
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 16878–16903
November 4-9, 2025 ©2025 Association for Computational Linguistics

Do Large Language Models Excel in Complex Logical Reasoning
with Formal Language?

Jin Jiang1, Jianing Wang2, Yuchen Yan3, Yang Liu2,
Jianhua Zhu1, Mengdi Zhang2, Liangcai Gao1*

1Wangxuan Institute of Computer Technology, Peking University, Beijing, China,
2Meituan Group, 3College of Computer Science and Technology, Zhejiang University

Correspondence: jiangjin@stu.pku.edu.cn, gaoliangcai@pku.edu.cn

Abstract
Large Language Models (LLMs) have been
shown to achieve breakthrough performance
on complex logical reasoning tasks. Neverthe-
less, most existing research focuses on employ-
ing formal language to guide LLMs to derive
reliable reasoning paths, while systematic eval-
uations of these capabilities are still limited.
In this paper, we aim to conduct a comprehen-
sive evaluation of LLMs across various logical
reasoning problems utilizing formal languages.
From the perspective of three dimensions, i.e.,
spectrum of LLMs, taxonomy of tasks, and
format of trajectories, our key findings are: 1)
Thinking models significantly outperform In-
struct models, especially when formal language
is employed; 2) All LLMs exhibit limitations
in inductive reasoning capability, irrespective
of whether they use a formal language; 3) Data
with PoT format achieves the best generaliza-
tion performance across other languages. Addi-
tionally, we also curate the formal-relative train-
ing data to further enhance the small language
models, and the experimental results 1 indicate
that a simple rejected fine-tuning method can
better enable LLMs to generalize across formal
languages and achieve the best overall perfor-
mance.

1 Introduction

Logical reasoning, i.e., deductive, inductive, and
abductive, is one of the imperative natural lan-
guage processing (NLP) tasks and plays a sig-
nificant role in artificial intelligence (AI) to per-
form human-like decision-making, task-solving,
and deep-thinking (Zhang et al., 2021; Yang et al.,
2023b; Yu et al., 2024; Xu et al., 2025). Different
from conventional natural language understanding
and generation, logical reasoning requires the AI
systems to explicitly provide meticulous elucida-
tion of thoughts and verifiable derivation chains,

*Corresponding author.
1Our codes and reports are available at https://github.

com/jiangjin1999/FormalEval.

Trajectory Format

Model

GPT-4o

Qwen2.5-7B/32B/72B

Llama-3.1-8B

Task Type

Deductive

Inductive Abductive

Mixed-Form
Math, NLU, Time, Table...

Text
Python

Z3
CSP

Llama-3.3-70B

QwQ-32B

R1-Distill-Llama-70BR1-Distill-Qwen-7B/32B

Think/Instruct

 Natural / Formal

Figure 1: Evaluation framework with three specific di-
mensions: spectrum of LLMs, taxonomy of logical rea-
soning tasks, and format of output trajectories.

which is crucial and challenging (Cummins et al.,
1991). Early works have developed multiple for-
mal languages with symbol solvers to make the rea-
soning steps computable and structured (RANISE,
2003; Bulatov et al., 2005; Bjørner et al., 2015).

Recently, the emergence of reasoning capabili-
ties in large language models (LLMs) has incen-
tivized significant progress in complex reasoning
tasks, such as mathematics, commonsense, and
symbol (Achiam et al., 2023; Bi et al., 2024). Cur-
rent studies have found that LLMs can achieve
remarkable performance with the aid of formal
language and symbol solvers, especially when inte-
grating well-designed task-specific instructs (Lyu
et al., 2023; Pan et al., 2023), chain-of-thought
(CoT) reasoning patterns (Wei et al., 2022; Ye et al.,
2023), and valuable solvers’ feedback (He-Yueya
et al., 2023; Gao et al., 2023; Wang et al., 2024).
Such approaches aim to formalize the given logical
problem and constantly adjust the results lean on
the solver’s feedback. Despite substantial efforts
exhibiting exceptional performance, there are still

16878

mailto:jiangjin@stu.pku.edu.cn
mailto:gaoliangcai@pku.edu.cn
https://github.com/jiangjin1999/FormalEval
https://github.com/jiangjin1999/FormalEval

relatively limited systematic and comprehensive
evaluations. Thus, a natural question remains open:
whether the LLM really excels in complex logical
reasoning problems with formal language?

To bridge the gap, this paper endeavors to per-
form a comprehensive evaluation of LLMs uti-
lizing various formal languages to tackle diverse
logical reasoning problems. At first, we develop
the evaluation architecture to clearly express
the entire assessment view (As illustrated in Sec-
tion 2), with the framework shown in Figure 1.
Specifically, we divide the entire assessment into
three distinct dimensions, including the spectrum
of LLMs, the taxonomy of logical reasoning tasks,
and the format of trajectories. For the family of
LLMs, we further consider different reasoning pat-
terns which has been injected into the model train-
ing, such as short thinking (e.g., GPT-4o (Achiam
et al., 2023), Qwen1.5/2/2.5 (Bai et al., 2023),
LLaMA3/3.1/3.3 (Grattafiori et al., 2024)) and long
thinking (e.g., DeepSeek-R1-Dsitill-Qwen (Guo
et al., 2025)). For the logical reasoning, we adhere
to the classic definitions (Flach and Kakas, 2000),
categorizing tasks into deductive, inductive, and
abductive reasoning. Additionally, we account for
tasks that may integrate multiple reasoning types
by introducing a new category referred to as mixed-
form reasoning. Regarding the format of trajec-
tories, we consider three main formal languages
(“Python”, “Z3”, “CSP”) with a default natural
language format as “Text”.

Secondly, we perform a thorough evaluation
across these three dimensions (as detailed in Sec-
tion 3). Many contemporary benchmarks purely
emphasize informal text patterns and lack compre-
hensive integration of different formal languages
and logical reasoning tasks (Lei et al., 2024; Xu
et al., 2025; Xia et al., 2025). For instance, it
is widely recognized that Python is superior to
plain text when addressing mathematical prob-
lems (Friedman, 2023; Gao et al., 2023), but it
remains unclear whether Python is equally effec-
tive in resolving BBH (Suzgun et al., 2022) and
bbeh (Kazemi et al., 2025) problems. To fill this
blank, this part aims to investigate whether current
LLMs can solve a variety of logical reasoning tasks
utilizing different formal languages. From this
study, we derive several intriguing observations: 1)
Thinking models significantly outperform Instruct
models, especially when formal language is em-
ployed; 2) All LLMs exhibit limitations in induc-
tive reasoning capability, irrespective of whether

they use a formal language; 3) LLMs typically pro-
duce inferior performance on difficult tasks. These
findings prompt a new inquiry Do large models
possess generalization capabilities when employ-
ing formal languages?

Thirdly, we further investigate the generaliza-
tion across different reasoning tasks and formal
languages (As illustrated in Section 4). To reach
this goal, we collect a few training data from the
training set of current evaluation tasks, which is
classified into three types: deductive, inductive,
and abductive. For each task type, we also pro-
vide different trajectories according to the usages
of (in)formal languages. To make a fair compari-
son, we only use data from a single language type
for SFT training, and the training data has the same
scale size. From the experiments, we observe that
the LLM can obtain significant in-domain perfor-
mance on multiple logical reasoning tasks. In ad-
dition, we also discovered an elusive phenomenon
that CSP is hard to generalize to other formal and
informal languages, but it is easy to generalize from
other languages to CSP. Therefore, we speculate
that the poor performance of LLM on some formal
languages can be blamed on the lack of pertinent
knowledge and potential for stimulated reasoning.

Lastly, based on the previous exploration, we
aim to amplify the capabilities of weaker mod-
els in using formal languages to solve reasoning
problems. Concretely, we propose a simple but
effective rejected fine-tuning (RFT) approach to
curate different formal-relative training data. Af-
ter the enrichment, the overall accuracy of using
informal and formal languages for complex logical
tasks can be improved by more than 10%.

In summary, the main contributions are as fol-
lows:

• In light of the insufficient evaluations of ex-
isting works, we aim to collect 66 tasks with
multiple widely used formal languages, and
provide a comprehensive evaluation for cur-
rent LLMs across three dimensions, including
the spectrum of LLMs, the taxonomy of tasks,
and the format of trajectories.

• Considering that different formal languages
have different expressions for reasoning, we
explore the generalization across various for-
mal languages.

• To further enhance the capability of LLMs in
utilizing formal languages to solve complex

16879

logic reasoning, we introduce a simple but
effective rejected fine-tuning method with cu-
rated formal-relative data. The experimental
results indicate the effectiveness of consid-
ering the generalization of formal language
across various logical tasks.

2 Preliminary

As illustrated in Figure 1, our evaluation frame-
work is structured along three dimensions: Model,
Trajectory Format, and Task Type. In this section,
we introduce the two key points of complex reason-
ing task categorization (Section 2.1) and trajectory
format design (Section 2.2).

2.1 Taxonomy of Complex Logical Reasoning

Inspired by Xu et al. (2025), we present a unified
taxonomy that categorizes a wide range of com-
plex reasoning tasks into four major types: Deduc-
tive, Inductive, Abductive, and Mixed-Form. To
elaborate, the categorization is based on the nature
of reasoning required in human-like thinking in
the real world: 1) Deductive reasoning is the for-
ward reasoning process with rules that starts from
the given premises to the conclusion (Goel, 2007;
Johnson-Laird, 1999). Formally, we can denote the
process as premise rule−→conclusion. 2) Inductive
reasoning is the process that infers specific rules
based on multiple premises and conclusions. It
can be represented as (premise, conclusion)→rule.
3) Abductive reasoning is the backward process
of deductive which aims to obtain the premise
based on conclusion, and the process can be viewed
as conclusion rule−→premise. 4) Mix-Form Reason-
ing involves at least two of the above three types
of reasoning. In real-life scenarios, most complex
problems involve mixed reasoning, including but
not limited to temporal-spatial reasoning, NLU,
knowledge reasoning, and mathematical reasoning.

In pursuit of specific benchmarks based on these
categories, we meticulously collect 66 subsets of
data, and the detailed information can be found in
Table 2. The details of the specific datasets are
shown in Appendix A.

2.2 Trajectory Format

As shown in Figure 1, we categorize trajectory
formats into two main types: informal language
(natural language) and formal language. Informal
language can be expressed as free-form text, while
formal languages include programming languages

(e.g., Python) and logic-based languages (e.g., Z3
and CSP). They can be modeled as:

LLM(Q) = ⟨s1, s2, . . . , sn⟩ Exec−−→ A

where Q is the input question, and LLM(Q) rep-
resents the trajectory generated by LLM. Each step
si ∈ LLLM corresponds to a structured unit (e.g.,
code or logic expression), and the trajectory is ex-
ecuted by an external engine to produce the final
answer A.

For PoT, we use Python 3.12 and its standard
library as the execution environment. Each step
si ∈ LLMPoT is a valid Python statement. For
Z3, we adopt the Z3 theorem prover as the execu-
tor and Z3 trajectories are composed of declarative
symbolic steps si ∈ LLMZ3. For CSP, we use
the python-constraint library as the trajectory
executor. Each CSP trajectory si ∈ LLMCSP con-
sists of variable declarations, domain assignments,
and constraint definitions.

In addition, we chose Z3 over Prover9 because
Z3 not only supports first-order logic (Prover9-
FOL) but also natively supports rich theories such
as integers and arrays. More detailed description
can be found in section B.

3 PART I: Evaluation across LLMs,
Tasks, Trajectories

In PART I, we present a comprehensive evaluation
across three dimensions: Models, Trajectory For-
mats, and Reasoning Task Types. Specifically, we
evaluate both Instruct and Thinking models, rang-
ing from 7B to 72B (see Figure 1). For reasoning
tasks, we follow the taxonomy introduced in Sec-
tion 2.1. For trajectory formats, we evaluate three
formal languages and natural language, as detailed
in Section 2.2. All evaluations are conducted in a
zero-shot setting. For formal languages (PoT, Z3,
CSP), we apply a three-step self-refinement pro-
cess during code execution. Detailed evaluation
settings are provided in Appendix C.1.

3.1 Model Performance for Reasoning Tasks
and Trajectory Formats

As shown in Figure 2, the radar chart (Overall+
Fine-grained) illustrates the model’s performance
under different task types and trajectory formats.
The complete results can be found in Appendix D.

Thinking model outperforms Instruct model
From the overall part, we can observe that series of

16880

Figure 2: Radar plots illustrating the performance (%) of multiple LLMs across different reasoning task types
(Deductive, Inductive, Abductive, Mixed Form) and trajectory formats (Text, PoT, Z3, CSP). Overall (top 1 × 4)
shows aggregated performance by reasoning type and format. Fine-grained (below 4 × 4) present fine-grained
results on individual tasks

16881

Thinking models (e.g., QwQ-32B, etc.) outperform
the Instruct series in most tasks, especially in the
Inductive and Mixed-Form tasks. The disparities
between them reflect that the Thinking mode can
better elicit the LLM to provide reliable trajecto-
ries for formal reasoning. Previous evaluations (Xu
et al., 2025) have demonstrated a similar finding
that Instruct models have achieved unsatisfactory
results in inductive reasoning, but they do not pro-
vide the suggestion that the Thinking model can
perform well.

Text outperforms formal languages, except for
QwQ-32B Most models outperform formal lan-
guages in the Text trajectory format. In the Fine-
grained section, as the trajectory format shifts from
Text to CSP, the radar map coverage area gradually
decreases, especially in the bbeh series of subtasks.
However, QwQ-32B is the only model that stays
ahead in all tasks and trajectories, maintaining a
high level of performance in all formal languages.

Formal language performance drops signifi-
cantly on difficult tasks Models can achieve
comparable or even better performance than Text
with formal languages in simple tasks (e.g., Z3,
CSP in Deducitve-BBH_web), but the performance
of formal languages drops off substantially in com-
plex tasks(e.g., Deductive-bbeh_boardgameQA).
This phenomenon again suggests that current large
models are better at using non-formal languages
when expressing complex logic. Possible reasons
include: 1) the model training process is dominated
by natural language, with a scarcity of formal lan-
guage samples; and 2) the model lacks augmen-
tation for difficult and complex problems. The
performance of text formatting is average, while
formal language significantly decreases. It is worth
noting that GPT-4o’s performance in this area is
relatively stable, possibly due to its optimization in
data.

Small models perform poorly on formal lan-
guage Both Instruct and Thinking small models
have acceptable overall performance under Text,
but when dealing with formal languages, the per-
formance drops rapidly. Taking R1-Distill-Qwen-
7B as an example, its performance under the CSP
trajectory is even significantly lower than similar
Instruct models, indicating that the Thinking mech-
anism is difficult to effectively support formal lan-
guage reasoning at low parameter scales. In addi-
tion, in high complexity tasks such as bbeh-time,

bbeh-shuffle, etc., the small model is almost com-
pletely ineffective in structured trajectories such
as Z3 and CSP, and it is difficult to complete the
basic logical steps, which shows its serious lack of
ability to deal with formal reasoning problems.

Overall, all models except QwQ-32B show a
continuous performance degradation in the trajec-
tory format change from Text to formal language
(PoT, Z3, CSP). This phenomenon suggests that
the current mainstream LLMs are more adept at
handling natural language tasks, while they are still
deficient in formal language reasoning.

3.2 Different Reasoning Tasks Prefer
Different Trajectory Format

In this section, we use the GPT-4o result as an an-
chor point to conduct a detailed analysis of how
different tasks exhibit varying preferences for tra-
jectory formats. As shown in Figure 3, GPT-4o
exhibits diverse preferences across trajectory for-
mats. Below, we summarize the main observations.

Text performs better in language comprehen-
sion and open-ended tasks First, in tasks such
as BBH_snarks, bbeh_linguini, bbeh_nycc, Text
is closer to the nature of the task in humor com-
prehension, linguistic style recognition, and fuzzy
semantic parsing, and is superior to formal lan-
guage. Secondly, in induction and abduction tasks
such as AbductionRules, NeuLRabductive, NeuL-
Rinductive, and Clutrr, where reasoning relies on
linguistic expressions, the Text format is more ad-
vantageous. In addition, LogicQA, although cate-
gorized as a logic task, is more akin to a general
knowledge quiz. It originates from the Chinese
Civil Service Exam, where textual ability plays a
dominant role in performance. (Cases in Figure 6)

Well-structured tasks prefer PoT PoT for-
mat is particularly effective in tasks with strong
structural characteristics, such as numerical
computation and symbolic reasoning tasks like
BBH_dyck_languages and BBH_word_sorting. In
these settings, PoT enables efficient computation
and facilitates the handling of rules involving nest-
ing and ordering. Additionally, in tasks that involve
temporal sequences, object tracking, and spatial
reasoning, such as bAbI16, bbeh_shuffled_objects,
and bbeh_spatial_reasoning, PoT demonstrates
strong performance by leveraging programmatic
trajectories to clearly express intermediate states
and transformation processes. (Case in Figure 7)

16882

0%

20%

40%

60%

80%

100%
ProntoQA

Exec Rate
0%

20%

40%

60%

80%

100%
NeuLRabductive

Exec Rate
0%

20%

40%

60%

80%

100%
NeuLRinductive

Exec Rate
0%

20%

40%

60%

80%

100%
gsm8k

Exec Rate
0%

20%

40%

60%

80%

100%
Clutrr

Exec Rate

0%

20%

40%

60%

80%

100%
Logicqa

Exec Rate
0%

20%

40%

60%

80%

100%
BBH_snarks

Exec Rate
0%

20%

40%

60%

80%

100%
bbeh_linguini

Exec Rate
0%

20%

40%

60%

80%

100%
bbeh_nycc

Exec Rate
0%

20%

40%

60%

80%

100%
bAbI16

Exec Rate

0%

20%

40%

60%

80%

100%
BBH_multistep_arithmetic_two

Exec Rate
0%

20%

40%

60%

80%

100%
BBH_word_sorting

Exec Rate
0%

20%

40%

60%

80%

100%
BBH_dyck_languages

Exec Rate
0%

20%

40%

60%

80%

100%
BBH_tracking_shuffled_five

Exec Rate
0%

20%

40%

60%

80%

100%
bbeh_spatial_reasoning

Exec Rate

Text PoT Z3 CSP
0%

20%

40%

60%

80%

100%
LogicBench

Exec Rate

Text PoT Z3 CSP
0%

20%

40%

60%

80%

100%
BBH_geometric_shapes

Exec Rate

Text PoT Z3 CSP
0%

20%

40%

60%

80%

100%
BBH_formal_fallacies

Exec Rate

Text PoT Z3 CSP
0%

20%

40%

60%

80%

100%
ARLSAT

Exec Rate

Text PoT Z3 CSP
0%

20%

40%

60%

80%

100%
BBH_logical_deduction_seven

Exec Rate

Figure 3: Preferred reasoning task performance across different trajectory formats (Text, PoT, Z3, CSP) in GPT-4o
results. Each subplot shows task accuracy under different formats, with execution rate (Exec Rate) plotted as a black
line. The highlighted bars represent the most preferred trajectory format for each task.

Z3 handles formal and FOL reasoning well.
Z3 format shows a good adaptation to formal
logic tasks, especially in tasks with strict log-
ical rules: LogicBench, BBH_formal_fallacies,
BBH_logical_deduction. This type of task is es-
sentially convertible to first-order logical expres-
sions, so using an SMT solver (e.g., Z3) as the
trajectory language is more suitable. In addition,
BBH_geometric_shapes involves spatial reasoning,
where the boolean logical expressiveness of Z3 is
more advantageous. (Case in Figure 9)

CSP shows advantages in complex constraints
CSP format shows advantages in some structured
logic tasks, such as BBH_logical_deduction, a re-
sult consistent with the findings of Logic-LM (Pan
et al., 2023). More interestingly, in ARLSAT, a task
derived from the Law School Admission Test, CSP
also achieves the optimal result, which contrasts
with the previous (Pan et al., 2023) literature’s con-
clusion that Z3 is better suited for this task. This
difference may stem from the characteristics of the
tasks themselves; in ARLSAT, the stems of the
questions typically contain constraints, which are
more consistent in form with the way CSPs are
expressed. (Case in Figure 9)

Beyond the four dimensions mentioned above,

we can observe that execution success rate (Exec
Rate) is also a key factor underlying the differ-
ences among various forms of language. More-
over, gsm8k achieves its best performance under
the Text format, which is inconsistent with find-
ings from previous studies (e.g., Ye et al. (2023);
He-Yueya et al. (2023)). This discrepancy may be
attributed to two factors: 1) Prior work often in-
volves task-specific optimization for mathematical
reasoning; 2) Current large language models are
trained on substantial amounts of mathematical nat-
ural language reasoning data, which enhances their
generalization ability in Text formats.

Overall, task trajectory alignment plays a crit-
ical role. Different tasks exhibit preferences for
specific trajectory formats—some tasks are inher-
ently better suited to certain formal representations,
and using inappropriate formats may even hinder
model performance. Therefore, when constructing
multi-trajectory training or evaluation frameworks,
it is important to carefully consider the alignment
among task structure, target language, and model
capabilities.

16883

Ded Ind Abd Ded Ind Abd Ded Ind Abd Ded Ind Abd

Evaluation Dimension

D
ed

In
d

Ab
d

D
ed

In
d

Ab
d

D
ed

In
d

Ab
d

D
ed

In
d

Ab
d

Tr
ai

ni
ng

 D
at

a
1.3 1.0 -0.5 2.9 7.2 1.6 1.2 2.6 -0.4 15.1 0.6 5.2

-2.0 16.2 -0.1 -0.2 17.1 -3.0 1.7 5.1 -1.6 15.0 6.1 3.5

-1.5 -4.2 4.5 -1.6 0.3 2.4 -1.2 -1.2 0.7 14.6 -1.0 4.6

0.8 -0.6 0.4 2.0 10.6 0.7 3.0 3.4 1.6 13.8 1.3 9.4

-2.1 7.1 -0.0 0.4 28.1 -0.9 2.0 5.0 -1.6 15.4 3.2 7.3

-0.2 -3.1 8.3 0.7 4.1 15.3 6.0 1.3 13.2 17.1 -1.7 10.7

2.9 0.3 0.5 -2.2 7.9 -0.2 8.5 4.2 8.0 13.4 -1.5 6.8

0.5 7.7 0.1 -1.7 15.3 -1.9 4.7 22.4 8.2 15.6 -0.8 8.2

-0.4 2.6 7.1 -1.7 2.7 4.5 7.5 9.6 16.8 8.8 -8.6 4.4

-3.3 0.8 -0.5 0.6 8.9 0.3 5.5 -5.9 2.1 33.4 2.5 12.3

-1.2 11.3 0.5 0.6 15.8 0.5 8.1 -4.0 3.1 27.8 28.0 14.8

0.7 1.0 3.5 -1.0 3.4 5.5 3.0 -3.9 3.4 26.2 4.7 27.2

Text PoT Z3 CSP

Te
xt

Po
T

Z3
CS

P

5

0

5

10

15

20

25

30

(a) Fine-grained by Trajectory Format.

Text PoT Z3 CSP Text PoT Z3 CSP Text PoT Z3 CSP

Evaluation Dimension

Te
xt

Po
T

Z3
CS

P
Te

xt
Po

T
Z3

CS
P

Te
xt

Po
T

Z3
CS

P

Tr
ai

ni
ng

 D
at

a

1.3 2.9 1.2 15.1 1.0 7.2 2.6 0.6 -0.5 1.6 -0.4 5.2

0.8 2.0 3.0 13.8 -0.6 10.6 3.4 1.3 0.4 0.7 1.6 9.4

2.9 -2.2 8.5 13.4 0.3 7.9 4.2 -1.5 0.5 -0.2 8.0 6.8

-3.3 0.6 5.5 33.4 0.8 8.9 -5.9 2.5 -0.5 0.3 2.1 12.3

-2.0 -0.2 1.7 15.0 16.2 17.1 5.1 6.1 -0.1 -3.0 -1.6 3.5

-2.1 0.4 2.0 15.4 7.1 28.1 5.0 3.2 -0.0 -0.9 -1.6 7.3

0.5 -1.7 4.7 15.6 7.7 15.3 22.4 -0.8 0.1 -1.9 8.2 8.2

-1.2 0.6 8.1 27.8 11.3 15.8 -4.0 28.0 0.5 0.5 3.1 14.8

-1.5 -1.6 -1.2 14.6 -4.2 0.3 -1.2 -1.0 4.5 2.4 0.7 4.6

-0.2 0.7 6.0 17.1 -3.1 4.1 1.3 -1.7 8.3 15.3 13.2 10.7

-0.4 -1.7 7.5 8.8 2.6 2.7 9.6 -8.6 7.1 4.5 16.8 4.4

0.7 -1.0 3.0 26.2 1.0 3.4 -3.9 4.7 3.5 5.5 3.4 27.2

Deductive Inductive Abductive

D
ed

uc
ti

ve
In

du
ct

iv
e

Ab
du

ct
iv

e

5

0

5

10

15

20

25

30

(b) Fine-grained by Reasoning Type.

Figure 4: Generalization performance across fine-grained (task type × format) configurations. Each cell shows the
performance gain (∆) from training on the row configuration and evaluating on the column configuration

Text PoT Z3 CSP
Evaluation Dimension

Te
xt

Po
T

Z3
CS

P
Tr

ai
ni

ng
 D

at
a

5.7 5.1 -0.2 8.7

4.2 13.3 8.4 11.2

3.9 4.4 14.8 -4.8

4.5 -15.8 -8.9 28.1
15

10

5

0

5

10

15

20

25

(a) Trajectory Format.

Deductive Inductive Abductive
Evaluation Dimension

D
ed

uc
ti

ve
In

du
ct

iv
e

Ab
du

ct
iv

eTr
ai

ni
ng

 D
at

a

5.2 5.3 4.7

4.0 22.8 4.7

6.2 5.3 18.0
5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

(b) Reasoning Type.

Figure 5: Generalization performance across reasoning
types and trajectory formats (coarse-grained analysis).
Each cell reports the performance gain (∆) when train-
ing on the row group and evaluating on the column
group.

4 PART II: Generalization Analysis
across Reasoning Tasks and Trajectory
Formats

4.1 Setup and Visualization Overview

We collected the training split of the evaluation
dataset, categorized into three reasoning types:
Deductive, Inductive, and Abductive (excluding
Mixed-Form due to variable control challenges).
Each training instance is represented in four trajec-
tory formats: Text, PoT, Z3, and CSP. Details are
provided in Section 5.1.

Based on the above data, we conduct two sets of
analytical experiments: coarse-grained and fine-
grained. 1): Coarse-grained experiments, as
shown in Figure 5, involve training on 7 groups
of data (3 reasoning types + 4 trajectory formats),
each mixed with general-domain data, and eval-
uating on the same 3 reasoning types and 4 for-
mats. 2): Fine-grained experiments, as shown in
Figure 4, involve training on 12 groups of data (3
reasoning types × 4 trajectory formats), each mixed

with general-domain data, and evaluating across all
12 combinations of reasoning types and formats.
Each heatmap cell shows the performance gain (∆)
when training on the configuration in the row and
evaluating on the configuration in the column. The
performance gain reflects the improvement intro-
duced by our constructed data when mixed with the
general-domain data (Trained on Qwen-2.5-7B).

4.2 Coarse-Grained Generalization Analysis
Significant in-domain improvement The
strongest performance gains are observed along the
diagonal, indicating that the model benefits most
when the training and evaluation data come from
the same group. Notably, the improvements for
CSP (Train) → CSP (Eval) and Inductive (Train)
→ Inductive (Eval) reach 28.1 and 22.8, respec-
tively. Combined with observations from Part-I,
this can be partially attributed to the relatively low
baseline performance of the Qwen2.5-7B model
on the CSP and Inductive dimensions, meaning
that even a small amount of in-domain data leads
to significant improvement.

PoT transfers well, while CSP transfers poorly
Outside the diagonal, in figure 5a, PoT migrates
well in Text, Z3, and CSP. This might be related
to the fact that there is a lot of code data in the
pre-training data. CSP, on the other hand, has an
effect only on Text and CSP, with significant neg-
ative effects on PoT (-15.8) and Z3 (-8.9). This
suggests that there may be structural differences
among formal languages.

Reasoning types: all exhibit positive transfer
The overall transfer effect is relatively balanced
between the different reasoning types (Fig.5b). The
relatively small improvement on Deductive itself

16884

Model
Text PoT Z3 CSP Avg

Acc Acc E-R Acc E-R Acc E-R Acc E-R

GPT-4o 66.7 64.0 91.5 54.5 87.4 53.0 83.98 59.0 87.6
Qwen2.5-7B-Instruct 52.3 37.0 78.6 33.0 70.0 25.0 52.1 37.0 66.9
Qwen2.5-72B-Instruct 63.4 54.0 85.1 42.5 79.6 43.0 75.2 51.0 80.0

Qwen2.5-7B-Baseline 49.7 40.0 75.4 27.1 68.2 20.0 52.2 34.0 65.3
Qwen2.5-7B-Base w.Formal 52.7+3.0 44.0+4.0 83.5+8.1 34.8+7.7 76.5+8.3 37.0+17.0 68.1+15.9 42.0+8.0 76.0+10.7

Table 1: Performance of LLM on different trajectory formats before and after formal data enhancement. Accuracy
(Acc) and execution rate (Exec Rate) are reported for text, PoT, Z3, and CSP formats. Qwen2.5-7B-Baseline
denotes the baseline model trained with general data only; Qwen2.5-7B-Base w.Formal denotes the augmented
model trained with a mixture of formal language data. Improvements after augmentation are shown in green.

may be related to the higher base level of the model
on Deductive.

4.3 Fine-Grained Generalization Analysis

Deductive-CSP is most easily generalized In
Figure 4, all entries in the Deductive-CSP column
show improvements. The inclusion of any data
contributes positively to its performance. This is
mainly because CSP has a relatively low baseline,
and the Deductive category contains some rela-
tively simple tasks (BBH_logical_deduction_three
from 40 % to 92%). As a result, adding similar
data leads to performance gains.

CSP and Z3 transfer well across reasoning types
In Figure 4a, all entries (Ded/Ind/Abd) within the
CSP and Z3 blocks show positive gains, indicat-
ing that regardless of reasoning type, CSP and Z3
formats can be effectively transferred.

Abductive transfers well across trajectory for-
mats In Figure 4b, all entries (Text/PoT/CSP/Z3)
within the Abductive block show improvements,
suggesting that regardless of trajectory format, Ab-
ductive reasoning can be effectively transferred and
improved.

5 PART III: Enhancing LLMs with
Formal Data

5.1 Formal Data Construction via RFT

To enhance model capability in formal languages,
we collect the portions of current evaluation
datasets that overlap with training data as part of
our training set. All dataset details are provided
in Table 2. Similarly, the training data is catego-
rized into three types: Deductive, Inductive, and
Abductive, and four trajectory formats: Text, PoT,
Z3, and CSP.

First, we extract up to 3,000 samples from all
training data. Then, GPT-4o was chosen as the
output for teacher model construction. In order
to obtain high quality response data, we used Re-
jection sampling Fine-Tuning (RFT). We used
GPT-4o to sample the questions several times and
then filtered out those samples whose code was ex-
ecutable and whose final answers are verified to be
correct. The statistics of the filtered data are shown
in Table 3. The number in parentheses after each
model name indicates the amount of added data.

5.2 Main Result
As shown in Table 1, the enhanced model improves
accuracy by 3.0% on Text, 7.7% on Z3 (with an
8.3% gain in execution rate), and 17.0% on CSP
(from 20.0% to 37.0%, with a 15.9% increase in
execution rate). Overall, average accuracy rises
from 34.0% to 42.0%, and execution rate from
65.3% to 76.0%.

Beyond outperforming the baseline, our formal-
data-enhanced model also surpasses the open-
source model Qwen2.5-7B-Instruct across all for-
mats. Qwen2.5-7B-Base w.Formal has a smaller
parameter size than Qwen2.5-72B, but the perfor-
mance gap is narrowed by formal data fine-tuning.
This suggests that formal data augmentation can
effectively improve the competitiveness of small
models in formal reasoning tasks.

6 Related Work

6.1 Symbolic Solver Enhances LLM
Reasoning

The integration of symbolic solvers with large lan-
guage models (LLMs) has emerged as a promising
approach to enhance logical reasoning. Early ef-
forts focused on translating natural language to first-
order logic (FOL), exemplified by the creation of

16885

the MALLS dataset and the LogicLLaMA model,
which demonstrated improved NL-to-FOL trans-
lation (Yang et al., 2023a). The Logic-LM frame-
work further explored this direction by employing
different formal languages and solvers tailored to
specific reasoning tasks, such as FOL with Prover9,
CSP solvers for constraint satisfaction, and Z3 for
SMT problems (Pan et al., 2023). SATLM intro-
duced declarative prompting to generate task spec-
ifications in logical formulas for SAT solvers (Ye
et al., 2023), while LINC utilized LLMs for se-
mantic parsing into FOL, offloading inference to
theorem provers (Olausson et al., 2023). Subse-
quent research investigated strategies for improv-
ing NL-to-FOL translation through data generation
and fine-tuning (Xiong et al., 2024), multi-step re-
finement of symbolic formulations (Wang et al.,
2024), and the impact of pre-training data, includ-
ing programming languages, on logical inference
(Uchiyama et al., 2023). Frameworks like VERUS-
LM aimed for versatility by supporting various rea-
soning tasks with a clear separation of knowledge
and queries (Callewaert et al., 2025).

6.2 Complex Logical Reasoning Tasks

Evaluating the logical reasoning capabilities of
LLMs necessitates challenging and diverse datasets
that probe various aspects of inference. FOLIO, an-
notated with first-order logic, focuses on complex
logical reasoning in natural language (Han et al.,
2024). ProntoQA utilizes logic programming and
emphasizes chain-of-thought reasoning (Saparov
and He, 2023), while LogicBench covers proposi-
tional, first-order, and non-monotonic logic with a
focus on single inference rules (Parmar et al., 2023).
BOARDGAMEQA assesses reasoning with contra-
dictory information and preferences (Kazemi et al.,
2023), and AR-LSAT tests analytical reasoning
skills using logic constraints (Zhong et al., 2022).
The BIG-Bench Hard (BBH) benchmark includes
a wide array of challenging tasks like Boolean
Expressions (Suzgun et al., 2022), formal falla-
cies (Suzgun et al., 2022), logical deduction (Suz-
gun et al., 2022), shuffled objects (Suzgun et al.,
2022), and web of lies (Suzgun et al., 2022). Other
datasets like bAbI (Weston et al., 2015), CLUTRR
(Sinha et al., 2019), α-NLI (Zhao et al., 2021), Ab-
ductiveRules (Bhagavatula et al., 2020), LogiQA
(Liu et al., 2020), and gsm8k (Cobbe et al., 2021)
target specific reasoning types such as deductive,
inductive, abductive, temporal, spatial, and mathe-
matical reasoning. The variety in these datasets and

their annotations highlights the multifaceted nature
of complex reasoning and the ongoing efforts to
evaluate and enhance LLMs in this domain.

7 Conclusion

In this paper, we provide a comprehensive evalu-
ation of LLMs utilizing various formal languages
to solve different categories of logical reasoning
tasks. We first develop a systematic evaluation ar-
chitecture and decompose it into three dimensions.
Then, we perform a thorough evaluation across
these three dimensions to show whether the cur-
rent LLMs can excel in formal language utilization.
Furthermore, we explore the generalization across
multiple formal languages and provide a simple but
effective method on the capability enhancement for
small language models.

For future directions, on the one hand, we should
strive to enhance the model’s reasoning capabilities
in a balanced manner across different trajectory for-
mats and task types, especially for Instruct models.
At the same time, it may be valuable to construct
formal language reasoning datasets in a "thinking"
style. On the other hand, we can leverage the task-
specific preferences for trajectory formats to further
expand the capability boundaries of the model. One
approach is to incorporate reasoning results from
different trajectory formats as individual voters in
a majority voting scheme. Another approach is to
introduce multiple symbolic solvers for different
reasoning trajectories during the thinking stage of
the think model.

Limitations

This work provides a step toward evaluating and en-
hancing LLMs through formal reasoning formats,
but several limitations remain. First, the landscape
of LLMs is evolving rapidly. Our experiments fo-
cus on a limited set of models available at the time,
and newer models may change performance trends.
Second, while we include various reasoning types
and benchmark datasets, the overall dataset cover-
age is limited. Our formal data augmentation is ap-
plied to a subset of tasks and may not generalize to
other domains. Third, we focus on three formal for-
mats, "PoT, Z3, and CSP," due to their executability
and popularity. However, this excludes other sym-
bolic systems such as Lean, Prolog, Coq, or SMT-
LIB, which future work could explore. Finally, our
formal data construction is based on the Instruct
model (GPT-4o). With the rise of stronger Think-

16886

ing models, generating think-style formal data may
become more feasible and diverse in the future.

Acknowledgments

This work is supported by the projects of Beijing
Nova Interdisciplinary Program (20240484647)
and National Natural Science Foundation of China
(No. 62376012), which is also a research achieve-
ment of State Key Laboratory of Multimedia Infor-
mation Processing and Key Laboratory of Science,
Technology and Standard in Press Industry (Key
Laboratory of Intelligent Press Media Technology).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama

Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, and 1 others. 2023. Gpt-4 techni-
cal report. arXiv preprint arXiv:2303.08774.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, and 1 others. 2023. Qwen technical report.
arXiv preprint arXiv:2309.16609.

Rama Krishna Sai Bhagavatula, Ronan Le Bras, Chai-
tanya Malaviya, Yejin Choi, and Noah A Smith. 2020.
Abductionrules: Training transformers to explain un-
expected inputs. In Proceedings of the 58th Annual
Meeting of the Association for Computational Lin-
guistics, pages 4246–4258.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen,
Damai Dai, Chengqi Deng, Honghui Ding, Kai Dong,
Qiushi Du, Zhe Fu, and 1 others. 2024. Deepseek llm:
Scaling open-source language models with longter-
mism. arXiv preprint arXiv:2401.02954.

Nikolaj Bjørner, Anh-Dung Phan, and Lars Flecken-
stein. 2015. νz-an optimizing smt solver. In Tools
and Algorithms for the Construction and Analysis
of Systems: 21st International Conference, TACAS
2015, Held as Part of the European Joint Confer-
ences on Theory and Practice of Software, ETAPS
2015, London, UK, April 11-18, 2015, Proceedings
21, pages 194–199. Springer.

Andrei Bulatov, Peter Jeavons, and Andrei Krokhin.
2005. Classifying the complexity of constraints us-
ing finite algebras. SIAM journal on computing,
34(3):720–742.

Benjamin Callewaert, Simon Vandevelde, and Joost
Vennekens. 2025. Verus-lm: a versatile framework
for combining llms with symbolic reasoning. arXiv
preprint arXiv:2501.14540.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro

Nakano, and 1 others. 2021. Training verifiers to
solve math word problems. In null.

Denise D Cummins, Todd Lubart, Olaf Alksnis, and
Robert Rist. 1991. Conditional reasoning and causa-
tion. Memory & cognition, 19:274–282.

Peter A Flach and Antonis C Kakas. 2000. Abduction
and Induction: Essays on their relation and inte-
gration, volume 18. Springer Science & Business
Media.

Robert Friedman. 2023. Large language models and
logical reasoning. Encyclopedia, 3(2):687–697.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2023. Pal: Program-aided language
models. In International Conference on Machine
Learning, pages 10764–10799. PMLR.

Vinod Goel. 2007. Anatomy of deductive reasoning.
Trends in cognitive sciences, 11(10):435–441.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten,
Alex Vaughan, and 1 others. 2024. The llama 3 herd
of models. arXiv e-prints, pages arXiv–2407.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao
Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shi-
rong Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025.
Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint
arXiv:2501.12948.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhent-
ing Qi, Martin Riddell, Wenfei Zhou, James Coady,
David Peng, Yujie Qiao, Luke Benson, and 1 oth-
ers. 2024. Folio: Natural language reasoning with
first-order logic. In Proceedings of the 2024 Con-
ference on Empirical Methods in Natural Language
Processing, pages 22017–22031.

Joy He-Yueya, Gabriel Poesia, Rose Wang, and Noah
Goodman. 2023. Solving math word problems by
combining language models with symbolic solvers.
In The 3rd Workshop on Mathematical Reasoning
and AI at NeurIPS’23.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021. Measuring mathematical
problem solving with the math dataset. Sort, 2(4):0–
6.

Philip N Johnson-Laird. 1999. Deductive reasoning.
Annual review of psychology, 50(1):109–135.

Mehran Kazemi, Bahare Fatemi, Hritik Bansal, John
Palowitch, Chrysovalantis Anastasiou, Sanket Vaib-
hav Mehta, Lalit K Jain, Virginia Aglietti, Disha
Jindal, Peter Chen, and 1 others. 2025. Big-bench
extra hard. arXiv preprint arXiv:2502.19187.

16887

Mehran Kazemi, Quan Yuan, Deepti Bhatia, Najoung
Kim, Xin Xu, Vaiva Imbrasaite, and Deepak Ra-
machandran. 2023. Boardgameqa: A dataset for
natural language reasoning with contradictory infor-
mation. Advances in Neural Information Processing
Systems, 36:39052–39074.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-
cient memory management for large language model
serving with pagedattention. In Proceedings of the
ACM SIGOPS 29th Symposium on Operating Systems
Principles.

Fangyu Lei, Qian Liu, Yiming Huang, Shizhu He, Jun
Zhao, and Kang Liu. 2024. S3eval: A synthetic, scal-
able, systematic evaluation suite for large language
model. In Proceedings of the 2024 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies (Volume 1: Long Papers), pages 1259–1286.

Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang,
Yile Wang, and Yue Zhang. 2021. Logiqa: a
challenge dataset for machine reading comprehen-
sion with logical reasoning. In Proceedings of the
Twenty-Ninth International Conference on Interna-
tional Joint Conferences on Artificial Intelligence,
pages 3622–3628.

Qiyuan Liu, Ming Yan, Yiyang Liu, Pan Lu, Siwei
Wang, and Songfang Huang. 2020. Logiqa: A chal-
lenge dataset for machine reading comprehension
with logical reasoning. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1866–1877.

Qing Lyu, Shreya Havaldar, Adam Stein, Li Zhang,
Delip Rao, Eric Wong, Marianna Apidianaki, and
Chris Callison-Burch. 2023. Faithful chain-of-
thought reasoning. In The 13th International Joint
Conference on Natural Language Processing and the
3rd Conference of the Asia-Pacific Chapter of the
Association for Computational Linguistics (IJCNLP-
AACL 2023).

Theo X Olausson, Alex Gu, Benjamin Lipkin, Cede-
gao E Zhang, Armando Solar-Lezama, Joshua B
Tenenbaum, and Roger Levy. 2023. Linc: A neu-
rosymbolic approach for logical reasoning by com-
bining language models with first-order logic provers.
In Proceedings of the 2023 Conference on Empiri-
cal Methods in Natural Language Processing, pages
5153–5176.

Liangming Pan, Alon Albalak, Xinyi Wang, and
William Yang Wang. 2023. Logic-lm: Empower-
ing large language models with symbolic solvers for
faithful logical reasoning. In Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023,
pages 3806–3824.

Gaurav Parmar, Shikhar Murari, and Mohit Bansal.
2023. Logicbench: A challenging benchmark for

logical reasoning with large language models. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 148–168.

S RANISE. 2003. The smt-lib format: An initial pro-
posal. 1st PDPAR, 2003.

Abulhair Saparov and He He. 2023. Language models
are greedy reasoners: A systematic formal analysis
of chain-of-thought. In The Eleventh International
Conference on Learning Representations.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L Hamilton. 2019. Clutrr: A di-
agnostic benchmark for inductive reasoning from text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4506–4515.

Mirac Suzgun, Nathan Scales, Nathanael Scharli, Se-
bastian Gehrmann, Yi Tay, Hyung Won Chung,
Michael Petrov, Vincent Y Zhao, Ryan Murphy,
Adam Roberts, and 1 others. 2022. Challenging big-
bench tasks and whether chain-of-thought can solve
them. arXiv preprint arXiv:2210.09261.

Fumiya Uchiyama, Takeshi Kojima, Andrew Gam-
bardella, Qi Cao, Yusuke Iwasawa, and Yutaka Mat-
suo. 2023. Which programming language and what
features at pre-training stage affect downstream logi-
cal inference performance? Findings of the Associ-
ation for Computational Linguistics: EMNLP 2023,
pages 1008–1021.

Marco Valentino, Mokanarangan Thayaparan, and An-
dré Freitas. 2022. Case-based abductive natural lan-
guage inference. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics,
pages 1556–1568.

Xinyi Wang, Liangming Pan, and William Yang Wang.
2024. Logic-lm++: Multi-step refinement for sym-
bolic formulations. In The Twelfth International Con-
ference on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
and 1 others. 2022. Chain-of-thought prompting elic-
its reasoning in large language models. Advances
in neural information processing systems, 35:24824–
24837.

Jason Weston, Antoine Bordes, Sumit Chopra, Tomas
Mikolov, and Alexander Rush. 2015. Towards ai-
complete question answering: A set of prerequisite
toy tasks. In null.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexan-
der M Rush, Bart Van Merriënboer, Armand Joulin,
and Tomas Mikolov. 2016. Towards ai-complete
question answering: A set of prerequisite toy tasks.
In 4th International Conference on Learning Repre-
sentations, ICLR 2016.

16888

Yuan Xia, Akanksha Atrey, Fadoua Khmaissia, and
Kedar S Namjoshi. 2025. Can large language models
learn formal logic? a data-driven training and evalua-
tion framework. arXiv preprint arXiv:2504.20213.

Siheng Xiong, Yuan Yang, Ali Payani, Ehsan Shareghi,
and Faramarz Fekri. 2024. Strategies for improving
nl-to-fol translation with llms: Data generation, incre-
mental fine-tuning, and verification. arXiv preprint
arXiv:2409.16461.

Fangzhi Xu, Qika Lin, Jiawei Han, Tianzhe Zhao, Jun
Liu, and Erik Cambria. 2025. Are large language
models really good logical reasoners? a comprehen-
sive evaluation and beyond. IEEE Transactions on
Knowledge & Data Engineering, pages 1–15.

Yuan Yang, Siheng Xiong, Ali Payani, Ehsan Shareghi,
and Faramarz Fekri. 2023a. Harnessing the power
of large language models for natural language
to first-order logic translation. arXiv preprint
arXiv:2305.15541.

Zonglin Yang, Xinya Du, Rui Mao, Jinjie Ni, and Erik
Cambria. 2023b. Logical reasoning over natural lan-
guage as knowledge representation: A survey. In
The 61st Annual Meeting Of The Association For
Computational Linguistics.

Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2023.
Satlm: Satisfiability-aided language models using
declarative prompting. In Proceedings of NeurIPS.

Nathan Young, Qiming Bao, Joshua Bensemann, and
Michael J Witbrock. 2022. Abductionrules: Train-
ing transformers to explain unexpected inputs. In
Findings of the Association for Computational Lin-
guistics: ACL 2022, pages 218–227.

Fei Yu, Hongbo Zhang, Prayag Tiwari, and Benyou
Wang. 2024. Natural language reasoning, a survey.
ACM Computing Surveys, 56(12):1–39.

Jing Zhang, Bo Chen, Lingxi Zhang, Xirui Ke, and
Haipeng Ding. 2021. Neural, symbolic and neural-
symbolic reasoning on knowledge graphs. AI Open,
2:14–35.

Yixin Zhao, Adina Williams, Emily Dinan, Mohit
Bansal, Mark Yatskar, and Yejin Choi. 2021. Ad-
versarial nli: A new benchmark for natural language
understanding. In null.

Victor Zhong, Chandra Bhagavatula, Ronan Le Bras,
Yejin Choi, and Noah A Smith. 2022. Analytical
reasoning of text: Unifying machine reading and
logical reasoning. In Findings of the Association
for Computational Linguistics: NAACL 2022, pages
2307–2323.

Wanjun Zhong, Siyuan Wang, Duyu Tang, Zenan Xu,
Daya Guo, Jiahai Wang, Jian Yin, Ming Zhou, and
Nan Duan. 2021. Ar-lsat: Investigating analytical
reasoning of text. arXiv e-prints, pages arXiv–2104.

A Details of Datasets

Table 2 provides a comprehensive overview of all
datasets used in our study. Each dataset is anno-
tated with its reasoning type (Deductive, Inductive,
Abductive, or Mixed-Form), along with the num-
ber of evaluation and training examples. We also
include the original source for each dataset.

The classification follows our taxonomy intro-
duced in Section 2.1. In particular:

• Deductive datasets include tasks that require
formal logical reasoning based on explicit
rules or premises.

• Inductive datasets focus on pattern discovery
and generalization from limited examples.

• Abductive datasets involve generating plausi-
ble explanations under uncertainty.

• Mixed-Form includes tasks with hybrid or
ambiguous reasoning types, further grouped
into subcategories such as Temporal, NLU,
Symbolic, Spatial, Knowledge, and Math.

Some datasets (e.g., BBH and bbeh) are split
into finer task categories, each treated indepen-
dently during evaluation. For large-scale datasets
like GSM8K and MATH, we use a subset of exam-
ples (denoted by *) to maintain balance across task
types.

This dataset collection forms the foundation for
our evaluation across models, trajectory formats,
and reasoning types.

B Detail of Trajectory Format

We extend the unified trajectory formulation to
three specific formal languages: Python (PoT), Z3,
and CSP. Each trajectory consists of a sequence of
symbolic steps, which are executed by an external
engine to compute the final answer.

We denote the model-generated trajectory as:

LLM(Q) = ⟨s1, s2, . . . , sn⟩ Exec−−→ A (1)

Where Q is the input query, each si is a step in a
domain-specific language, and A is the final answer
produced by executing the trajectory.

Python (PoT) Trajectory

In the Python format, each step si is a syntactically
valid Python statement. The trajectory consists of

16889

Type Dataset Eval Train Original Source

Deductive

FOLIO 134 674 Han et al. (2024)
ProntoQA 500 50818 Han et al. (2024)

LogicBench 500 12908 Parmar et al. (2023)
BOARDGAMEQA 14K 750K Kazemi et al. (2023)

AR-LSAT 230 1629 Zhong et al. (2021)
BBH (Boolean Expression) 250 - Suzgun et al. (2022)
bbeh (Boolean Expressions) 200 - Kazemi et al. (2025)

BBH (formal_fallacies) 250 - Suzgun et al. (2022)
bbeh (Zebra Puzzles) 200 - Kazemi et al. (2025)

BBH (logical_deductive_five_objects) 250 - Suzgun et al. (2022)
BBH (logical_deductive_seven_objects) 250 - Suzgun et al. (2022)
BBH (logical_deductive_three_objects) 250 - Suzgun et al. (2022)

bbeh (Boardgame QA) 200 - Kazemi et al. (2025)
BBH (tracking_shuffled_objects_five_objects) 250 - Suzgun et al. (2022)

BBH (tracking_shuffled_objects_seven_objects) 250 - Suzgun et al. (2022)
BBH (tracking_shuffled_objects_three_objects) 250 - Suzgun et al. (2022)

bbeh (Shuffled Objects) 200 - Kazemi et al. (2025)
BBH (web_of_lies) 250 - Suzgun et al. (2022)
bbeh (Web of Lies) 200 - Kazemi et al. (2025)

bAbI-15 1000 900 Weston et al. (2016)
NeuLR-deductive 7001 - Xu et al. (2025)

Inductive
CLUTRR 1042 2452 Sinha et al. (2019)
bAbI-16 1000 900 Weston et al. (2016)

NeuLR-inductive 7001 - Xu et al. (2025)

Abductive

α-NLI 3059 169k Valentino et al. (2022)
AbductiveRules 2536 8848 Young et al. (2022)

BBH (causal_judgement) 250 - Suzgun et al. (2022)
bbeh (Causal Understanding) 200 - Kazemi et al. (2025)

NeuLR-abductive 6001 - Xu et al. (2025)

Mixed-Form
Logical LogiQA 1572 - Liu et al. (2021)

Temporal BBH (date_understanding) 250 - Suzgun et al. (2022)
bbeh (Time Arithmetic) 200 - Kazemi et al. (2025)

BBH (temporal_sequences) 250 - Suzgun et al. (2022)
bbeh (Temporal Sequences) 200 - Kazemi et al. (2025)

NLU BBH (disambiguation_qa) 250 - Suzgun et al. (2022)
bbeh (Disambiguation QA) 200 - Kazemi et al. (2025)

BBH (hyperbaton) 250 - Suzgun et al. (2022)
bbeh (Hyperbaton) 200 - Kazemi et al. (2025)
BBH (ruin_names) 250 - Suzgun et al. (2022)

bbeh (New Yorker Cartoon Caption) 200 - Kazemi et al. (2025)
BBH (salient_translation_error_detection) 250 - Suzgun et al. (2022)

bbeh (Linguini) 200 - Kazemi et al. (2025)
BBH (snarks) 250 - Suzgun et al. (2022)

bbeh (SARC Triples) 200 - Kazemi et al. (2025)
Symbolic BBH (dyck_languages) 250 - Suzgun et al. (2022)

bbeh (Dyck Language) 200 - Kazemi et al. (2025)
BBH (word_sorting) 250 - Suzgun et al. (2022)
bbeh (Word Sorting) 200 - Kazemi et al. (2025)

Space BBH (geometric_shapes) 250 - Suzgun et al. (2022)
bbeh (Geometric Shapes) 200 - Kazemi et al. (2025)

BBH (navigate) 250 - Suzgun et al. (2022)
bbeh (Spatial Reasoning) 200 - Kazemi et al. (2025)

Table BBH (penguins_in_a_table) 250 - Suzgun et al. (2022)
bbeh (Buggy Tables) 200 - Kazemi et al. (2025)

Knowledge BBH (moive_recommendation) 250 - Suzgun et al. (2022)
bbeh (Movie Recommendation) 200 - Kazemi et al. (2025)

BBH (sports_understanding) 250 - Suzgun et al. (2022)
bbeh (SportQA) 200 - Kazemi et al. (2025)

MATH GSM8K 1319 *8790 Cobbe et al. (2021)
MATH 5000 *7500 Hendrycks et al. (2021)

BBH (multistep_arithmetaic_two) 250 - Suzgun et al. (2022)
bbeh (Multi-step Arithmetic) 200 - Kazemi et al. (2025)

BBH (object_counting) 250 - Suzgun et al. (2022)
bbeh (Object Counting) 200 - Kazemi et al. (2025)

BBH (reasoning_about_colored_objects) 250 - Suzgun et al. (2022)
bbeh (Object Properties) 250 - Suzgun et al. (2022)

Table 2: Complex Logical Reasoning data categorization, data statistics, and sources.

16890

variable assignments, arithmetic operations, control
logic, and ends with a print(A) statement.

The Python trajectory is formalized as:

LLMPython(Q) = (2)

⟨stmt1, stmt2, . . . , stmtn, (3)

print(A)⟩ Python 3.12−−−−−−→ A (4)

This trajectory is interpreted and executed se-
quentially using a Python 3.12 interpreter.

Z3 Trajectory
Inspired by Logic-LM (Pan et al., 2023), for Z3,
the reasoning trajectory is constructed using the Z3
theorem prover. A typical trajectory includes sym-
bolic variable declarations such as x = Int(’x’),
followed by logical assertions like s.add(x > 1,
x < 5), and ends with solver calls s.check() and
s.model() to extract a result.

We represent the Z3 trajectory as:

LLMZ3(Q) = (5)

⟨Declare, Assert1, . . . , Assertk, (6)

CheckSat, print(A)⟩ Z3 Solver−−−−−→ A (7)

Z3 supports a wide range of built-in logical the-
ories, such as integer arithmetic, arrays, and bit-
vectors.

CSP Trajectory
Constraint Satisfaction Problems (CSPs)
are defined by a triple (X,D,C), where
X = {x1, . . . , xn} denotes variables,
D = {D1, . . . , Dn} their domains, and
C = {C1, . . . , Cm} the set of constraints.
Each constraint Cj = ⟨tj , Rj⟩ is defined over a
subset of variables and a relation on their domains.

The CSP trajectory is modeled as:

LLMCSP(Q) = (8)

⟨ AddVar1, . . . , AddVarn, AddConst1, . . . ,
AddConstm, GetSolution,

print(A)⟩ python-constraint−−−−−−−−−→ A (9)

The execution uses the python-constraint
solver. Variables are added through
addVariable(), constraints through
addConstraint(), and solutions are obtained via
getSolution() or getSolutions(). The solver
applies standard algorithms such as backtracking
and constraint propagation.

While Prover9-FOL supports classical first-order
logic, we choose Z3 for its broader practical appli-
cability. Z3 not only supports FOL reasoning but
also natively handles richer theories such as inte-
gers, arrays, and linear arithmetic. This allows it
to express a wider range of constraints found in
real-world reasoning tasks.

C Implementation Setups

C.1 Evaluations Details

In the inference phase, we use the vLLM (Kwon
et al., 2023) framework for deployment. The infer-
ence configuration adopts greedy decoding strategy
and sets the maximum generation length to 16K to-
kens. For the evaluation of model output, we adopt
Qwen-2.5-72B-Instruct as the model evaluator to
score.

C.2 Training Details

In terms of training implementation, we use
Megatron-LM as the training framework with the
following configurations: a cosine learning rate
schedule is adopted with an initial learning rate of
1e-5, a warmup ratio of 0.03, and the learning rate
decays to 0; the maximum sequence length is set to
8192, with a global batch size of 128, and the num-
ber of training epochs is set to 3. All experiments
are completed with Supervised Fine-tuning (SFT)
on a computing cluster consisting of 32 NVIDIA
A100 GPUs.

D Complete results for different models

As shown in Table 3, we evaluated a total of 31
models across the three parts of this paper. Due
to space constraints, we present the results of sev-
eral representative models here: QwQ-32B (Ta-
ble 6), GPT-4o (Table 7), Qwen2.5-7B (Table 8),
and Qwen2.5-7B-Base w. Formal (Table 9). The
complete results are provided in the supplementary
files in Excel format.

E Supplementary Experiments for
PART III

E.1 Data-Volume Alignment

In the main paper, QWEN2.5-7B-BASE W. FOR-
MAL is obtained by continuing SFT on the
same generic SFT corpus used by QWEN2.5-7B-
BASELINE* and adding an extra pool of 28,060
formal-language instances. This raises a natural
concern that the performance gain could partially

16891

Section Number Model

PART-I

4 Thinking-Model
+

6 Instruct-Model
=10

QwQ-32B
DeepSeek-R1-Distill-Llama-70B
DeepSeek-R1-Distill-Qwen-32B
DeepSeek-R1-Distill-Qwen-7B

GPT-4o
Qwen2.5-72B
Qwen2.5-32B
Llama-3.3-70B
Qwen2.5-7B
Llama-3.1-8B

PART-II

3 (Deductive, Inductive, Abductive)
+

4 (Text, PoT, Z3, CSP)
=7

Qwen2.5-7B-Base.w. Deductive (+5653)
Qwen2.5-7B-Base.w. Inductive (+4947)
Qwen2.5-7B-Base.w. Abductive (+6557)

Qwen2.5-7B-Base.w. Text (+7384)
Qwen2.5-7B-Base.w. PoT (+7448)
Qwen2.5-7B-Base.w. Z3 (+6882)

Qwen2.5-7B-Base.w. CSP (+6346)

3 (Deductive, Inductive, Abductive)
×

4 (Text, PoT, Z3, CSP)
=12

Qwen2.5-7B-Base.w. Deductive_Text (1376)
Qwen2.5-7B-Base.w. Deductive_PoT (+1393)
Qwen2.5-7B-Base.w. Deductive_Z3 (+1374)

Qwen2.5-7B-Base.w. Deductive_CSP (+1510)
Qwen2.5-7B-Base.w. Inductive_Text (+1263)
Qwen2.5-7B-Base.w. Inductive_PoT (+1476)
Qwen2.5-7B-Base.w. Inductive_Z3 (+1166)

Qwen2.5-7B-Base.w. Inductive_CSP (+1042)
Qwen2.5-7B-Base.w. Abductive_Text (+1820)
Qwen2.5-7B-Base.w. Abductive_PoT (+1775)
Qwen2.5-7B-Base.w. Abductive_Z3 (+1667)

Qwen2.5-7B-Base.w. Abductive_CSP (+1295)

PART-III
1 Baseline-Model+

1 Formal Data Enhanced Model =2

Qwen2.5-7B-Baseline* (15k)
Qwen2.5-7B-Base.w. Formal (+28060)

ALL 31 -

Table 3: Comprehensive Overview of Model Evaluation Experiments in the Entire Paper (Models in Bold Are
Presented with Full Results Later). Parentheses after the model in PART-II indicate the corresponding amount of
data. All data are based on the 15k generic data of Qwen2.5-7B-Baseline*, plus (+) the corresponding amount of
our synthetic data.

16892

come from the larger total number of training ex-
amples. To isolate the effect of the format itself,
we conducted a control where we downsample the
training data of W. FORMAL to match the total
size of the baseline (155,950 instances) via random
sub-sampling.

Table 4 shows that (i) W. FORMAL still outper-
forms the baseline after size matching, and (ii) the
absolute margins shrink slightly compared with the
full-data setting, confirming that the improvements
are primarily attributable to data format rather than
data volume.

E.2 Results on a Different Base Architecture
(Coder)

To further assess the robustness of formal-language
supervision across base architectures, we re-
peat PART III on a coder-oriented backbone
(QWEN2.5-CODER-7B). We report the instruct
variant, our re-trained baseline*, and the format-
augmented model (BASE.W. FORMAL). Table 5
shows consistent gains from formal trajectories
across PoT/Z3/CSP, reflected both in accuracy and
execution success rate, and leading to higher over-
all averages.

F Case Study

F.1 Case for PART I
We give cases where Text (Fig 6), PoT(Fig 7),
Z3(Fig 8) and CSP(Fig 9) specialize in each case
to show their strengths.

F.2 From Logic-LM Few-Shot Eval to
Zero-Shot

Logic-LM uses few-shots setting and rule extrac-
tion to build “task-specific executable code” for “a
particular formal language” and “a particular task”.
We use zero-shot directly for evaluation. As shown
in the case study in Figure 10, both approaches
behave similarly and can evaluate the model’s for-
mal language reasoning ability. Meanwhile, the
zero-shot setting has better generalization, and this
paper considers a subset of 66 datasets based on it.

G Prompts

For text, we use questions directly as input to the
rubric. For formal languages, we use zero-shot
reviews. Prompts are as follows: PoT in Figure 11;
Z3 in Figure 12; CSP in Figure 13. The Prompt
for evaluating models is in Figure 14.

16893

Case Study for Text (bbeh_nycc)

The following is a description of a funny cartoon for
the New Yorker Caption Contest

 Description: Two trees are standing next to each other.
One tree has a face and is looking at the other tree,
which also has a face and is wearing a tie.

Which of the following captions is the funniest?
(A) 2 birds are doing it in my branches. Hence, the tie
on the doorknob.
(B) Next she's talking about my getting a trim and
throwing out the squirrels.
(C) It’s part of my fall look.
(D) It helps me feel more professional when I’m
working from home.
(E) She dresses me up, but we never go anywhere!
(F) Sir, you can’t come in here without a tie.
(G) I just wanted to dress up one more time before I go
bald again this fall
(H) Well it's just a seasonal position.
(I) I got the job after the other guy got the axe.
(J) Funny story, but it did start initially with a yellow
ribbon

Case Study for Text (bbeh_linguini)

The plural of Catalan nouns is usually formed by adding the ending -
s. But if the noun ends in one of the letters s, x or ç, more complex rules apply.
Here are the singular and the plural forms of some Catalan nouns
(in simplified spelling) and their English translations. Some forms are missing.

Singular | Plural | Translation\nel apèndix | els apèndixs | appendix
el bastaix | (1) | carrier\nel troleibús | (2) | trolleybus
el cactus | els cactus | cactus\nla càries | les càries | caries\n(3) | les clos | meadow
el contumaç | els contumaços | rebel\nla faç | les façs | face
el flux | els fluxos | stream\nel gimnàs | els gimnasos | gym
la hèlix | les hèlixs | screw\nel índex | els índexs | index
el iris | (4) | rainbow\nel llaç | (5) | loop\nel ònix | (6) | onyx
el pàncrees | els pàncrees | pancreas\nel pedaç | els pedaços | patch
la pelvis | (7) | pelvis
el permís | els permisos | permission\nel pis | (8) | flat, lodgings
(9) | els sequaços | (male) follower
(10) | les sequaçs | (female) follower\nel sufix | els sufixos | suffix
(11) | els tastaolletes | frivolous person\nel teix | els teixos | yew
la trencadís | les trencadís | piece of crockery
el vas | els vasos | vase\nla xeix | (12) | (the letter) x

Fill in the masked element indicated with (5), assuming the (1), (2), ...
 elements are masked out elements.

Figure 6: Case for Text. 3.2. These issues are closely related to semantic understanding. They are better suited for
textual representation and are difficult to address using formalized languages. Return to section 3.2.

Case Study for PoT (BBH_dyck_language)

Complete the rest of the sequence, making sure that the parentheses are closed properly.
Input: < (((< >)) ({ { } [{ }] [] < () > }))

GPT-4o Text Answer:
To correctly close a Dyck-
n word, we need to ensure that all types of brackets
are properly matched and closed in the correct order.
 The given sequence is:

```
< ( ( ( < > ) ) ( { { } [ { } ] [ ] < ( ) > } ) )
```

Let's break it down step by step:

1. `<` is opened and closed with `>`.
2. `(` is opened three times and needs to be closed three times.
3. `{` is opened twice and needs to be closed twice.
4. `[` is opened twice and needs to be closed twice.
5. `<` is opened and closed with `>`.
6. `(` is opened and closed with `)`.

The sequence is already correctly closed.
Therefore, no additional characters are needed. The sequence is:

```
< ( ( ( < > ) ) ( { { } [ { } ] [ ] < ( ) > } ) )
```

This sequence is a valid Dyck-
n word as all brackets are properly matched and closed.

GPT-4o PoT Answer:
def complete_dyck_word(sequence):
 # Stack to keep track of opening brackets
 stack = []
 # Dictionary to match opening and closing brackets
 matching_bracket = {'(': ')', '{': '}', '[': ']', '<': '>'}

 # Iterate over the sequence
 for char in sequence:
 if char in matching_bracket:
 # If it's an opening bracket, push to stack
 stack.append(char)
 elif char in matching_bracket.values():
 # If it's a closing bracket, pop from stack
 if stack and matching_bracket[stack[-1]] == char:
 stack.pop()
 else:
 # If there's a mismatch, return an error
 return "Error: Mismatched brackets"

 # Complete the sequence by closing all remaining open brackets
 completed_sequence = sequence
 while stack:
 completed_sequence += matching_bracket[stack.pop()]

 return completed_sequence

Input sequence
input_sequence = "<((<>)({{}[{}][]<()>}))"

result = complete_dyck_word(input_sequence)

print(result)Output: <((<>)({{}[{}][]<()>}))>✅

❌

Figure 7: Case for PoT. Symbolic reasoning tasks are inherently well-suited to programming languages, and such
problems may in fact originate from coding algorithm questions. Return to section 3.2

16894

Case Study for Z3 (BBH_formal_fallcies)

"It is not always easy to see which chemicals are contained in our consumer products.
The following argument pertains to this question:
First, vitamin A is an ingredient of LIQUID EYELINER.
Second, every ingredient of BC Eye Cream 15 ml is not an ingredient of Mango Lip Butter or not an ingredient of LIQUID EYELINER.
Therefore, it is not the case that Vitamin A is an ingredient of BC Eye Cream 15 ml.\"\n

Is the argument, given the explicitly stated premises, deductively valid or invalid?
Options:
- valid
- invalid

GPT-4o Text Answer:
To determine whether the argument is deductively valid,
we need to analyze the logical structure of the premises
and the conclusion.
The argument is structured as follows:

1. Premise 1: Vitamin A is an ingredient
of LIQUID EYELINER.
2. Premise 2: Every ingredient of BC Eye Cream 15 ml
is not an ingredient of Mango Lip Butter or not an ingredient
 of LIQUID EYELINER.
3. Conclusion: Therefore, it is not the case that Vitamin
A is an ingredient of BC Eye Cream 15 ml.

To assess the validity, we need to see
if the conclusion necessarily follows from the premises.

Premise 2 can be restated in logical terms: For any ingredient \
(x \), if \(x \) is an ingredient of BC Eye Cream 15 ml, then \
(x \) is not an ingredient of Mango Lip Butter or \
(x \) is not an ingredient of LIQUID EYELINER.

Given Premise 1, Vitamin A is an ingredient
of LIQUID EYELINER.
For the conclusion to be true, Vitamin A must not
be an ingredient of BC Eye Cream 15 ml.

According to Premise 2, if Vitamin A were
an ingredient of BC Eye Cream 15 ml,
then it would have to be either not an ingredient
of Mango Lip Butter or not an ingredient
of LIQUID EYELINER.
Since we know from Premise 1 that Vitamin A is
an ingredient of LIQUID EYELINER,
the only way for Premise 2 to hold true is
if Vitamin A is not an ingredient of BC Eye Cream 15 ml.

Thus, the conclusion logically follows from the premises,
making the argument deductively valid.

- valid

GPT-4o Z3 Answer:
from z3 import *

Define the variables
VitaminA = Bool('VitaminA')
BC_Eye_Cream = Bool('BC_Eye_Cream')
Mango_Lip_Butter = Bool('Mango_Lip_Butter')
Liquid_Eyeliner = Bool('Liquid_Eyeliner')

Premises
1. Vitamin A is an ingredient of LIQUID EYELINER
premise1 = VitaminA == Liquid_Eyeliner

2. Every ingredient of BC Eye Cream 15 ml
#is not an ingredient of Mango Lip Butter or not
#an ingredient of LIQUID EYELINER
premise2 = Implies(BC_Eye_Cream,
\nOr(Not(Mango_Lip_Butter), Not(Liquid_Eyeliner)))

Conclusion
It is not the case that Vitamin A is an ingredient of BC Eye Cream 15 ml
conclusion = Not(VitaminA == BC_Eye_Cream)

Check if the premises imply the conclusion
s = Solver()
s.add(premise1, premise2, Not(conclusion))

if s.check() == sat:
 print("invalid")
else:
 print("valid")

```The final answer is: 

```

❌ invalid ✅

Figure 8: Case for Z3. Z3 (which, in this context, incorporates the first-order logic reasoning capabilities of Prover9)
excels at solving formal first-order logic problems. Return to section 3.2

16895

Case Study for CSP (AR-LSAT)

Context:
On each of exactly seven consecutive days (day 1 though day 7), a pet shop features exactly one of three breeds of kitten—
Himalayan, Manx, Siamese—and exactly one of three breeds of puppy—
Greyhound, Newfoundland, Rottweiler. The following conditions must apply: Greyhounds are featured on day 1.
No breed is featured on any two consecutive days. Any breed featured on day 1 is not featured on day 7.
Himalayans are featured on exactly three days, but not on day 1. Rottweilers are not featured on day 7, nor on any day that features Himalayans.

Question:
If Himalayans are not featured on day 2, which one of the following could be true?
Options:
A: Manx are featured on day 3. \nB: Siamese are featured on day 4. \nC: Rottweilers are featured on day 5.
D: Himalayans are featured on day 6. \nE: Greyhounds are featured on day 7.

GPT-4o Text Answer:
To solve this problem, we need to analyze the constraints
and determine which option could be true if Himalayans
are not featured on day 2.

Given constraints:
1. Greyhounds are featured on day 1.
2. No breed is featured on any two consecutive days.
3. Any breed featured on day 1 is not featured on day 7.
4. Himalayans are featured on exactly three days,
but not on day 1.
5. Rottweilers are not featured on day 7, nor on any day
that features Himalayans.

Let's break down the possibilities:
Since Greyhounds are featured on day 1, they cannot
be featured on day 7.
Himalayans are featured on exactly three days, but not
on day 1 or day 2 (as per the question).
Rottweilers cannot be featured on any day that f
eatures Himalayans, and they cannot be featured on day 7.

Now, let's consider each option:
...
B: Siamese are featured on day 4.
This is possible. If Himalayans are on days 3, 5, and 6,
Siamese can be on day 4.
C: Rottweilers are featured on day 5.
This is not possible because if Himalayans are on day 5,
Rottweilers cannot be on the same day.
D: Himalayans are featured on day 6.
- This is possible. Himalayans can be on days 3, 5, and 6.
E: Greyhounds are featured on day 7.
- This is not possible because Greyhounds
cannot be on day 7 as they are on day 1.

Therefore, the options that could be true are A, B, and D.
However, since the question asks for one option,
and considering the constraints,
option D: "Himalayans are featured on day 6"
is a straightforward possibility given the conditions.

GPT-4o CSP Answer:
from constraint import *

Initialize the problem
problem = Problem()
Define the variables for each day (1 to 7) for kittens and puppies
days = range(1, 8)
kitten_breeds = ['Himalayan', 'Manx', 'Siamese']
puppy_breeds = ['Greyhound', 'Newfoundland', 'Rottweiler']

Add variables for kittens and puppies for each day
for day in days:
 problem.addVariable(f'kitten_day_{day}', kitten_breeds)
 problem.addVariable(f'puppy_day_{day}', puppy_breeds)

Add constraints based on the problem statement
Greyhounds are featured on day 1
problem.addConstraint(lambda p: p == 'Greyhound', ('puppy_day_1',))

No breed is featured on any two consecutive days
for day in range(1, 7):
 problem.addConstraint(lambda k1, k2: k1 != k2,
\n(f'kitten_day_{day}', f'kitten_day_{day+1}'))
 problem.addConstraint(lambda p1, p2: p1 != p2,
\n(f'puppy_day_{day}', f'puppy_day_{day+1}'))

Any breed featured on day 1 is not featured on day 7
problem.addConstraint(lambda k1, k7: k1 != k7, \n('kitten_day_1', 'kitten_day_7'))
problem.addConstraint(lambda p1, p7: p1 != p7, ('puppy_day_1', 'puppy_day_7'))

Himalayans are featured on exactly three days, but not on day 1
problem.addConstraint(lambda k: k != 'Himalayan', ('kitten_day_1',))

Custom constraint to ensure Himalayans are featured on exactly three days
def himalayan_count(*args):
 return args.count('Himalayan') == 3

problem.addConstraint(himalayan_count,
 ('kitten_day_2', 'kitten_day_3',\n
'kitten_day_4', 'kitten_day_5', 'kitten_day_6', 'kitten_day_7'))

Rottweilers are not featured on day 7, nor on any day that features Himalayans
problem.addConstraint(lambda p: p != 'Rottweiler', ('puppy_day_7',))
for day in days:
 problem.addConstraint(lambda k, p: not (k == 'Himalayan' and p == 'Rottweiler'),
 (f'kitten_day_{day}', f'puppy_day_{day}'))

Additional condition: Himalayans are not featured on day 2
problem.addConstraint(lambda k: k != 'Himalayan', ('kitten_day_2',))

Solve the problem and print the results
solutions = problem.getSolutions()

Check which option could be true
for solution in solutions:
 if solution['kitten_day_3'] == 'Manx':
 print("A: Manx are featured on day 3.")
 if solution['kitten_day_4'] == 'Siamese':
 print("B: Siamese are featured on day 4.")
 if solution['puppy_day_5'] == 'Rottweiler':
 print("C: Rottweilers are featured on day 5.")
 if solution['kitten_day_6'] == 'Himalayan':
 print("D: Himalayans are featured on day 6.")
 if solution['puppy_day_7'] == 'Greyhound':
 print("E: Greyhounds are featured on day 7.")

❌

Output: B: Siamese are featured on day 4.✅

Figure 9: Case for CSP. The problems in ARLSAT involve numerous conditional constraints, which closely resemble
the modeling approach used in Constraint Satisfaction Problems (CSPs). Return to section 3.2

16896

Case Study for Few-Shot Formal-Eval in Logic-LM--->Our Zero-Shot Evaluation (AR-LSAT)
Context:
On each of exactly seven consecutive days (day 1 though day 7), a pet shop features exactly one of three breeds of kitten—
Himalayan, Manx, Siamese—and exactly one of three breeds of puppy—
Greyhound, Newfoundland, Rottweiler. The following conditions must apply: Greyhounds are featured on day 1.
No breed is featured on any two consecutive days. Any breed featured on day 1 is not featured on day 7.
Himalayans are featured on exactly three days, but not on day 1. Rottweilers are not featured on day 7, nor on any day that features Himalayans.

Question:
If Himalayans are not featured on day 2, which one of the following could be true?
Options:
A: Manx are featured on day 3. \nB: Siamese are featured on day 4. \nC: Rottweilers are featured on day 5.
D: Himalayans are featured on day 6. \nE: Greyhounds are featured on day 7.

GPT-4o CSP Answer:
from constraint import *

Initialize the problem
problem = Problem()
Define the variables for each day (1 to 7) for kittens and puppies
days = range(1, 8)
kitten_breeds = ['Himalayan', 'Manx', 'Siamese']
puppy_breeds = ['Greyhound', 'Newfoundland', 'Rottweiler']

Add variables for kittens and puppies for each day
for day in days:
 problem.addVariable(f'kitten_day_{day}', kitten_breeds)
 problem.addVariable(f'puppy_day_{day}', puppy_breeds)

Add constraints based on the problem statement
Greyhounds are featured on day 1
problem.addConstraint(lambda p: p == 'Greyhound', ('puppy_day_1',))

No breed is featured on any two consecutive days
for day in range(1, 7):
 problem.addConstraint(lambda k1, k2: k1 != k2,
\n(f'kitten_day_{day}', f'kitten_day_{day+1}'))
 problem.addConstraint(lambda p1, p2: p1 != p2,
\n(f'puppy_day_{day}', f'puppy_day_{day+1}'))

Any breed featured on day 1 is not featured on day 7
problem.addConstraint(lambda k1, k7: k1 != k7, \n('kitten_day_1', 'kitten_day_7'))
problem.addConstraint(lambda p1, p7: p1 != p7, ('puppy_day_1', 'puppy_day_7'))

Himalayans are featured on exactly three days, but not on day 1
problem.addConstraint(lambda k: k != 'Himalayan', ('kitten_day_1',))

Custom constraint to ensure Himalayans are featured on exactly three days
def himalayan_count(*args):
 return args.count('Himalayan') == 3

problem.addConstraint(himalayan_count,
 ('kitten_day_2', 'kitten_day_3',\n
'kitten_day_4', 'kitten_day_5', 'kitten_day_6', 'kitten_day_7'))

Rottweilers are not featured on day 7, nor on any day that features Himalayans
problem.addConstraint(lambda p: p != 'Rottweiler', ('puppy_day_7',))
for day in days:
 problem.addConstraint(lambda k, p: not (k == 'Himalayan' and p == 'Rottweiler'),
 (f'kitten_day_{day}', f'puppy_day_{day}'))

Additional condition: Himalayans are not featured on day 2
problem.addConstraint(lambda k: k != 'Himalayan', ('kitten_day_2',))

Solve the problem and print the results
solutions = problem.getSolutions()

Check which option could be true
for solution in solutions:
 if solution['kitten_day_3'] == 'Manx':
 print("A: Manx are featured on day 3.")
 if solution['kitten_day_4'] == 'Siamese':
 print("B: Siamese are featured on day 4.")
 if solution['puppy_day_5'] == 'Rottweiler':
 print("C: Rottweilers are featured on day 5.")
 if solution['kitten_day_6'] == 'Himalayan':
 print("D: Himalayans are featured on day 6.")
 if solution['puppy_day_7'] == 'Greyhound':
 print("E: Greyhounds are featured on day 7.")

A case from the original Logic-LM paper.

Logic-LM uses few-shots and rule extraction to build
executable code for a “specific formal language” and
a “specific task”.
We use zero-shot directly for evaluation.

As can be seen from the cases, both approaches behave
similarly and both can effectively evaluate the formal
language reasoning capability of the model.
Meanwhile, zero-shot has better generalization, and
this paper evaluates a subset of 66 data based on it.

Figure 10: Case Study for Few-Shot Formal-Eval in Logic-LM—>Our Zero-Shot Evaluation (AR-LSAT). Logic-LM
uses few-shots and rule extraction to build executable code for a “specific formal language” and a “specific task”.
We use zero-shot directly for evaluation. As can be seen from the cases, both approaches behave similarly and both
can effectively evaluate the formal language reasoning capability of the model. Meanwhile, zero-shot has better
generalization, and this paper evaluates a subset of 66 data based on it.

16897

Model Text PoT Z3 CSP AVG

ACC ACC Exec_Rate ACC Exec_Rate ACC Exec_Rate ACC Exec_Rate

Qwen2.5-7B-Instruct 52.29 37.00 78.56 33.00 70.01 25.00 52.06 37.00 66.88
Qwen2.5-7B-Baseline* 49.75 40.00 75.39 27.10 68.22 20.00 52.24 34.00 65.29
Qwen2.5-7B-Base.w. Formal 52.67 44.00 83.48 34.81 76.53 37.00 68.09 42.00 76.03
Qwen2.5-7B-Base.w. Formaldownsampled 51.18 45.00 82.48 32.63 72.20 35.00 65.31 41.00 73.33

Table 4: Data-volume alignment (155,950 samples). The W. FORMAL advantage persists under equal training
volume.

Model (Coder-7B) Text PoT Z3 CSP AVG

ACC ACC Exec_Rate ACC Exec_Rate ACC Exec_Rate ACC Exec_Rate

Qwen2.5-Coder-7B-Instruct 48.84 39.00 81.40 24.99 64.30 18.00 44.86 33.00 63.52
Qwen2.5-Coder-7B-Baseline* 47.07 41.00 79.91 28.90 71.48 20.00 50.06 34.00 67.15
Qwen2.5-Coder-7B-Base.w. Formal 51.15 43.00 83.50 35.86 77.05 32.00 63.41 41.00 74.65

Table 5: Supplementary PART III on coder-oriented base. Formal-language supervision consistently improves
performance.

Prompt for PoT

{question}

Let's write a Python program to solve the
problem. Please give the python code in the
following format:

```python
``` 
and print the final result.

Figure 11: Prompt for PoT

Prompt for Z3

{question}

Let's write code in Python that utilizes z3-
solver to solve the problem.
Requires code to start with:
``from z3 import *''.

Please give the python code in the following
format:

```python
``` 
and print the final result.",

Figure 12: Prompt for Z3

Prompt for CSP

{question}

Let's write code in Python that utilizes
python-constraint to solve the question.
The task is to parse the problem as a
constraint satisfaction problem , defining the
domain , variables , and contraints.
Requires code to start with:
'from constraint import *
problem = Problem()'.

Please give the python code in the following
format:
```python\n``` and print the final result.

Figure 13: Prompt for CSP

16898



Dataset
Text PoT Z3 CSP AVG

ACC ACC Exec_Rate ACC Exec_Rate ACC Exec_Rate ACC Exec_Rate

Average 75.0 68.6 85.1 61.9 79.4 65.1 82.2 67.6 82.2

FOLIO 94.0 94.0 100.0 91.0 99.3 94.0 100.0 93.3 99.8
ProntoQA 99.6 97.8 100.0 99.4 100.0 98.8 100.0 98.9 100.0

logicbenchBQA 82.9 85.6 100.0 86.4 100.0 85.3 100.0 85.1 100.0
BoardgameQA 78.5 79.3 99.9 75.1 100.0 69.6 100.0 75.6 100.0

ARLSAT 92.2 91.3 100.0 83.0 97.0 89.1 100.0 88.9 99.0
BBH_boolean_expressions 96.4 98.8 100.0 94.8 100.0 99.2 100.0 97.3 100.0
bbeh_boolean_expressions 57.0 41.5 53.5 30.0 36.0 42.5 58.5 42.8 49.3

BBH_formal_fallacies 100.0 99.2 100.0 99.6 99.6 98.8 100.0 99.4 99.9
bbeh_zebra_puzzles 44.5 15.5 35.5 2.5 5.5 8.9 11.4 17.9 17.5

BBH_logical_deduction_five_objects 100.0 100.0 100.0 99.6 100.0 98.0 100.0 99.4 100.0
BBH_logical_deduction_seven_objects 99.2 99.6 100.0 100.0 100.0 100.0 100.0 99.7 100.0
BBH_logical_deduction_three_objects 100.0 100.0 100.0 99.2 99.6 99.2 100.0 99.6 99.9

bbeh_boardgame_qa 54.5 55.0 99.0 35.0 73.0 49.5 87.5 48.5 86.5
BBH_tracking_shuffled_objects_five_objects 100.0 100.0 100.0 98.8 99.6 98.0 100.0 99.2 99.9

BBH_tracking_shuffled_objects_seven_objects 100.0 100.0 100.0 96.8 100.0 99.2 100.0 99.0 100.0
BBH_tracking_shuffled_objects_three_objects 100.0 100.0 100.0 100.0 100.0 99.2 100.0 99.8 100.0

bbeh_shuffled_objects 41.5 0.5 2.0 3.5 10.0 3.0 9.5 12.1 7.2
BBH_web_of_lies 92.8 98.8 100.0 98.0 99.6 99.2 100.0 97.2 99.9
bbeh_web_of_lies 58.0 37.5 43.5 12.0 17.0 21.5 24.5 32.3 28.3

bAbI15 99.3 92.8 100.0 84.1 98.1 92.6 99.9 92.2 99.3
NeuLRdeductive 99.9 97.3 100.0 80.9 98.2 95.8 100.0 93.5 99.4

clutrr 78.8 73.3 100.0 60.1 94.2 71.0 98.7 70.8 97.6
bAbI16 85.5 91.8 100.0 92.1 100.0 89.7 100.0 89.8 100.0

NeuLRinductive 76.3 73.3 99.9 90.1 99.6 80.7 99.8 80.1 99.8
anli 86.8 86.9 100.0 81.3 99.9 85.9 99.9 85.2 99.9

AbductionRules 68.8 71.5 100.0 45.5 98.8 62.8 94.0 62.2 97.6
BBH_causal_judgement 64.2 64.7 100.0 59.4 100.0 64.2 100.0 63.1 100.0

bbeh_causal_understanding 62.0 53.5 99.5 46.5 90.5 49.0 94.5 52.8 94.8
NeuLRabductive 26.0 26.9 99.9 9.9 95.7 15.1 94.1 19.5 96.6

logicqa 86.5 82.9 100.0 77.9 99.6 80.5 99.9 82.0 99.8
BBH_date_understanding 96.8 94.8 100.0 88.0 98.8 89.6 100.0 92.3 99.6

bbeh_time_arithmetic 86.5 79.5 87.5 42.5 50.5 61.5 72.5 67.5 70.2
BBH_temporal_sequences 100.0 99.6 100.0 91.6 99.2 97.2 99.2 97.1 99.5
bbeh_temporal_sequence 52.5 0.0 0.5 0.0 0.0 1.0 1.5 13.4 0.7
BBH_disambiguation_qa 48.0 54.0 100.0 38.8 100.0 46.4 100.0 46.8 100.0
bbeh_disambiguation_qa 58.3 50.8 97.5 40.8 82.5 51.7 86.7 50.4 88.9

BBH_hyperbaton 100.0 100.0 100.0 99.6 100.0 96.4 100.0 99.0 100.0
bbeh_hyperbaton 38.0 26.5 56.5 19.0 35.0 18.0 52.0 25.4 47.8
BBH_ruin_names 80.0 84.4 100.0 78.4 96.4 82.8 100.0 81.4 98.8

bbeh_nycc 15.0 8.5 72.0 11.5 82.5 10.5 75.0 11.4 76.5
BBH_salient_translation_error_detection 76.8 74.8 100.0 76.0 99.6 75.6 99.6 75.8 99.7

bbeh_linguini 46.0 22.0 79.5 24.5 65.5 17.5 51.0 27.5 65.3
BBH_snarks 93.8 91.6 98.9 90.5 100.0 92.1 100.0 92.0 99.6

bbeh_sarc_triples 32.0 39.0 100.0 25.5 71.5 19.0 83.0 28.9 84.8
BBH_dyck_languages 91.6 73.6 83.2 72.4 92.0 84.0 98.8 80.4 91.3
bbeh_dyck_languages 49.0 30.0 79.5 22.0 69.0 28.0 67.5 32.3 72.0

BBH_word_sorting 98.8 100.0 100.0 20.4 21.2 79.2 88.0 74.6 69.7
bbeh_word_sorting 77.0 77.5 92.5 63.5 76.0 40.0 62.0 64.5 76.8

BBH_geometric_shapes 80.0 80.8 100.0 82.0 99.2 78.4 100.0 80.3 99.7
bbeh_geometric_shapes 40.5 9.0 19.5 12.5 25.5 14.5 32.0 19.1 25.7

BBH_navigate 97.6 98.4 100.0 93.6 99.6 95.2 99.6 96.2 99.7
bbeh_spatial_reasoning 43.0 40.5 53.0 32.5 48.0 30.5 47.5 36.6 49.5

BBH_penguins_in_a_table 99.3 99.3 100.0 95.2 95.2 99.3 100.0 98.3 98.4
bbeh_buggy_tables 25.0 16.5 28.5 8.0 16.0 3.5 15.0 13.3 19.8

BBH_movie_recommendation 70.0 70.0 100.0 63.6 97.6 65.2 100.0 67.2 99.2
bbeh_movie_recommendation 59.5 40.0 79.0 28.5 56.5 22.5 47.5 37.6 61.0
BBH_sports_understanding 81.6 80.4 100.0 77.2 99.6 80.0 100.0 79.8 99.9

bbeh_sportqa 53.0 15.0 23.0 17.0 34.0 17.5 34.5 25.6 30.5
gsm8k 96.4 96.7 99.9 93.2 98.8 94.5 99.5 95.2 99.4
MATH 96.5 93.1 99.4 70.7 88.3 87.1 99.0 86.9 95.6

BBH_multistep_arithmetic_two 100.0 100.0 100.0 100.0 100.0 99.6 99.6 99.9 99.9
bbeh_multistep_arithmetic 53.0 38.0 40.5 20.5 29.5 22.7 32.8 33.6 34.3

BBH_object_counting 100.0 100.0 100.0 98.8 99.6 98.4 99.6 99.3 99.7
bbeh_object_counting 58.0 31.0 85.5 40.5 71.0 22.5 61.0 38.0 72.5

BBH_reasoning_about_colored_objects 100.0 98.8 100.0 95.6 99.2 94.4 99.2 97.2 99.5
bbeh_object_properties 31.5 5.5 7.0 17.5 29.5 39.0 51.5 23.4 29.3

Table 6: QwQ-32B Full Result.

16899



Dataset
Text PoT Z3 CSP AVG

ACC ACC Exec_Rate ACC Exec_Rate ACC Exec_Rate ACC Exec_Rate

Average 66.7 63.5 91.5 54.5 87.4 52.8 84.0 59.4 87.6

FOLIO 92.5 88.1 100.0 73.9 88.8 67.2 98.5 80.4 95.8
ProntoQA 100.0 95.8 100.0 80.2 99.8 93.2 99.4 92.3 99.7

logicbenchBQA 72.3 70.5 99.8 76.3 100.0 63.3 99.8 70.6 99.9
BoardgameQA 59.7 66.0 100.0 63.5 97.9 60.2 98.1 62.4 98.7

ARLSAT 40.9 50.4 90.4 59.1 83.0 67.8 85.2 54.6 86.2
BBH_boolean_expressions 99.6 100.0 100.0 89.2 100.0 76.4 96.4 91.3 98.8
bbeh_boolean_expressions 59.5 51.5 55.0 1.5 2.0 56.5 60.0 42.3 39.0

BBH_formal_fallacies 88.4 76.4 100.0 90.4 100.0 62.0 99.6 79.3 99.9
bbeh_zebra_puzzles 38.0 6.5 19.0 8.5 49.0 3.0 4.0 14.0 24.0

BBH_logical_deduction_five_objects 93.2 94.0 99.6 87.6 99.6 96.4 100.0 92.8 99.7
BBH_logical_deduction_seven_objects 88.8 88.0 100.0 84.8 100.0 96.8 100.0 89.6 100.0
BBH_logical_deduction_three_objects 99.2 95.2 100.0 92.8 99.2 99.6 100.0 96.7 99.7

bbeh_boardgame_qa 37.0 35.5 90.5 37.5 90.0 24.5 65.0 33.6 81.8
BBH_tracking_shuffled_objects_five_objects 98.4 100.0 100.0 82.0 100.0 36.8 81.2 79.3 93.7

BBH_tracking_shuffled_objects_seven_objects 100.0 99.6 100.0 82.4 100.0 41.6 75.2 80.9 91.7
BBH_tracking_shuffled_objects_three_objects 100.0 100.0 100.0 55.6 100.0 53.6 74.4 77.3 91.5

bbeh_shuffled_objects 29.5 59.0 83.5 36.0 77.5 23.5 49.0 37.0 70.0
BBH_web_of_lies 96.4 91.2 100.0 96.4 100.0 96.4 100.0 95.1 100.0
bbeh_web_of_lies 33.5 11.0 51.5 11.0 20.5 11.5 14.5 16.8 28.8

bAbI15 99.6 98.7 100.0 76.2 97.9 95.9 99.8 92.6 99.2
NeuLRdeductive 99.8 97.0 100.0 55.2 93.9 87.2 97.8 84.8 97.2

clutrr 52.7 44.2 100.0 44.6 95.7 35.6 84.4 44.3 93.4
bAbI16 51.8 93.4 100.0 64.4 98.8 44.1 100.0 63.4 99.6

NeuLRinductive 60.3 41.2 100.0 21.1 99.3 7.9 97.2 32.6 98.8
anli 88.8 87.6 100.0 73.4 99.9 81.6 100.0 82.9 100.0

AbductionRules 88.5 86.6 100.0 84.3 100.0 41.2 63.8 75.2 87.9
BBH_causal_judgement 69.0 73.8 100.0 61.0 100.0 64.7 100.0 67.1 100.0

bbeh_causal_understanding 52.0 52.5 100.0 50.0 99.0 44.5 96.5 49.8 98.5
NeuLRabductive 29.0 15.0 98.4 19.8 92.6 5.2 88.4 17.3 93.1

logicqa 76.0 73.2 99.6 61.7 97.8 72.7 98.6 70.9 98.7
BBH_date_understanding 94.0 82.0 100.0 70.4 98.8 84.4 100.0 82.7 99.6

bbeh_time_arithmetic 63.5 43.5 74.0 36.0 66.0 35.0 73.5 44.5 71.2
BBH_temporal_sequences 99.6 89.2 99.6 64.4 98.0 98.0 99.6 87.8 99.1
bbeh_temporal_sequence 5.5 2.0 87.5 1.0 52.0 2.5 81.5 2.8 73.7
BBH_disambiguation_qa 53.6 50.0 100.0 38.0 100.0 36.8 100.0 44.6 100.0
bbeh_disambiguation_qa 63.3 54.2 98.3 44.2 96.7 70.8 93.3 58.1 96.1

BBH_hyperbaton 92.8 88.4 100.0 94.8 99.6 92.0 99.2 92.0 99.6
bbeh_hyperbaton 30.5 13.0 87.0 28.0 90.0 17.0 42.5 22.1 73.2
BBH_ruin_names 86.4 86.0 100.0 80.8 98.4 84.4 99.2 84.4 99.2

bbeh_nycc 21.5 11.5 77.5 3.5 39.0 7.0 79.0 10.9 65.2
BBH_salient_translation_error_detection 73.2 80.0 100.0 84.4 100.0 76.8 100.0 78.6 100.0

bbeh_linguini 35.0 25.5 97.0 23.0 92.0 20.0 73.0 25.9 87.3
BBH_snarks 89.9 86.5 100.0 75.3 100.0 74.7 100.0 81.6 100.0

bbeh_sarc_triples 30.0 37.5 97.5 17.5 45.5 35.5 85.0 30.1 76.0
BBH_dyck_languages 90.4 94.4 100.0 75.2 98.8 35.2 76.0 73.8 91.6
bbeh_dyck_languages 17.5 6.5 86.5 7.5 96.0 10.0 88.0 10.4 90.2

BBH_word_sorting 97.6 99.2 100.0 41.2 94.0 71.6 84.0 77.4 92.7
bbeh_word_sorting 46.5 53.0 89.5 43.5 83.5 30.0 61.5 43.3 78.2

BBH_geometric_shapes 71.2 77.2 99.6 83.2 100.0 77.6 100.0 77.3 99.9
bbeh_geometric_shapes 38.5 16.0 65.0 35.0 80.5 33.5 69.5 30.8 71.7

BBH_navigate 99.2 98.0 100.0 78.4 100.0 74.4 98.0 87.5 99.3
bbeh_spatial_reasoning 11.5 19.0 81.0 13.5 80.5 14.5 72.0 14.6 77.8

BBH_penguins_in_a_table 98.6 100.0 100.0 96.6 99.3 82.2 97.3 94.4 98.9
bbeh_buggy_tables 21.0 19.0 49.5 16.5 54.0 19.5 40.0 19.0 47.8

BBH_movie_recommendation 77.2 63.6 100.0 67.2 99.2 76.8 99.6 71.2 99.6
bbeh_movie_recommendation 60.5 26.0 99.5 34.0 85.0 27.5 85.0 37.0 89.8
BBH_sports_understanding 86.8 87.6 100.0 54.4 100.0 60.8 100.0 72.4 100.0

bbeh_sportqa 29.5 58.5 100.0 23.5 89.5 26.0 85.5 34.4 91.7
gsm8k 96.7 94.6 98.8 89.3 98.3 87.6 99.3 92.1 98.8
MATH 81.3 69.3 88.7 57.9 91.2 57.7 83.5 66.6 87.8

BBH_multistep_arithmetic_two 98.8 100.0 100.0 81.2 99.2 63.6 100.0 85.9 99.7
bbeh_multistep_arithmetic 27.0 1.5 23.0 1.0 13.5 1.0 16.0 7.6 17.5

BBH_object_counting 95.6 99.6 100.0 98.8 100.0 88.0 100.0 95.5 100.0
bbeh_object_counting 16.0 14.0 98.5 11.0 97.5 13.0 97.0 13.5 97.7

BBH_reasoning_about_colored_objects 97.6 97.6 100.0 94.4 98.8 89.2 99.6 94.7 99.5
bbeh_object_properties 10.5 5.5 50.5 9.5 52.5 1.0 38.5 6.6 47.2

Table 7: GPT-4o Full Result.

16900



Dataset
Text PoT Z3 CSP AVG

ACC ACC Exec_Rate ACC Exec_Rate ACC Exec_Rate ACC Exec_Rate

Average 52.3 36.9 78.6 33.0 70.0 24.8 52.1 36.7 66.9

FOLIO 88.8 85.1 100.0 59.7 87.3 59.0 84.3 73.1 90.5
ProntoQA 99.4 83.4 98.6 57.2 87.6 38.4 54.8 69.6 80.3

logicbenchBQA 71.6 52.1 100.0 39.4 98.5 37.8 79.8 50.2 92.8
BoardgameQA 54.3 52.8 99.1 38.2 89.5 29.2 73.8 43.6 87.5

ARLSAT 25.2 36.5 93.9 22.2 51.3 8.7 22.6 23.2 55.9
BBH_boolean_expressions 97.6 99.6 100.0 45.2 71.6 50.8 95.2 73.3 88.9
bbeh_boolean_expressions 70.5 1.5 1.5 0.5 0.5 10.0 10.5 20.6 4.2

BBH_formal_fallacies 69.6 50.8 100.0 52.8 91.6 50.0 88.4 55.8 93.3
bbeh_zebra_puzzles 34.5 0.5 3.5 5.0 20.5 0.0 0.0 10.0 8.0

BBH_logical_deduction_five_objects 66.8 56.0 100.0 46.8 69.2 64.8 95.2 58.6 88.1
BBH_logical_deduction_seven_objects 66.0 55.2 100.0 47.2 67.6 70.8 94.8 59.8 87.5
BBH_logical_deduction_three_objects 89.6 74.4 100.0 48.8 73.2 72.4 92.4 71.3 88.5

bbeh_boardgame_qa 33.0 18.5 46.5 7.0 20.5 0.5 5.0 14.8 24.0
BBH_tracking_shuffled_objects_five_objects 84.8 3.6 100.0 34.8 82.0 16.8 63.6 35.0 81.9

BBH_tracking_shuffled_objects_seven_objects 85.2 5.2 100.0 43.2 82.0 15.6 68.4 37.3 83.5
BBH_tracking_shuffled_objects_three_objects 89.2 0.4 100.0 35.6 76.4 22.0 58.4 36.8 78.3

bbeh_shuffled_objects 59.5 4.0 26.5 2.0 12.5 1.5 4.0 16.8 14.3
BBH_web_of_lies 81.2 59.2 100.0 78.4 94.4 66.8 74.8 71.4 89.7
bbeh_web_of_lies 9.0 4.0 13.0 1.0 5.0 0.5 3.5 3.6 7.2

bAbI15 23.7 54.3 99.9 29.1 90.7 16.0 64.2 30.8 84.9
NeuLRdeductive 91.9 60.4 96.5 20.4 77.0 7.7 41.8 45.1 71.8

clutrr 17.7 26.4 99.9 14.2 82.8 12.1 60.0 17.6 80.9
bAbI16 23.7 55.8 99.9 31.3 91.6 14.8 63.5 31.4 85.0

NeuLRinductive 7.4 8.8 96.5 16.1 91.1 14.4 53.3 11.7 80.3
anli 77.7 78.8 99.8 59.8 95.1 55.6 83.7 68.0 92.9

AbductionRules 88.3 50.6 81.4 34.8 41.8 23.9 37.0 49.4 53.4
BBH_causal_judgement 51.9 54.0 100.0 37.4 92.5 40.6 85.6 46.0 92.7

bbeh_causal_understanding 45.0 39.0 98.0 26.5 82.0 26.5 69.0 34.3 83.0
NeuLRabductive 20.8 12.9 83.5 22.0 52.5 8.2 21.6 16.0 52.5

logicqa 68.2 64.8 98.2 54.9 95.9 40.8 82.5 57.2 92.2
BBH_date_understanding 84.8 32.0 100.0 33.6 73.6 38.4 84.8 47.2 86.1

bbeh_time_arithmetic 30.5 3.0 32.0 9.0 52.5 10.5 46.0 13.3 43.5
BBH_temporal_sequences 83.6 67.2 100.0 48.4 85.6 54.0 72.8 63.3 86.1
bbeh_temporal_sequence 5.0 0.0 34.5 0.0 41.5 0.0 5.0 1.3 27.0
BBH_disambiguation_qa 41.2 59.2 100.0 37.2 93.6 37.2 88.0 43.7 93.9
bbeh_disambiguation_qa 45.8 29.2 90.0 35.8 81.7 15.8 44.2 31.7 71.9

BBH_hyperbaton 68.0 70.0 100.0 53.6 94.4 32.4 57.6 56.0 84.0
bbeh_hyperbaton 0.5 1.5 22.0 1.0 27.0 0.0 0.5 0.8 16.5
BBH_ruin_names 53.2 36.0 100.0 28.4 82.8 10.4 39.2 32.0 74.0

bbeh_nycc 10.5 8.5 94.0 7.0 59.0 4.5 41.5 7.6 64.8
BBH_salient_translation_error_detection 47.2 10.0 100.0 30.4 58.0 21.6 60.0 27.3 72.7

bbeh_linguini 18.0 16.0 81.5 6.0 73.5 4.5 52.0 11.1 69.0
BBH_snarks 77.5 31.5 100.0 49.4 97.2 41.0 84.8 49.9 94.0

bbeh_sarc_triples 16.0 12.5 91.5 12.0 74.5 5.5 22.5 11.5 62.8
BBH_dyck_languages 83.2 39.2 100.0 24.8 76.8 14.8 40.0 40.5 72.3
bbeh_dyck_languages 4.5 1.5 26.0 8.0 57.5 0.5 26.0 3.6 36.5

BBH_word_sorting 32.4 97.2 100.0 61.2 86.0 6.0 32.4 49.2 72.8
bbeh_word_sorting 21.0 10.0 58.5 23.0 76.0 10.5 27.5 16.1 54.0

BBH_geometric_shapes 62.0 80.4 100.0 48.4 86.0 55.2 89.2 61.5 91.7
bbeh_geometric_shapes 28.5 19.5 53.5 30.0 98.5 30.0 65.0 27.0 72.3

BBH_navigate 84.0 50.4 100.0 43.6 86.0 29.6 50.8 51.9 78.9
bbeh_spatial_reasoning 6.0 1.5 22.0 4.0 27.5 4.0 19.0 3.9 22.8

BBH_penguins_in_a_table 91.1 56.2 100.0 63.0 78.8 24.7 48.6 58.7 75.8
bbeh_buggy_tables 32.5 0.0 6.0 0.5 5.5 0.0 2.0 8.3 4.5

BBH_movie_recommendation 63.2 42.0 100.0 28.8 72.4 10.0 42.0 36.0 71.5
bbeh_movie_recommendation 33.0 23.5 83.5 26.5 84.0 3.5 16.0 21.6 61.2
BBH_sports_understanding 74.0 58.0 100.0 55.6 99.2 48.4 95.6 59.0 98.3

bbeh_sportqa 17.0 35.0 82.0 19.5 59.5 4.0 17.5 18.9 53.0
gsm8k 93.0 17.1 21.3 81.1 96.5 58.9 81.3 62.5 66.4
MATH 76.7 42.3 100.0 40.7 74.7 39.9 71.1 49.9 81.9

BBH_multistep_arithmetic_two 94.0 98.8 100.0 98.4 99.6 48.4 82.0 84.9 93.9
bbeh_multistep_arithmetic 6.5 0.0 0.0 0.5 7.0 0.0 3.0 1.8 3.3

BBH_object_counting 56.0 82.8 100.0 86.4 95.6 48.8 71.2 68.5 88.9
bbeh_object_counting 18.0 0.0 25.5 0.0 63.0 0.5 31.0 4.6 39.8

BBH_reasoning_about_colored_objects 79.6 54.8 100.0 68.4 84.4 46.0 71.6 62.2 85.3
bbeh_object_properties 21.0 0.5 25.0 2.0 37.0 0.0 22.5 5.9 28.2

Table 8: Qwen2.5-7B Full Result.

16901



Dataset
Text PoT Z3 CSP AVG

ACC ACC Exec_Rate ACC Exec_Rate ACC Exec_Rate ACC Exec_Rate

Average 52.7 43.9 83.5 34.8 76.5 37.0 68.1 42.1 76.0

FOLIO 83.6 78.4 99.3 71.6 100.0 61.2 97.8 73.7 99.0
ProntoQA 99.0 84.8 99.4 54.6 90.2 81.2 93.8 79.9 94.5

logicbenchBQA 80.1 70.4 100.0 72.3 99.1 64.2 99.6 71.8 99.6
BoardgameQA 68.8 50.0 94.9 50.9 97.8 46.5 92.3 54.1 95.0

ARLSAT 23.9 31.7 85.7 30.9 68.7 30.0 61.3 29.1 71.9
BBH_boolean_expressions 96.8 98.8 100.0 42.0 74.8 64.4 99.2 75.5 91.3
bbeh_boolean_expressions 70.0 0.0 53.0 3.0 4.0 22.5 33.0 23.9 30.0

BBH_formal_fallacies 68.0 58.4 100.0 61.2 100.0 54.8 98.0 60.6 99.3
bbeh_zebra_puzzles 39.0 12.5 46.5 13.5 39.5 8.0 22.0 18.3 36.0

BBH_logical_deduction_five_objects 61.6 57.6 100.0 62.8 94.0 77.6 96.8 64.9 96.9
BBH_logical_deduction_seven_objects 50.4 44.0 100.0 57.2 99.6 70.0 83.6 55.4 94.4
BBH_logical_deduction_three_objects 84.8 75.6 100.0 74.8 91.2 92.0 94.8 81.8 95.3

bbeh_boardgame_qa 31.5 0.0 84.5 12.5 37.0 18.0 46.0 15.5 55.8
BBH_tracking_shuffled_objects_five_objects 78.8 100.0 100.0 2.4 99.2 4.4 28.0 46.4 75.7

BBH_tracking_shuffled_objects_seven_objects 71.2 100.0 100.0 2.4 100.0 2.4 22.8 44.0 74.3
BBH_tracking_shuffled_objects_three_objects 80.8 99.6 100.0 8.0 100.0 5.2 16.8 48.4 72.3

bbeh_shuffled_objects 42.0 6.0 19.5 9.5 23.0 10.5 23.0 17.0 21.8
BBH_web_of_lies 85.6 63.2 100.0 77.2 100.0 58.0 64.0 71.0 88.0
bbeh_web_of_lies 12.5 13.0 51.5 1.0 9.5 2.5 7.0 7.3 22.7

bAbI15 99.1 96.1 97.3 89.6 99.1 89.2 98.5 93.5 98.3
NeuLRdeductive 92.1 85.7 99.0 37.1 84.9 49.8 86.7 66.2 90.2

clutrr 46.8 30.3 99.9 34.4 99.5 46.0 99.8 39.4 99.7
bAbI16 93.0 96.7 100.0 78.4 99.6 83.9 100.0 88.0 99.9

NeuLRinductive 8.2 8.6 100.0 18.0 98.6 14.1 93.8 12.2 97.5
anli 84.1 76.7 100.0 69.7 100.0 80.3 99.9 77.7 100.0

AbductionRules 91.0 85.7 99.8 47.7 95.0 48.3 81.1 68.2 92.0
BBH_causal_judgement 55.1 61.5 100.0 55.6 100.0 49.7 100.0 55.5 100.0

bbeh_causal_understanding 42.5 0.0 87.0 43.0 96.5 40.0 95.5 31.4 93.0
NeuLRabductive 12.0 15.4 93.8 17.3 84.3 1.0 27.4 11.4 68.5

logicqa 63.8 53.8 99.5 42.4 98.9 45.1 97.1 51.3 98.5
BBH_date_understanding 74.0 54.4 100.0 40.4 97.2 55.6 96.8 56.1 98.0

bbeh_time_arithmetic 32.0 10.5 59.5 7.5 43.5 10.5 45.5 15.1 49.5
BBH_temporal_sequences 30.0 42.8 98.8 33.6 98.4 36.0 76.0 35.6 91.1
bbeh_temporal_sequence 9.0 0.0 42.5 0.0 20.0 0.0 30.5 2.3 31.0
BBH_disambiguation_qa 35.6 46.0 100.0 41.2 99.2 64.0 99.2 46.7 99.5
bbeh_disambiguation_qa 42.5 0.0 43.3 34.2 90.0 61.7 100.0 34.6 77.8

BBH_hyperbaton 72.0 66.8 91.2 66.4 100.0 82.0 96.8 71.8 96.0
bbeh_hyperbaton 1.0 0.0 64.0 3.0 33.5 2.0 18.0 1.5 38.5
BBH_ruin_names 37.2 32.4 100.0 28.0 98.8 39.6 94.4 34.3 97.7

bbeh_nycc 8.0 0.0 62.5 1.5 95.5 5.0 72.5 3.6 76.8
BBH_salient_translation_error_detection 44.4 27.6 100.0 38.4 99.6 26.8 100.0 34.3 99.9

bbeh_linguini 18.0 0.0 53.5 2.5 79.0 10.5 63.0 7.8 65.2
BBH_snarks 73.6 50.6 100.0 51.1 98.9 41.6 100.0 54.2 99.6

bbeh_sarc_triples 16.5 12.0 96.5 16.5 43.0 34.0 100.0 19.8 79.8
BBH_dyck_languages 64.4 38.8 97.6 14.4 96.8 3.2 31.2 30.2 75.2
bbeh_dyck_languages 2.5 0.0 24.5 4.5 47.0 0.5 18.0 1.9 29.8

BBH_word_sorting 20.8 96.4 100.0 25.2 86.8 4.4 31.6 36.7 72.8
bbeh_word_sorting 20.5 12.5 73.5 6.5 84.5 1.5 15.0 10.3 57.7

BBH_geometric_shapes 53.6 13.6 100.0 29.2 99.2 60.8 99.2 39.3 99.5
bbeh_geometric_shapes 20.0 1.5 68.5 17.0 58.5 42.5 73.0 20.3 66.7

BBH_navigate 88.8 75.2 96.0 65.2 94.0 55.2 97.2 71.1 95.7
bbeh_spatial_reasoning 7.5 9.5 41.5 7.5 32.0 3.5 21.5 7.0 31.7

BBH_penguins_in_a_table 84.3 98.0 100.0 82.2 98.6 50.7 85.6 78.8 94.8
bbeh_buggy_tables 86.5 0.0 28.0 1.0 13.5 0.0 7.0 21.9 16.2

BBH_movie_recommendation 75.2 47.2 99.2 21.2 90.0 70.8 100.0 53.6 96.4
bbeh_movie_recommendation 49.0 0.0 52.5 11.0 71.0 9.0 74.5 17.3 66.0
BBH_sports_understanding 73.6 56.0 99.2 62.8 100.0 53.6 99.2 61.5 99.5

bbeh_sportqa 11.5 42.5 87.5 4.0 12.0 3.0 11.5 15.3 37.0
gsm8k 90.6 89.2 100.0 74.8 99.0 60.0 95.4 78.6 98.1
MATH 71.6 60.8 92.3 33.1 68.5 36.4 85.6 50.5 82.1

BBH_multistep_arithmetic_two 96.4 98.0 100.0 95.2 100.0 85.2 100.0 93.7 100.0
bbeh_multistep_arithmetic 10.5 0.0 60.5 0.0 2.0 0.0 7.0 2.6 23.2

BBH_object_counting 41.2 72.8 100.0 76.0 91.2 53.6 88.8 60.9 93.3
bbeh_object_counting 16.5 0.0 41.5 0.0 19.5 0.0 5.5 4.1 22.2

BBH_reasoning_about_colored_objects 71.6 87.2 100.0 60.4 96.0 59.2 90.8 69.6 95.6
bbeh_object_properties 9.5 1.5 25.0 1.0 10.0 0.0 4.0 3.0 13.0

Table 9: Qwen2.5-7B-Base.w.Formal Full result.

16902



Prompt for Model Evaluation

[Instruction]
Please act as an impartial judge and evaluate the
quality of the response provided by an AI assistant to
the user question displayed below. Your evaluation
should consider the correctness. You will be given a
reference answer and the assistant's answer. Begin
your evaluation by comparing the assistant's answer
with the reference answer, you must identify whether
the response is correct or wrong by strictly following
this format: "<correct or wrong>", for example: "
<correct>" or "<wrong>".

[Question]
{question}

[The Start of Reference Answer]
{answer}
[The End of Reference Answer]

[The Start of Assistant's Answer]
{completion}
[The End of Assistant's Answer]

Figure 14: Prompt for Model Eval

16903


