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Abstract

Dialogue State Tracking (DST) is crucial for
linking user intentions to appropriate services
in task-oriented dialogue systems. We propose
a zero-shot, scheme-only approach that tackles
two main challenges: generating synthetic dia-
logues that balance diversity with schema align-
ment, and efficiently distilling knowledge from
a large language model (LLM) into a smaller
model. Our pipeline first creates scenarios, dia-
logue logic flows, and utterances via dynamic
complexity prompting, eliminating reliance on
handcrafted templates. We then use a two-
stage distillation process to learn formalized
dialogue representations and DST related chain-
of-thought reasoning. This structure preserves
interpretive capabilities while reducing infer-
ence overhead. Experiments on the MultiWOZ
benchmark show that our method achieves
state-of-the-art performance under zero-shot,
scheme-only situations and generalizes to few-
shot scenarios effectively, offering a practical
and scalable solution for domains that lack real
data. Our code is available1

1 Introduction

Task-oriented dialogue systems guide users through
conversational interactions to accomplish specific
requests, such as booking a restaurant or schedul-
ing a train journey. Central to these systems is
Dialogue State Tracking (DST), which involves
extracting and updating essential information as
the conversation unfolds (Henderson et al., 2014).
By organizing details into domain-slot structures,
DST ensures the system accurately captures user re-
quirements, maintains contextual consistency, and
effectively interfaces with external services.

In practical scenarios, constructing an accurate
DST model typically requires substantial labeled
data, which is both time-consuming and costly to
acquire (Budzianowski et al., 2018). Consequently,

1https://github.com/lizequn/DistDST

zero-shot approaches that reduce reliance on ex-
tensive annotations have gained increasing inter-
est. Existing research generally classifies zero-shot
DST into two main types. The first is the zero-shot
cross-domain scenario (Campagna et al., 2020),
in which a model trained on specific domains is
transferred to a new, unseen domain using only
schema information (e.g., slot names and possi-
ble values). The second, the zero-shot scheme-
only setting (Heck et al., 2023), involves equipping
the model solely with the relevant schema with-
out providing any actual dialogue data. This latter
approach, which constitutes our primary focus, is
especially challenging due to the complete absence
of domain-specific examples. While proprietary
LLMs (e.g. GPT-4) have demonstrated impressive
performance under scheme-only conditions, their
high computational cost makes them impractical
for frequent DST tasks (Feng et al., 2023). In re-
sponse, some researchers have experimented with
generating synthetic data using these large models,
then distilling smaller models from the artificially
produced data (Kim et al., 2021; Niu et al., 2024;
Kulkarni et al., 2024). However, discrepancies be-
tween synthetic and real conversational distribu-
tions often limit the effectiveness of models that
rely solely on such synthetic resources.

In this work, we tackle two primary challenges
in zero-shot scheme-only DST: (1) generating
synthetic dialogue data that is simultaneously di-
verse and faithfully aligned with the task-oriented
schema; (2) efficiently distilling this knowledge
into a smaller LLM that is capable of handling var-
ied conversational styles and complexities while
approaching the comprehension performance of
proprietary LLMs.

To address the first challenge, we propose a three-
stage synthetic data generation strategy, targeting
schema-based scenario generation, dialogue logic
flow design, and utterance generation. Alongside
this, we introduce a dynamic complexity prompting
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technique that begins with a simple baseline and in-
crementally infuses complexity into the logic flow
or utterance. Notably, our approach does not rely
on any template, resulting in dialogues with richer
diversity than previous methods, while maintaining
strict adherence to the defined schema. The second
challenge involves effectively leveraging the syn-
thetic data to distill a smaller LLM that not only
manage diverse conversational styles but also bet-
ter approximate the reasoning of proprietary LLMs.
To this end, we design a two-stage, step-by-step
distillation pipeline. In the first stage, the model is
trained to generate a chain-of-thought (CoT) (Wei
et al., 2022) for each utterance, comprising a for-
malized representation. In the second stage, the
model predicts the dialogue state using both the
original utterance and its corresponding formalized
representation. This process not only preserves the
reasoning structure learned by proprietary LLMs
but also greatly reduces inference overhead. Conse-
quently, our distilled smaller model operates more
efficiently while still achieving robust performance
in completely unseen dialogue scenarios.

In summary, our main contributions are three-
fold:

• We present a novel synthetic data generation
strategy. Our approach targets both diver-
sity in conversational flows and strict schema
alignment, while explicitly modeling dialogue
state and intermediate CoT information.

• We introduce a two-stage distillation process
that first learns to generate a COT for each
dialogue, then leverages these intermediate
reasoning steps to more efficiently predict the
final dialogue state. This framework preserves
the proprietary LLM’s understanding and rea-
soning structure, allowing a smaller model to
handle zero-shot data more effectively.

• In experiments on the MultiWOZ dataset,
our method achieves state-of-the-art perfor-
mance under the zero-shot, schema-only set-
ting. Moreover, we demonstrate that our ap-
proach generalizes well to few-shot scenarios.

2 Related Work

2.1 Synthetic Data Generation for DST
Early research on synthetic dialogue data for DST,
exemplified by Simulated-Chats (Mohapatra et al.,
2020) and NeuralWOZ (Kim et al., 2021), re-
lied on hand-crafted templates and PLMs (e.g.,

BERT (Devlin, 2018),RoBERTa (Liu, 2019)) to
populate domain-specific slots, which often yield
constrained diversity. With the emergence of
instruction-tuned LLMs, subsequent work, such
as SynthDST (Kulkarni et al., 2024), LUAS (Niu
et al., 2024), and EDZ-DA (Gu and Yang, 2024),
incorporated more flexible approaches, including
template-driven logic flows and multi-agent simu-
lations, to increase dialogue variations. Other so-
lutions (Finch and Choi, 2024) introduced schema-
free generation by creating a large number of short,
cross-domain dialogues for model pre-training.

However, existing synthetic pipelines still face
two obstacles. First, they heavily depend on an
LLM’s stochastic outputs rather than systematically
covering complex DST scenarios. Second, they
seldom integrate intermediate rational data (e.g.
chain-of-thought) that would support knowledge
distillation for smaller models. Our framework
addresses these gaps by introducing both targeted
complexity prompts to ensure broad coverage of
DST challenges and explicit CoT reasoning that
facilitates more effective distillation.

2.2 Zero-Shot Scheme-Only DST
Zero-shot scheme-only DST does not utilize any
real dialogue data but relies entirely on synthetic
data or specialized prompting strategies. This setup
is highly practical for certain applications yet poses
significant challenges. Early work primarily fo-
cused on cross-domain scenarios (Campagna et al.,
2020; Dong et al., 2024), but the emergence of
ChatGPT highlighted the feasibility of a purely
scheme-only approach. Heck et al. (2023) were
among the first to investigate ChatGPT 3.5 com-
bined with schema-based prompts for zero-shot
scheme-only DST, demonstrating that large lan-
guage models can partially solve zero-shot DST
problems. Following this, LDST (Feng et al.,
2023) introduced a prompting strategy that assigns
a unique prompt to each slot, thus lifting zero-
shot DST accuracy to near full-training-set levels.
More recent efforts, such as InstructTODS (Chung
et al., 2023), ParsingDST (Wu et al., 2023), Ref-
PyDST (King and Flanigan, 2023), IC-DST (Hu
et al., 2022) and FnCTOD (Li et al., 2024), lever-
age large language models’ strengths in instruc-
tion following, JSON parsing, coding, or function
calling to further refine how these models address
zero-shot DST. However, the question of how to
empower smaller LLMs with the knowledge gained
by proprietary LLMs remains open. In this paper,
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we tackle precisely this challenge by proposing a
synthetic data generation framework paired with
a step-by-step distillation method. Our approach
enables smaller models to effectively acquire the
reasoning and inference capabilities demonstrated
by proprietary LLMs, improving zero-shot DST
performance without access to real conversational
data.

3 Method

3.1 Task Definition

In Task-Oriented Dialogue (TOD), DST is respon-
sible for identifying and updating the key infor-
mation needed to fulfill a user’s goal across mul-
tiple conversation turns. Let the conversation be
denoted by a sequence of user and system utter-
ances, Ut = {u1, u2, . . . , ut}, where t is the total
number of turns. At each turn, the DST mod-
ule predicts a set of domain–slot–value triples,
DSt = {(d, s, v)i}ni=1, where (d, s, v)i represents
a specific domain d, a slot s, and the corresponding
value v. By interpreting user utterances and up-
dating the evolving dialogue state DS, the system
keeps track of user goals.

Before constructing a TOD system, we typically
define in advance which domain–slot–value com-
binations need to be tracked. Each slot is rep-
resented as a tuple smi = (d, s, P )i, where P
specifies a set of possible values for categorical
slots. The overall schema is then expressed as
SM = { sm1, sm2, . . . , smi, . . . , smn}, which
encompasses all relevant domains. Under the zero-
shot cross-domain setting, the model is trained on a
subset of domains DS train ⊂ DS and evaluated on
a new domain dtest /∈ DS train. Even though labeled
data is unavailable for dtest, the model is trained on
utterances U together with DS train labels, and then
makes predictions for DS test based on the schema
SMtest. In contrast, the zero-shot scheme-only set-
ting restricts the model to rely solely on the schema
SM , without any training utterances U or labels
from DS train. This stricter requirement demands
stronger generalization capabilities, as the model
must still handle DST tasks effectively without any
real data.

3.2 Generation of Diverse Synthetic Datasets

LLMs have proven effective at generating synthetic
data for data augmentation in various NLP tasks.
Within DST, prior work has demonstrated the utility
of generating synthetic dialogue data in few-shot

settings. However, balancing data diversity with
task domain relevance remains a substantial chal-
lenge in a strictly zero-shot scheme-only context.
As shown in Figure 1, our proposed method tackles
this issue by implementing a plan-and-solve strat-
egy (Wang et al., 2023) that decomposes the gen-
eration pipeline into four steps: scenario construc-
tion, dialogue logic flow, utterance creation and dia-
logue state extraction. This structured approach not
only simplifies the overall process but also enforces
schema adherence at each stage, thereby mitigating
hallucinations and reducing out-of-scope outputs.
Furthermore, the intermediate reasoning generated
at each step can serve as CoT information for subse-
quent knowledge distillation into smaller language
models.

To further improve dialogue diversity particu-
larly concerning DST complexity we draw on the
concept of prompt evolution (Fernando et al., 2023).
Rather than relying on static prompts, we gradually
introduce increased complexity through dynamic
complexity prompting. This iterative process be-
gins with a straightforward baseline and expands
toward more complicate scenarios, maintaining
schema alignment while covering a broader range
of dialogue conditions. The subsections below de-
scribe each phase of our synthetic data generation
framework in detail.

3.2.1 Scenario Generation

In this stage, we define the dialogue scenario
S = {di, (d, s, v)j ,desp}, specifying the relevant
domain(s), slot-value pairs, and a concise descrip-
tion desp. Scenario complexity is determined by
the number of domains and the quantity of slot-
value pairs. We start by sampling a single domain
and use an LLM to select a coherent subset of slot-
value pairs and a brief topical description, thereby
ensuring realistic contexts (e.g., if a hotel is in the
east, a related attraction is more likely in the east).
We then progressively add domains and slot-value
pairs, again guided by the LLM. This incremental
process yields scenarios ranging from simple to
highly complex, thus enhancing overall diversity.

3.2.2 Dialogue Logic Flow Generation

Rather than directly generating utterances from S,
we first produce a turn-level logic flow plan using
an LLM:

Logici = {I, (d, s, v)j , CoT}i,
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Shema Scenario Logic Flow Utterance DS

domains: [ restaurant,train]
slot_values: {
        restaurant-area: centre,
        restaurant-food: italian,
                          .....
        train-leaveat: 13:32,
        train-bookpeople": 2,
      }
description: User want to ...

...
{
      Turn_id:5
      utterance: There’s gonna be 4
of us ......
}
...

... 
{
       turn_id: 5
        state: {
          restaurant-bookpeople: 4
        }
        dst_reasoning: User confirms
the number of people.
}
...

Utterance
Smaller LLM

Logic Flow Utterance Logic Flow DS
Smaller LLM

 ...
{
      Turn_id :5
      actions: [ 
            provide_booking_detail,
            request_hotel
      ]
       related_slots: [
            restaurant-bookpeople,
            hotel-type,
                       ......
      ],
     flow_reasoning: User confirms ...
}
...

Dynamic Complexity Prompting

LLM LLM LLM LLM

 Distillation 
Step 1

Distillation 
Step 2

Synthetic Data Generation Pipeline

Section 3.2.2

Figure 1: The overall framework of our synthetic data generation framework and step-by-step knowledge distillation
progress.The top part indicate the Synthetic Data Generation Pipeline and the bottom part refers to the two knowledge
distillation steps

where I (Intention) is a concise statement of the
speaker’s goal, (d, s, v)j denotes the slot-value
pairs relevant to that turn, and CoT provides a
chain-of-thought formalized explanation. This
logic flow clarifies the dialogue’s logical structure
before linguistic details are added, serving as both a
guideline for DST analysis and a safeguard against
out-of-scope outputs.

We begin with a simple baseline plan to en-
sure a more realistic flow. Inspired by Prompt-
breeder (Fernando et al., 2023), we propose the dy-
namic complexity prompting strategy. During data
generation, We will apply five seed complexity mu-
tations, addressing domain shifts, slot-value updat-
ing, extension, indirect references and co-reference,
to iteratively refine the dialogue logic flow. As il-
lustrated in Figure 2, the LLM receives the current
dialogue flow alongside a seed mutation prompt,
proposes a strategy for increasing complexity, and
modifies the baseline plan accordingly. Repeat-
ing this process yields a range of logical complex-
ities, from basic flows to intricate multi-domain
transitions. This dynamic complexity prompting
promotes data diversity and keeps each complex-
ity expansion aligned with the evolving dialogue
structure, thus minimizing out-of-scope content.

3.2.3 Utterance Generation

Based on the dialogue logic Plann
i=1 flow ob-

tained in the previous step, the LLM generates the
actual utterances for both user and system turns
Ui = LLM(S, P lani). This process mirrors our
approach to logic flow generation: we begin with
a simple baseline utterance and incrementally in-
crease linguistic complexity through three seed
complexity mutations. These mutations address
grammatical sophistication, co-references or indi-
rect references, and more colloquial or oral expres-
sions. By repeatedly applying these transforma-
tions, we obtain a set of utterances that vary in style
and difficulty while still adhering to the previously
defined logical structure.

3.2.4 Dialogue State Generation

In existing methods, synthetic data pipelines of-
ten rely on the LLM to extract DST labels directly
from the produced utterances. For dialogues of
varying complexity, the accuracy of such labels
depends heavily on the chosen LLM’s capabili-
ties. In our approach, we provide the LLM with
three sources of information, Scenario, Dialogue
Logic Flow, and Utterances to predict the dialogue
state DS = LLM(S, P lann

i=0, U
n
i=0). This multi-

faceted view improves the accuracy of DST label
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Figure 2: Comparison between a static prompt (a) and
the Dynamic Complexity Prompting strategy (b) used
in our pipeline for diverse data generation.

generation, as the LLM can cross-reference context
from all three levels. We also instruct the LLM
to produce intermediate reasoning alongside each
predicted state, further supporting the explanation
and enabling knowledge distillation in subsequent
steps.

3.3 Step-by-Step Knowledge Distillation

CoT explanations have proven effective in vari-
ous NLP applications, including DST (Xu et al.,
2024). Existing work primarily focuses on super-
vised or cross-domain scenarios, using CoT to en-
hance interpretive and inferential capabilities for
a given target dataset. However, in a purely syn-
thetic setting, rational information (including CoT)
not only increases explainability but also unifies
data distributions across different datasets, thereby
improving a model’s generalization. Our approach
fully exploits this rational data by dividing knowl-
edge distillation for a smaller LLM into two stages:
(1) formalized representation generation and (2)
chain-of-thought dialogue state inference. This
two-stage design simplifies complex CoT into man-
ageable parts and restricts the second step to only
the domain-slot pairs identified in the first step,
reducing computational overhead.

As detailed in Section 3.2, each dialogue turn
includes the logic flow {I, (d, s, v)j ,CoT}i, indi-
cating the speaker’s intention, relevant slots, and
a concise explanation. In the first stage, we con-

(a) Prompt based One Stage Inference

Dialogue
Context

Step1 CoT
generation

Prompt for Related domain-slot

Dialogue
States

(b) Two Stage Inference:

Figure 3: Comparison between Prompt based One Stage
Inference(a) and Our proposed Two Stage Inference(b)

vert these fields into a formalized representation,
thereby reducing ambiguity caused by linguistic
variation. This structured view of the turn focuses
on related slots, which is more error-tolerant than
directly predicting DST labels. We then fine-tune
the smaller LLM to generate these representations
effectively:

Logici = {I, (d, s, v)j ,CoT}i ← sLLM(Ui).

where sLLM refers to smaller LLM. In the sec-
ond stage, we provide the original utterance U and
the formalized representation Logici to the smaller
LLM. Selecting a relevant domain-slot pair from
Logici, the model is prompted to generate both the
CoT and the predicted dialogue state for that slot:

{DSi,CoT} ← sLLM(Ui,Logici).

This final CoT may reference related turns and their
rationale, thereby reinforcing the model’s under-
standing of how the dialogue state evolves.

This two stage approach, as describe in Figure 3
offers two key benefits. First, splitting CoT gen-
eration into two stages—formalizing the dialogue
content before predicting dialogue states—reduces
the complexity of the instructions and thus lowers
the risk of error. Second, by limiting the second
stage to only the slots identified in the first stage,
we significantly decrease computational costs, as
the model need not process all possible slots. We
discuss more detials in Appendix. Overall, this
step-by-step knowledge distillation leverages ra-
tional data to improve both the interpretability and
efficiency of DST in zero-shot scenarios. The detail
instruction template is shown in Appendix.
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Table 1: Comparison of DST performance on MultiWOZ 2.1 and MultiWOZ 2.4 under various training conditions.
“Zero-shot” indicates no real training data, relying purely on synthetic data. “1%” and “5%” refer to few-shot
scenarios, where a small fraction of the real dataset is used in addition to synthetic data. Results marked with an star
* indicate findings reported in original research papers

MultiWOZ 2.1 MultiWOZ 2.4
Method Base Model Synthetic Data Zero-shot 1% 5% Zero-shot 1% 5%
SVAG T5<1B NeuralWOZ 19.1 34.4* 43.5* 23.8 47.6* 51.0*
SVAG T5<1B Simulated Chats 7.5 - 41.1* 12.5 - 47.3*
SVAG T5<1B EDZ-DA 17.2 37.2* 45.0* 23.9 43.8* 54.1*
Ours T5<1B Ours 21.7 25.8 31.2 29.4 35.1 39.3
LDST Llama 8B - 9.5 36.3* 46.7* 15.3 46.77* 56.48*
D0T Llama 11B D0T 12.9 - - 23.6* - -
LDST Llama 8B EDZ-DA 21.7 - - 27.4 - -
LDST Llama 8B NeuralWOZ 25.3 - - 32.0 - -
LDST Llama 8B LUAS 27.9 - - 31.9 - -
Ours Llama 1B Ours 25.7 29.1 35.8 28.7 35.4 41.7
Ours Llama 3B Ours 32.5 41.7 53.0 36.5 49.2 58.4
Ours Llama 8B Ours 45.2 52.1 63.8 49.7 54.7 68.3
IC-DST GPT3.5 >100B - 31.1* - - 35.3* - -
IC-DST GPT3.5 >100B SyntheDST 39.9* - - 45.6* - -
RefPyDST GPT3.5 >100B - 47.3* 49.6* - 47.9* 55.2* -
LDST GPT3.5 >100B - 61.52* - - 83.16* - -

4 Experiment

4.1 Synthetic data generation

Following the procedure outlined in Section 3.2,
we first construct a synthetic dataset using LLMs.
Specifically, we employ GPT4o-mini (Achiam
et al., 2023)2 to generate initial Scenario informa-
tion and GPT4o (Achiam et al., 2023)3 to produce
the corresponding dialogue flow, utterances, and
dialogue state labels. We begin by creating 900
scenarios, each corresponding to dialogues con-
taining one, two, or three domains (300 scenarios
per domain count). For each domain, the LLM
selects between 75% to 100% of the slots speci-
fied in the schema to ensure that chosen slot-value
pairs are semantically coherent. Next, we gener-
ate a straightforward baseline dialogue logic flow
for each scenario. We then apply our dynamic
complexity prompting strategy twice to evolve this
baseline into progressively more complex dialogue
flows. Using the same approach, we produce two
versions of the utterances for each dialogue flow:
a simple, baseline utterance set, and a complex
version created through one round of dynamic com-
plexity prompting. Finally, we analyze each dia-
logue to extract its corresponding dialogue state.
This procedure results in 5,400 synthetic dialogues

2https://platform.openai.com/docs/models#gpt-4o-mini
3https://platform.openai.com/docs/models#gpt-4o

that exhibit varying levels of complexity. Figure 4
presents the distribution of the number of slots
per scenario and the dialogue lengths at different
complexity tiers. As shown, our proposed method
enables the generation of a wide range of easy-to-
hard synthetic dialogues, thereby enhancing dataset
diversity and better reflecting real-world TOD re-
quirements.

4.2 Evaluation Dataset and Metrics

To evaluate our zero-shot scheme-only perfor-
mance, we employ the widely used Multi-
WOZ (Budzianowski et al., 2018) dataset. In partic-
ular, we include MultiWOZ 2.1 (Eric et al., 2019),
one of the most commonly adopted benchmarks
for Dialogue State Tracking, as well as MultiWOZ
2.4 (Ye et al., 2021), which is built on version 2.1
but introduces corrections and enhancements to the
test set. Compared to the original release, Multi-
WOZ 2.4 features clearer annotations and rectified
errors, making it a more reliable benchmark for
evaluating DST models.

Following previous work, we adopt Joint Goal
Accuracy (Budzianowski et al., 2018) (JGA) as our
primary evaluation metric. JGA deems a predic-
tion to be correct only if all slot-value assignments
match the ground-truth labels for a given dialogue,
making it a stringent measure of overall model per-
formance.
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4.3 Evaluation Baseline
Few smaller LLM-based approaches have reported
results for a purely zero-shot, scheme-only setting.
Most synthetic data generation strategies are gen-
erally employed for data augmentation, serving as
a supplement—rather than a replacement—for ex-
isting training data. To allow a fair comparison,
we incorporate several previously proposed syn-
thetic datasets and evaluate their performance in a
zero-shot context. In particular, we consider meth-
ods such as NeuralWOZ (Kim et al., 2021), Simu-
lated Chats (Mohapatra et al., 2020), EDZ-DA (Gu
and Yang, 2024), D0T (Finch and Choi, 2024),
LUAS (Niu et al., 2024), and SyntheDST (Kulka-
rni et al., 2024). Moreover, zero-shot, scheme-only
scenarios have also been investigated using large-
scale LLMs (e.g., GPT-3.5, GPT-4). We therefore
include the results of IC-DST (King and Flanigan,
2023), LDST (Feng et al., 2023), RefPyDST (King
and Flanigan, 2023), InstructTODS (Chung et al.,
2023), ParsingDST (Wu et al., 2023), and FnC-
TOD (Li et al., 2024) in our comparisons. Finally,
beyond the zero-shot case, we examine how our

proposed method performs under 1% and 5% few-
shot conditions, offering a more comprehensive
view of its capabilities.

4.4 Implementation Details
We employ Llama3.2 1B, 3B and Llama 3.1 8B
models (Dubey et al., 2024) as our distillation tar-
gets, using LoRA-based supervised fine-tuning (Hu
et al., 2021) for both stages of instruction. We re-
serve 600 synthetic dialogues as a development set
to adjust hyperparameters. For a fair comparison
with smaller PLMs, we also evaluate a T5-Large
model (Raffel et al., 2020) by fully fine-tuning it on
the same dataset. All experiments are conducted
on a single RTX 4090 GPU.

4.5 Result
Table 1 presents a comparison of our method
(“Ours”) with existing approaches on MultiWOZ
2.1 and MultiWOZ 2.4 under zero-shot, 1%, and
5% few-shot settings. Focusing first on the zero-
shot scenario, our Llama 8B model achieves 45.2%
JGA on MultiWOZ 2.1, significantly surpassing
the 32.3% and 17.3% reported by D0T and LUAS,
respectively. Even smaller variants, such as Llama
1B and Llama 3B, exhibit competitive zero-shot
performance, highlighting the effectiveness of our
synthetic data generation pipeline for models of
varying scales. These results underscore the ro-
bustness of our approach in purely synthetic condi-
tions without any real training data. Notably, our
T5<1B version also outperforms other synthetic
baselines (e.g., Simulated Chats, EDZ-DA). How-
ever, in the few-shot setting, the T5-based model
performs poorly on our synthetic data, primarily
because our prediction process involves chain-of-
thought (CoT) reasoning, which smaller models
without instruction fine-tuning struggle to handle.
By contrast, the 1B instruction-tuned Llama model
demonstrates strong performance under few-shot
conditions, indicating that instruction-tuned archi-
tectures are better suited for managing more com-
plex reasoning tasks.

Beyond zero-shot performance, introducing a
small fraction (1% or 5%) of real dialogues yields
considerable gains for our method, with JGA scores
often increasing by 5–15 points compared to the
zero-shot scenario. For example, the Llama 8B
model’s accuracy on MultiWOZ 2.1 rises from
45.2% to 63.8% when 5% of the real data is in-
cluded—on par with or exceeding several other
reported baselines. Although larger GPT-based so-
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lutions can perform well in zero-shot settings, they
typically rely on models exceeding 100B param-
eters. Our results demonstrate that substantially
smaller architectures can close much of this gap
through high-quality synthetic data creation, staged
complexity prompts, and step-by-step knowledge
distillation, ultimately providing a more resource-
efficient solution for DST deployment

4.6 Ablation Study

Our ablation study investigates two key factors
that may affect the zero-shot generalization per-
formance of our method: (1) the effect of different
complexity levels in synthetic data, and (2) the
contribution of each step in our step-by-step knowl-
edge distillation procedure.

Synthetic Complexity MultiWOZ2.1
Baseline 21.7
High Complexity 37.3
Easy-to-Hard 43.7

Table 2: Synthetic Complexity Results for Multi-
WOZ2.1 Zero-shot

To explore how dialogue complexity affects
model performance, we fixed the synthetic dataset
size to 800 samples per group and categorized them
into baseline, high-complexity, and diverse easy-
to-hard sets. The baseline group consisted of min-
imally complex dialogues generated without iter-
ative complexity increases, the high-complexity
group comprised dialogues that underwent mul-
tiple rounds of progressive complexity prompts,
and the diverse easy-to-hard group covered a full
spectrum from simple to complex dialogues. As
shown in Table 2, the diverse easy-to-hard data pro-
duced the best zero-shot results, highlighting the
importance of covering multiple difficulty levels to
enhance generalization.

Label Step1 Step2 MultiWOZ2.1
DS CoT CoT #turn <15 #turn >15
✓ 29 12
✓ ✓ 39 21
✓ ✓ ✓ 46 39

Table 3: Two step distillation Ablation study

We further examined the step-by-step distilla-
tion procedure to evaluate the impact of each stage
on final performance. Our approach includes two
chain-of-thought (CoT) elements: one in Step 1

to generate a formal representation of the utter-
ance, and another in Step 2 to track the evolution
of slots and values over the course of the conversa-
tion. To isolate the contributions of these steps, we
conducted ablation experiments on 100 dialogues
with more than 15 turns and 100 dialogues with
fewer than 15 turns. The results in Table 4 show
that incorporating the CoT from Step 1 provides
an approximately 10% improvement in zero-shot
accuracy by offering a more robust representation
for each turn. Additionally, Step 2 further reduces
errors, particularly for longer dialogues, where slot-
value tracking becomes more challenging. These
findings confirm the effectiveness of our step-by-
step distillation method, demonstrating how each
stage’s CoT contributes in distinct yet complemen-
tary ways to the overall DST performance.

5 Conclusion

We have presented a framework for zero-shot
scheme-only DST that combines a novel diverse
synthetic data generation pipeline with a two-stage
knowledge distillation process. By employing dy-
namic complexity prompts, our approach produces
diverse, schema-aligned dialogues without relying
on manual templates. We then leverage intermedi-
ate CoT representations to guide a smaller LLM
through a step-by-step distillation procedure, sub-
stantially improving its ability to handle unseen
dialogue scenarios. Experiments on MultiWOZ
demonstrate that our method achieves state-of-the-
art zero-shot results while remaining both computa-
tionally efficient and readily adaptable to few-shot
conditions.

Limitations

Although our approach demonstrates promising
results in zero-shot scheme-only DST, several limi-
tations remain. First, the method relies on a well-
defined schema to guide synthetic data generation.
If the schema is incomplete or inaccurate, the re-
sulting dialogues may not accurately capture real-
world complexity. Second, dynamic complexity
prompting, while improving data diversity, can oc-
casionally produce logically inconsistent or out-of-
scope content.Finally, the generated data are not
manually reviewed, leaving open the possibility
that they may contain inappropriate content.
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2023. Chatgpt for zero-shot dialogue state track-
ing: A solution or an opportunity? arXiv preprint
arXiv:2306.01386.

Matthew Henderson, Blaise Thomson, and Jason D
Williams. 2014. The second dialog state tracking
challenge. In Proceedings of the 15th annual meet-
ing of the special interest group on discourse and
dialogue (SIGDIAL), pages 263–272.

Pin-Lun Hsu, Yun Dai, Vignesh Kothapalli, Qingquan
Song, Shao Tang, Siyu Zhu, Steven Shimizu, Shivam
Sahni, Haowen Ning, and Yanning Chen. 2024. Liger
kernel: Efficient triton kernels for llm training. arXiv
preprint arXiv:2410.10989.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan
Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. 2021. Lora: Low-rank adap-
tation of large language models. arXiv preprint
arXiv:2106.09685.

Yushi Hu, Chia-Hsuan Lee, Tianbao Xie, Tao Yu,
Noah A Smith, and Mari Ostendorf. 2022. In-context
learning for few-shot dialogue state tracking. arXiv
preprint arXiv:2203.08568.

Sungdong Kim, Minsuk Chang, and Sang-Woo Lee.
2021. Neuralwoz: Learning to collect task-oriented
dialogue via model-based simulation. arXiv preprint
arXiv:2105.14454.

Brendan King and Jeffrey Flanigan. 2023. Diverse
retrieval-augmented in-context learning for dialogue
state tracking. arXiv preprint arXiv:2307.01453.

Atharva Kulkarni, Bo-Hsiang Tseng, Joel
Ruben Antony Moniz, Dhivya Piraviperumal,
Hong Yu, and Shruti Bhargava. 2024. Synthdst:
Synthetic data is all you need for few-shot dialog
state tracking. arXiv preprint arXiv:2402.02285.

Chia-Hsuan Lee, Hao Cheng, and Mari Ostendorf. 2021.
Dialogue state tracking with a language model using
schema-driven prompting. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 4937–4949, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

1648

https://arxiv.org/abs/2410.10989
https://arxiv.org/abs/2410.10989
https://doi.org/10.18653/v1/2021.emnlp-main.404
https://doi.org/10.18653/v1/2021.emnlp-main.404


Zekun Li, Zhiyu Zoey Chen, Mike Ross, Patrick Hu-
ber, Seungwhan Moon, Zhaojiang Lin, Xin Luna
Dong, Adithya Sagar, Xifeng Yan, and Paul A Crook.
2024. Large language models as zero-shot dialogue
state tracker through function calling. arXiv preprint
arXiv:2402.10466.

Yinhan Liu. 2019. Roberta: A robustly opti-
mized bert pretraining approach. arXiv preprint
arXiv:1907.11692, 364.

Biswesh Mohapatra, Gaurav Pandey, Danish Contrac-
tor, and Sachindra Joshi. 2020. Simulated chats
for building dialog systems: learning to generate
conversations from instructions. arXiv preprint
arXiv:2010.10216.

Cheng Niu, Xingguang Wang, Xuxin Cheng, Juntong
Song, and Tong Zhang. 2024. Enhancing dialogue
state tracking models through llm-backed user-agents
simulation. arXiv preprint arXiv:2405.13037.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2020. Exploring the lim-
its of transfer learning with a unified text-to-text
transformer. Journal of machine learning research,
21(140):1–67.

Lei Wang, Wanyu Xu, Yihuai Lan, Zhiqiang Hu, Yunshi
Lan, Roy Ka-Wei Lee, and Ee-Peng Lim. 2023. Plan-
and-solve prompting: Improving zero-shot chain-of-
thought reasoning by large language models. arXiv
preprint arXiv:2305.04091.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824–24837.

Yuxiang Wu, Guanting Dong, and Weiran Xu. 2023.
Semantic parsing by large language models for intri-
cate updating strategies of zero-shot dialogue state
tracking. arXiv preprint arXiv:2310.10520.

Lin Xu, Ningxin Peng, Daquan Zhou, See-Kiong Ng,
and Jinlan Fu. 2024. Chain of thought explana-
tion for dialogue state tracking. arXiv preprint
arXiv:2403.04656.

Fanghua Ye, Jarana Manotumruksa, and Emine Yilmaz.
2021. Multiwoz 2.4: A multi-domain task-oriented
dialogue dataset with essential annotation corrections
to improve state tracking evaluation. arXiv preprint
arXiv:2104.00773.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan
Ye, Zheyan Luo, Zhangchi Feng, and Yongqiang Ma.
2024. Llamafactory: Unified efficient fine-tuning
of 100+ language models. In Proceedings of the
62nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 3: System Demonstra-
tions), Bangkok, Thailand. Association for Computa-
tional Linguistics.

A Additional explanation on Experiment
Setting

For single run/ Multi-run settings In our ex-
periment, we do multiple runs (fine tuning in our
case) for optimal hyper-parameters. We do not use
MultiWOZ data in this stage but evaluation only
on synthetic data. But with the fine tuned model,
we do a single run with the MultiWOZ test set
to get the result. As we fixed the seed and with
temperate 0.1, we found we got stable results in
single/multiple runs.

For synthetic datasets explanation We utilized
synthetic datasets from various sources for our re-
search. Below are the details:

• NeuralWOZ, EDZ-DA, D0T, and LUAS: We
employed the synthetic data directly provided
by the respective authors of these models.

• Simulated Chats: For this dataset, we gener-
ated synthetic data ourselves using the code
and pre-trained models shared by the original
authors.

B Example of Dynamic Complexity
Prompting

The method consists of three steps:

1. Designing the Seed Mutation Prompt: This
step diversifies the conversation by steering it
in different directions.

2. Generating Contextual Complexity Prompts:
Given the context and seed mutation, the LLM
is tasked with generating a detailed plan to
improve the conversation. This generated con-
textual complexity prompt includes specific
instructions on how to edit or enhance the ex-
isting conversation.

3. Applying the Generated Prompt: The prompt
generated in Step 2 is used to instruct the LLM
to edit or improve the conversation accord-
ingly.

We observed that directly applying a general-
purpose seed mutation prompt can sometimes dis-
rupt the logical correlations between slot values
and utterances in the generated dialogue.

In Table 6, we provide examples of prompts
generated through our dynamic complexity mech-
anism. To maintain diversity, we impose mini-
mal constraints on prompt generation, resulting in
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some prompts that offer specific recommendations
(e.g., indicating which turn should include which
actions), while others present more general guide-
lines. Our experimental findings show that using
highly restrictive prompts increases the risk of pro-
ducing out-of-scope content.

C Instruction Template for Knowledge
Distillation

Tables 7 and 8 provide the instruction templates
we use during the knowledge distillation process,
where all CoT content is derived from the synthetic
data generation stage. These templates define how
the model should generate and interpret CoT infor-
mation at each step of the distillation, ensuring a
consistent framework that facilitates transfer from
large LLMs to smaller ones.

D Details of the Two-Stage Inference

Typical prompt-based DST models use one of two
inference strategies. Early approaches attempt to
generate all dialogue states at once from the com-
plete dialogue history (Chung et al., 2023). How-
ever, this method often suffers from errors and
hallucinations (e.g., predicting slots not included
in the schema). To address these issues, DST-as-
Prompting (Lee et al., 2021) introduced a per-slot
inference strategy that queries each slot one by
one. Subsequent studies such as LDST (Feng et al.,
2023) followed this paradigm, substantially improv-
ing accuracy at the cost of high computational over-
head—particularly in multi-domain settings. For
instance, MultiWOZ 2.1 includes 23 slots across
its hotel, train, and restaurant domains, requiring
23 separate inferences per turn.

Method # Query
One stage per turn 1790
One stage per slot 41170
Our two stage 6444

Table 4: The number of query for different inference
method

We propose a more balanced approach: in the
first stage, we predict the set of potentially rele-
vant slots; in the second stage, we only query those
slots. Table 4 compares the number of query for a
random sample of 100 test dialogues under differ-
ent strategies, showing that our two-stage method
achieves a significant reduction in computational

overhead while retaining the advantages of per-slot
inference.

Model Recall
Llama 1B 95.4
Llama 3B 97.2
LLama 8B 98.1

Table 5: The recall of stage 1 results on test set

One limitation of the two-stage process, how-
ever, is that inaccuracies in Stage 1 can omit certain
slots and thereby reduce final recall. We therefore
measure the recall of Stage 1 slot predictions for
Llama-based solutions, focusing on the extent to
which it covers the gold slot set. Results in Table 5
show that ignoring the value extraction step, the
model successfully identifies most of the poten-
tially relevant slots, ensuring robust overall DST
performance.

E Training Details

We employ llama_factory (Zheng et al., 2024)4

with the Liger Kernel (Hsu et al., 2024)5 for ef-
ficient supervised fine-tuning and use vLLM6 for
inference on the test set. For our synthetic dataset,
we train the model for two epochs using a learning
rate of 1e − 4. The LoRA rank is set to 16 for
the 3B and 8B versions and to 8 for the 1B model.
Under these settings, the 1B, 3B, and 8B models
complete training in approximately 8, 14, and 31
hours, respectively.

In the few-shot setting, no chain-of-thought
(CoT) annotations are available. We therefore first
use an LLM(GPT-4o) to extract the CoT in two
steps, then perform supervised fine-tuning. To
avoid overfitting, we train for two epochs with a
learning rate of 5e− 5 for the 3B and 8B models
and 2e− 5 for the 1B model.

4https://github.com/hiyouga/LLaMA-Factory
5https://github.com/linkedin/Liger-Kernel
6https://github.com/vllm-project/vllm
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Category Prompts

Utterance - Indirect
Slot Usage

At Turn 7 and Turn 12, refer back to a previously stated slot by using an indirect
phrase or pronoun (e.g., ’that place’, ’it’, ’the same hotel’), rather than repeating
the exact slot name.

Utterance - Natu-
ral Conversational
Flow

Use mild slang (e.g., ’gonna,’ ’wanna’) in some turns, and let a few user/system
turns expand into 2–3 sentences. E.g., ’I’m really hoping we can find something
affordable. I heard your deals are great.

Utterance - Error
Injection or Typos
(for Naturalness)

Insert a few small spelling or grammar mistakes in user utterances for restaurant
name, making sure the conversation remains understandable overall.

Dialogue Flow
- Multi-Domain
Jumps

Ensure the user abruptly introduces a another domain mid-conversation, then
later returns to the original domain.

Dialogue Flow
- Multi-Domain
Variation

Include at least ONE instance where the user deals with TWO or more domains
in a single turn. Keep the plan coherent, ensuring the user returns to or finalizes
all relevant domains.

Dialogue Flow -
Slot Contradictions

At Turn 16, the user provide contradictory or overlapping slot info for hotel type
and hotel name.

Table 6: Dynamic Generated Complexity Prompt

Category Prompts

Instruction You are given a task-oriented dialogue between the "user" and the "system".
Please analyze the conversation, especially the last two turns, and produce a
concise chain-of-thought analysis including the following:

• Intentions of each of the last two turns.

• Related slot names of the last two turns, enclosed in [slot][/slot] tokens.

• Formalized representation of the last two turns.

Input The task-oriented dialogue is as follows: {dialogue_history} Now, generate
your chain-of-thought based on the above context.

Output Analyzing the last two turns, I found that:
[Turn {turn_id} {turn.speaker.upper()}]: {turn.representation}
{turn.speaker.upper()} intends to {intention}.
The related slot(s) in schema is/are [slot]{slots_cot}[/slot].

Table 7: Instruction template for Stage 1 Knowledge Distillation
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Category Prompts

Instruction You are a dialogue state tracker for a task-oriented dialogue system. You will be
given:

• A dialogue between the "user" and the "system".

• Formalized representation of the dialogue.

Your task is to analyse and predict the **dialogue states** for the given slot
name. If the slot is not mentioned in the dialogue, please predict the slot value as
NONE. Output your reasoning progress and the predict value start with [state]
and end with [/state].

Input The task-oriented dialogue is as following: {dialogue_history} The formalized
representation of the dialogue: {form_cot} Now, please analyse and predict the
value for slot *{slot}*, which refers to {slot_description}. Output your reasoning
progress and the predict value start with [state] and end with [/state].

Output After read the context, I found slot *{slot}* is related to Turn {turn_id_list}. In
detail, In turn {turn_id}, {form_cot} ... In conclusion, the dialogue state for slot
*{slot}* is <state>{ds}</state>

Table 8: Instruction template for Stage 2 Knowledge Distillation
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