (53.79% for Trip
and 41.5% for Meeting) but fails on TravelPlanner
(0%), likely due to its reliance on successful and
paired (success/failure) trajectories, which are rare
in harder tasks. These results reveal the limita-
tions of success-based reflection in high-error
domains and we show the generated insights by

Methods Pass Rate

ReAct 9.44
Reflexion 16.67
Inter-Task Error Reflection 18.89
Expel 17.22
Retroformer variant 21.67
SAMULE 29.44

Table 2: Experimental results on TravelPlanner with
Claude 3.7 Sonnet as the actor model.

Expel and the detailed analysis in Appendix §F.
Our approach instead focuses on failure, using er-
ror classification and clustering to extract insight
from unsuccessful trials. This strategy proves more
effective in environments where success is scarce
but failures are abundant and informative by com-
paring with references. It underscores the value of
failure-driven learning as a resilient strategy across
tasks of varying complexity.

To further demonstrate the generality and effec-
tiveness of our approach, we evaluated SAMULE

using Claude 3.7 Sonnet as the actor on TravelPlan-
ner in Table 2. The promising results confirm that
our approach consistently improves agent perfor-
mance across different actor models.

4.5 Interactive vs. Non-Interactive
We evaluate our framework under both non-
interactive and interactive settings using Tau-
Bench, and show the results in Table 3.

In the non-interactive setting—consistent with

16597

Methods Non-Interactive (3 trials) Interactive
Pass Rate (Retail) Pass Rate (Airline) Pass Rate (Retail) Pass Rate (Airline)

ReAct 64.87 46.40 64.87 46.40
Reflexion 82.61 56.00 69.75 48.50
SAMULE 87.83 66.00 75.97 55.32

Table 3: Experimental results on Tau-Bench.

the previous experiments on TravelPlanner and
NATURAL PLAN—our method consistently out-
performs baselines in both domains. SEMR
achieves 87.83% and 66% pass rates in Retail
and Airline, respectively, surpassing Reflexion
(82.61%, 56%) and ReAct (64.87%, 46.4%). These
results further confirm the effectiveness of our
multi-level reflection mechanism when applied to
complete trajectories.

In the interactive setting, our approach also out-
performs baselines, achieving 75.97% and 55.32%
pass rates in Retail and Airline, respectively. No-
tably, Reflexion also benefits from interaction, im-
proving over its non-interactive performance in Re-
tail. This suggests that real-time feedback allows
reflective agents to detect and correct partial trajec-
tory errors, leading to better outcomes.

Overall, these results demonstrate that our frame-
work generalizes well across both interactive and
non-interactive contexts. The ability to reflect both
retrospectively (on complete trajectories) and incre-
mentally (during interactions) makes our method
a practical solution for real-world applications re-
quiring adaptive and context-aware reasoning.

4.6 Ablation Study: When to Add Reference?
A key constraint of our proposed framework is
its reliance on a reference output during training,
such as y

(i)
train, which is sometimes unavailable in

many existing benchmarks. We hypothesize that
such references provide critical guidance for error
analysis—especially in complex tasks where agents
frequently fail and self-reflection alone may lead
to hallucination or superficial feedback.

We therefore investigate the impact of providing
references at different stages of our multi-level re-
flection synthesis. We focus on the TravelPlanner
dataset and compare the following three variants:

• No Reference: No reference y
(i)
trainis provided.

• Single + Intra (Reference): The reference
y
(i)
train is provided during both Single Trajectory

and Intra-Task Learning stages.

• Single (Reference) + Intra (No Reference):

Method Variant Pass Rate (%)

No Reference 18.33
Single + Intra (Reference) 15.56
Single (Reference) + Intra (No Reference) 20.00

Table 4: Pass rates on TravelPlanner for different strate-
gies of providing reference during reflection.

The reference y
(i)
train is provided only during

the Single Trajectory Learning, but omitted
during Intra-Task Learning.

Table 4 shows that providing reference only dur-
ing the Single Trajectory Learning stage yields the
best performance (20.00%), outperforming both
the no-reference variant (18.33%) and the variant
that includes references in both stages (15.56%).
This supports our hypothesis that reference can be
particularly useful at the micro level, where the
model benefits from detailed, item-by-item com-
parison between its trajectory and the reference.
For example, if the agent selects a restaurant not
present in the reference plan, it can reflect on the
discrepancy and infer a potential mistake, such as
choosing a restaurant scheduled before arrival time.

Surprisingly, providing the reference at both Sin-
gle Trajectory and Intra-Task Learning results in
degraded performance. We attribute this to the
benchmarks like TravelPlanner, where y

(i)
train is not

a unique solution. Overexposing the reference
may narrow the model’s focus, encouraging it
to align too closely with one specific plan and ig-
nore other legitimate errors not captured by the
reference. This suggests that while micro-level ref-
erences enrich error reasoning, excessive reliance
on them during the meso-level can reduce diversity
in error detection and hinder generalization.

4.7 Error Reduction Analysis
One key feature of SAMULE is that we focus on
addressing errors, especially we perform error tax-
onomy construction and error classification during
the meso level. To further validate the effectiveness
of our reflections in addressing these errors, we con-
ducted an error reduction evaluation by adding final
synthesized reflections to agents, retrying queries,
and reclassifying the resulting errors. We compare

16598

Methods TravelPlanner NATURAL PLAN (Trip) NATURAL PLAN (Meeting)

Reflexion 0.13 0.42 0.22
SAMULE 0.67 0.73 0.53

Table 5: Error reduction rates achieved by our synthesized reflections and Reflexion.

it with the reflections generated by Reflexion and
show the results in Table 5. This quantitative re-
sult shows that our proposed multi-level and error-
prone reflection synthesis significantly improves
the agent’s ability to address identified error types.

4.8 Qualitative Analysis

Due to limited space, we provide some qualita-
tive examples, including an example of constructed
error taxonomy during the meso-level of our pro-
posed Multi-level Reflection Synthesis in Appendix
§ E and a comparison between our approach and
the Retroformer Variant on TravelPlanner in Ap-
pendix §D. The qualitative comparison illustrates
that our trained retrospective model identifies the
true issues in the agent’s output plan, enabling the
agent to correct its mistakes in the subsequent trial.
In contrast, the Retroformer Variant incorrectly di-
agnoses irrelevant errors, which biases the agent
toward focusing on unrelated factors—such as ge-
ographic constraints and meal timing considera-
tions—that are not actually implicated in the orig-
inal plan. This highlights the superior diagnostic
capability of our approach in guiding more targeted
and meaningful corrections.

5 Conclusion

In this work, we introduced SAMULE, a new
framework for self-learning LLM agents via train-
ing a retrospective language model enhanced by
multi-level reflection synthesis. By focusing on the
Single-Trajectory, Intra-Task, and Inter-Task learn-
ing, our method synthesizes reflections via sys-
tematically analyzing past trajectories from micro-
levl to macro-level, which identifies recurring error
patterns and formulates more effective plans. To
operationalize this reflection-driven learning, we
train a retrospective language model using the syn-
thesized reflections. Experimental results on the
TravelPlanner, NATURAL PLAN, and Tau-bench
demonstrate that our approach improves agent per-
formance in complex planning tasks, underscoring
the value of structured, cross-trial reflection for
self-improvement. Our findings highlight the po-
tential of multi-level reflective learning via SFT as
a general paradigm for enhancing the performance

of LLM agents.

6 Limitations

While our method demonstrates strong perfor-
mance and significantly enhances agents’ ability to
learn from failures through multi-level reflection,
several limitations remain:

Static Error Taxonomy Limits Continual
Learning. Our framework constructs an error tax-
onomy during the offline reflection synthesis pro-
cess to guide failure analysis and reflection gen-
eration. However, this taxonomy remains static
throughout inference. As agents encounter new
tasks or previously unseen failure patterns, the ex-
isting taxonomy may become incomplete or out-
dated. Future work could explore incremental tax-
onomy construction and online adaptation methods
to support lifelong learning in dynamic environ-
ments.

Computational Overhead in Multi-Level Re-
flection Synthesis. Generating and organizing
reflection data at multiple levels introduces addi-
tional computational costs during the data prepa-
ration phase. Although the final retrospective
model is lightweight and efficient at inference time,
the offline processes of trajectory analysis, error
taxonomy construction, and cross-task clustering
are resource-intensive, especially for large-scale
datasets with long trajectories. Future research
could investigate more scalable reflection synthe-
sis techniques or efficient memory management
strategies to mitigate this overhead.

References
Amal Alabdulkarim, Madhuri Singh, Gennie Mansi,

Kaely Hall, and Mark O. Riedl. 2022. Experien-
tial explanations for reinforcement learning. arXiv
preprint.

Zhenfang Chen, Delin Chen, Rui Sun, Wenjun Liu,
and Chuang Gan. 2025. Scaling autonomous agents
via automatic reward modeling and planning. arXiv
preprint.

Xueyang Feng, Bo Lan, Quanyu Dai, Lei Wang, Jiakai
Tang, Xu Chen, Zhenhua Dong, and Ji-Rong Wen.
2025. Improving retrospective language agents via
joint policy gradient optimization. arXiv preprint.

16599

https://arxiv.org/abs/2210.04723v4
https://arxiv.org/abs/2210.04723v4
https://arxiv.org/abs/2502.12130v1
https://arxiv.org/abs/2502.12130v1
https://arxiv.org/abs/2503.01490v1
https://arxiv.org/abs/2503.01490v1

Adam Fourney, Gagan Bansal, Hussein Mozannar,
Cheng Tan, Eduardo Salinas, Friederike Niedtner,
Grace Proebsting, Griffin Bassman, Jack Gerrits, Ja-
cob Alber, and 1 others. 2024. Magentic-one: A
generalist multi-agent system for solving complex
tasks. arXiv preprint arXiv:2411.04468.

Jinglong Gao, Xiao Ding, Yiming Cui, Jianbai Zhao,
Hepeng Wang, Ting Liu, and Bing Qin. 2024. Self-
evolving GPT: A lifelong autonomous experiential
learner. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 6385–6432, Bangkok,
Thailand. Association for Computational Linguistics.

Yubin Ge, Ly Dinh, Xiaofeng Liu, Jinsong Su, Ziyao Lu,
Ante Wang, and Jana Diesner. 2021. Baco: A back-
ground knowledge-and content-based framework for
citing sentence generation. In Proceedings of the
59th Annual Meeting of the Association for Compu-
tational Linguistics and the 11th International Joint
Conference on Natural Language Processing (Vol-
ume 1: Long Papers), pages 1466–1478.

Yubin Ge, Devamanyu Hazarika, Yang Liu, and Mahdi
Namazifar. 2023. Supervised fine-tuning of large lan-
guage models on human demonstrations through the
lens of memorization. In NeurIPS 2023 Workshop
on Instruction Tuning and Instruction Following.

Yubin Ge, Salvatore Romeo, Jason Cai, Raphael Shu,
Monica Sunkara, Yassine Benajiba, and Yi Zhang.
2025. Tremu: Towards neuro-symbolic temporal rea-
soning for llm-agents with memory in multi-session
dialogues. arXiv preprint arXiv:2502.01630.

Hitesh Golchha, Sahil Yerawar, Dhruvesh Patel, Soham
Dan, and Keerthiram Murugesan. 2024. Language
guided exploration for RL agents in text environ-
ments. In Findings of the Association for Compu-
tational Linguistics: NAACL 2024, pages 93–102,
Mexico City, Mexico. Association for Computational
Linguistics.

Priyanshu Gupta, Shashank Kirtania, Ananya Singha,
Sumit Gulwani, Arjun Radhakrishna, Gustavo Soares,
and Sherry Shi. 2024. MetaReflection: Learning in-
structions for language agents using past reflections.
In Proceedings of the 2024 Conference on Empiri-
cal Methods in Natural Language Processing, pages
8369–8385, Miami, Florida, USA. Association for
Computational Linguistics.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
and 1 others. 2022. Lora: Low-rank adaptation of
large language models. In International Conference
on Learning Representations.

Zhenlan Ji, Daoyuan Wu, Pingchuan Ma, Zongjie Li,
and Shuai Wang. 2024. Testing and understanding
erroneous planning in llm agents through synthesized
user inputs. arXiv preprint arXiv:2404.17833.

Kuang-Huei Lee, Ian Fischer, Yueh-Hua Wu, Dave
Marwood, Shumeet Baluja, Dale Schuurmans, and

Xinyun Chen. 2025. Evolving deeper llm thinking.
arXiv preprint arXiv:2501.09891.

Yanhong Li, Chenghao Yang, and Allyson Ettinger.
2024. When hindsight is not 20/20: Testing lim-
its on reflective thinking in large language models.
In Findings of the Association for Computational
Linguistics: NAACL 2024, pages 3741–3753.

Fengyuan Liu, Nouar AlDahoul, Gregory Eady, Yasir
Zaki, and Talal Rahwan. 2024. Self-reflection makes
large language models safer, less biased, and ideolog-
ically neutral. arXiv preprint.

Ilya Loshchilov and Frank Hutter. 2018. Decoupled
weight decay regularization. In International Confer-
ence on Learning Representations (ICLR).

Saul McLeod. 2017. Kolb’s learning styles and experi-
ential learning cycle. Simply psychology, 5.

Zehan Qi, Xiao Liu, Iat Long Iong, Hanyu Lai, Xueqiao
Sun, Wenyi Zhao, Yu Yang, Xinyue Yang, Jiadai Sun,
Shuntian Yao, Tianjie Zhang, Wei Xu, Jie Tang, and
Yuxiao Dong. 2024. Webrl: Training llm web agents
via self-evolving online curriculum reinforcement
learning. arXiv preprint.

Chen Qian, Yufan Dang, Jiahao Li, Wei Liu, Zihao
Xie, YiFei Wang, Weize Chen, Cheng Yang, Xin
Cong, Xiaoyin Che, Zhiyuan Liu, and Maosong
Sun. 2024. Experiential co-learning of software-
developing agents. In Proceedings of the 62nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 5628–
5640, Bangkok, Thailand. Association for Computa-
tional Linguistics.

Santosh Kumar Radha, Yasamin Nouri Jelyani, Ara
Ghukasyan, and Oktay Goktas. 2024. Iteration of
thought: Leveraging inner dialogue for autonomous
large language model reasoning. arXiv preprint.

Matthew Renze and Erhan Guven. 2024. Self-reflection
in llm agents: Effects on problem-solving perfor-
mance. arXiv preprint.

Ming Shen, Raphael Shu, Anurag Pratik, James Gung,
Yubin Ge, Monica Sunkara, and Yi Zhang. 2025. Op-
timizing llm-based multi-agent system with textual
feedback: A case study on software development.
arXiv preprint arXiv:2505.16086.

Noah Shinn, Federico Cassano, Ashwin Gopinath,
Karthik Narasimhan, and Shunyu Yao. 2023. Re-
flexion: Language agents with verbal reinforcement
learning. Advances in Neural Information Process-
ing Systems, 36:8634–8652.

Chen Sun, Wannan Yang, Thomas Jiralerspong, Dane
Malenfant, Benjamin Alsbury-Nealy, Yoshua Bengio,
and Blake Richards. 2023. Contrastive retrospection:
honing in on critical steps for rapid learning and
generalization in rl. Advances in Neural Information
Processing Systems, 36:31117–31139.

16600

https://doi.org/10.18653/v1/2024.acl-long.346
https://doi.org/10.18653/v1/2024.acl-long.346
https://doi.org/10.18653/v1/2024.acl-long.346
https://doi.org/10.18653/v1/2024.findings-naacl.7
https://doi.org/10.18653/v1/2024.findings-naacl.7
https://doi.org/10.18653/v1/2024.findings-naacl.7
https://doi.org/10.18653/v1/2024.emnlp-main.477
https://doi.org/10.18653/v1/2024.emnlp-main.477
https://arxiv.org/abs/2406.10400v2
https://arxiv.org/abs/2406.10400v2
https://arxiv.org/abs/2406.10400v2
https://arxiv.org/abs/2411.02337v3
https://arxiv.org/abs/2411.02337v3
https://arxiv.org/abs/2411.02337v3
https://doi.org/10.18653/v1/2024.acl-long.305
https://doi.org/10.18653/v1/2024.acl-long.305
https://arxiv.org/abs/2409.12618v2
https://arxiv.org/abs/2409.12618v2
https://arxiv.org/abs/2409.12618v2
https://arxiv.org/abs/2405.06682v3
https://arxiv.org/abs/2405.06682v3
https://arxiv.org/abs/2405.06682v3

Zhengwei Tao, Ting-En Lin, Xiancai Chen, Hangyu
Li, Yuchuan Wu, Yongbin Li, Zhi Jin, Fei Huang,
Dacheng Tao, and Jingren Zhou. 2024. A survey
on self-evolution of large language models. arXiv
preprint.

Songjun Tu, Jingbo Sun, Qichao Zhang, Xiangyuan Lan,
and Dongbin Zhao. 2024. Online preference-based
reinforcement learning with self-augmented feedback
from large language model. arXiv preprint.

Maria Tulis, Gabriele Steuer, and Markus Dresel. 2016.
Learning from errors: a model of individual pro-
cesses. Frontline Learning Research, 4(2):12–26.

Chengwei Wang, Junyi Li, Haiyan Li, Yijing Xia, Xi-
aoyu Wang, Yufei Xie, and Jinyang Wu. 2022. Learn-
ing from errors? the impact of erroneous example
elaboration on learning outcomes of medical statistics
in chinese medical students. BMC medical education,
22(1):469.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong,
and Yangqiu Song. 2024a. Rethinking the bounds of
llm reasoning: Are multi-agent discussions the key?
Preprint, arXiv:2402.18272.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong,
and Yangqiu Song. 2024b. Rethinking the bounds of
llm reasoning: Are multi-agent discussions the key?
Preprint, arXiv:2402.18272.

Renxi Wang, Haonan Li, Xudong Han, Yixuan Zhang,
and Timothy Baldwin. 2024c. Learning from fail-
ure: Integrating negative examples when fine-tuning
large language models as agents. arXiv preprint
arXiv:2402.11651.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Jian Xie, Kai Zhang, Jiangjie Chen, Tinghui Zhu, Renze
Lou, Yuandong Tian, Yanghua Xiao, and Yu Su. 2024.
Travelplanner: a benchmark for real-world planning
with language agents. In Proceedings of the 41st In-
ternational Conference on Machine Learning, pages
54590–54613.

Zhihui Xie, Liyu Chen, Weichao Mao, Jingjing Xu,
Lingpeng Kong, and 1 others. 2025. Teaching lan-
guage models to critique via reinforcement learning.
arXiv preprint arXiv:2502.03492.

Wei Xiong, Hanning Zhang, Chenlu Ye, Lichang
Chen, Nan Jiang, and Tong Zhang. 2025. Self-
rewarding correction for mathematical reasoning.
arXiv preprint.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio,
William Cohen, Ruslan Salakhutdinov, and Christo-
pher D Manning. 2018. Hotpotqa: A dataset for
diverse, explainable multi-hop question answering.

In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
2369–2380.

Shunyu Yao, Noah Shinn, Pedram Razavi, and
Karthik R Narasimhan. 2024a. τ -bench: A bench-
mark for tool-agent-user interaction in real-world do-
mains. In The Thirteenth International Conference
on Learning Representations.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak
Shafran, Karthik Narasimhan, and Yuan Cao. 2023.
React: Synergizing reasoning and acting in language
models. In International Conference on Learning
Representations (ICLR).

Weiran Yao, Shelby Heinecke, Juan Carlos Niebles,
Zhiwei Liu, Yihao Feng, Le Xue, Rithesh R N,
Zeyuan Chen, Jianguo Zhang, Devansh Arpit, Ran
Xu, Phil L Mui, Huan Wang, Caiming Xiong, and
Silvio Savarese. 2024b. Retroformer: Retrospective
large language agents with policy gradient optimiza-
tion. In The Twelfth International Conference on
Learning Representations.

Xunjian Yin, Xinyi Wang, Liangming Pan, Xiaojun
Wan, and William Yang Wang. 2024. Gödel agent:
A self-referential agent framework for recursive self-
improvement. arXiv preprint.

Wenqi Zhang, Yongliang Shen, Linjuan Wu, Qiuying
Peng, Jun Wang, Yueting Zhuang, and Weiming Lu.
2024. Self-contrast: Better reflection through incon-
sistent solving perspectives. arXiv preprint.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu Lin,
Yong-Jin Liu, and Gao Huang. 2024a. Expel: Llm
agents are experiential learners. In Proceedings of
the AAAI Conference on Artificial Intelligence, pages
19632–19642.

Andrew Zhao, Daniel Huang, Quentin Xu, Matthieu
Lin, Yong-Jin Liu, and Gao Huang. 2024b. Expel:
Llm agents are experiential learners. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 38, pages 19632–19642.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang,
Xinyun Chen, Minmin Chen, Azade Nova, Le Hou,
Heng-Tze Cheng, Quoc V Le, Ed H Chi, and 1
others. 2024. Natural plan: Benchmarking llms
on natural language planning. arXiv preprint
arXiv:2406.04520.

Pei Zhou, Aman Madaan, Srividya Pranavi Potharaju,
Aditya Gupta, Kevin R McKee, Ari Holtzman, Jay
Pujara, Xiang Ren, Swaroop Mishra, Aida Ne-
matzadeh, and 1 others. 2023. How far are large
language models from agents with theory-of-mind?
arXiv preprint arXiv:2310.03051.

A Implementation Details

We tested Claude 3.5 sonnet-v2 and Claude 3.7 son-
net as the backbone actor model for LLM agents,

16601

https://arxiv.org/abs/2404.14387v2
https://arxiv.org/abs/2404.14387v2
https://arxiv.org/abs/2412.16878v1
https://arxiv.org/abs/2412.16878v1
https://arxiv.org/abs/2412.16878v1
https://arxiv.org/abs/2402.18272
https://arxiv.org/abs/2402.18272
https://arxiv.org/abs/2402.18272
https://arxiv.org/abs/2402.18272
https://arxiv.org/abs/2502.19613v1
https://arxiv.org/abs/2502.19613v1
https://openreview.net/forum?id=KOZu91CzbK
https://openreview.net/forum?id=KOZu91CzbK
https://openreview.net/forum?id=KOZu91CzbK
https://arxiv.org/abs/2410.04444v3
https://arxiv.org/abs/2410.04444v3
https://arxiv.org/abs/2410.04444v3
https://arxiv.org/abs/2401.02009v3
https://arxiv.org/abs/2401.02009v3

Method Success Rate (%)

Retroformer (SFT + reward model
training + PPO)

43

Retroformer Variant (SFT + DPO) 44

Table 6: Success rates of Retroformer and its variant
on HotPotQA.

and also use Claude 3.5 sonnet-v2 to synthesize
high-quality reflections through our multi-level re-
flection synthesis. For the non-interactive setting,
we follow previous work (Yao et al., 2024b; Shinn
et al., 2023) we run the agent for at most 4 trials.

As for training the retrospective model, we se-
lect QWEN 2.5 3B. Models are trained with LoRA
(Hu et al., 2022) and DeepSpeed stage 3 for sav-
ing memory, and are optimized using AdamW
(Loshchilov and Hutter, 2018). We set the learning
rate to 5e − 5, and the learning rate was updated
using a linear decay schedule with an end value
of 0. We set the total training epochs to 15, and
the batch size to 1. The training was performed on
8 NVIDIA A100 Tensor Core GPUs and it took
about 1 hour for one training run.

B Comparison of Retroformer and Its
Variant on HotPotQA

While the original Retroformer (Yao et al., 2024b)
has demonstrated effectiveness on relatively simple
benchmarks such as HotPotQA (Yang et al., 2018),
our research focuses on more complex and chal-
lenging agentic benchmarks where trajectories are
significantly longer. For instance, on TravelPlan-
ner, agent trajectories can exceed 10,000 tokens,
introducing substantial challenges for model train-
ing due to long-context limitations and increased
memory consumption.

To facilitate a fair comparison and mitigate out-
of-memory issues caused by lengthy inputs, we
evaluate the original Retroformer (SFT + reward
model training + PPO) against its more memory-
efficient variant (SFT + DPO) on the HotPotQA
benchmark. Specifically, we follow the same re-
ward shaping strategy used in Retroformer, where
the reward is computed based on task improvement
after incorporating a generated reflection. This
allows us to pair high-reward samples with low-
reward samples for PPO training. Both models are
trained using the Qwen-2.5 3B language model.

As shown in Table 6, the Retroformer variant
achieves a comparable success rate to the origi-
nal Retroformer (44% vs. 43%). This result con-

firms our hypothesis that DPO can serve as a more
memory-efficient alternative to PPO without sacri-
ficing performance. Therefore, we adopt the Retro-
former variant in our subsequent experiments to
better accommodate the computational demands of
long-context agentic tasks.

C Designed Prompts for Multi-Level
Reflection Synthesis

We list the designed prompts for our proposed
multi-level reflection synthesis on TravelPlanner,
and for other benchmarks we slightly modify the
instruction to accommodate for the corresponding
benchmark. Specifically, we show the prompt for
Single-Level Learning in Figure 3, the prompt for
constructing the error taxonomy during Intra-Task
Learning in Figure 4, the prompt for error classifi-
cation during Intra-Task Learning in Figure 5 and
the prompt for Inter-Task Learning in Figure 6.

D Qualitative Example on TravelPlanner

We include a qualitative example of our approach
on TravelPlanner in Figure 7 and the output from
Retroformer Variant in Figure 8. Due to the lim-
ited space, we only show part of the output. In the
output plan by the LLM agent, it violates two con-
straints: it selected a wrong accommodation which
requires minimum 2 nights stay but only sched-
uled to stay for 1 night; the total cost of the plan is
$2064 and exceeds the budget $ 1900. Then in the
generated reflection by our approach, it pointed out
these two errors and leads the agent to fix it in the
next trial. However, Retroformer Variant identifies
wrong errors, including geographic coordination is-
sues and meal scheduling errors, as the geographic
and meal timing information are not specified in
the agent’s output plan.

E Example of Generated Error
Taxonomy

We show an example of the constructed error tax-
onomy during the meso-level of our Multi-level
Reflection Synthesis on TravelPlanner in Figure 9.

F Generated Insights by Expel

We present the insights generated by Expel on Trav-
elPlanner in Figure 10, and those on NATURAL
PLAN in Figures 11 and 12. Overall, we observe
that the insights produced for TravelPlanner are
overly general, primarily focusing on cost-related
issues while overlooking other critical error types,

16602

You are an advanced reasoning agent that can improve based on self refection.
You will be given a previous reasoning trial in which you were given access to
an automatic cost calculation environment, a travel query to give a plan and
relevant information. Only the selection whose name and city match the given
information will be calculated correctly. Meanwhile, you are also given one
valid plan to the given query as a reference to facilitate your analysis, though
not the only valid one. Now by comparing your previous trial with the valid
plan and verifying factuality of your previous trial with the given information,
give a comprehensive diagnosis of your previous trial in a few sentences without
mentioning the valid plan. Then devise a new, concise, high level plan that aims
to mitigate potential failures. Use complete sentences.

Given information: ${text}

Previous trial:
Query: ${query} ${scratchpad}

Valid plan: ${annotated_plan}

Reflection:

Figure 3: The designed prompt for Single-Level Learning.

such as accommodation policy violations and travel
time planning errors. This can lead the agent to
have bias towards cost-related analysis in its future
trials and ignore other errors, which further hurts
the agent performance and even leads the pass rate
on TravelPlanner to 0%. Such a limitation is likely
a result of Expel’s strict reliance on learning from
successful trajectories, which are scarce in complex
environments where agents struggle to produce suc-
cessful plans.

16603

You are an advanced reasoning agent that aims at improving reasoning through
self refection. You were tasked to give a valid plan to a travel query given
its relevant information and an automatic cost calculation environment. Only the
selection whose name and city match the given information will be calculated
correctly. You have tried to solve this task multiple times, and you will also
be given your previous reasoning paths of these trials with their final results
(either success or fail). Now, you need to analyze all reasoning paths of these
trials by checking whether each action step leads to a successful final plan and
what types of error you have made at each action step.

Step-by-step Instruction:
1. Read all information and analyze all given trials based on the given
information. Carefully check how failed trials violate information or constraints
based on the meta data from the given information, which caused the failure.
2. Based on your analysis, come up with a complete error taxonomy for categorizing
the all common errors that you have made for actions in different failed trials.
You should merge similar error types as one. You will be given the error taxonomy
from previous reflections, and you can add new error types.
3. Generate your output in JSON format as one dictionary which contains the
following keys:
a. "error_taxonomy": a list of strings containing all error type names without
explanation.
b. "rationale": your explanation of giving this error taxonomy including how the
failed trials fail and how the valid plan, and successful trials success.

Given Information: ${text}

Query: $ {query}

Previous Trials: $ {trials}

Error Taxonomy: $ {error_taxonomy}

Figure 4: The designed prompt for constructing the error taxonomy during the Intra-Level Learning.

16604

You are an advanced reasoning agent that aims at improving reasoning through
self refection. You were tasked to give a valid plan to a travel query given
its relevant information and an automatic cost calculation environment. Only the
selection whose name and city match the given information will be calculated
correctly. You have tried to solve this task multiple times, and you will be
given a reasoning path of one previous trials with their final results (either
success or fail). Each reasoning path consists of a sequence of thought, action
and observation at each timestep. Now, you need to reflect on the reasoning
path of the current trial by classifying the error type for each action step and
analyze whether each action step leads to a successful final plan.

Step-by-step Instruction:
1. Read all information and analyze the current trial.
2. For the current step in the current trial, examine if it’s valid and correct by
checking whether it satisfies the given information and commonsense. Additionally,
you need to compare it with the provided successful plan that satisfies the query
to analyze the error. Then based on the given error taxonomy and the rationale
on how the error taxonomy is proposed from all trials to the query, classify any
potential errors by giving corresponding error types if it contains errors. You
can only select the error types from the error taxonomy and you can leave it
empty if there is no error.
3. Give a critique as your explanation of each error classification for the
current step in the current trial by considering whether the current step
contributes to a valid final plan. Do not refer to other trials in your critique.
4. Generate your output in a JSON format as a list of dictionaries. If there
is no error, such as for successful trials, you can leave the list empty. Each
dictionary item contains the following keys:
a. "error_type": one error type for the current step. It must be from the given
error taxonomy.
b. "critique": the critique of the current step for the classified error type.

Given Information: $ {text}

Query: $ {query}

Error Taxonomy:
$ {error_taxonomy} Error Taxonomy Rationale:
$ {rationale}

$ {trial_id}:
$ {current_trial}

Valid Plan:
$ {annotated_plan}

Current Step:
$ {current_step}

Figure 5: The designed prompt for constructing the error classification during the Intra-Level Learning.

16605

You are an advanced reasoning agent that aims at improving reasoning through
self refection. You were tasked to give a valid plan to each travel query given
its relevant information and an automatic cost calculation environment. You have
tried to solve multiple queries and made different errors in your trajectories
that led to the failures of tasks. Now, you will be given multiple actions that
you made with the same classified error type from different trials and each of
these action has a corresponding critique regarding the error type. Your task is
to give a comprehensive and high level diagnosis for the failure across different
trials, and devise a new, concise, high level plan that aims to mitigate the same
error. Use complete sentences.

Error Type: ${error_type}

$ {error_trajectories}

Figure 6: The designed prompt for the Inter-Level Learning.

16606

Can you help craft a 5-day travel plan that starts in Colorado Springs and takes in 2
cities in Illinois from March 5th to March 9th, 2022? Single traveler with an overall
budget of $1,900.

Output Plan:
[...
{

"days": 4,
"current_city": "from Moline to Rockford",
"transportation": "Self-driving, from Moline to Rockford, Duration: 2 hours 1
min, Cost: 9",
"breakfast": "Coco Bambu, Rockford",
"attraction": "Anderson Japanese Gardens, Rockford;Discovery Center Museum,
Rockford;",
"lunch": "Flying Mango, Rockford",
"dinner": "Cafe Southall, Rockford",
"accommodation": "Pure luxury one bdrm + sofa bed on Central Park, Rockford"
→ minimum 2 nights stay

},
...]
Total Cost: 2064.0 > 1900

 LLM Agent

Based on the previous trial, I can identify that the main reason for failure was attempting
to create an overly detailed plan without first validating the total costs. The plan jumped
straight into detailed day-by-day scheduling without first establishing whether the major
cost components (transportation, accommodation, and basic daily expenses) would fit
within the $1,900 budget. Also, I selected "Pure luxury one bdrm + sofa bed on Central
Park, Rockford" without considering its 2-night minimum stay requirement.

A better approach would be to:
1. First calculate the fixed major costs (transportation between cities and
accommodations)
2. Determine the remaining budget for daily activities and meals
3. Only then create a detailed itinerary that fits within those constraints

This would help avoid the situation where we spend time creating detailed plans that
might exceed the budget. Additionally, the long driving times (12+ hours) weren't
properly considered in terms of their impact on daily activities. A more realistic plan
would account for these travel days as primarily transportation days with minimal
additional activities.

SA
M

U
LE

Figure 7: An example of the generated reflection by our approach on TravelPlanner.

16607

The comprehensive diagnosis reveals multiple critical issues in the failed travel
planning attempt. Here's a detailed summary of the key problems and how to address
them:

Primary Planning Errors:
1. Geographic Coordination Issues:

- Failed to properly verify restaurant locations across different cities
- Selected accommodations without checking their availability in correct cities
- Mixed venue types (e.g., restaurants with attractions) without careful verification

Solution: Implement strict geographic verification protocols including:
- Cross-reference all locations with correct city matches
- Confirm accommodation availability in destination cities only
- Limit attraction selections to actual locations in each city
- Verify all venues exist at requested times

2. Timing and Resource Management:
1. Meal Scheduling Errors:

- Planned unrealistic breakfast time after late arrival
- Served meals immediately upon arriving at each location\n- Did not account

for travel time in meal planning
Solution: Establish clear meal scheduling protocol:

- Start meals 2-3 hours after arriving
- Maintain consistent meal intervals
- Allow buffer time for transitions between activities
- Consider group size when planning meals

3. Budget Allocation:
1. Poor Resource Distribution:

- Front-loaded expenses on early days
- Insufficient consideration of daily spending caps
- Uneven distribution of budget across expenses

Solution: Implement systematic budget tracking:
- Calculate daily budget cap ($380-$400)
- Group activities by cost-effective timing
- Reserve 20-25% for future days
- Monitor total expenses throughout planning process

...

R
et

ro
fo

rm
er

 V
ar

ia
nt

Figure 8: Part of the generated reflection by Retroformer Variant to the same input in Figure 7.

16608

Location Verification Error
Accommodation Child Policy Violation
Accommodation Selection Error
Travel Time Scheduling Error
Accommodation Minimum Stay Violation
Travel Time Planning Error
Accommodation Pet Policy Violation
Inefficient Resource Allocation
Geographic Data Misinterpretation
Restaurant Timing Error
Budget Allocation Error
Accommodation Smoking Policy Violation
Transportation Planning Error
Insufficient Data Recognition
Invalid Location Selection
Budget Constraint Violation
Accommodation Capacity Violation
Query Requirement Mismatch
Attraction Planning Error
Transportation Cost Error
Incomplete Day Planning
Restaurant Selection Error
House Rules Violation
Flight Connection Error
Attraction Distribution Error
Accommodation Party Policy Violation

Figure 9: The constructed error taxonomy on TravelPlanner.

- Calculate the total cost of the entire trip after planning each day to ensure
it stays within the given budget, making adjustments as necessary. {4}
- Allocate the budget strategically across all days of the trip, considering factors
such as transportation costs, accommodation prices, and planned activities for
each day. {4}
- Start by outlining the major components of the trip that fit the given constraints
before diving into detailed planning. {3}
- When the total cost exceeds the budget, prioritize essential elements of the
trip and look for cost-saving alternatives in transportation, accommodation, or
activities to bring the plan within budget constraints. {3}
- When encountering an error in planning (e.g., invalid dinner option), quickly
adjust and retry with a valid alternative. {2}
- Use the CostEnquiry action frequently to get real-time cost updates for each
day’s plan, allowing for immediate adjustments if necessary. {2}

Figure 10: The generated insights by Expel on TravelPlanner.

16609

- Always start by clearly defining the travel query parameters, including origin,
destination, dates, and any specific requirements. {2}
- Utilize the automatic cost calculation environment efficiently by inputting all
relevant information accurately and completely. {2}
- Consider multiple travel options and compare their costs, duration, and
convenience before recommending a plan. 2
- When presenting a travel plan, provide a clear breakdown of costs, itinerary
details, and any important notes or restrictions. {2}

Figure 11: The generated insights by Expel on NATURAL PLAN (Trip).

- Begin by gathering all essential meeting parameters, including participants,
preferred dates and times, duration, and meeting objectives. {2}
- Ensure all participants’ availability is accurately collected to avoid scheduling
conflicts. Leverage shared calendars or scheduling tools when possible. {2}
- Consider alternative time slots and meeting formats (virtual, in-person, hybrid)
to accommodate diverse participant preferences and logistical constraints. {2}
- When proposing a meeting schedule, clearly outline the agenda, expected duration,
and any required preparation to ensure effective participation. {1}

Figure 12: The generated insights by Expel on NATURAL PLAN (Trip).

16610

