
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 16783–16809
November 4-9, 2025 ©2025 Association for Computational Linguistics

Let’s Reason Formally: Natural-Formal Hybrid Reasoning Enhances
LLM’s Math Capability

Ruida Wang1*, Yuxin Li2*, Yi R. (May) Fung2, Tong Zhang1

1University of Illinois Urbana-Champaign, 2Hong Kong University of Science and Technology

Correspondence: rwangbr@connect.ust.hk, ylinq@connect.ust.hk,

yrfung@ust.hk, tongzhang@tongzhang-ml.org

Abstract
Enhancing the mathematical reasoning capa-
bilities of LLMs has garnered significant at-
tention in both the mathematical and computer
science communities. Recent works have made
substantial progress in both Natural Language
(NL) reasoning and Formal Language (FL) rea-
soning by leveraging the potential of pure Re-
inforcement Learning (RL) methods on base
models. However, RL approaches struggle to
impart new capabilities not presented in the
base model (Yue et al., 2025), highlighting the
need to integrate more knowledge like FL into
NL math reasoning effectively. Yet, this inte-
gration is challenging due to inherent dispari-
ties in problem structure and reasoning format
between NL and FL (Wang et al., 2024). To
address these challenges, we introduce NL-FL
HybridReasoning (NFL-HR), an end-to-end
framework designed to incorporate the FL ex-
pert into NL math problem-solving. To bridge
the NL and FL input format gap, we propose
the NL-FL Problem Alignment method, which
reformulates the Question-Answering (QA)
problems in NL as existence theorems in FL.
Subsequently, the Mixed Problem Input tech-
nique we provide enables the FL reasoner to
handle both QA and existence problems concur-
rently. Lastly, we mitigate the NL and FL out-
put format gap in reasoning through an LLM-
based Answer Extraction mechanism. Compre-
hensive experiments demonstrate that the NFL-
HR framework achieves 89.80% and 84.34%
accuracy rates on the MATH-500 and the AMC
benchmarks, surpassing the NL baseline by
4.60% and 4.82%, respectively. Notably, some
problems resolved by our framework remain
unsolved by the NL baseline model even under
a larger number of trials.

1 Introduction

The capability of performing rigorous mathemati-
cal reasoning has always been regarded as a corner-
stone of human intelligence and a fundamental goal

*First authors

of machine learning systems (Newell and Simon,
1956). Among these tasks, mathematical reasoning
is considered crucial for evaluating the capabilities
of Large Language Models (LLMs). Recently, both
academia and industry have been actively working
on two branches of LLM math reasoning, namely
Natural Language (NL) reasoning and Formal Lan-
guage (FL) reasoning.

In the NL math reasoning, taking advantage of
the vast NL data during pre-training, researchers
have been continuously making progress in the
field during the last few years. Many works tried
to enhance LLMs’ Math capability from various
perspective (Hendrycks et al., 2021; LI et al., 2024;
Rafailov et al., 2023; Wei et al., 2022). Recent
progress in pure Reinforcement Learning (RL)
training on base models has notable success in solv-
ing IMO-level problems through reflection capabil-
ity in Long Chain-of-Thought (CoT) (Guo et al.,
2025). However, the latest works have shown that
while RL methods fail to introduce novel capabil-
ities beyond the base model (Gandhi et al., 2025).
Consequently, integrating knowledge from other
domains, such as FL reasoning, has emerged as a
promising direction to enhance LLM’s mathemati-
cal reasoning abilities.

On the other end, FL reasoning leverages
the inherent verifiability of formal systems like
Lean (De Moura et al., 2015; Moura and Ullrich,
2021), Coq (Coq, 1996), and Isabelle (Paulson,
1994). They provide a rigorous framework for
defining solutions and verifying their correctness.
This reliability facilitates large-scale and risk-free
data generation (Lin et al., 2025; Wang et al.,
2025b; Xin et al., 2024b; Dong and Ma, 2025),
which enables the use of synthetically generated
data for stable RL/SFT training (Wang et al., 2024;
Xin et al., 2024a; Wu et al., 2024). With the ad-
vancements in Long CoT reasoning models, pure
RL methods have proven to be particularly effec-
tive for FL reasoners (Ren et al., 2025; Wang et al.,

16783

rwangbr@connect.ust.hk
ylinq@connect.ust.hk
yrfung@ust.hk
tongzhang@tongzhang-ml.org

QA problem:
Convert the point 0, 3 in
rectangular coordinates to
polar coordinates. Enter
your answer in the form
𝑟, 𝜃 , where 𝑟 > 0 and
𝜃 ∈ 0, 2𝜋 .

Existence problem 2:
Prove that the point 0, 3 in
rectangular coordinates can
be uniquely represented in
polar coordinates by 𝑟, 𝜃 ,
where 𝑟 > 0 and 𝜃 ∈ 0, 2𝜋 .

Existence problem 1 Format
Translator Autoformalizer

Lean4 Statement 2:
theorem math500_precalculus_807_1
(r : ℝ) (θ : ℝ) (hr : r > 0) (hθ : θ ∈ Ico 0
(2 * π)) :

(r, θ) = (Real.sqrt (3 ^ 2 + 0 ^ 2),
arctan (0 / 3)) := by

Existence problem 3

Lean4 Statement 1

Lean4 Statement 3

Long CoT Proof 2:
Prove the Lean4 statement by thinking …
<think>
Long CoT NL + FL thinking
</think>
Lean4 proof

Lean4 Statement 1 Long CoT
Prover

Lean4 Statement 3
General LLM

Random
Drop

NL Answer 1

NL Answer 2:
3, !

"

NL Answer 3

(a) NL-FL Problem Alignment

(b) FL Reasoner Solving
(c) Answer Extraction

Mixed Problem
Input

Figure 1: NL-FL HybridReasoning (NFL-HR) framework: (a) NL-FL Problem Alignment: We first translate the
QA-style NL problem into the NL existence problem using a general LLM, followed by converting the problem into
an FL existence theorem through an autoformalizer. (b) FL Reasoner Problem Solving: We then apply the mixed
problem input technique to ask the FL reasoner to concurrently address the QA problem in NL and the existence
problem in FL within a unified Long CoT thinking process. (c) Answer Extraction: Finally, we use the LLM to
extract the implicit NL answer from the FL prover’s Long CoT output.

2025a). However, despite rapid progress in enhanc-
ing FL reasoning capabilities, most efforts remain
confined to FL theorem-proving tasks, limiting the
broader application of FL-derived knowledge to NL
math problems. A substantial gap persists between
NL and FL reasoning due to the differences in prob-
lem structure and reasoning format. FL tasks are
typically structured as closed-ended theorems with
fixed conditions and goals. Whereas NL problems
are often Question-Answering (QA) style, as those
in MATH-500 (Lightman et al., 2023). Further-
more, FL training frequently biases models’ final
outputs toward FL code, reducing their effective-
ness in directly addressing NL questions, which are
often expressed in more concise and less structured
formats.

In summary, in the context of NL math reasoning
requiring broader knowledge integration to extend
LLM capabilities, it is a natural idea to integrate FL
reasoning to enhance that. However, FL reasoning
remains constrained by its rigid problem structure
and reasoning format. Addressing these challenges
collectively presents a promising research direction
in leveraging FL to enhance NL math problem-
solving.

To solve the problems above, we propose NL-
FL HybridReasoning (NFL-HR), an end-to-end
framework that augments LLMs’ NL math reason-

ing by enabling them to tackle problems that are
otherwise difficult under a purely NL context. The
framework overview is presented in Fig. 1. The
core methodology of our framework can be sum-
marized into three stages that works synergistically
together:

1. NL-FL Problem Alignment: We develop a
method to establish a non-ambiguous alignment
between the NL problem and FL problem. It
is done by firstly converting QA problems into
NL existence problems1 using a general LLM,
followed by formalizing the existence problem
into FL through an autoformalizer.

2. FL Reasoner Solving: At this stage, we im-
plement the Mixed Problem Input technique, al-
lowing the FL reasoner to concurrently address
both the FL existence problem and the QA prob-
lem in NL in its Long CoT thinking, thereby
applying FL knowledge to solve NL tasks.

3. Answer extraction: The final stage involves
extracting the implicit NL answer from the
Long CoT output generated by the FL reasoner.
This step effectively unifying the output for-
mat of FL-derived reasoning with NL question-
answering.

1The QA problems seek a specific answer while the exis-
tence problems ask for the proof of existence of the answer.

16784

We summarize our contributions as follows: (1)
We introduce NFL-HR, a comprehensive frame-
work that effectively incorporates FL reasoning
to address NL math problems. (2) The proposed
NL-FL Problem Alignment and Answer Extraction
methods relatively effectively reduce the disparity
between NL and FL reasoning in both problem
structure and reasoning format, broadening the ca-
pability of FL methods. (3) We conduct comprehen-
sive experiments using the NFL-HR framework,
achieving accuracy rates of 89.80% on the MATH-
500 dataset and 84.34% on the AMC dataset, sur-
passing the NL baseline of Qwen3-8B by 4.60%
and 4.82%, respectively. Notably, the problems
successfully solved by our framework are hard for
the NL reasoner even with a larger number of tri-
als, highlighting the effectiveness of integrating FL
reasoning with NL problem-solving. Our code is
available here here.

2 Methodology

In this section, we present the details of NL-FL
HybridReasoning framework, which leverages
the knowledge of Formal Language (FL) reason-
ers to tackle Natural Language (NL) math prob-
lems. To bridge the format gap between NL and
FL reasoner’s inputs, we propose the NL-FL Prob-
lem Alignment method in Section 2.1. We further
introduce the Mixed Problem Input technique in
Section 2.2, which enables the Long CoT FL rea-
soner to solve QA problem in NL and existence
problem in FL concurrently. Finally, we present
the Answer Extraction method to output format of
FL reasoner to answer NL question in Section 2.3.
Overall, the task for our framework can be defined
as: “Using post-training methods to extend the
LLM’s capabilities in solving NL-based math QA
problems.”

2.1 NL-FL Problem Alignment

2.1.1 QA-existence problem translation
A key challenge in applying FL reasoners to NL

problems lies in the disparity between their prob-
lem structures. NL math datasets primarily contain
blank-filling questions that require the LLMs to
determine specific numerical or formulaic answers.
For instance, a typical NL problem is structured
as “Given conditions {c1, c2, · · · }, find the answer
a,” as illustrated in Fig. 2, where the objective is to
identify the value of C.

On the other hand, in FL reasoning, the problem

Find the smallest positive real number C for
which

∥∥∥∥
[
2 3
0 −2

]
v
∥∥∥∥ ≤ C∥v∥

for all two-dimensional vectors v.

Figure 2: QA problem for NL math dataset

type is typically a closed-ended, proof-oriented task
framed as: “Given conditions {c1, c2, · · · }, prove
the goal a”. In NL-FL translation (or formaliza-
tion), traditional methods demonstrated in Zheng
et al. (2021) will simply present the correct answer
in the statement and let the FL reasoner prove the
answer is correct. For instance, in the previous
example, traditional methods will reformulate the
problem as “prove the C is 4.” While this is a valid
formalization, it offers limited utility in deriving
the answer we do not know.

However, if we directly use the LLM to trans-
form the QA problem in NL into an FL problem,
there is an ambiguous point. Since the FL requires
a goal proof, but there is no such goal provided in
the NL question. Thus, the LLMs tend to directly
guess and answer to bridge the gap between the FL
proof and the NL question. But this can confuse
the FL reasoner since the guessed answer is mostly
incorrect.

Prove that there exists a smallest positive
real number C such that

∥∥∥∥
[
2 3
0 −2

]
v
∥∥∥∥ ≤ C∥v∥

for all two-dimensional vectors v.

Figure 3: QA reformatted to existence problem

To address this, we adopt a few-shot prompting
strategy to let a general LLM reformulate the QA
problem into an NL existence problem. Instead
of providing a specific value, this type of problem
focuses on establishing the existence of the solu-
tion, thus removing the ambiguity. The detailed
prompt is provided in Appendix H.1, where we
offer cross-domain examples to guide the transfor-
mation process. The reformulated NL existence
problem for the QA task is illustrated in Fig. 3,
where the objective shifts from “finding the num-

16785

https://github.com/RickySkywalker/HybridReasoning

ber” to “proving the existence of the number”.

2.1.2 Autoformalization
In the FL research, many works try to automate the
formalization process. They use millions of pairs
NL-FL aligned problems to train LLMs named
autoformalizer to do such a process (Wang et al.,
2025a; Ren et al., 2025; Lin et al., 2025). The
autoformalizer’s input is the NL proof problem
and outputs its corresponding FL proof problem
(or statement). The existence problem we derived
above is the unambiguous counterparty of the QA
problem in NL and is suitable for FL statement
formulation. Thus, we can use the autoformalizer
to transform the NL existence problem to the cor-
responding FL statement. Specifically, we adopt
Lean4 in the NFL-HR framework due to its rapidly
advancing models in autoformalization. An exam-
ple of a formalized FL statement is demonstrated
in Fig. 4.

theorem math500_precalculus_675_2 :
∃ (C : \R),
IsLeast {C | 0 < C ∧ ∀ (v :
EuclideanSpace \R (Fin 2)), ∥(2 * v
0 + 3 * v 1, -2 * v 0)∥ ≤ C * ∥v∥}
C := by sorry

Figure 4: Formalized Lean4 statement

The autoformalization process effectively miti-
gates the format gap between NL and FL problems,
enabling the FL reasoner to indirectly address the
QA problem in NL systematically.

2.2 FL Reasoner Problem Solving
In this section, we introduce the Mixed Problem

Input technique, which enables the FL reasoner (or
prover) to implicitly address the QA problem in NL
while processing their corresponding FL existence
problems. Formally, the input to the FL prover is
defined as:

Prover(xFL,xNL) = zCoT ,yFL

where xFL and xNL represent the FL and NL prob-
lems, zCoT denotes the Long CoT content and yFL

is the FL solution. During the FL prover’s reason-
ing process, we observed that it initially resolves
the NL question included in the prompt before gen-
erating the corresponding FL proof. Notably, even
when the NL problem mismatches the correspond-
ing FL statement, the prover still tends to address

the NL problem first. Further analysis of this be-
havior is provided in Appendix G.

Thus, we take advantage of such behavior in
the Mixed Problem Input technique, where we use
the QA problem as xNL and the translated exis-
tence Lean4 statement as xFL. During the reason-
ing process, the FL prover initially addresses the
QA problem, which indirectly provides an answer
through its Long CoT. This response is then utilized
to write Lean4 code to prove the FL existence prob-
lem. By structuring the input in a QA-existence
mixed problem format, the FL prover leverages its
expertise to resolve the NL question while concur-
rently generating the FL proof. An example of the
input-output structure is presented in Fig. 5, and a
detailed prompt can be found in Appendix H.3.

== Input ==
Think about and solve the

following problem step by step
in Lean 4.

↪→

↪→

Problem: <NL_QA_problem>
Formal statement
```lean4
/-- <NL_QA_problem> -/
<FL_existence_problem>
== Output ==
<think>
# Finding the Smallest Positive

Real Number $C$ for a Matrix
Norm Inequality

↪→

↪→

<reasoning contents omitted>
**The answer is: 4**
# Now translated it to Lean4:
<reasoning contents omitted>
</think>
<FL solutions>

Figure 5: Input-Output of the FL reasoner

However, in FL prover’s reasoning process of the
mixed input problem, the NL answer is only implic-
itly presented in the Long CoT and not correctly
formatted. This is because the training process of
the prover established a rigid FL format bias. It
makes the prover unable to directly provide the NL
answer in a formatted way for verification. Thus,
we employ the answer extraction method to retrieve
the desired response from the Long CoT content.

2.3 Answer Extraction
This section details the approach for retrieving

16786



the implicit solutions embedded within the Long
CoT content and enabling the framework to com-
bine the knowledge from the NL and FL reasoners.
Specifically, we use a general-purpose LLM to ex-
tract the NL answer from the Long CoT output,
formatting the response in the \boxed{} block for
verification. The prompt structure is illustrated in
Fig. 6, with the complete prompt template provided
in Appendix H.4.

Find the answer to the following
question in the provided long
CoT content. Your answer
should be in \boxed\{\}
format.

↪→

↪→

↪→

↪→

Here is the question:
<NL_QA_problem>
The answer is contained in the

following Long CoT content:↪→

<Long_CoT_from_prover>

Figure 6: Prompt for answer extraction

To prevent overthinking in the straightforward
answer extraction task, we do not use the think-
ing mode of the general LLM. But we do allow
the LLM to perform the normal CoT to check the
correctness of the answer. Additionally, to reduce
potential biases introduced during FL training, we
randomly exclude some FL outputs and prompt the
NL model to directly resolve the problem, allowing
the framework to leverage both the general LLM
and the FL reasoner’s knowledge

3 Experiments
To validate the effectiveness of our proposed NL-
FL HybridReasoning framework, we conduct
comprehensive experiments on widely applied
benchmarks (Lightman et al., 2023; Beeching et al.,
2024). Additionally, we evaluate the framework’s
unique FL capabilities (Section 3.4), the computa-
tion cost of NFL-HR (Section 3.5), and conduct
ablation studies (Section 3.6) to further substantiate
its effectiveness.

3.1 Experiment Setup

3.1.1 Dataset
To evaluate the efficiency of NFL-HR in advancing
LLM NL math reasoning, we choose the MATH-
500 (Lightman et al., 2023) and AMC (Beeching
et al., 2024) datasets.

MATH-500 is a collection of 500 challenging
mathematical problems designed to benchmark ad-
vanced reasoning and problem-solving capabili-
ties in LLMs. The dataset covers diverse mathe-
matical domains, with each problem accompanied
by its corresponding numerical or formulaic solu-
tion for verification. It is widely used for research
in mathematical reasoning, symbolic computation,
and automated theorem proving. The AMC dataset
consists of 83 problems extracted and reformat-
ted from AMC-2022 and AMC-2023 (Beeching
et al., 2024), with a format transition from multiple-
choice to QA-style numerical answers. Positioned
as an intermediate-level dataset between MATH-
500 and IMO-level problems, making it a suitable
benchmark for assessing more advanced reasoning
capabilities in NL-based math tasks.

3.1.2 Baseline & Evaluation Metric
We choose Qwen3-8B (Team, 2025) as the base-
line model due to its advanced Long CoT reason-
ing capability and leading performance across vari-
ous benchmarks. We do not apply RL methods to
the NL reasoning model because Long CoT mod-
els are typically distilled from RL-trained large
models (Team, 2025; Guo et al., 2025), as shown
by Guo et al. (2025); RL methods applied directly
to small models typically do not outperform the
distilled variants.

For evaluation, we utilize the pass@16 metric
on both datasets. This metric asks the model to
generate 16 potential answers for each question
and considers the problem correctly solved if any
of the generated answers match the correct solu-
tion. It is an appropriate metric to evaluate the
capability limit for math reasoning frameworks.
We chose this metric to align with the recent find-
ings that pure RL methods reduce incorrect outputs
but struggle to expand overall reasoning capabil-
ity (Yue et al., 2025; Gandhi et al., 2025), which
makes the assessment of capability limit meaning-
ful.

3.2 Implementation Details
We employ Qwen3-8B (Team, 2025) with
Long CoT thinking mode for format transla-
tion and non-thinking mode for answer extrac-
tion. For autoformalization, we utilize Kimina-
Autoformalizer (Wang et al., 2025a), while Kimina-
Prover-Preview-7B (Wang et al., 2025a) serves as
the FL reasoner. Details of the Kimina-Prover se-
ries of models can be found in Appendix D. The

16787



Dataset Data Number NL Reasoning NL-FL HybridReasoning Improvement

AMC 83 79.52% 84.34% 4.82%

MATH-500 500 85.20% 89.80% 4.60%

MATH-500 by subject
Prealgebra 82 84.15% 89.02% 4.88%

Counting & Probability 38 84.21% 89.47% 5.26%
Intermediate Algebra 97 84.54% 89.69% 5.15%

Geometry 41 65.85% 80.49% 14.63%
Precalculus 56 76.79% 83.93% 7.14%

Algebra 124 94.35% 95.16% 0.81%
Number Theory 62 90.32% 91.94% 1.61%

Table 1: Main experiment result of NFL-HR under MATH-500 and AMC benchmarks with pass@16 metric.

temperature for proof generation is configured at
0.7, with other inference steps set to 0.6 to maintain
a balance between exploration and stability. We
also set the temperature of the baseline model to
0.7. Inference is conducted using vllm (Kwon et al.,
2023) with default parameters. To manage GPU
usage, we limit the maximum token generation to
8192 tokens per query. The complete evaluation
process consumes approximately 200 A6000 GPU
hours.

3.3 Main Results
We present the main experiment results in Tab. 1.
From the table, the NFL-HR achieves accuracy
rates of 84.34% on the AMC dataset and 89.80%
on the MATH-500 dataset. Outperforming the NL
baseline by 4.82% and 4.60% respectively, which
records 79.52% on AMC and 85.20% on MATH-
500.

In the subjective-level result, the NL reasoning
baseline performs relatively badly on domains like
Geometry and Precalculus. In Precalculus, the
NL model achieves only 76.79%, while NFL-HR
reaches 83.93%. This gain stems from FL reason-
ing’s emphasis on the precise, step-by-step logical
analysis, which is vital for handling complex calcu-
lations in calculus. In Geometry, since most prob-
lems are about numerical geometrical concepts like
degrees and edges, whose data is easy to obtain
by FL training in analytic geometry, but not that
easy through NL training. This advantage leads to
a 14.63% of improvement.

From a general perspective, the NL baseline ex-
hibits substantial performance variability across
subjects. It excels in areas with abundant data,
such as algebra and number theory, but falters in
fields that require precise logical deductions, like
geometry and precalculus. In contrast, NFL-HR
demonstrates consistent and relatively high perfor-

Dataset Subset problem # NL-16 NL-64 HR-16

AMC 7 0% 0% 100%
MATH 23 0% 0% 100%

Table 2: Results on FL’s unique capability, where the
“Subset problem #” means the number of problems not
solved by the NL reasoning but solved by NFL-HR
(HR) in the main experiment.

mance across all domains. It effectively mitigates
the weaknesses of NL reasoning by incorporating
the rigorous verification capabilities of FL during
training. This consistent improvement underscores
the value of incorporating FL-derived logical struc-
tures into NL problem-solving.

3.4 Study on FL’s Unique Capability

To verify the FL prover supplies abilities hard to at-
tain through pure NL training, we re-evaluated the
NL baseline on the subset of problems that are only
solved by NFL-HR in the main experiment. This
subset represents 8.43% of AMC problems and
4.60% of MATH-500 problems. To test whether
these problems can be finished by NL reasoner,
we allow a pass@64 generation in this experiment.
The results are reported in Tab. 2.

The table shows that even with 64 attempts, the
NL models obtained a 0% accuracy rate on every
problem for both sub-datasets. It typically stalls in
the self-reflection loop and produces no valid an-
swer. In contrast, NFL-HR continues to solve all
items in the group in the pass@16 metric, confirm-
ing that the FL component contributes distinctive
knowledge that the NL system alone finds hard to
cover.

3.5 Computation Cost Study

We test the efficiency of the NFL-HR framework
by comparing the average tokens generated by
NFL-HR and the NL reasoning baseline of Qwen3-

16788



Method AMC MATH-500 Average

Qwen3-8B 6,611.53 4,305.30 5,458.42
NFL-HR 7,447.06 5,173.63 6,310.35

Table 3: Tokens generated for Qwen3-8B and NFL-HR
in AMC and MATH-500 dataset under pass@16.

Method AMC MATH-500

NL Reasoning 79.52% 85.20%
NFL-HR w/o existence align. 77.11% 88.20%
NFL-HR w/o expert prover 80.72% 88.33$

NFL-HR 84.34% 89.80%

Table 4: Ablation study results, all experiments are
performed under pass@16.

8B in the MATH-500 and AMC dataset under the
pass@16 metric. The results are presented in Tab. 3.
We can see that the NFL-HR requires approxi-
mately 850 additional tokens per query on aver-
age. Compared to the unique capability obtained
of NFL-HR as shown in Section 3.4, where NFL-
HR can solve problems that the NL baseline is un-
able to answer even under much larger trials. This
demonstrates the gain of capability that outweighs
the modest increase in token usage.

Furthermore, in real-time inference, both sys-
tems cost the same scale of GPU hours on average.
This is because the NFL-HR distributes its gener-
ation across multiple stages, but the NL baseline
conducts a single-pass generation that has more
GPU cost as it generates later tokens. Therefore,
we conclude the additional generation cost as a rea-
sonable and worthwhile trade-off for the improved
reasoning performance.

3.6 Ablation Studies

3.6.1 Drop existence alignment
To test the effectiveness of the NL-FL Problem
Alignment, we drop the existence alignment step
in NFL-HR and replace it with directly passing
the NL QA-style problems to the autoformalizer
to translate. During this experiment, it was ob-
served that such direct formalization could lead
to discrepancies between the correct NL answer
and the generated FL statement, potentially disori-
enting the prover. Consequently, in this ablated
configuration, the prover was guided only to solve
the autoformalized statement, with only the FL rea-
soning segment subsequently utilized for answer
extraction. The dropping of the existence align-
ment causes the accuracy rate to reduce by 4.42%.
Notably, on the harder AMC dataset, this perfor-
mance deterioration was particularly acute, with

the framework’s accuracy diminishing to levels be-
low that of pure NL reasoning. This suggests that
increasingly sophisticated datasets require more rig-
orous reasoning capabilities. Thereby heightening
the importance of precise FL integration facilitated
by the alignment step.

3.6.2 Drop expert FL prover
To evaluate the contribution of the specialized
FL prover, this experiment involved substituting
it with the general-purpose LLM (Qwen3-8B) in
NFL-HR. The corresponding results are detailed
in Tab. 4. This configuration yielded an average
performance decrease of 2.55% compared to the
original NFL-HR, underscoring the efficacy of in-
corporating an FL expert for enhancing NL rea-
soning. This performance dip is attributed to the
general LLM’s lack of field-specific FL training,
which consequently impeded the framework’s abil-
ity to address advanced problems in certain sub-
jects. Nevertheless, even with this substitution, the
framework demonstrated an average improvement
of 2.17% over the NL baseline. This suggests that
activating the model’s inherent FL knowledge can
still benefit NL reasoning.

3.7 Case Study

This section presents a detailed case study illustrat-
ing each stage of the NFL-HR framework. Due
to the space constraints, we only provide analysis
in the main paper, while the detailed input-output
examples are available in Appendix I.

During the QA-existence problem translation
stage, the LLM demonstrates a thorough analysis
of the task, and the model also effectively utilizes
the provided few-shot examples. Notably, even
when presented with a QA problem in the sense
of unit translation, a format not typically framed
as an existence problem in NL math datasets. The
model achieves an accurate translation. And pro-
vide the result in a markdown box as instructed. In
the subsequent autoformalization stage, the auto-
formalizer successfully converts the NL existence
problem into a formal Lean4 statement. Despite
the inclusion of some unnecessary elements in the
formal goal, it is still a valid autoformalization, and
the result successfully compiles.

For the FL prover generation phase, the expert
prover correctly and concisely addresses the NL
question. It then generates the corresponding FL
proof, which also passes verification. Finally, in the
answer extraction stage, even without Long CoT,

16789



the general LLM still performs chain-of-thought
reasoning to verify the result based on the FL
prover’s output, as intended. This behavior en-
hances the framework’s robustness and can poten-
tially rectify minor discrepancies arising from the
FL reasoning process.

4 Related Work

4.1 Natural Math Reasoning

Enhancing the mathematical problem-solving abil-
ities of LLMs has consistently attracted interest
from both industrial and academic research com-
munities. This is largely because mathematical
reasoning is widely considered a hallmark of ad-
vanced intelligence. From their interception, LLMs
demonstrated notable aptitude for mathematical
tasks. Benchmark datasets have charted rapid
advancements, progressing from primary-school
level problems (Cobbe et al., 2021), through high-
school problems (Lightman et al., 2023; Hendrycks
et al., 2021), to university-competition-level ques-
tions (Gulati et al., 2024). Concurrently, the de-
velopment of extensive datasets such as OpenWeb-
Math (Paster et al., 2023), ProofPiles (Azerbayev
et al., 2023b), and Numina-Math (LI et al., 2024)
has expanded the scale of the math corpus to bil-
lions of tokens for pre-training and millions of
question-answering pairs for fine-tuning. Along-
side these data curation efforts, researchers have
explored diverse training methodologies, ranging
from simple instruction fine-tuning (Brown et al.,
2020) and code-augmented training (Roziere et al.,
2023) to Reinforcement Learning (RL) alignment
strategies (Rafailov et al., 2023; Schulman et al.,
2017; Shao et al., 2024). More recently, pure RL
training applied to base models to develop Long
Chain-of-Thought capabilities has yielded impres-
sive performance gains, exemplified by DeepSeek-
R1 (Guo et al., 2025). However, recent stud-
ies suggest that such RL-based training primar-
ily refines existing abilities rather than impart-
ing novel capabilities beyond those inherent in
the base model (Yue et al., 2025; Gandhi et al.,
2025). Consequently, investigating methods to
integrate diverse knowledge sources and reason-
ing paradigms into LLM mathematical problem-
solving has emerged as a significant research direc-
tion.

4.2 Formal Math Reasoning

Formal Language (FL) reasoning involves express-
ing mathematical statements in first-order logic,
rendering every component of the mathematical
reasoning system verifiable. This approach mit-
igates ambiguity and provides a solid founda-
tion for the reasoning process. Researchers have
developed many FLs in the last decades, such
as Isabelle (Paulson, 1994), Lean (De Moura
et al., 2015; Moura and Ullrich, 2021), CoQ (Coq,
1996), Metamath (Megill and Wheeler, 2019),
and HOL Light (Harrison, 2009). Among these,
Lean4 (Moura and Ullrich, 2021) has garnered sig-
nificant attention due to its elegance and simplicity.

Most research in FL reasoning has concen-
trated on developing more advanced prover mod-
els. Researchers have proposed various meth-
ods to enhance the formal reasoning capabili-
ties of LLMs. Representative approaches in-
clude LeanDojo (Yang et al., 2024), which ap-
plies retrieval methods to suggest tactics; Theo-
remLlama (Wang et al., 2024), which attempts
to transform NL proofs into FL proofs; and the
DeepSeek-Prover family (Xin et al., 2024b,a; Ren
et al., 2025), Goedel-Prover (Lin et al., 2025),
and STP (Dong and Ma, 2025), which employ
advanced techniques for large-scale formal data
annotation. Recently, systems like MA-LoT (Wang
et al., 2025b), Kimina-Prover (Wang et al., 2025a),
and DeepSeek-Prover-V2 (Ren et al., 2025) uti-
lize different strategies to train models with Long
Chain-of-Thought, advancing formal reasoning ca-
pabilities to address IMO-level problems.

Despite these rapid advancements, inherent dis-
parities between FL and NL in both problem formu-
lation and reasoning paradigms mean that few stud-
ies have directly leveraged FL models to enhance
the NL reasoning capabilities of LLMs. The major-
ity of these efforts focus on answer selection based
on formal verification (Yao et al., 2025; Zhou et al.,
2024), or involve the indirect incorporation of FL-
derived knowledge during RL training (Guo et al.,
2025). Concurrently, new benchmarks are emerg-
ing to explore the integration of formal reasoning
with even more complex input modalities, such
as the multimodal problems presented in MATP-
Bench (He et al., 2025). Consequently, bridging
the gap between NL and FL reasoning represents a
promising direction in the background of the gen-
eral need to integrate diverse knowledge sources
into math reasoning.

16790



5 Conclusion

This paper introduces NFL-HR, an end-to-end
framework that directly integrates the knowledge
of Formal Language (FL) into Natural Language
(NL) mathematical problem-solving. The frame-
work largely addresses the gap in input format be-
tween NL and FL problems through the proposed
NL-FL problem Alignment method, which trans-
forms the QA problem in NL into an existence
theorem-proving statement in FL. Subsequently,
we present the method to solve NL questions by the
FL reasoner using the Mixed Problem Input tech-
nique. Finally, an answer extraction mechanism
retrieves solutions from the FL reasoning process,
which bridges the output format gap between NL
and FL reasoning. Comprehensive experiments
demonstrate the effectiveness of NFL-HR, which
achieves 89.80% accuracy rate on the MATH-500
dataset and 84.34% on the AMC dataset. Further-
more, NFL-HR surpasses the NL baseline across
all subjects in the MATH-500 dataset and demon-
strates the ability to solve problems relatively hard
for pure NL reasoners. The code will be open-
sourced to encourage further research and develop-
ment in this area.

6 Discussion

Although pure RL training provides LLMs with
strong capabilities in many cases, recent works
have proved that such training is unable to provide
the model with the knowledge that is relatively
weak in its base model. This highlights the promis-
ing direction of research into methods that incorpo-
rate broader knowledge into NL reasoning. Gener-
ally speaking, NFL-HR provides a promising and
general setting for integrating expert knowledge
in a specific field into reasoning. Thus, the con-
tribution of this paper is not limited to the field of
math reasoning but gives a general pipeline for the
integration of different fields’ knowledge.

Limitations

Despite the promising results of NFL-HR, there
are still some limitations in our work that can be
further addressed in future research. First, even
though our work integrates FL methods in NL rea-
soning, the verifiability of FL is not properly used
in the framework. Future work can focus on meth-
ods to fix NL reasoning through FL feedback. Sec-
ondly, our framework effectively bridges the gap
between NL and FL reasoners’ input and output
formats. The gap may still hinder performance,
which makes the development of blank-filling FL
suitable for QA problems a promising direction. In
the sense of potential risks, there is no immediately
identifiable risk for the results of this paper.

References
Zhangir Azerbayev, Bartosz Piotrowski, Hailey

Schoelkopf, Edward W Ayers, Dragomir Radev, and
Jeremy Avigad. 2023a. Proofnet: Autoformalizing
and formally proving undergraduate-level mathemat-
ics. arXiv preprint arXiv:2302.12433.

Zhangir Azerbayev, Hailey Schoelkopf, Keiran Paster,
Marco Dos Santos, Stephen McAleer, Albert Q Jiang,
Jia Deng, Stella Biderman, and Sean Welleck. 2023b.
Llemma: An open language model for mathematics.
arXiv preprint arXiv:2310.10631.

Edward Beeching, Shengyi Costa Huang, Albert Jiang,
Jia Li, Benjamin Lipkin, Zihan Qina, Kashif Rasul,
Ziju Shen, Roman Soletskyi, and Lewis Tunstall.
2024. Numinamath 7b tir. https://huggingface.
co/AI-MO/NuminaMath-7B-TIR.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, and 1 others. 2020. Language models are
few-shot learners. Advances in neural information
processing systems, 33:1877–1901.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. arXiv preprint arXiv:2110.14168.

Projet Coq. 1996. The coq proof assistant-reference
manual. INRIA Rocquencourt and ENS Lyon, ver-
sion, 5.

Leonardo De Moura, Soonho Kong, Jeremy Avigad,
Floris Van Doorn, and Jakob von Raumer. 2015. The
lean theorem prover (system description). In Auto-
mated Deduction-CADE-25: 25th International Con-
ference on Automated Deduction, Berlin, Germany,
August 1-7, 2015, Proceedings 25, pages 378–388.
Springer.

16791

https://huggingface.co/AI-MO/NuminaMath-7B-TIR
https://huggingface.co/AI-MO/NuminaMath-7B-TIR


Kefan Dong and Tengyu Ma. 2025. Beyond lim-
ited data: Self-play llm theorem provers with it-
erative conjecturing and proving. arXiv preprint
arXiv:2502.00212.

Kanishk Gandhi, Ayush Chakravarthy, Anikait Singh,
Nathan Lile, and Noah D Goodman. 2025. Cognitive
behaviors that enable self-improving reasoners, or,
four habits of highly effective stars. arXiv preprint
arXiv:2503.01307.

Aryan Gulati, Brando Miranda, Eric Chen, Emily Xia,
Kai Fronsdal, Bruno de Moraes Dumont, and Sanmi
Koyejo. 2024. Putnam-axiom: A functional and
static benchmark for measuring higher level mathe-
matical reasoning. In The 4th Workshop on Mathe-
matical Reasoning and AI at NeurIPS’24.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

John Harrison. 2009. Hol light: An overview. In Inter-
national Conference on Theorem Proving in Higher
Order Logics, pages 60–66. Springer.

Zhitao He, Zongwei Lyu, Dazhong Chen, Dadi Guo,
and Yi R Fung. 2025. Matp-bench: Can mllm be
a good automated theorem prover for multimodal
problems? arXiv preprint arXiv:2506.06034.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and Ja-
cob Steinhardt. 2021. Measuring mathematical prob-
lem solving with the math dataset. arXiv preprint
arXiv:2103.03874.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Jia LI, Edward Beeching, Lewis Tunstall, Ben
Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju
Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu.
2024. Numinamath. [https://huggingface.co/
AI-MO/NuminaMath-CoT](https://github.com/
project-numina/aimo-progress-prize/blob/
main/report/numina_dataset.pdf).

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. In The Twelfth Inter-
national Conference on Learning Representations.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu,
Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou

Xia, Danqi Chen, Sanjeev Arora, and Chi Jin.
2025. Goedel-prover: A frontier model for open-
source automated theorem proving. Preprint,
arXiv:2502.07640.

Norman Megill and David A Wheeler. 2019. Metamath:
a computer language for mathematical proofs. Lulu.
com.

Leonardo de Moura and Sebastian Ullrich. 2021. The
lean 4 theorem prover and programming language. In
Automated Deduction–CADE 28: 28th International
Conference on Automated Deduction, Virtual Event,
July 12–15, 2021, Proceedings 28, pages 625–635.
Springer.

Allen Newell and Herbert Simon. 1956. The logic
theory machine–a complex information processing
system. IRE Transactions on information theory,
2(3):61–79.

OpenAI. 2024. Learning to reason with
llms. https://openai.com/index/
learning-to-reason-with-llms/. Accessed:
2024-11-24.

Keiran Paster, Marco Dos Santos, Zhangir Azerbayev,
and Jimmy Ba. 2023. Openwebmath: An open
dataset of high-quality mathematical web text. arXiv
preprint arXiv:2310.06786.

Lawrence C Paulson. 1994. Isabelle: A generic theorem
prover. Springer.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your lan-
guage model is secretly a reward model. Advances in
Neural Information Processing Systems, 36:53728–
53741.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin,
Haocheng Wang, Wanjia Zhao, Liyue Zhang, Zhe
Fu, Qihao Zhu, Dejian Yang, and 1 others. 2025.
Deepseek-prover-v2: Advancing formal mathemati-
cal reasoning via reinforcement learning for subgoal
decomposition. arXiv preprint arXiv:2504.21801.

David Renshaw. 2025. Compfiles: Catalog Of Math
Problems Formalized In Lean. https://github.
com/dwrensha/compfiles.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Romain Sauvestre, Tal Remez, and 1
others. 2023. Code llama: Open foundation models
for code. arXiv preprint arXiv:2308.12950.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the

16792

[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-CoT](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2502.07640
https://arxiv.org/abs/2502.07640
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/
https://github.com/dwrensha/compfiles
https://github.com/dwrensha/compfiles


limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300.

Qwen Team. 2025. Qwen3.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas
Baksys, Junqi Liu, Marco Dos Santos, Flood Sung,
Marina Vinyes, Zhenzhe Ying, Zekai Zhu, and 1 oth-
ers. 2025a. Kimina-prover preview: Towards large
formal reasoning models with reinforcement learning.
arXiv preprint arXiv:2504.11354.

Ruida Wang, Rui Pan, Yuxin Li, Jipeng Zhang, Yizhen
Jia, Shizhe Diao, Renjie Pi, Junjie Hu, and Tong
Zhang. 2025b. Ma-lot: Multi-agent lean-based long
chain-of-thought reasoning enhances formal theorem
proving. arXiv preprint arXiv:2503.03205.

Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe
Diao, Renjie Pi, and Tong Zhang. 2024. Theoreml-
lama: Transforming general-purpose llms into lean4
experts. arXiv preprint arXiv:2407.03203.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan
Ying, Jiayu Wang, Dahua Lin, and Kai Chen. 2024.
Internlm2. 5-stepprover: Advancing automated theo-
rem proving via expert iteration on large-scale lean
problems. arXiv preprint arXiv:2410.15700.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren,
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and
Xiaodan Liang. 2024a. Deepseek-prover: Advancing
theorem proving in llms through large-scale synthetic
data. arXiv preprint arXiv:2405.14333.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao,
Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue Zhang,
Xuan Lu, Qiushi Du, and 1 others. 2024b. Deepseek-
prover-v1. 5: Harnessing proof assistant feedback for
reinforcement learning and monte-carlo tree search.
arXiv preprint arXiv:2408.08152.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chala-
mala, Peiyang Song, Shixing Yu, Saad Godil, Ryan J
Prenger, and Animashree Anandkumar. 2024. Le-
andojo: Theorem proving with retrieval-augmented
language models. Advances in Neural Information
Processing Systems, 36.

Jiarui Yao, Ruida Wang, and Tong Zhang. 2025.
Fans–formal answer selection for natural language
math reasoning using lean4. arXiv preprint
arXiv:2503.03238.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai
Wang, Shiji Song, and Gao Huang. 2025. Does re-
inforcement learning really incentivize reasoning ca-
pacity in llms beyond the base model? arXiv preprint
arXiv:2504.13837.

Xinyu Zhang, Yuxuan Dong, Yanrui Wu, Jiaxing Huang,
Chengyou Jia, Basura Fernando, Mike Zheng Shou,
Lingling Zhang, and Jun Liu. 2025. Physreason:
A comprehensive benchmark towards physics-based
reasoning. arXiv preprint arXiv:2502.12054.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu.
2021. Minif2f: a cross-system benchmark for for-
mal olympiad-level mathematics. arXiv preprint
arXiv:2109.00110.

Jin Peng Zhou, Charles Staats, Wenda Li, Christian
Szegedy, Kilian Q Weinberger, and Yuhuai Wu.
2024. Don’t trust: Verify–grounding llm quantita-
tive reasoning with autoformalization. arXiv preprint
arXiv:2403.18120.

16793

https://qwenlm.github.io/blog/qwen3/


A Discussion of AI usage

This work used Copilot to assist code-writing and
OpenAI’s models to fix grammatical issues of the
paper. All the ideas of the paper are original.

B Term chart

To help the reader better understand the terms, we
provide a chart that explains every term, abbrevia-
tion, and corresponding tool in detail in Tab 5.

C Additional experiments

We provide the results of additional experiments in
this section.

C.1 Problem format study
In order to test that the improved reasoning capa-
bility of the NFL-HR framework comes from the
unique FL reasoning capability of the FL reasoner,
instead of the existence problems are relatively easy
to solve. We perform an experiment of replacing
the process of autoformalization and the FL prover
with an NL solver to solve the existence problem in
the NFL-HR. The pass@16 results are presented
in Tab. 6.

Method AMC MATH-500

NL baseline 79.52% 85.20%
solve NL existence problem 53.01% 70.20%

NFL-HR 84.34% 89.80%

Table 6: Problem format study result, all results are
pass@16

We can discover that simply changing the for-
mat of the problem into an existence-style proof
problem does not improve the NL model perfor-
mance. On the contrary, it significantly reduces the
accuracy. Such a reduction is because the Qwen3
is not specially trained to answer proof questions.
This indicates that the improvement observed with
NFL-HR does not come from the problem refor-
matting alone, but from integration of the unique
capability of the FL reasoner.

C.2 Additional Long CoT models
To assess the generalizability of the NFL-HR
framework across different NL reasoners, we con-
duct the experiment using DeepSeek-R1-Distilled-
8B-0528 (Guo et al., 2025) as the general NL model
in NFL-HR and compare it with pure NL reason-
ing. The results are presented in Tab. 7.

Method AMC MATH-500

NL baseline 77.11% 86.20%
NFL-HR 81.93% 89.40%

Improvement 4.82% 3.20%

Table 7: Using DeepSeek-R1-Distilled-8B-0528 as NL
model for NL baseline and NFL-HR under pass@16.

From the results, we can find that when using
DeepSeek-R1 in the place of Qwen3, the NFL-HR
framework still yields a consistent performance
improvement over the NL baseline. This confirms
that our framework can effectively integrate the
unique capabilities of FL reasoners across different
NL base models.

C.3 Generalization of NFL-HR to other fields
To validate the capability of the NFL-HR frame-
work is not limited to the Math domain only, we ex-
tend the framework to the PhysReason-mini bench-
mark (Zhang et al., 2025). It is a benchmark that
consists of 200 high-school-level competition prob-
lems. We apply the first sub-question from each
problem and replace the images with the provided
captions to ensure that the NL baseline can process
the inputs as pure tests. The pass@16 result for the
NL baseline using Qwen3-8B is 22.50% while the
NFL-HR achieves 26.50%. The 4% improvement
over the NL baseline provides additional evidence
for the huge potential of the generalizability of our
approach.

D Details of models used

The FL reasoner is a Lean4 theorem-proving model
developed by the Numina and Kimi teams, intro-
duced in Wang et al. (2025a). The prover model
was trained using large-scale Reinforcement Learn-
ing on Lean4 data to enable Long CoT reasoning
of the model. This enables the model to firstly con-
duct a thorough analysis of the problem and then
accurately construct a Lean4 proof based on the
draft reasoning. It achieved a state-of-the-art per-
formance across multiple theorem proving bench-
marks.

As for the autoformalizer, it was trained on
problems from PutnamBench (Gulati et al., 2024),
MiniF2F (Zheng et al., 2021), ProofNet (Azer-
bayev et al., 2023a), and Compfiles (Renshaw,
2025). Wang et al. (2025a) fine-tunes a 7B base
model to be an autoformalizer based on the col-
lected training. Furthermore, they applied expert

16794



Term Explaination

NL (Natural
Language)

Refers to language that humans use in our daily life, often unable to perform auto step-by-step
verification. The typical verification method for NL math is to check whether the answer is
correct.

FL (Formal
Language)

A structured and mathematically precise representation of logic and proofs, which ensures
rigorous verification and eliminates ambiguities present in NL reasoning.

Lean4 A functional programming language and interactive theorem prover developed for formalizing
mathematics and verifying proofs.

FL reasoner
(or FL prover)

The model aims to write FL proofs with FL statements as input. Most provers also require a
natural language statement as additional input to guide FL reasoning. Currently, Lean4 provers
are fast advancing FL provers. In the sense of naming, in the context of FL works (Wang et al.,
2024; Ren et al., 2025; Wu et al., 2024; Wang et al., 2025a), the FL reasoner is called a prover
since its usage is to prove theorems of FL. In this paper, since we want to unify the FL reasoning
and NL reasoning, we call the model FL reasoner in most cases.

NL reasoner The model aims to solve NL math problems with an NL question as input. The typical input for
the reasoner is a question that requires a specific numerical or formulaic answer.

QA problem in
NL

The type of problem for most NL math training and evaluation datasets. The problem is an NL
question that seeks a specific numerical or formulaic answer.

FL problem
(or FL
statement)

The type of problem for FL dataset. The problem is a set of conditions and goals that require
formal proofs to complete the proof.

Long CoT
(Long Chain-
of-Thought)

The reasoning structure provided by OpenAI-o1 (OpenAI, 2024) and open-sourced by DeepSeek-
R1 (Guo et al., 2025) that performs long and detailed thinking before making the final output.
Different from traditional CoT, the Long CoT allows for multi-step logical reasoning before
proof generation, reflection, and iterative refinement from self-checking results (Wang et al.,
2025b).

Table 5: Term Chart

iteration based on Lean4 verification and LLM
judgement using QwQ-32B. On a 1,000-problem
human-curated test set, the autoformalizer achieves
a one-shot accuracy of 66%, and its Lean4 compi-
lation success rate reaches over 90%.

E Discussion of verifiability of FL

In this work, we do not integrate the verifiability of
FL as a direct mechanism for NL output validation,
but as the foundation of the unique formal reason-
ing capability of the FL reasoner. The FL plays a
crucial role in the training of FL reasoner through
RL by ensuring step-by-step correctness, which is
hard for NL reasoning. Our focus is on integrating
such a unique capability of FL reasoner into NL
math problem-solving, rather than directly using
FL to validate or correct the NL-generated answers,
which is left for future work to discuss.

F Motivation for randomly dropping FL
results

The motivation for our design of randomly drop-
ping some FL reasoners’ results and directly using
the NL reasoner to solve the problem is that some
problems are inherently challenging for FL rea-

soners. This may come from the NL-FL alignment
process or within formal reasoning itself. For exam-
ple, in probability problems, it is often meaningless
to prove the existence of a probability value. Sim-
ilarly, in geometry problems, the required answer
may be expressed in degrees, whereas Lean4 oper-
ates in radians, creating potential inconsistencies.
Thus, to maintain the robustness and generality of
the framework across diverse problem types, we
randomly drop FL outputs in such scenarios, allow-
ing the NL model to reason directly when formal
logic is unsuitable.

Furthermore, since the autoformalizer in NFL-
HR may fail to generate a valid Lean4 statement,
we randomly drop some FL results and allow the
LLM to directly answer the question to amend that
problem. This design enables us to handle cases
where NL-FL alignment is ill-posed or less mean-
ingful.

G FL reasoner’s performance given
different NL and FL problems

In this section, we demonstrate that the FL prover
handles its NL and FL input separately in its Long
CoT process during thinking. The input-output

16795



example is as follows.

== Input ==
<|im_start|>system
You are an expert in mathematics and Lean 4.<|im_end|>
<|im_start|>user
Think about and solve the following problem step by step in

Lean 4.↪→
# Problem:Show that there are no integers $x$ and $y$ such that

$4x^3 - 7y^3 = 2003$.↪→
# Formal statement:
```lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- Show that there are no integers x and y such that $4x^3
- 7y^3 = 2003$.-/↪→

theorem mathd_algebra_478
(b h v : \R)
(h_0 : 0 < b \and 0 < h \and 0 < v)
(h_1 : v = 1 / 3 * (b * h))
(h_2 : b = 30)
(h_3 : h = 13 / 2) :
v = 65 :=

```
<|im_end|>
<|im_start|>assistant
== Output ==
<think>
# Solving the Equation $4x^3 - 7y^3 = 2003$ for Integers $x$

and $y$↪→

To show that there are no integers $x$ and $y$ satisfying $4x^3
- 7y^3 = 2003$, we can approach this problem by considering
the equation modulo certain integers to derive a
contradiction.

↪→
↪→
↪→

First, let's think about how to approach this problem. We need
to show that the equation $4x^3 - 7y^3 = 2003$ has no
integer solutions. A common technique for solving
Diophantine equations is to consider them modulo a small
integer, as cubes modulo small numbers have a limited range
of possible values.

↪→
↪→
↪→
↪→
↪→

Let's try modulo 7. When considering the equation modulo 7, we
have:↪→

- $4x^3 - 7y^3 \equiv 4x^3 \pmod{7}$
- $2003 \equiv 2003 \bmod 7$

Calculating $2003 \bmod 7$:
$2003 \div 7 = 286$ remainder $1$, so $2003 \equiv 1 \pmod{7}$.

Therefore, we need $4x^3 \equiv 1 \pmod{7}$, which simplifies
to $x^3 \equiv 2 \pmod{7}$ (since $4^{-1} \equiv 2
\pmod{7}$ as $4 \cdot 2 = 8 \equiv 1 \pmod{7}$).

↪→
↪→

Now, let's check if $x^3 \equiv 2 \pmod{7}$ is possible. The
possible values for $x^3 \pmod{7}$ can be computed by
checking all residues modulo 7:

↪→
↪→
- $0^3 \equiv 0 \pmod{7}$
- $1^3 \equiv 1 \pmod{7}$
- $2^3 \equiv 8 \equiv 1 \pmod{7}$
- $3^3 \equiv 27 \equiv 6 \pmod{7}$
- $4^3 \equiv 64 \equiv 1 \pmod{7}$
- $5^3 \equiv 125 \equiv 6 \pmod{7}$
- $6^3 \equiv 216 \equiv 6 \pmod{7}$

So the possible values for $x^3 \pmod{7}$ are $\{0, 1, 6\}$.
Since $2 \notin \{0, 1, 6\}$, it's impossible for $x^3
\equiv 2 \pmod{7}$. Therefore, there are no integer
solutions to $4x^3 - 7y^3 = 2003$.

↪→
↪→
↪→

Let's formalize this in Lean 4:

```tactics
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat
```

We're importing the necessary libraries and opening namespaces
for our proof. The `maxHeartbeats 0` option allows Lean to
use as many computational resources as needed for this
proof.

↪→
↪→
↪→

Now, let's define the theorem statement. The problem asks to
show that there are no integers $x$ and $y$ such that $4x^3
- 7y^3 = 2003$. To formalize this, we can assume there
exist real numbers $b$, $h$, and $v$ representing $x$, $y$,
and the value of the expression, respectively, and derive a
contradiction:

↪→
↪→
↪→
↪→
↪→

```tactics
/-- Show that there are no integers x and y such that $4x^3

- 7y^3 = 2003$.-/↪→
theorem mathd_algebra_478

(b h v : \R)
(h_0 : 0 < b \and 0 < h \and 0 < v)
(h_1 : v = 1 / 3 * (b * h))
(h_2 : b = 30)
(h_3 : h = 13 / 2) :
v = 65 := by

```

We have variables $b$, $h$, and $v$ representing $x$, $y$, and
$4x^3 - 7y^3$, respectively. The hypotheses give us that $b
= 30$ and $h = 13/2$. Let's compute $v$ using these values:

↪→
↪→

From h_1: $v = \frac{1}{3} \cdot (b \cdot h)$
Substituting $b = 30$ and $h = 13/2$:
$v = \frac{1}{3} \cdot (30 \cdot \frac{13}{2}) = \frac{1}{3}

\cdot 75 = 25$↪→

But we also have $v > 0$ from h_0, which is consistent with $v
= 25$. However, we need to show that these values cannot
satisfy $4x^3 - 7y^3 = 2003$.

↪→
↪→

Wait, there's a contradiction here. If $b = 30$ and $h = 13/2$,
then $v = 25$, but $v$ should be $4x^3 - 7y^3 = 2003$.
Let's check if $4 \cdot 30^3 - 7 \cdot (13/2)^3 = 2003$:

↪→
↪→

$4 \cdot 30^3 = 4 \cdot 27000 = 108000$
$7 \cdot (13/2)^3 = 7 \cdot \frac{2197}{8} = \frac{15379}{8} =

1922.375$↪→
$108000 - 1922.375 = 106077.625 \neq 2003$

So these values cannot satisfy the equation. In fact, we can
compute $v$ directly from h_1 with the given values:↪→

```tactics
rw [h_2, h_3] at h_1
linarith
```

After substituting $b = 30$ and $h = 13/2$ into h_1, we get $v
= \frac{1}{3} \cdot (30 \cdot \frac{13}{2}) = 25$. But from
h_0, we have $v > 0$, which is consistent. However, $v$
should equal $2003$ if $4x^3 - 7y^3 = 2003$.

↪→
↪→
↪→

The contradiction arises because the values given in h_2 and
h_3 cannot satisfy the equation $4x^3 - 7y^3 = 2003$ when
$v = 25$.

↪→
↪→

Therefore, we have shown that assuming there exist integers $x$
and $y$ such that $4x^3 - 7y^3 = 2003$ leads to a
contradiction. Hence, no such integers can exist.

↪→
↪→

The Lean proof is complete. We've shown that if $b = 30$ and $h
= 13/2$, then $v = 25$, but $v$ must equal $2003$ for a
solution to exist. Since $25 \neq 2003$, there is a
contradiction. Therefore, no integers $x$ and $y$ satisfy
$4x^3 - 7y^3 = 2003$.

↪→
↪→
↪→
↪→
</think>
```lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- Show that there are no integers x and y such that $4x^3
- 7y^3 = 2003$.-/↪→

theorem mathd_algebra_478
(b h v : \R)
(h_0 : 0 < b \and 0 < h \and 0 < v)
(h_1 : v = 1 / 3 * (b * h))
(h_2 : b = 30)

16796

(h_3 : h = 13 / 2) :
v = 65 := by

rw [h_2, h_3] at h_1
linarith

```

In the example, we can clearly observe that al-
though the NL problem provided has no relation,
the FL prover still solves both problems in its Long
CoT process, indicating the robustness of such pro-
cess of FL prover. It also serves as the founda-
tion for our Mixed Problem Input technique in Sec-
tion 2.2

16797



H Prompts used in generation

H.1 QA-Existence problem translation prompt

The following is an example of a few-shot prompt for the QA-Existence problem translation

<|im_start|>user
@ Question-answering problem:
```md
Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter

your answer in the form $(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$↪→

```

@ Existence problem:
```md
Prove the existence of the point in polar coordinates $(r,\theta),$ where $r > 0$

and $0 \le \theta < 2 \pi.$ for the point $(0,3)$ in rectangular coordinates.↪→

```

===

@ Question-answering problem:
```md
Define
\[p = \sum_{k = 1}^\infty \\frac{1}{k^2} \quad \text{and} \quad q = \sum_{k =

1}^\infty \\frac{1}{k^3}.\]Find a way to write↪→

\[\sum_{j = 1}^\infty \sum_{k = 1}^\infty \\frac{1}{(j + k)^3}\]in terms of p and
$q.$↪→

```
@ Existence problem:
```md
Define
\[p = \sum_{k = 1}^\infty \\frac{1}{k^2} \quad \text{and} \quad q = \sum_{k =

1}^\infty \\frac{1}{k^3}.\] Prove that \[\sum_{j = 1}^\infty \sum_{k =
1}^\infty \\frac{1}{(j + k)^3}\] can be represented in terms of p and q.

↪→

↪→

```
===
@ Question-answering problem:
```md
If $f(x) = \\frac{3x-2}{x-2}$, what is the value of $f(-2) +f(-1)+f(0)$? Express

your answer as a common fraction.↪→

```
@ Existence problem:
```md
Define $f(x) = \\frac{3x-2}{x-2}$. Prove that there exists $ y = f(-2) + f(-1) +

f(0)$ and y can be expressed as a common fraction.↪→

```
===
@ Question-answering problem:
```md
<QA_problem_to_translate>
```

16798



Based on the above examples, translate the QA problem into an existing problem,
then put it in a markdown code block as in the examples.<|im_end|>↪→

H.2 Autoformalization prompt

The prompt we use for autoformalization from the NL existence problem to Lean4 statements is mostly
similar to the prompt provided by Kimina-Autoformalizer (Wang et al., 2025a). The template is as follows

<|im_start|>system
You are an expert in mathematics and Lean 4.<|im_end|>
<|im_start|>user
Please combine the following theorems into a more advanced theorem. Use the

following theorem names: <intended_name>↪→

<NL_existance_problem><|im_end|>

H.3 Prover generation prompt

The prompt we use to query the Lean4 prover with NL QA problem and FL existence problem to obtain
the Long CoT reasoning with NL answers and FL proofs is as follows:

<|im_start|>system
You are an expert in mathematics and Lean 4.<|im_end|>
<|im_start|>user
Think about and solve the following problem step by step in Lean 4.
# Problem: <NL_QA_Problem>
# Formal statement:
```lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- <NL_QA_problem> -/
<FL_existence_problem>
```<|im_end|>

H.4 Answer collection prompt

The full prompt we use to query the general LLM to extract the answer to the NL question with FL Long
CoT

<|im_start|>user
Find the answer to the following question in the provided long CoT content. Your

answer should be in \boxed\{\} format.↪→

Here is the question:
<NL_QA_problem>

The answer is contained in the following Long CoT content
<Long_CoT_from_prover>
<|im_end|>

16799



I Detailed Input-Output Examples

I.1 QA-Existence problem translation example
== Input ==
<|im_start|>user
@ Question-answering problem:
```md
Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. Enter

your answer in the form $(r,\theta),$ where $r > 0$ and $0 \le \theta < 2 \pi.$↪→

```

@ Existence problem:
```md
Prove the existence of the point in polar coordinates $(r,\theta),$ where $r > 0$

and $0 \le \theta < 2 \pi.$ for the point $(0,3)$ in rectangular coordinates.↪→

```

===

@ Question-answering problem:
```md
Define
\[p = \sum_{k = 1}^\infty \frac{1}{k^2} \quad\text{and} \quad q = \sum_{k =

1}^\infty \frac{1}{k^3}.\]Find a way to write↪→

\[\sum_{j = 1}^\infty \sum_{k = 1}^\infty \frac{1}{(j + k)^3}\]in terms of p and
$q.$↪→

```

@ Existence problem:
```md
Define
\[p = \sum_{k = 1}^\infty \frac{1}{k^2} \quad\text{and} \quad q = \sum_{k =

1}^\infty \frac{1}{k^3}.\] Prove that \[\sum_{j = 1}^\infty \sum_{k = 1}^\infty
\frac{1}{(j + k)^3}\] can be represented in terms of p and q.

↪→

↪→

```

===

@ Question-answering problem:
```md
If $f(x) = \frac{3x-2}{x-2}$, what is the value of $f(-2) +f(-1)+f(0)$? Express

your answer as a common fraction.↪→

```

@ Existence problem:
```md
Define $f(x) = \frac{3x-2}{x-2}$. Prove that there exists $ y = f(-2) + f(-1) +

f(0)$ and y can be expressed as a common fraction.↪→

```

===

16800



@ Question-answering problem:
```md
If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps?
```

Based on the above examples, translate the QA problem into existence proble then,
put it in a markdown code block as the examples.<|im_end|>↪→

<|im_start|>assistant
== Output ==
<think>
Okay, let me try to figure out how to approach this. The user wants me to take each

QA problem and convert it into an existence problem, following the examples
provided. Let me look at the examples again to understand the pattern.

↪→

↪→

In the first example, the QA problem was converting rectangular coordinates to
polar coordinates. The existence problem then was to prove that such a polar
coordinate exists for the given rectangular point. So the existence problem is
about proving that the conversion is possible under the given constraints (r>0
and 0 <= \theta < 2\pi).

↪→

↪→

↪→

↪→

Similarly, for the second example with the infinite series, the QA problem was to
express a double sum in terms of p and q. The existence problem was to prove
that such a representation is possible. So the existence problem is about
proving that the expression can be written in terms of p and q, not just that
it's a valid expression.

↪→

↪→

↪→

↪→

For the third example with the function f(x), the QA problem was to compute the sum
of f at three points. The existence problem was to prove that y exists and can
be expressed as a common fraction. So here, the existence problem is about
ensuring that the sum exists and is a common fraction.

↪→

↪→

↪→

Now, applying this to the last QA problem: "If 4 daps = 7 yaps, and 5 yaps = 3 baps,
how many daps equal 42 baps?"↪→

The QA problem is a unit conversion problem. The existence problem should then be
to prove that there exists a number of daps equal to 42 baps, given the
conversion rates. So the existence problem would need to show that such a
conversion is possible, perhaps by demonstrating that the conversions are
consistent and that the number can be calculated.

↪→

↪→

↪→

↪→

Let me structure this. The original QA problem is to find the number of daps
equivalent to 42 baps. The existence problem would be to prove that such a
number exists, given the conversion rates. So, the steps would involve showing
that the conversion factors are consistent and that the calculation leads to a
valid number.

↪→

↪→

↪→

↪→

Therefore, the existence problem would state that given the conversion rates
between daps, yaps, and baps, there exists a number of daps equal to 42 baps,
and that this number can be determined through the given relationships.

↪→

↪→

16801



I need to make sure that the existence problem is phrased in a way that mirrors the
examples. For instance, in the first example, the existence problem was about
proving the existence of the polar coordinates. Here, it's about proving that
the conversion exists and can be calculated.

↪→

↪→

↪→

So, the existence problem would be: "Define the conversion rates 4 daps = 7 yaps and
5 yaps = 3 baps. Prove that there exists a number of daps equal to 42 baps, and
that this number can be determined through the given conversion rates."

↪→

↪→

But maybe more formally, as in the examples, it would be something like:

"Prove that there exists a number of daps equal to 42 baps, given that 4 daps = 7
yaps and 5 yaps = 3 baps."↪→

Alternatively, to mirror the previous examples, maybe:

"Prove that the number of daps equal to 42 baps exists and can be determined using
the given conversion rates."↪→

But I need to check the exact structure of the examples. In the first existence
problem, they mentioned "prove the existence of the point..." and the second
one was "prove that the sum can be represented...". The third one was "prove
that there exists y = ... and y can be expressed as a common fraction."

↪→

↪→

↪→

So the structure is: "Prove that [the desired quantity] exists and [some property
about it]."↪→

So for the unit conversion problem, the existence problem would be:

"Prove that there exists a number of daps equal to 42 baps, given that 4 daps = 7
yaps and 5 yaps = 3 baps, and that this number can be determined through the
given conversion rates."

↪→

↪→

But to make it concise, maybe:

"Prove that there exists a number of daps equal to 42 baps, given that 4 daps = 7
yaps and 5 yaps = 3 baps."↪→

Alternatively, perhaps the existence problem is to show that the conversion is
possible, i.e., that the relationships are consistent and that the answer is a
valid number.

↪→

↪→

So, putting it all together, the existence problem would be:

"Define the conversion rates 4 daps = 7 yaps and 5 yaps = 3 baps. Prove that there
exists a number of daps equal to 42 baps, and that this number can be determined
using the given conversion rates."

↪→

↪→

But I need to make sure that the existence problem is phrased in a way that mirrors
the previous examples. Let me check the original examples again.↪→

16802



In the first existence problem, they said: "Prove the existence of the point in
polar coordinates... for the point (0,3) in rectangular coordinates." So it's
about existence of a specific point under certain conditions.

↪→

↪→

In the second, they said: "Prove that [the sum] can be represented in terms of p and
q."↪→

In the third: "Prove that there exists y = ... and y can be expressed as a common
fraction."↪→

So for the unit conversion problem, the existence problem would be: "Prove that
there exists a number of daps equal to 42 baps, given the conversion rates 4
daps = 7 yaps and 5 yaps = 3 baps, and that this number can be determined
through the given conversion rates."

↪→

↪→

↪→

But maybe even more concise: "Prove that there exists a number of daps equal to 42
baps, given that 4 daps = 7 yaps and 5 yaps = 3 baps."↪→

I think that's acceptable. Now, translating this into markdown code block as per
the examples.↪→

So, the QA problem is:

"If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps?"

The existence problem would be:

"Prove that there exists a number of daps equal to 42 baps, given that 4 daps = 7
yaps and 5 yaps = 3 baps."↪→

But maybe to mirror the previous examples more precisely, the existence problem
might need to include the conversion rates in the definition. Let me check the
previous examples.

↪→

↪→

In the first existence problem, the user defined the conversion (the rectangular
coordinates) and then proved the existence. Similarly, in the second, they
defined p and q, then proved the sum can be expressed in terms of them. In the
third, they defined f(x), then proved that y exists and can be expressed as a
common fraction.

↪→

↪→

↪→

↪→

So for the unit conversion problem, the existence problem should define the
conversion rates first and then prove the existence.↪→

Therefore, the existence problem would be:

"Define the conversion rates 4 daps = 7 yaps and 5 yaps = 3 baps. Prove that there
exists a number of daps equal to 42 baps."↪→

Alternatively, to match the structure of the previous examples more closely,
perhaps:↪→

16803



"Define the conversion rates 4 daps = 7 yaps and 5 yaps = 3 baps. Prove that there
exists a number of daps equal to 42 baps."↪→

Yes, that seems to fit. So, the existence problem is about proving that such a
number exists, given the conversion rates.↪→

Therefore, the markdown code block would be:

```md
Define the conversion rates 4 daps = 7 yaps and 5 yaps = 3 baps. Prove that there

exists a number of daps equal to 42 baps.↪→

```

But to make sure that the existence problem is properly phrased as in the examples,
maybe the user expects the existence problem to be phrased as "Prove the
existence of [something]..." So perhaps:

↪→

↪→

"Prove the existence of a number of daps equal to 42 baps, given that 4 daps = 7
yaps and 5 yaps = 3 baps."↪→

But I think the key is to have the existence problem mirror the structure of the
previous examples. Since the QA problem is asking for a numerical answer, the
existence problem would be about proving that such a number exists (i.e., that
the conversion is possible and the answer is a real number, which in this case
is an integer, but the existence is more about the possibility of the
conversion rather than the specific value).

↪→

↪→

↪→

↪→

↪→

So, the final answer for the existence problem would be as above.
</think>

```md
Define the conversion rates 4 daps = 7 yaps and 5 yaps = 3 baps. Prove that there

exists a number of daps equal to 42 baps.↪→

```

I.2 Autoformalization example
== Input ==
<|im_start|>system
You are an expert in mathematics and Lean 4.<|im_end|>
<|im_start|>user
Please combine the following theorems into a more advanced theorem. Use the

following theorem names: math500_prealgebra_2086_1↪→

Define the conversion rates 4 daps = 7 yaps and 5 yaps = 3 baps. Prove that there
exists a number of daps equal to 42 baps, and that this number can be expressed
as a common fraction.<|im_end|>

↪→

↪→

<|im_start|>assistant
== Output ==
```lean4
import Mathlib

theorem math500_prealgebra_2086_1

16804

(daps yaps baps : \R)
(h_0 : 4 * daps = 7 * yaps)
(h_1 : 5 * yaps = 3 * baps) :
\exist x, 42 * baps = x * daps \and \exist q : \Q, x = q := by sorry

```

I.3 Prover generation example

== Input ==
<|im_start|>system
You are an expert in mathematics and Lean 4.<|im_end|>
<|im_start|>user
Think about and solve the following problem step by step in Lean 4.
# Problem: If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps?
# Formal statement:
```lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps? -/
theorem math500_prealgebra_2086_1
(daps yaps baps : \R)
(h_0 : 4 * daps = 7 * yaps)
(h_1 : 5 * yaps = 3 * baps) :
\exist x, 42 * baps = x * daps \and \exist q : \Q, x = q := by sorry

```
<|im_end|>
<|im_start|>assistant
== Output ==
<think>
# Solving the Daps, Yaps, and Baps Problem in Lean 4

Let me tackle this algebra problem about converting between daps, yaps, and baps.
We have:↪→

- 4 daps = 7 yaps
- 5 yaps = 3 baps
And we need to find how many daps equal 42 baps.

First, I'll think about how to approach this. We need to convert baps to yaps, then
yaps to daps.↪→

From 5 yaps = 3 baps, we get that 1 yap = 3/5 bap. So to convert baps to yaps, we
multiply by 5/3.↪→

To convert yaps to daps, we use 4 daps = 7 yaps, which means 1 yap = 4/7 daps. So we
multiply by 7/4.↪→

So for 42 baps:
1. Convert to yaps: 42 × (5/3) = 70 yaps
2. Convert to daps: 70 × (4/7) = 40 daps

16805



Now, let's translate this to Lean 4. We need to prove that 42 baps = 40 daps.

```tactics
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat
```

We start by setting up the problem with the given equations. We need to represent
the conversion relationships:↪→

```tactics
/-- If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps? -/
theorem math500_prealgebra_2086_1
(daps yaps baps : \R)
(h_0 : 4 * daps = 7 * yaps)
(h_1 : 5 * yaps = 3 * baps) :
\exist x, 42 * baps = x * daps \and \exist q : \Q, x = q := by

```

We need to find a value `x` such that `42 * baps = x * daps` and `x` is rational.
Let's solve the equations to find `x`.↪→

From h_0: 4 daps = 7 yaps, we get yaps = (4/7) daps
From h_1: 5 yaps = 3 baps, we get baps = (5/3) yaps

Substituting yaps from h_0 into h_1:
5 yaps = 3 baps
5 * (4/7 daps) = 3 baps
20/7 daps = 3 baps
1 bap = (20/7)/3 daps = 20/21 daps

So 42 baps = 42 * (20/21) daps = 40 daps

Let's prove this in Lean:

```tactics
use 40
constructor
```

We need to prove two things:
1. 42 * baps = 40 * daps
2. 40 is rational (trivial, since 40 is an integer)

Let's tackle the first part. From our equations:
4 daps = 7 yaps
5 yaps = 3 baps

16806



We can solve for baps in terms of daps:
From h_0: yaps = (4/7) daps
From h_1: baps = (5/3) yaps = (5/3) * (4/7) daps = (20/21) daps

So 42 baps = 42 * (20/21) daps = 40 daps

In Lean, we need to manipulate the equations to show 42 * baps = 40 * daps:

```tactics
· -- We need to prove that 42 * baps = 40 * daps
linarith

```

The Lean proof is remarkably concise. Let me explain why this works. The `linarith`
tactic is powerful for solving linear arithmetic problems. It takes the given
equations:

↪→

↪→

- h_0: 4 * daps = 7 * yaps
- h_1: 5 * yaps = 3 * baps

And it needs to prove that 42 * baps = 40 * daps.

Let's derive this manually to see how Lean is able to compute it:

From h_0: 4 daps = 7 yaps, we have yaps = (4/7) daps
From h_1: 5 yaps = 3 baps, substituting yaps gives 5 * (4/7 daps) = 3 baps
So 20/7 daps = 3 baps
Therefore, 1 bap = (20/7)/3 daps = 20/21 daps
So 42 baps = 42 * (20/21) daps = 40 daps

The equation 42 * baps = 40 * daps is exactly what Lean's `linarith` is proving.
It's able to manipulate the original equations to derive this result directly.
The key insight is that `linarith` can work with real numbers and solve systems
of linear equations and inequalities. In this case, it's effectively solving
for the relationship between baps and daps via yaps.

↪→

↪→

↪→

↪→

For the second part of the goal:

```tactics
· -- We need to prove that 40 is rational
refine 〈40, by norm_num〉

```

This proves that 40 is indeed a rational number (which is obvious, but Lean requires
us to explicitly provide a rational witness for the existential statement). The
`norm_num` tactic proves that 40 = (40 : \Q), confirming 40 is rational.

↪→

↪→

In conclusion, we've shown that 42 baps = 40 daps, so the answer is 40. The Lean
proof is elegant because it directly computes the answer using the given
conversion equations, demonstrating how powerful automated reasoning can be for
these types of algebra problems.

↪→

↪→

↪→

</think>

16807



```lean4
import Mathlib
import Aesop

set_option maxHeartbeats 0

open BigOperators Real Nat Topology Rat

/-- If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps? -/
theorem math500_prealgebra_2086_1
(daps yaps baps : \R)
(h_0 : 4 * daps = 7 * yaps)
(h_1 : 5 * yaps = 3 * baps) :
\exist x, 42 * baps = x * daps \and \exist q : \Q, x = q := by
use 40
constructor
· -- We need to prove that 42 * baps = 40 * daps
linarith

· -- We need to prove that 40 is rational
refine 〈40, by norm_num〉

```

I.4 Answer collection example
== Input ==
<|im_start|>user
Find the answer to the following question in the provided long CoT content. Your

answer should be in \boxed\{\} format.↪→

Here is the question:
If 4 daps = 7 yaps, and 5 yaps = 3 baps, how many daps equal 42 baps?

The answer is contained in the following Long CoT content
<Long_CoT_content_as_above>
<|im_end|>
<|im_start|>assistant
<think>

</think>
== Output ==

To solve the problem, we need to convert 42 baps into daps using the given
conversion rates:↪→

- 4 daps = 7 yaps → 1 yap = $\frac{4}{7}$ daps
- 5 yaps = 3 baps → 1 bap = $\frac{5}{3}$ yaps

We first convert baps to yaps:
$$
42 \text{ baps} \times \frac{5}{3} \text{ yaps/bap} = 70 \text{ yaps}
$$

Next, we convert yaps to daps:

16808



$$
70 \text{ yaps} \times \frac{4}{7} \text{ daps/yap} = 40 \text{ daps}
$$

Thus, 42 baps equal 40 daps.

$$
\boxed{40}
$$

16809


