
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 16744–16757
November 4-9, 2025 ©2025 Association for Computational Linguistics

Dynamic Retriever for In-Context Knowledge Editing via Policy
Optimization

Mahmud Wasif Nafee1,2* Maiqi Jiang3* Haipeng Chen3 Yanfu Zhang3†

1Rensselaer Polytechnic Institute, Troy, NY, USA
2Bangladesh University of Engineering and Technology, Dhaka, Bangladesh

3College of William & Mary, Williamsburg, VA, USA
nafeem@rpi.edu mjiang04@wm.edu hchen23@wm.edu yzhang105@wm.edu

Abstract

Large language models (LLMs) excel at fac-
tual recall yet still propagate stale or in-
correct knowledge. In-context knowledge
editing offers a gradient-free remedy suit-
able for black-box APIs, but current editors
rely on static demonstration sets chosen by
surface-level similarity, leading to two persis-
tent obstacles: (i) a quantity–quality trade-off,
and (ii) lack of adaptivity to task difficulty.
We address these issues by dynamically se-
lecting supporting demonstrations according to
their utility for the edit. We propose Dynamic
Retriever for In-Context Knowledge Editing
(DR-IKE), a lightweight framework that (1)
trains a BERT retriever with REINFORCE to
rank demonstrations by editing the reward, and
(2) employs a learnable threshold to prune
low-value examples, shortening the prompt
when the edit is easy and expanding it when the
task is hard. DR-IKE performs editing without
modifying model weights, relying solely on for-
ward passes for compatibility with black-box
LLMs. On the COUNTERFACT benchmark, it
improves edit success by up to 17.1%, reduces
latency by 41.6%, and preserves accuracy on
unrelated queries, demonstrating scalable and
adaptive knowledge editing.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in memorizing vast
amounts of knowledge and applying it across vari-
ous applications, such as question answering (Min
et al., 2024), dialogue systems (Feng et al., 2023),
and code generation (He et al., 2024). Nevertheless,
because these models are trained on a fixed corpus
(Touvron et al., 2023; Brown et al., 2020), their
knowledge often lags behind real-world develop-
ments—either due to erroneous data in the training
set (Cao et al., 2021a) or the inherent delay between

* Equal contribution.
† Corresponding author.

data collection and model deployment (Dhingra
et al., 2022; Gu et al., 2024b). For instance, dur-
ing a conversation a user might ask, “What is the
newest iPhone right now?”, and a model trained
before 2024 could confidently reply, “The iPhone
15 is the latest model,” even though Apple intro-
duced the iPhone 16 in September 2024. Such
mismatches propagate to end tasks that depend
on up-to-date factual grounding, including tempo-
ral reasoning (Zhu et al., 2025), fact verification
(Mousavi et al., 2024), and personalized recommen-
dation (Bao et al., 2024). Retraining a full-scale
LLM with fresh data would in principle close this
gap, but the computational and financial costs are
prohibitive (DeepSeek-AI et al., 2024); as a result,
methods for Knowledge Editing—which aim to
surgically modify the original model in order to
incorporate new or corrected facts (Mitchell et al.,
2022a)—have emerged as an attractive alternative
due to their efficiency and targeted updates.

However, existing practical knowledge editing
methods still face three major obstacles. (1) Com-
putation cost. Gradient-based editors such as
ROME (Meng et al., 2022), MEND (Mitchell et al.,
2022a), MEMIT (Meng et al., 2023a), and SERAC
(Cao et al., 2021b) first calculate the gradient with
respect to the parameters that most influence the
prediction, and then apply a low-rank update to
the implicated weight matrices, so that the model
produces the desired answer while leaving other be-
haviours unchanged. Although one edit on GPT-J-
6B takes only seconds (Meng et al., 2023a), buffer-
ing intermediate activations for T5-11B already
consumes∼60 GB of GPU memory (Mitchell et al.,
2022a), and both memory and compute scale lin-
early with model size and the number of edits, ren-
dering thousands of real-time updates on 70-B mod-
els infeasible for most labs or start-ups. Moreover,
these algorithms assume full read–write access to
the weights, an assumption violated by the growing
number of commercial LLM APIs. Consequently,

16744



in-context knowledge editing (IKE) (Zheng et al.,
2023) has been proposed: it injects the corrected
facts as demonstrations in the prompt, thereby
achieving competitive success rates without any pa-
rameter updates or gradient computations. Because
most production LLMs are exposed only through
black-box APIs, we confine our study to this re-
alistic black-box-only scenario and ask how far a
purely in-context approach can be pushed.

Even for in-context-based editors (Madaan et al.,
2022; Zheng et al., 2023; Zhong et al., 2023), two
further challenges remain. (1) Trade-off between
example quantity and quality. A series of recent
in-context-learning studies reveals that accuracy
rises sharply when the prompt includes the first few
highly relevant examples, but the marginal benefit
of each additional example soon saturates and may
even reverse once redundancy or noise creeps in
(Chen et al., 2023; Agarwal et al., 2024; Zhang
et al., 2025; Liu et al., 2023). In knowledge editing,
this fragility is amplified: irrelevant, conflicting, or
poorly ordered supporting facts not only fail to help
but also propagate errors to otherwise unrelated
predictions (Yu et al., 2025), producing “ripple”
side-effects (Cohen et al., 2024). Consequently,
practical editors must retrieve and present a mini-
mal set of maximally informative, non-overlapping
demonstrations rather than indiscriminately length-
ening the prompt.

(2) Adaptivity to task difficulty. Not all edits
are equally tractable: recent work shows that suc-
cess rates vary by knowledge type. Edits involving
abstract categories (Ge et al., 2024a), common-
sense reasoning (Wu et al., 2024), temporal ref-
erences (Ge et al., 2024b), reasoning-heavy logic
(Hua et al., 2024), or popular entities (Cohen et al.,
2024) are consistently more error-prone. In addi-
tion, editing multiple related facts increases the
risk of contradiction or unintended side-effects (Li
et al., 2024). These findings highlight the need for
adjust the editing methods based on the structure
and complexity of each task.

To address the above challenges, we propose
Dynamic Retriever for In-Context Knowledge
Editing (DR-IKE), an adaptive example retrieval
framework optimized via policy gradients. Our
method augments a frozen LLM with a trainable
BERT-based retriever that selects and ranks aux-
iliary factual examples to best facilitate accurate
edits. Rather than relying on heuristic retrieval
or static prompts, the retriever learns to balance
informativeness and factual consistency through

interaction: it is rewarded for example selections
that lead the LLM to produce the correct, updated
output. This approach mitigates the cost and rigid-
ity of gradient-based editors, while also adapting to
the difficulty of individual edits through a learnable
thresholding mechanism that filters harmful or re-
dundant context. In doing so, our framework offers
a scalable, model-agnostic alternative for real-time
factual updates, especially in settings with limited
access to model internals.

Our main contributions are as follows:

• We design a BERT-based retriever trained
with policy gradients that selects and ranks
auxiliary facts without touching model
weights. This light-weight, inference-time so-
lution directly avoids the memory and com-
pute overheads for gradient-based editors,
making it viable in commercial API settings.

• By learning to surface only the most informa-
tive, non-overlapping examples, our method
curbs prompt length and minimises redun-
dancy, resolving the quantity–quality trade-off
identified in in-context knowledge editing.

• We introduce a dynamic threshold that tight-
ens or relaxes retrieval based on the predicted
hardness of each edit, furnishing extra support
for abstract, temporal, or popular-entity up-
dates while avoiding over-prompting on easier
cases—thereby addressing the need for adap-
tivity to task difficulty.

• On the COUNTERFACT benchmark, DR-IKE
outperforms earlier in-context editors: it trims
prompt length, cutting per-epoch latency by
41.6 % ; raises Edit-Success Rate by up to
17.1 % with fewer tokens; and, thanks to
its learnable budget controller, delivers the
largest gains on paraphrased and other diffi-
cult edits while preserving unrelated knowl-
edge, demonstrating true adaptivity to task
difficulty.

2 Related Work

2.1 In-context Learning for Knowledge
Editing

Early work on knowledge editing relied on
gradient-based parameter updates. Dai et al.
(2022) modify FFN key–value pairs in KNOWL-
EDGE NEURON; Meng et al. (2023b) apply con-
strained least squares to the FFN matrix in ROME;

16745



and Mitchell et al. (2022a) learn low-rank up-
dates in MEND. Although effective, these meth-
ods are computationally heavy, can harm unre-
lated behaviour (Gu et al., 2024b), and are in-
feasible for commercial black-box LLMs (Zheng
et al., 2023). This limitation has sparked in-
terest in in-context knowledge editing, which in-
jects the corrected facts as demonstrations in
the prompt. Simple prompt engineering—e.g.,
prefixing with “Imagine that . . . ” (Cohen et al.,
2024)—or chain-of-thought prompting in EditCoT
(Wang et al., 2024a) can inject new facts with-
out touching weights. Retrieval-augmented loops
exploit past errors and user feedback: SERAC
reroutes matched inputs to a counterfactual model
(Madaan et al., 2022; Mitchell et al., 2022b),
and multi-hop question formulations improve fi-
delity (Gu et al., 2024a; Zhong et al., 2023).
Demonstration-diversity strategies—first shown by
Si et al. (2023) and formalised in IKE via k-NN
retrieval of COPY, UPDATE, and RETAIN examples
(Zheng et al., 2023)—boost success rates further.
Yet existing retrieval pipelines rely solely on em-
bedding similarity, leaving room for utility-aware
selection and pruning. There remains a need for
dynamic methods that operate entirely under frozen
weights, avoid backpropagation, and minimize both
training and inference overhead.

2.2 Retrieval for In-context Learning

Retrieval for ICL traditionally uses static methods
such as BM25 (Robertson and Zaragoza, 2009) or
dense embeddings (Liu et al., 2022), which lack
task-aware filtering. Fine-tuned retrievers (Lu et al.,
2022; Li et al., 2023; Wang et al., 2024b) adapt to
specific domains but still return a fixed number of
demonstrations. Yu et al. (2025) model retrieval as
a Markov Decision Process with a learnable thresh-
old for long-tail QA. While their bag-of-words pres-
election suffices for that setting, it lacks the context
sensitivity needed for knowledge editing. We adapt
this framework by using embeddings-based pres-
election for richer semantics and editing-specific
rewards to encourage efficacy, specificity, and sta-
bility.

3 Problem Statement

Definition 3.1 (Knowledge Editing). LetM be a
frozen large-language model and let Kc denote a
single factual triple (or small set of triples) stored in
the model’s parametric memory. Knowledge edit-

Retriever

In-context-based Knowledge Editing

Complex Task: Hannah Point is in 
Antarctica Europe

Simple Task: 2010 Winter Paralympics can 
be found in Vancouver Berlin

32 Examples

Prompt

Dynamic 
Retriever

18 Examples

Prompt

22 Examples

Prompt

(a) Common In-context Editors

(b) Our Dynamic Retriever In-context Editor

Query: 2010 Winter 
Paralympics is 

located in Vancouver
(Wrong)

Query: Hannah 
Point is located in

the continent 
Antarctica (Wrong)

Query: 2010 Winter 
Paralympics is 

located in Berlin
(Correct)

Query: Hannah 
Point is located in

the continent 
Europe (Correct)

Simple Task: 2010 Winter Paralympics can 
be found in Vancouver Berlin

Complex Task: Hannah Point is in 
Antarctica Europe

Figure 1: Motivating example for adaptive in-context
editing. (a) A fixed-shot editor appends the same
large set of demonstrations to every query; the over-
sized prompt diffuses model attention, hindering both
a straightforward location swap (Winter Paralympics:
Vancouver→ Berlin) and a more concept-heavy update
(Hannah Point: Antarctica→ Europe), whose corpus ev-
idence is dominated by Antarctic descriptions. (b) Our
dynamic editor adjusts prompt length to task complexity,
retaining a minimal context for the simple edit while
retrieving additional, targeted facts for the harder one.

ing seeks a post-edited modelM′ = f(M,Kc→
K′

c) such that

1. for any query q whose answer depends solely
on Kc, the response ofM′ is consistent with
the revised fact K′

c, and

2. for any query that depends on unrelated knowl-
edge Ks (Ks ∩ Kc = ∅), the behavior ofM′

matches that of the original modelM.

Definition 3.2 (In-context Knowledge Editing). A
language model may be modified either by chang-
ing its parameters or by altering the input prompt
P . In-context Knowledge Editing keeps the pa-
rameters ofM frozen and employs a retriever R
to construct an augmented In-Context Learning
(ICL) prompt P ⋆ = P +⟨d1, . . . , dm⟩, where dj
are natural-language demonstrations. Conventional
editors choose a fixed number m≥0 of demonstra-
tions (Zheng et al., 2023; Cohen et al., 2024). We
generalize this paradigm by learning a threshold σ
that allows the retriever to select a variable number
kσ(q) =

∣∣{j | πj≥σ}
∣∣ of demonstrations, where

πj is the retriever score of candidate j; see Fig. 1(b)
for an illustration.

16746



Definition 3.3 (Demonstration Categories (Zheng
et al., 2023)). Each retrieved example is assigned
one of three functional roles:

• Copy—explicitly restates the target fact to
reinforce K′

c.
Example: “The official language of Brazil is
→ Spanish.”

• Update—paraphrases the query before intro-
ducing the new fact.
Example: “Brazil’s national language has
been changed to→ Spanish.”

• Retain—references a related context that
should not change.
Example: “The official language of Canada is
→ English.”

While RETAIN examples increase specificity, an
excess of low-utility RETAINS can bloat the prompt
and push the LLM to fall back on outdated paramet-
ric memory. Therefore, our method dynamically
selects only a subset of the RETAIN pool, while
all three categories remain available for prompt
construction.

4 Method

We now give a brief tour of DR-IKE (see Fig. 2
for a schematic). During training, a lightweight
BERT retriever learns, via REINFORCE (Williams,
1992), to rank RETAIN candidates, while a learn-
able threshold σ simultaneously adjusts the number
of examples admitted to the prompt. At inference
time the same threshold truncates the ranked list
once, producing a single compact prompt that is
sent to the black-box LLM.

The rest of this section is organized as follows.
Section 4.1 formalizes the retrieval process as a
Markov Decision Process, specifying the state, ac-
tion, policy, and reward. Section 4.2 details the
policy-gradient training protocol. Finally, Section
4.3 introduces the dynamic budget controller that
adapts σ to prevent prompt bloat.

4.1 Markov-Decision-Process Formulation

We cast RETAIN-example selection as an (Markov
Decision Process) MDP ⟨S,A, T,R⟩ so that the
retriever can optimize for utility rather than raw
similarity.

State. At step t the state is st = (x,Rt), where
x is the query and Rt = {e1, . . . , et} ⊆ C is the
ordered set of RETAINS chosen so far. The candi-
date pool C = {e(1), . . . , e(n)} is produced off-line
by KNN retrieval over sentence embeddings.

Action. The action space is A = C ∪ {stop}.
Choosing at = e(i) appends that example to the
growing prompt; choosing stop finalizes the prompt
and terminates the episode.

State Transition. If at ̸= stop the transition is
deterministic:

st+1 = (x,Rt ∪ {at}). (1)

No successor state is generated after stop.

Reward. After each action at, the current prompt
is fed to the frozen LLM and a step-wise reward is
issued:

rt+1 = 2× 1
[
ŷt+1 = ynew

]
− 1, (2)

where ŷt+1 is the LLM’s answer and 1[·] is the indi-
cator. This step-wise feedback guides the retriever
in estimating the marginal impact of each added
example on editing success.

4.2 Policy-gradient Training of the Retriever
Fig. 2 (left) outlines the learning loop. At each
epoch we optimize the retriever parameters while
the LLM remains frozen.

Demonstration selection. For each edit instance
(x, ynew), we use a pretrained 20M-parameter
Sentence-Transformer (Reimers and Gurevych,
2020) to retrieve fixed COPY and UPDATE demon-
strations, and to preselect a candidate pool for RE-
TAIN examples.

Policy and action sampling. The retriever is a
frozen 4-layer BERT encoder (29 M parameters)
(Turc et al., 2020) followed by a trainable linear
head Sθ whose parameters are denoted by θ. Each
e(i) ∈ C receives a score zi = Sθ(x, e

(i)). A soft-
max yields the categorical policy:

πθ(at = e(i) | s) = exp(zi)∑n
j=1 exp(zj)

. (3)

At step t an index at is sampled from πθ and the
corresponding retain et is appended to the prompt
iff πθ(at | st) > σ; otherwise the threshold mech-
anism (Section 4.3) emits the stop action and the
episode terminates.

16747



Training Inference

Copy

Update

LLM

Answer

Prompt

Retain

Example Pool

Retriever

Query

Copy

Update

Filtered
&

Ranked

Query
Filtered by 𝜎

Copy

Update

LLM

Answer 1
(Wrong)

1st Prompt

Retain

Example Pool

Retriever

Query

Copy

Update

Filtered
&

Ranked

Query

Top-1 
Selection

2nd 

Answer 2
(Correct)

……
(Correct)

Answer 𝑘-1
(Correct)

Answer 𝑘
(Wrong)

Control

𝜎

Update

Update

Figure 2: Overall architecture of the proposed framework. Training stage (left). Given an edit query, the retriever
scores a pool of retained candidate demonstrations. A learnable threshold σ converts these scores into an integer
k, the number of prompt variants to generate. The frozen LLM processes each variant; its outputs yield the
reinforcement signal used to update the retriever via policy gradients. Whenever the aggregated outcome flips
between success and failure, σ is adjusted to capture the revised difficulty estimate. Inference stage (right). At test
time, the learned σ truncates the ranked list once, yielding a single concise prompt to the frozen LLM.

Policy Update. After each action the current
prompt is queried and a binary reward rt ∈
{+1,−1} is observed Eq. 2. The REINFORCE
(Williams, 1992) loss is

L(θ) = −
T∑

t=1

rt log πθ(at | st), (4)

where T is the (variable) episode length. Because
gradients flow only through the linear head, updates
are computationally light while still teaching the
retriever which retains to keep and when to stop. A
complete, line-by-line pseudocode listing appears
in Appendix A.

4.3 Dynamic Budget Controller
To curb prompt bloat we endow the retriever with a
learnable threshold σ called budget controller that
caps the number of RETAIN examples. At the start
of training we set σ = 0, guaranteeing that at least
one RETAIN can be selected. During both training
and inference a candidate e(i) is kept only if its
policy probability satisfies πθ(at = e(i) | s) > σ;
candidates are considered in descending order of
probability.

Adaptive update. While constructing the prompt
we monitor the binary reward r ∈ {+1,−1} af-

ter each newly added example. If appending the
(j+1)-th RETAIN turns a previously correct an-
swer into an incorrect one, we tighten the budget
by raising σ to the largest probability among the
remaining candidates:

σ ← max
(
σ, max

i>j
πθ(at = e(i) | s)

)
. (5)

Thus the bar for inclusion becomes progressively
higher on difficult edits, whereas easy edits natu-
rally terminate after a few high-utility examples.
This single scalar threshold allows the system to
learn both which RETAIN matter and how many
are worth keeping, achieving compact yet effective
prompts.

5 Experiments

5.1 Experimental Setup

Dataset We use the COUNTERFACT bench-
mark (Meng et al., 2023b), a widely adopted eval-
uation suite for factual knowledge editing in lan-
guage models. It comprises 21,919 factual records.
We follow Zheng et al. (2023) in using the first
2,000 records for the editable sample pool and the
remainder for constructing ICL demonstrations.

16748



Editing Method Extra Params S ↑ ESR ↑ PC ↑ RR ↑ ESM ↑ GSM ↑
Inference
Time(s) ↓

Llama-3.1-8B-Instruct
FactPrompt 0 0.434 0.61 0.34 0.43 0.21 -0.05 1.99
EditCoT 0 0.431 0.70 0.33 0.40 0.24 -0.06 2.02
IKE 20M 0.727 0.76 0.67 0.76 0.43 0.39 6.52
DR-IKE (Ours) 49M 0.775 0.89 0.81 0.66 0.69 0.49 3.81
Qwen 2.5-7B
FactPrompt 0 0.335 0.48 0.26 0.33 0.54 0.45 2.42
EditCoT 0 0.424 0.53 0.43 0.35 -0.09 -0.15 2.25
IKE 20M 0.738 0.75 0.69 0.78 0.64 0.57 6.75
DR-IKE (Ours) 49M 0.779 0.89 0.77 0.70 0.83 0.74 4.21

Table 1: Editing performance across methods for two base models, including extra parameter counts, harmonic
mean S, edit/generalization success margins (ESM/GSM), and measured inference time per iteration. Best scores
are in bold, second-best are underlined.

Language Model We use Meta-Llama-
3.1-8B-Instruct and Meta-Llama-3.2-3B-
Instruct (Grattafiori et al., 2024), Mistral-
7B-Instruct-v0.2 (Jiang et al., 2023), and both
sizes of Qwen 2.5 (7B and 1.5B) (Yang et al.,
2024) via HuggingFace’s pipeline API. The model
parameters are not updated at any point.

Training Configuration We train on 300 ran-
domly selected samples and evaluate on 100, using
the Adam optimizer (Kingma and Ba, 2015) with
a learning rate of 1 × 10−4 for 5 epochs. Each
training episode corresponds to a query, with batch
size 1 for step-wise updates guided by policy-based
optimization.

Compute Environment All training was con-
ducted on Google Colab using an NVIDIA L4
GPU (24 GB VRAM), optimized for inference and
lightweight training. We implement our pipeline in
PyTorch and HuggingFace Transformers v4.39.3.

Baselines We compare our method with three
representative in-context editing strategies: Fact-
Prompt (Cohen et al., 2024), which steers the
model by prepending a narrative prefix (“Imagine
that. . . ”); EditCoT (Wang et al., 2024a), which
applies chain-of-thought prompting to guide step-
by-step reasoning before editing; and IKE (Zheng
et al., 2023), which iteratively selects COPY, UP-
DATE, and RETAIN examples to inject new facts
while preserving existing knowledge.

Evaluation Metrics We evaluate editing perfor-
mance using standard metrics introduced by Zheng
et al. (2023). Edit Success Rate (ESR) measures

how often the LLM outputs the correct edited ob-
ject (target_new); Retention Rate (RR) measures
whether the original object (target_true) is pre-
served on unrelated neighborhood prompts; and
Paraphrase Consistency (PC) checks agreement
on paraphrased in-scope prompts. We report their
harmonic mean as Score (S) following Meng et al.
(2023b). We also include Edit Success Magni-
tude (ESM) and Generalization Success Magni-
tude (GSM), which quantify log-probability shifts
between target_new and target_true on edited
and paraphrased prompts, respectively. ESR is
tracked epoch-wise to monitor retriever learning.

5.2 Main Results

Tab. 1 shows the performance of knowledge editing
in different methods using two different LLMs,
Llama 3.1 Instruct-8b and Qwen 2.5-7b.

As expected, all methods yield comparable ESR
scores, but diverge sharply on PC and RR. Fact-
Prompt and EditCoT, for example, perform rea-
sonably on ESR (0.61 and 0.70) but falter on PC
and RR due to their limited prompt design. With-
out UPDATE or RETAIN examples, the LLM lacks
guidance on when to generalize or preserve orig-
inal knowledge. The IKE method improves on
this by incorporating COPY, UPDATE, and RETAIN

examples, enabling more structured control over
generalization and specificity. However, its inclu-
sion of all RETAINS can lead to noisy prompts that
hinder effective editing.

Our method addresses this by using a retriever
trained via policy-based optimization to rank RE-
TAINS and a budget controller to keep only the most

16749



helpful ones. As a result, it shows noticeable im-
provement over ESR and PC while remaining com-
petitive on RR across both LLMs. We also observe
consistent gains in ESM and GSM—which measure
the model’s confidence in the edited and general-
ized responses, respectively—indicating that DR-
IKE not only produces correct outputs but does so
with higher certainty.

Additionally, comparing the last column, our
method matches or outperforms IKE across all but
one metric while achieving lower inference time,
thanks to the budget controller’s adaptive prompt
shortening.

Method ESR ↑ PC ↑ RR ↑
Llama-3.1-8B-Instruct
IKE-All 0.76 0.67 0.76
Rank-All 0.81 0.69 0.76
Rank-50% 0.86 0.71 0.78
DR-IKE 0.89 0.81 0.66
Qwen-2.5-7B-Instruct
IKE-All 0.75 0.69 0.78
Rank-All 0.84 0.67 0.78
Rank-50% 0.84 0.76 0.79
DR-IKE 0.89 0.77 0.70

Table 2: Ablation of RETAIN-example selection: IKE-
All (baseline), static ranking (Rank-All, Rank-50%),
and our dynamic controller (DR-IKE).

5.3 Ablation Study of the Retain-Example
Budget Controller

Tab. 2 contrasts four RETAIN-selection strategies.
IKE-All uses all examples without filtering. Rank-
All ranks and keeps all, i.e. no pruning of redundant
RETAIN examples. Rank-50% ranks and keeps
only the top half, adding a static budget. DR-IKE
uses our dynamic controller to prune low-utility
examples on the fly, yielding the best balance of
efficiency and efficacy.

Rank-All yields performance comparable to
IKE-All, indicating that ordering alone is insuf-
ficient to improve editing outcomes. Introduc-
ing a static budget with Rank-50% which ranks
and keeps only the top half of RETAIN examples
enhances ESR, PC, and RR, confirming that an
overabundance of redundant demonstrations can
degrade efficacy, generalization, and specificity.
Finally, DR-IKE uses our dynamic controller to
prune low-utility examples on the fly, further boost-
ing ESR and PC by adaptively selecting the most

informative RETAINS; the modest drop in RR sug-
gests that overly stringent pruning may occasion-
ally discard useful context. Overall, dynamic ex-
ample budgeting via DR-IKE proves essential for
achieving the optimal balance of efficiency and ef-
fectiveness in knowledge editing. For empirical
statistics on the number of RETAIN examples se-
lected per prompt across 100 test instances, refer
to Appendix B.

Effects on Training Efficiency Introducing our
dynamic budget controller substantially reduces
training time. By pruning lower-value RETAIN, we
shorten prompts and cut LLM inference overhead.
For Llama 3.1-8B, per-epoch runtime drops from
2080.1s to 1459.6s (29.8% saving), and for Qwen
2.5-7B from 1459.6s to 1174.6s (19.5%). This
efficiency gain supports scalable deployment on
larger models.

5.4 Case Study

To intuitively show the effectiveness of our pro-
posed method, we show two knowledge editing
case studies from the Counterfact dataset in Fig. 3.
The edited fact, COPY and UPDATE examples re-
main the same for both methods. In IKE (blue
columns), RETAIN examples are fixed, whereas
in our method (green columns), they are dynami-
cally selected using the retriever and budget con-
troller. In the first case study, IKE’s prompt con-
struction correctly guides the LLM on the original
query but fails when the prompt is paraphrased,
whereas our method succeeds on both. This dif-
ference arises because our retriever identifies RE-
TAIN examples whose contextual cues closely align
with the factual update, regardless of surface vari-
ation, ensuring that even paraphrased queries re-
ceive the appropriate support. In the second case
study, IKE fails on both the original and para-
phrased queries—likely because its RETAIN ex-
amples mix language-based rather than location-
based contexts—while our method retrieves only
location-based RETAINS, resulting in correct an-
swers in both cases and confirming the suitability
of our example selection.

5.5 Base Model Performance

Editing performance often hinges on a model’s
capacity to integrate new information while pre-
serving existing knowledge. Tab. 3 shows that
smaller LLMs, e.g. Llama 3.2 (3B), can match
larger counterparts in ESR but suffer noticeable

16750



Figure 3: Case study illustrating prompt construction and example selection for challenging queries under IKE
versus our method.

Model (Parameters) ESR ↑ PC ↑ RR ↑
Llama 3.1 (8B) 0.89 0.81 0.66
Llama 3.2 (3B) 0.86 0.71 0.61
Mistral v0.2 (7B) 0.53 0.42 0.34
Qwen 2.5 (7B) 0.89 0.77 0.70
Qwen 2.5 (1.5B) 0.57 0.42 0.39
SmolLM2 (1.7B) 0.46 0.27 0.22

Table 3: Performance comparison of various LLMs.

drops in PC and RR, a pattern echoed by the tiny
Qwen 1.5B and SmolLM2 1.7B. This underscores
the role of scale in furnishing the nuanced repre-
sentations needed for precise, stable edits. Mistral
v0.2 (7B) underperforms across all metrics, likely
because its limited 8k context window restricts the
in-context learning needed for effective editing (Xu
et al., 2024). Moreover, instruct-fine-tuned models
like Llama 3.1 (8B) and Qwen 2.5 (7B) demon-

strate particular resilience to paraphrased prompts,
more reliably retaining injected facts under syn-
tactic variation than their smaller or non-instruct
counterparts.

5.6 DR-IKE under Black-Box API Settings

We additionally tested DR-IKE under black-box
conditions using the Gemini-2.0-Flash API on Kag-
gle. As shown in Table 4, DR-IKE achieved
substantial gains in Edit Success Rate (ESR) and
Paraphrase Consistency (PC) compared to the in-
context editing baseline (IKE). The improvements
are not only considerable in absolute terms, but they
also surpass the margins we observed on earlier ex-
periments with smaller open-weight models such
as LLAMA-3.1-8B or Mistral-7B. This suggests
that larger LLMs may benefit even more from the
dynamic retrieval strategy employed by DR-IKE.
At the same time, we note a decrease in Retain Rate
(RR), indicating a trade-off between successful ed-

16751

https://www.kaggle.com/models/google/gemini-2.0-flash-api/Api/gemini-2.0-flash/1
https://www.kaggle.com/models/google/gemini-2.0-flash-api/Api/gemini-2.0-flash/1


its, generalization, and preservation of unrelated
knowledge. Future work could explore techniques
to further stabilize RR without compromising the
strong gains in ESR and PC.

Method ESR ↑ PC ↑ RR ↑
IKE 0.69 0.52 0.57
DR-IKE 0.91 0.83 0.46

Table 4: Black-box evaluation of DR-IKE against the
in-context editing baseline (IKE) using the Gemini-2.0-
Flash API on Kaggle.

5.7 Extended Evaluation on Benchmark
Datasets

We further evaluated DR-IKE on two additional
benchmarks: zsRE (Meng et al., 2023b) and
WikiDataCounterFact (Zhong et al., 2023). Both
datasets include a broader range of edit types and
formats. The same experimental setup as in the
main paper was used, with the LLAMA-3.1-8B
model. Notably, the average similarity to k-nearest
neighbors is substantially lower in zsRE (0.4042)
and WikiDataCF (0.4507) than in CounterFact
(0.5695), indicating that these datasets contain
more diverse and less redundant examples. This
demonstrates that DR-IKE maintains strong per-
formance even in lower-similarity, low-resource
settings.

As shown in Table 5, DR-IKE achieves con-
sistently higher Edit Success Rate (ESR) and
Paraphrase Consistency (PC) compared to the in-
context editing baseline (IKE). Retain Rate (RR)
is also reported alongside ESR and PC, providing
a more complete picture of the trade-off between
successful edits, generalization, and preservation
of unrelated knowledge.

Method ESR ↑ PC ↑ RR ↑
zsRE
IKE 0.30 0.22 0.49
DR-IKE 0.33 0.26 0.51
WikiDataCounterFact
IKE 0.39 0.40 0.63
DR-IKE 0.42 0.43 0.64

Table 5: Extended evaluation of DR-IKE on zsRE and
WikiDataCounterFact.

6 Conclusion

In this work, to improve upon existing demonstra-
tion strategies and prompting paradigms for knowl-
edge editing, we propose Dynamic Retriever for
In-Context Knowledge Editing (DR-IKE), which
uses a pre-trained BERT-based retriever (trained via
policy gradient) to rank examples by their editing
utility and a budget controller to prune lower-value
cases from the prompt. In particular, we examine
RETAIN examples that, while safeguarding auxil-
iary context, may compromise edit efficacy; our
retriever instead prioritizes those that genuinely
bolster both fact injection and knowledge preser-
vation, as confirmed by our empirical results. DR-
IKE’s combination of learned ranking and adaptive
budgeting yields slightly higher edit success and
consistency than leading in-context editing meth-
ods, while also reducing inference and training
time. These results suggest that DR-IKE can scale
effectively to very large, black-box LMs. Future
work could extend DR-IKE to better handle fact-
type variation, low-overlap retrieval settings, and
complex edits by incorporating fact-aware retrieval
and more flexible retrieval sources.

Limitations

There are several limitations of our work. First, our
evaluation is constrained by the COUNTERFACT
benchmark, which does not categorize facts by type
(e.g. historical, numerical, geographical, technical).
As a result, we cannot assess how editing perfor-
mance varies across different knowledge domains.
Furthermore, DR-IKE relies on the presence of suf-
ficiently similar paraphrases and neighborhood ex-
amples within a single dataset. In scenarios where
such examples are sparse or absent, retrieval qual-
ity and editing efficacy may degrade, limiting the
method’s applicability in low-resource or highly
specialized domains. Finally, although our bud-
get controller mitigates prompt-length concerns,
LLM context windows remain finite. In cases re-
quiring a large number of demonstrations—such
as nuanced multi-step edits or extensive domain
coverage—dynamic budgeting alone may not suf-
fice to fit all necessary examples within the model’s
maximum input length.

Acknowledgement

This work is supported in part by the National
Science Foundation (NSF) grant IIS-2451436 and

16752

https://www.kaggle.com/models/google/gemini-2.0-flash-api/Api/gemini-2.0-flash/1
https://www.kaggle.com/models/google/gemini-2.0-flash-api/Api/gemini-2.0-flash/1


Commonwealth Cyber Initiative grant HC-4Q24-
059.

References
Rishabh Agarwal, Avi Singh, Lei M Zhang, Bernd

Bohnet, Luis Rosias, Stephanie C.Y. Chan, Biao
Zhang, Ankesh Anand, Zaheer Abbas, Azade Nova,
John D Co-Reyes, Eric Chu, Feryal Behbahani, Alek-
sandra Faust, and Hugo Larochelle. 2024. Many-
shot in-context learning. In The Thirty-eighth Annual
Conference on Neural Information Processing Sys-
tems.

Keqin Bao, Ming Yang, Yang Zhang, Jizhi Zhang, Wen-
jie Wang, Fuli Feng, and Xiangnan He. 2024. Real-
time personalization for llm-based recommendation
with customized in-context learning. ArXiv.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, and 12 others. 2020. Language
models are few-shot learners. In Proceedings of the
34th International Conference on Neural Information
Processing Systems.

Boxi Cao, Hongyu Lin, Xianpei Han, Le Sun, Lingy-
ong Yan, Meng Liao, Tong Xue, and Jin Xu. 2021a.
Knowledgeable or educated guess? revisiting lan-
guage models as knowledge bases. In Proceedings
of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International
Joint Conference on Natural Language Processing
(Volume 1: Long Papers).

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021b.
Editing factual knowledge in language models. In
Conference on Empirical Methods in Natural Lan-
guage Processing.

Jiuhai Chen, Lichang Chen, Chen Zhu, and Tianyi Zhou.
2023. How many demonstrations do you need for
in-context learning? In Conference on Empirical
Methods in Natural Language Processing.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson,
and Mor Geva. 2024. Evaluating the ripple effects of
knowledge editing in language models. Transactions
of the Association for Computational Linguistics.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao
Chang, and Furu Wei. 2022. Knowledge neurons in
pretrained transformers.

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bing-Li
Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai
Dai, Daya Guo, Dejian Yang, Deli Chen, Dong-Li Ji,
Erhang Li, Fangyun Lin, Fucong Dai, and 179 others.
2024. Deepseek-v3 technical report. ArXiv.

Bhuwan Dhingra, Jeremy R Cole, Julian Martin
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and
William W Cohen. 2022. Time-aware language mod-
els as temporal knowledge bases. Transactions of
the Association for Computational Linguistics, pages
257–273.

Yujie Feng, Zexin Lu, Bo Liu, Li-Ming Zhan, and Xiao-
Ming Wu. 2023. Towards llm-driven dialogue state
tracking. In Conference on Empirical Methods in
Natural Language Processing.

Huaizhi Ge, Frank Rudzicz, and Zining Zhu. 2024a.
How well can knowledge edit methods edit perplex-
ing knowledge? ArXiv.

Xiou Ge, Ali Mousavi, Edouard Grave, Armand Joulin,
Kun Qian, Benjamin Han, Mostafa Arefiyan, and
Yunyao Li. 2024b. Time sensitive knowledge editing
through efficient finetuning. In Annual Meeting of
the Association for Computational Linguistics.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, and et al. 2024.
The llama 3 herd of models. CoRR.

Hengrui Gu, Kaixiong Zhou, Xiaotian Han, Ning-
hao Liu, Ruobing Wang, and Xin Wang. 2024a.
PokeMQA: Programmable knowledge editing for
multi-hop question answering. In Proceedings of
the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers).

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-
Hua Ling, Kai-Wei Chang, and Nanyun Peng. 2024b.
Model editing harms general abilities of large lan-
guage models: Regularization to the rescue. In Pro-
ceedings of the 2024 Conference on Empirical Meth-
ods in Natural Language Processing.

Runyu He, Anyu Ying, and Xiaoyu Hu. 2024. Improv-
ing opendevin: Boosting code generation llm through
advanced memory management. Applied and Com-
putational Engineering.

Wenyue Hua, Jiang Guo, Mingwen Dong, He Zhu,
Patrick Ng, and Zhiguo Wang. 2024. Propagation
and pitfalls: Reasoning-based assessment of knowl-
edge editing through counterfactual tasks. In Annual
Meeting of the Association for Computational Lin-
guistics.

Albert Qiaochu Jiang, Alexandre Sablayrolles, Arthur
Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de Las Casas, Florian Bressand, Gi-
anna Lengyel, Guillaume Lample, Lucile Saulnier,
L’elio Renard Lavaud, Marie-Anne Lachaux, Pierre
Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2023. Mis-
tral 7b. ArXiv.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations.

16753



Xiaonan Li, Kai Lv, Hang Yan, Tianyang Lin, Wei
Zhu, Yuan Ni, Guotong Xie, Xiaoling Wang, and
Xipeng Qiu. 2023. Unified demonstration retriever
for in-context learning. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers).

Zhoubo Li, Ningyu Zhang, Yunzhi Yao, Mengru Wang,
Xi Chen, and Huajun Chen. 2024. Unveiling the pit-
falls of knowledge editing for large language models.
In The Twelfth International Conference on Learning
Representations.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan,
Lawrence Carin, and Weizhu Chen. 2022. What
makes good in-context examples for GPT-3? In
Proceedings of Deep Learning Inside Out (DeeLIO
2022): The 3rd Workshop on Knowledge Extraction
and Integration for Deep Learning Architectures.

Nelson F. Liu, Kevin Lin, John Hewitt, Ashwin Paran-
jape, Michele Bevilacqua, Fabio Petroni, and Percy
Liang. 2023. Lost in the middle: How language mod-
els use long contexts. Transactions of the Association
for Computational Linguistics.

Linyong Lu, Qingxiu Zhang, Xiang Li, and Jingjing
Liu. 2022. Promptpg: Prompting for policy gradient
training. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing
(EMNLP).

Aman Madaan, Niket Tandon, Peter Clark, and Yiming
Yang. 2022. Memory-assisted prompt editing to im-
prove GPT-3 after deployment. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing.

Kevin Meng, David Bau, Alex Andonian, and Yonatan
Belinkov. 2022. Locating and editing factual asso-
ciations in gpt. In Neural Information Processing
Systems.

Kevin Meng, Arnab Sen Sharma, Alex Andonian,
Yonatan Belinkov, and David Bau. 2023a. Mass
editing memory in a transformer. The Eleventh In-
ternational Conference on Learning Representations
(ICLR).

Kevin Meng, Arnab Sen Sharma, Alex J Andonian,
Yonatan Belinkov, and David Bau. 2023b. Mass-
editing memory in a transformer. In The Eleventh
International Conference on Learning Representa-
tions.

Dehai Min, Nan Hu, Rihui Jin, Nuo Lin, Jiaoyan Chen,
Yongrui Chen, Yu Li, Guilin Qi, Yun Li, Nijun Li,
and Qianren Wang. 2024. Exploring the impact of
table-to-text methods on augmenting llm-based ques-
tion answering with domain hybrid data. In North
American Chapter of the Association for Computa-
tional Linguistics.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D Manning. 2022a. Fast model
editing at scale. In International Conference on
Learning Representations.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea
Finn, and Christopher D. Manning. 2022b. Memory-
based model editing at scale. In International Con-
ference on Machine Learning.

Seyed Mahed Mousavi, Simone Alghisi, and Giuseppe
Riccardi. 2024. Dyknow: Dynamically verifying
time-sensitive factual knowledge in llms. In Con-
ference on Empirical Methods in Natural Language
Processing.

Nils Reimers and Iryna Gurevych. 2020. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing (EMNLP).

Stephen Robertson and Hugo Zaragoza. 2009. The
probabilistic relevance framework: Bm25 and be-
yond. Found. Trends Inf. Retr.

Chenglei Si, Zhe Gan, Zhengyuan Yang, Shuohang
Wang, Jianfeng Wang, Jordan Lee Boyd-Graber, and
Lijuan Wang. 2023. Prompting GPT-3 to be reli-
able. In The Eleventh International Conference on
Learning Representations.

Hugo Touvron, Louis Martin, Kevin R. Stone, Peter
Albert, Amjad Almahairi, Yasmine Babaei, Niko lay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, Daniel M. Bikel, Lukas Blecher, Cris tian
Cantón Ferrer, Moya Chen, Guillem Cucurull, David
Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, and
49 others. 2023. Llama 2: Open foundation and
fine-tuned chat models. ArXiv.

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2020. Well-read students learn better: On
the importance of pre-training compact models.

Changyue Wang, Weihang Su, Qingyao Ai, and Yiqun
Liu. 2024a. Knowledge editing through chain-of-
thought. ArXiv.

Liang Wang, Nan Yang, and Furu Wei. 2024b. Learn-
ing to retrieve in-context examples for large language
models. In Proceedings of the 18th Conference of
the European Chapter of the Association for Compu-
tational Linguistics (Volume 1: Long Papers).

Ronald J. Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning.

Xiaobao Wu, Liangming Pan, William Yang Wang, and
Anh Tuan Luu. 2024. Akew: Assessing knowledge
editing in the wild. In Conference on Empirical Meth-
ods in Natural Language Processing.

Peng Xu, Wei Ping, Xianchao Wu, Lawrence McAfee,
Chen Zhu, Zihan Liu, Sandeep Subramanian, Evelina
Bakhturina, Mohammad Shoeybi, and Bryan Catan-
zaro. 2024. Retrieval meets long context large lan-
guage models. In The Twelfth International Confer-
ence on Learning Representations.

16754

https://openreview.net/forum?id=xw5nxFWMlo
https://openreview.net/forum?id=xw5nxFWMlo


An Yang, Baosong Yang, Binyuan Hui, Bo Zheng,
Bowen Yu, Chang Zhou, Chengpeng Li, Chengyuan
Li, Dayiheng Liu, Fei Huang, and 1 others. 2024.
Qwen2 technical report. CoRR.

Shuyang Yu, Runxue Bao, Parminder Bhatia, Taha Kass-
Hout, Jiayu Zhou, and Cao Xiao. 2025. Dynamic
uncertainty ranking: Enhancing retrieval-augmented
in-context learning for long-tail knowledge in LLMs.
In Proceedings of the 2025 Conference of the Na-
tions of the Americas Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers).

Xiaoqing Zhang, Ang Lv, Yuhan Liu, Flood Sung, Wei
Liu, Shuo Shang, Xiuying Chen, and Rui Yan. 2025.
More is not always better? enhancing many-shot in-
context learning with differentiated and reweighting
objectives. arXiv preprint arXiv:2501.04070.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong
Wu, Jingjing Xu, and Baobao Chang. 2023. Can we
edit factual knowledge by in-context learning? In
Proceedings of the 2023 Conference on Empirical
Methods in Natural Language Processing.

Zexuan Zhong, Zhengxuan Wu, Christopher D Manning,
Christopher Potts, and Danqi Chen. 2023. MQuAKE:
Assessing knowledge editing in language models via
multi-hop questions. In The 2023 Conference on
Empirical Methods in Natural Language Processing.

Chenghao Zhu, Nuo Chen, Yufei Gao, Yunyi Zhang,
Prayag Tiwari, and Benyou Wang. 2025. Is your
LLM outdated? a deep look at temporal generaliza-
tion. In Proceedings of the 2025 Conference of the
Nations of the Americas Chapter of the Association
for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers).

A Appendix: Training Procedure for the
Dynamic Retriever

The overall training protocol for our dynamic re-
triever is illustrated in Algorithm 1. At the begin-
ning of each epoch, we initialize the retriever’s
parameters θ and the budget threshold σ. For ev-
ery training instance (x, ynew) in the dataset, we
first construct the fixed COPY and UPDATE demon-
strations based on semantic similarity using em-
beddings from a 20M-parameter Sentence Trans-
former (Reimers and Gurevych, 2020). These fixed
components serve as the foundational part of ev-
ery in-context prompt. Next, we select a candidate
pool C of RETAIN examples—again using the same
embedding space—to identify potentially helpful
facts related to the input.

Once the RETAIN pool is constructed, the re-
triever’s scoring function Sθ evaluates each can-
didate, producing scalar relevance scores which
are normalized via softmax to obtain a probability

Algorithm 1 Training Protocol for Dynamic Ex-
ample Selection

Require: initial parameters θ0; training set T ;
max shots K; learning rate α

Ensure: trained retriever θ and budget threshold
σ

1: θ ← θ0, σ ← 0
2: for epoch = 1 to Nepochs do
3: for each (x, ynew) ∈ T do
4: Fixed COPY / UPDATE demos for x
5: C ← RETAIN candidates

(pre-selected via embeddings)
6: z ← Sθ(x, C) ▷ scalar scores
7: p← softmax(z) ▷ policy distribution
8: k ← min

(
K, |{i | pi > σ}|

)

9: if k = 0 then
10: k ← 1
11: end if
12: prev_r ← ⊥, L ← 0
13: for j = 1 to k do
14: Rj ← top-j RETAINS from C by p
15: Prompt with COPY, UPDATE,Rj

16: query LLM→ ŷ

17: r ←
{
+1, ŷ = ynew

−1, otherwise
18: c← (j > 1) ∧ (prev_r = +1)

∧(r = −1)
19: if c then
20: σ ← max

(
σ, maxi>j pi

)

21: end if
22: L += − r log pj
23: prev_r← r
24: end for
25: θ ← θ − α∇θL ▷ REINFORCE
26: end for
27: end for

distribution p over the pool. The retriever then de-
termines how many examples to select, based on
the current value of σ, by choosing the top candi-
dates whose probabilities exceed the threshold. If
none of the probabilities surpass σ, we ensure that
at least one RETAIN is selected to prevent empty
prompt construction. This mechanism enables the
retriever to modulate prompt length dynamically,
balancing retrieval confidence with context limita-
tions.

We then proceed to construct the full in-context
prompt incrementally by adding one RETAIN ex-
ample at a time (top-j based on p). After each

16755



addition, we query the language model and check
if its output matches the desired edited response
ynew. A binary reward r ∈ {+1,−1} is assigned
depending on whether the answer is correct. If
adding a particular RETAIN causes a correct predic-
tion to flip to incorrect, we treat it as a degradation
in prompt quality and increase the threshold σ to
exclude lower-probability examples in future steps.
This allows the model to prune less useful RETAINS

early and adapt the prompt construction strategy
over time.

Throughout the episode, we accumulate
REINFORCE-style loss (Williams, 1992) using the
reward signal and the log-probability of each se-
lected RETAIN. The resulting gradient is used to
update only the retriever’s scoring head via policy
gradient. By repeating this process across training
epochs, the retriever learns not just which RETAIN

examples are most helpful for factual editing, but
also how to dynamically adjust its selection budget
to optimize both model performance and context
efficiency.

B Appendix: Retain Budget Distribution
Across Models

Our proposed framework, DR-IKE, dynamically
selects the number of RETAIN examples per prompt
based on their estimated contribution to edit suc-
cess, rather than applying a fixed number across all
edits. Fig. 4 and Fig. 5 illustrate how the number
of RETAIN examples varies per edit instance for
two different LLMs. In contrast to IKE, which stat-
ically includes 16 RETAINS regardless of their in-
formativeness or utility, DR-IKE tailors the prompt
length to the needs of each specific edit.

This adaptivity yields significant efficiency
gains. On average, LLaMA 3.1-8B requires only
3.02± 0.96 RETAIN examples per prompt, while
Qwen 2.5-7B uses 3.72± 1.15. These compact
prompts reduce both the computational overhead
and the risk of introducing irrelevant or distracting
context. Notably, despite using fewer examples,
DR-IKE maintains competitive or even superior
edit success compared to IKE. This highlights the
importance of selective inclusion: by pruning re-
dundant or low-impact examples, DR-IKE not only
saves prompt space but also enhances factual pre-
cision and generalization. The results underscore
the utility of adaptive demonstration selection as a
scalable solution for black-box knowledge editing.

Figure 4: RETAIN budget distribution for LLaMA 3.1-
8B under DR-IKE. Each bar shows the frequency of a
given RETAIN count per prompt. Mean = 3.02, Std =
0.96.

Figure 5: RETAIN budget distribution for Qwen 2.5-
7B under DR-IKE. The model allocates more RETAIN
examples for edits requiring stronger contextual support.
Mean = 3.72, Std = 1.15.

C Appendix: Analysis of Budget
Controller Update Strategies

We experimented with several alternative strategies
for updating the budget controller, including seman-
tic relevance modeling using BERT-based encoders,
statistical modeling of the softmax score distribu-
tion, and hybrid approaches combining both. How-
ever, none of these alternatives consistently out-
performed our current dynamic threshold update
rule. In practice, we observed that the retriever
dynamically adjusts its output probabilities over
time. As σ increases, the retriever tends to assign
higher scores to borderline examples, leading to a
natural stabilization of the threshold. This feedback
mechanism allows σ to converge without the need
for complex or hand-crafted update rules.

Table 6 summarizes the different budget con-
troller architectures we tested using the LLAMA-
3.2-3B model, under the same train–test split as
in our previous experiments. The current method
(baseline) relies on a dynamic threshold update
rule based on the retriever’s evolving score distri-
bution. The MLP on softmax scores variant uses

16756



Architecture ESR ↑ PC ↑
Current method
(baseline)

0.86 0.71

MLP on softmax
scores

0.81 0.75

MLP on softmax
+ query features

0.81 0.69

BERT + MLP
(predict σ)

0.83 0.65

BERT
(query + context)
+ MLP

0.80 0.67

Table 6: Comparison of alternative budget controller
update strategies. The current method achieves the best
overall balance of Edit Success Rate (ESR) and Para-
phrase Consistency (PC), while other methods show
improvements in isolated metrics but fail to consistently
outperform the baseline.

a lightweight feed-forward network trained directly
on the softmax probability distribution, while MLP
on softmax + query features extends this by incor-
porating query-level features. In the BERT + MLP
(predict σ) approach, the query is first encoded
with a BERT encoder and the resulting represen-
tation is passed to an MLP to directly predict the
threshold σ. Finally, BERT (query + context) +
MLP encodes both the query and the in-context
examples with BERT before passing them to the
MLP for threshold prediction.

Overall, while some alternatives improve on a
single dimension (e.g., higher PC with softmax-
based MLPs), none consistently match the bal-
anced performance of the baseline approach. This
confirms the effectiveness of our dynamic threshold
update rule, though confidence-based calibration re-
mains a promising direction for future refinement.

D Appendix: Sensitivity of Reward
Function

We tested the robustness of DR-IKE to input or-
dering and reward timing. Random shuffling or
reordering of context examples left model outputs
stable in the majority of cases. We also introduced
random delays in the reward signal during train-
ing, and observed that Edit Success Rate (ESR)
remained effectively unchanged, as summarized in
Table 7. These results indicate that the framework
trains robustly even when the LLM’s binary reward
signal is noisy or unstable.

Sigma update method ESR ↑
No delay 0.7567
Randomly delayed 0.7533

Table 7: Sensitivity analysis of the reward function. Edit
Success Rate (ESR) remains stable even with randomly
delayed reward signals.

E Appendix: Additional Evaluation on
Temporal and Numerical Facts

Beyond the main benchmarks, we also conducted
preliminary evaluation of DR-IKE on two addi-
tional settings. First, on a temporal-edit dataset pro-
vided by (Zheng et al., 2023), DR-IKE achieved
a small improvement in Edit Success Rate (ESR)
compared to the in-context baseline (IKE). Para-
phrase Consistency (PC) could not be assessed in
this case, as no paraphrased prompts were available
in the dataset. Second, we extracted a small subset
of numerical examples from the COUNTERFACT

dataset. On this subset, DR-IKE demonstrated
consistently stronger performance in both ESR and
PC relative to IKE. Since there is currently no
dedicated dataset focused exclusively on numeri-
cal edits, and the few numerical cases in existing
benchmarks are insufficient for a systematic study,
we defer a more thorough investigation of numeri-
cal editing to future work.

Method ESR ↑ PC ↑
Temporal Editing
IKE 0.46 –
DR-IKE 0.50 –
Numerical Subset of CounterFact
IKE 0.67 0.53
DR-IKE 0.78 0.68

Table 8: Preliminary evaluation of DR-IKE on temporal
and numerical edits. Paraphrase Consistency (PC) could
not be computed for the temporal dataset due to lack of
paraphrases.

16757


