
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 16958–16982
November 4-9, 2025 ©2025 Association for Computational Linguistics

Calibrating LLMs for Text-to-SQL Parsing by Leveraging Sub-clause
Frequencies

Terrance Liu*

Carnegie Mellon University
Shuyi Wang
Bloomberg

Daniel Preoţiuc-Pietro
Bloomberg

Yash Chandarana†

Bloomberg
Chirag Gupta†

Bloomberg

Abstract
While large language models (LLMs) achieve
strong performance on text-to-SQL parsing,
they sometimes exhibit unexpected failures in
which they are confidently incorrect. Building
trustworthy text-to-SQL systems thus requires
eliciting reliable uncertainty measures from the
LLM. In this paper, we study the problem of
providing a calibrated confidence score that
conveys the likelihood of an output query be-
ing correct. Our work is the first to establish
a benchmark for post-hoc calibration of LLM-
based text-to-SQL parsing. In particular, we
show that Platt scaling, a canonical method for
calibration, provides substantial improvements
over directly using raw model output probabili-
ties as confidence scores. Furthermore, we pro-
pose a method for text-to-SQL calibration that
leverages the structured nature of SQL queries
to provide more granular signals of correctness,
named “sub-clause frequency" (SCF) scores.
Using multivariate Platt scaling (MPS), our
extension of the canonical Platt scaling tech-
nique, we combine individual SCF scores into
an overall accurate and calibrated score. Em-
pirical evaluation on two popular text-to-SQL
datasets shows that our approach of combining
MPS and SCF yields further improvements in
calibration and the related task of error detec-
tion over traditional Platt scaling.

1 Introduction

Text-to-SQL parsing is the problem of translating
natural language queries into Structured Query Lan-
guage (SQL) code. As the scale of structured data
continues to grow, languages such as SQL provide
a natural way to access the data of interest (Popescu
et al., 2003). Text-to-SQL parsing therefore aims to
provide a natural language interface for users who
need not become familiar with the SQL language
syntax and data schema (Giordani and Moschitti,
2012; Iyer et al., 2017; Zhong et al., 2017).

*Work done during an internship at Bloomberg
†equal contribution

Figure 1: An example question from the SPIDER dataset
and an output produced by T5 3B. Each box in the SQL
output corresponds to a separate sub-clause, identified
using a standard parser. The boundaries of the boxes in
green and red denote sub-clauses that are correct and

incorrect (respectively) with respect to a ground truth
query. In each box, we have shown a sub-clause fre-
quency (SCF) score computed by our method. The SCF
corresponds to the proportion of outputs that contain
each sub-clause among additional outputs sampled via
nucleus sampling and beam search (Figure 2 illustrates
this further). SCF scores contain a granular signal for
correctness. For example, here, the incorrect SELECT
clause (which contains t1.shipment_id instead of the
correct column, t1.invoice_number) has a low SCF
of 0.15. We use multivariate Platt scaling (MPS) to
combine SCF scores to produce an overall accurate, cal-
ibrated score (not shown in the figure but described in
Section 4.2).

While large language models (LLMs) have
shown improved performance on standard bench-
marks (Rai et al., 2023; Gao et al., 2023; Pourreza
and Rafiei, 2024), they can produce erroneous out-
puts (Huang et al., 2023) while exhibiting high
confidence (Borji, 2023; Zhou et al., 2024). Devel-
oping real-world systems requires more than just
achieving high accuracy on a task—for users to
have more control over how an output of the model

16958

is used, such systems must possess the ability to
provide additional transparency in the system’s be-
havior (Yao et al., 2019; Wang et al., 2023). Conse-
quently, applying uncertainty quantification to lan-
guage modeling has become imperative for many
NLP systems—including text-to-SQL—in order
to communicate the risks associated with treating
model outputs as correct (Dong et al., 2018).

In this paper, we study uncertainty quantification
in the form of calibration, aiming to derive uncer-
tainty (or “risk”) estimates using post-hoc methods,
which can be applied to any model output. These
estimates take on the form of probabilities, and the
goal is for the reported probabilities to match the
true probability of the model being correct.

Deep learning-based models often produce prob-
abilities that are not well-calibrated (Guo et al.,
2017). Therefore, we consider a canonical post-
hoc calibration approach, Platt scaling (Platt et al.,
1999), and demonstrate that it significantly im-
proves calibration of LLMs on text-to-SQL. More-
over, we then propose an extension of Platt scaling,
which we call multivariate Platt scaling (MPS),
to further improve performance by exploiting the
fact that SQL syntax is highly structured and can
be broken down into sub-clauses. Our intuition is
that the frequency of each of the generated sub-
clauses across multiple likely output samples from
the model (named “sub-clause frequency” or SCF)
is indicative of confidence (or lack thereof) and can
therefore be used in MPS. In Figure 1, we present
a graphical summary of our approach.

Our contributions are as follows:
• We benchmark post-hoc calibration of LLMs on

text-to-SQL parsing using a variety of metrics
for directly measuring calibration, as well as
the related task of error detection—we find that
LLMs are very miscalibrated out-of-the-box;

• We propose multivariate Platt scaling (MPS),
which uses sub-clause frequencies (SCF) from
multiple generated samples—our experiments
show that MPS consistently outperforms base-
line approaches;

• We perform analyses of calibration across mod-
els, query complexity, and shifts in probability
magnitude to identify patterns related to calibra-
tion performance.

2 Related Work

Uncertainty Quantification of NLP models.
Uncertainty quantification has been studied for a

few NLP tasks such as machine translation (Blatz
et al., 2004; Ueffing and Ney, 2005; Kumar and
Sarawagi, 2019; Wang et al., 2020) and question-
answering (Gondek et al., 2012; Jiang et al., 2021;
Si et al., 2022; Kadavath et al., 2022; Lin et al.,
2023). More recently, Lin et al. (2022) and Xiong
et al. (2023) explore whether a model can express
uncertainty through verbalized confidence.

We note that such works are tangentially re-
lated to ours in that they proposed base uncertainty
scores. In contrast, our work studies post-hoc cali-
bration, which takes base score (like the ones men-
tioned above) of some LLM output and further
calibrates it. As discussed later, given the lack of
prior work proposing base scores specifically for
text-to-SQL, we calibrate model probabilities di-
rectly. However, in Table 4 of the appendix, we
test other general base uncertainty scores for LLMs
(e.g., perplexity, P(True), verbalized confidence)
and find that post-hoc calibration performs roughly
the same across them.

Regarding similar works to ours that study post-
hoc uncertainty but for other NLP tasks, Detom-
maso et al. (2024) study a variation of calibration—
multicalibration (Hébert-Johnson et al., 2018)—for
question-answering. Framing long-form text gener-
ation as a conformal prediction (Shafer and Vovk,
2008) problem, Mohri and Hashimoto (2024) pro-
vide high probability guarantees for factuality. Liu
and Wu (2024) extend both works, studying mul-
ticalibration and multivalid conformal prediction
(Jung et al., 2022) for long-form text generation.

Calibration in Semantic Parsing. A couple
works have studied calibration for semantic parsing
tasks. Dong et al. (2018) train a gradient-boosted
tree model to predict confidence scores by using
features derived from knowledge of the training
data or by applying perturbations to the model it-
self. Stengel-Eskin and Van Durme (2023) bench-
mark how well-calibrated token probabilities from
the underlying language model are for text-to-SQL
parsing, finding that these probabilities are very
miscalibrated. In contrast, our work establishes
how calibrated LLMs are on text-to-SQL after cor-
recting model probabilities using post-hoc calibra-
tion. Moreover, we propose an improved post-hoc
approach that utilizes additional generations from
the model.

Additional Related work for Text-to-SQL Pars-
ing. We propose a method for calibration that
partially relies on extracting additional information

16959

from sub-clauses in SQL outputs. Similarly, past
works have also used the structure of SQL syntax
for various purposes in text-to-SQL parsing. For
example, Chen et al. (2023b) propose a SQL query
correction method that considers edits at the clause
level, and Tai et al. (2023) adapt chain-of-thought
prompting for text-to-SQL, constructing reason-
ing paths based on the logical execution order of
SQL clauses. For error detection, which we use
as an auxiliary evaluation metric that supplements
our calibration study, Chen et al. (2023a) build
an error detection model by training on realistic
parsing errors that they collect and annotate from
model outputs. Finally, Wang et al. (2023) propose
methods for handling ambiguous and unanswerable
questions for text-to-SQL models.

3 Calibration

Calibration refers to an alignment between reported
and observed probabilities. To define calibration
formally, we have to first define the event of inter-
est for which probabilities are being reported. In
the context of text-to-SQL parsing using LLMs,
we consider the problem of producing calibrated
probabilities for the correctness of the query that
has been produced by the LLM. Adapting standard
notation for statistical calibration to our problem,
we have that a sample looks like (X,Y) ∼ D,
where X ∈ X is the SQL query output by the
LLM and Y ∈ {0, 1} indicates the correctness of
the SQL query corresponding to the natural lan-
guage prompt (which typically include both the
question and database schema) fed into the LLM :

Y = 1{X is accurate w.r.t the prompt}.
Our goal is to produce an uncertainty score func-

tion s : X → [0, 1] that measures the confidence
of X being correct. While a basic requirement for
s is that higher values should denote higher levels
of confidence, we can also ask if s is calibrated,
meaning that it satisfies,

PD(Y = 1 | s(X) = p) = p,∀x ∈ X . (1)
In other words, when the reported probability or
confidence score is p, the probability of the SQL
query being correct is also p.

However, because p can take on an infinite
number of values between 0 and 1, ensuring
that Equation 1 holds for all p is intractable
(Gupta et al., 2020). A typical simplification is
to consider calibration when the output of s
is discretized into coarser probability bins (e.g.,
[0.0.2), . . . , [0.8.1.0]) and ensuring calibration on

those bins. This is the definition we will aim for.

Definition 1. (Calibration) Suppose we have k
probability bins Si that partition [0, 1]. Then a scor-
ing function s is calibrated w.r.t D if

∆i(s) = 0, ∀i ∈ 1 . . . k, (2)
where ∆i(s) is the bias of s for the k-th bin Si:

∆i(s) = EX∼D[Y − s(X) | s(X) ∈ Si]. (3)

For further background on binning approaches to
calibration, see Gupta (2022).

We highlight that in this framework, we do not
need to conduct additional modeling on the natu-
ral language prompt. The prompt goes through the
LLM to give us the output SQL query X that is
validated (Y) according to the prompt. Then after-
wards, it is no longer used for calibration.

4 Methods

Our methodological contributions are (1) the
method of multivariate Platt scaling and (2) its
adaptation to semantic parsing using extracted
sub-clause frequencies. We highlight that our ap-
proach to uncertainty quantification for text-to-
SQL, which is motivated by high-level statistical
insights, are novel and likely have implications for
other tasks in NLP and machine learning in general.

4.1 Platt Scaling
Platt scaling (Platt et al., 1999) is a technique that
calibrates the probabilistic outputs of a model us-
ing a logistic regression mapping. Given a score
s ∈ [0, 1] produced using some model, canonical
Platt scaling corresponds to learning two weights,
w0, w1 ∈ R that map s to a new value in [0, 1]:

sPS 7→ sigmoid(w0 + w1 · logit(s)). (4)
Here sigmoid(x) = 1

1+e−x and logit(x) =

log
(

x
1−x

)
. These are inverses, so setting

(w0, w1) = (0, 1) recovers the identity mapping.1

These weights are typically learned on held out
data such as the validation data. We discuss this
further in the following subsection.

Platt scaling is simple, interpretable, and often
works well in practice. Many variants of Platt scal-
ing have recently been developed: for calibrating
the top-label probabilities of deep nets (Guo et al.,
2017; Gupta and Ramdas, 2022), calibrating full-
vector probabilities in multiclass settings (Kull
et al., 2019), and combining calibration with online

1Other values of (w0, w1) correspond to natural monotonic
mappings that can be used for calibration; see Niculescu-Mizil
and Caruana (2005, Figure 1 and others) for examples.

16960

learning style adversarial (worst-case) guarantees
(Gupta and Ramdas, 2023).

In addition, we note that the related method of
temperature scaling (Guo et al., 2017; Kull et al.,
2019) was introduced primarily as a way of con-
ducting post-hoc calibration for multi-class clas-
sification. We highlight, however, that tempera-
ture scaling and Platt scaling are equivalent for
binary classification (i.e., our setting of determin-
ing whether a SQL output is correct or not). Specif-
ically, temperature scaling can be written down as
a special case of Platt scaling such that weights
w0 = 0 and w1 = 1

τ , where τ is the temperature
learned in temperature scaling.

4.2 Multivariate Platt Scaling

Our work provides a multivariate extension of Platt
scaling (MPS) that is natural, yet understudied (to
the best of our knowledge). Suppose a number of
signals s1, s2, . . . , sm ∈ R are available for pre-
dicting a single probability in [0, 1]. Given these
signals, we learn (in the spirit of Equation 4) m+1
weights w0, w1, . . . , wm ∈ R that correspond to
the mapping,
sMPS 7→ sigmoid(w0+w1s1+ . . .+wmsm), (5)

so that sMPS ∈ [0, 1] is the final, combined signal.
Although Equation 5 resembles typical ML mod-

els, we emphasize a key difference in that while sig-
nals si are learned on the training data, the weights
wi are learned on a held out validation set—also
called calibration data. Typically, the validation
set is only used for model selection and not mod-
eling itself so that we have some out-of-sample
metric that checks for overfitting. In our case, since
the secondary Platt scaling model is small (m+ 1
parameters), we can reuse validation data without
significant overfitting, as long as a reasonable num-
ber of validation points are available.2 Multivariate
Platt scaling is one of many “post-hoc" calibration
approaches that aim to improve calibration of a
model without sacrificing accuracy.

Upon reviewing the literature, we found only a
couple of instances where an approach similar to
MPS is used. In work on object detection in images,
Kuppers et al. (2020) utilize predicted bounding
box locations as additional signals for calibration.
In addition, Gopalan et al. (2022) adapt Platt scal-
ing to multi-calibration, where the goal is to be cali-
brated while conditioning on predefined subgroups.

2say ≈ 10m, which is based on the sample complexity of
logistic regression (see Hsu and Mazumdar (2024)).

In their formulation, si are instead binary features
that denote whether some data point belongs to a
group. In contrast, (1) high-level statistical insight
discussed in the preceding paragraph and (2) its
application to uncertainty quantification for text-
to-SQL are novel, and likely have implications for
other problems, especially in the context of seman-
tic parsing where additional signals of correctness
may be present in the model.

4.3 Extracting Sub-Clause Frequencies
We now describe how the signals si are computed
for the task of text-to-SQL parsing. Generally, one
can obtain many signals from LLMs aside from the
probability of the full sequence output. In our work,
we leverage the fact that the output is structured,
comprising multiple sub-clauses for which we can
compute output frequencies.

Our method draws inspiration from self-
consistency (Wang et al., 2022) for a model that
produces multiple outputs for the same prompt.
Specifically, each candidate output is assigned a
frequency score that counts the number of times
the candidate appears among all outputs. The one
with the highest frequency score (i.e., the most
consistently generated candidate) is selected as the
final output.

In our method, we too calculate frequency scores,
but instead of using the scores to choose the best
response, we use them as measurements of un-
certainty. Moreover, we exploit the fact that SQL
queries are structured in a particular way. For ex-
ample, all queries must contain SELECT and FROM
clauses, and there exist only a finite number of
additional clause types that a query may include
(e.g., WHERE, GROUP BY, etc.). In addition, while a
theoretically infinite number of SQL queries can
be composed together (via operators such as JOIN,
UNION, etc.), the number of sub-queries found in
most SQL queries (including those in prevalent
text-to-SQL benchmarks) is small. Thus, instead
of calculating the number of times the entire SQL
query output appears, as is typically done in self-
consistency-based methods, our method counts the
number of times each clause appears.

As a result, we produce signals si for every sub-
clause, to which we apply multivariate Platt scaling
as described in the previous subsection. In Fig-
ure 2, we provide a simplified example of what
this procedure looks like using nucleus sampling
(Holtzman et al., 2020) and beam search (Freitag
and Al-Onaizan, 2017). Appendix B describes our

16961

Figure 2: We show how to parse a query from the SPI-
DER dataset in order to derive sub-clause frequency
scores si. Specifically, we count the number of times
each sub-clause appears among outputs derived from
(1) nucleus sampling and (2) beam search. Note that for
illustrative purposes, we show a simplified example in
which we assume in our data universe that we do not
have multiple SELECT statements composed together
and the only possible sub-clauses that can appear are
SELECT, FROM, ON, WHERE, and GROUP BY. In this exam-
ple, we have in total, 10 signals si that can be provided
to our method, MPS.

procedure in full detail.

5 Experimental Setup

We note that for all experiments, we use the cal-
ibration set (defined in Section 5.1) to construct
our mappings sPS and sMPS. We then evaluate our
mappings on the test sets for each dataset, report-
ing our findings over a single run of the calibration
methods (without hyperparameter tuning).

5.1 Datasets
We evaluate our methods on two popular bench-
marks for (English) text-to-SQL parsing: SPIDER
(Yu et al., 2018) and BIRD (Li et al., 2024).

SPIDER consists of 10,181 questions and 5,693
unique complex SQL queries on 200 databases cov-
ering 138 domains. Serving as a complex, cross-
domain dataset, SPIDER helped define a new se-
mantic parsing benchmark in which databases at
test time are not seen during training. As a result,
models are tasked to generalize to new database
schemas, which are provided alongside natural lan-
guage questions during evaluation. The test set has
2,148 examples, and the development set (which
we use as our calibration set) has 1,034 examples.

BIRD consists of 12,751 unique question-SQL
pairs on 95 databases, covering 37 domains. Focus-
ing on the challenge of handling dirty and noisy

database values, the queries in BIRD are often more
complex than those in SPIDER. In addition, Li et al.
(2024) introduce the notion of external knowledge,
which contains information mapping natural lan-
guage questions to database values. Each question
is paired with some external knowledge to provide
additional assistance to LLMs parsing the question.
Because a test set has not yet been released pub-
licly, we use the development set (of size 1,534) as
our test set and randomly sample 1,000 examples
from the train set to use as our calibration set.

5.2 Models

We use T5-3B-PICARD (which we will refer to
as T5 3B going forward) and LLAMA 3.1 8B
INSTRUCT on the SPIDER dataset. The T5-3B-
PICARD model is a T5 model (available at this
link) fine-tuned on SPIDER using constrained de-
coding for text-to-SQL parsing, achieving strong
results on the task (Scholak et al., 2021). LLAMA

3.1 8B INSTRUCT (Dubey et al., 2024) is used
with zero-shot prompting because the model is also
able to obtain strong accuracy on this task. For the
BIRD dataset, we use both LLAMA 3.1 8B IN-
STRUCT and LLAMA 3.1 70B INSTRUCT (Dubey
et al., 2024) with zero-shot prompting as they also
have been shown to perform relatively well. We did
not use T5 variants for this dataset as their accura-
cies were low (23.34%) (Li et al., 2024). Prompts
for our experiments are presented in Appendix C.

We note that our experiments use open-weight
models because we have access to token proba-
bilities and are able to control the resampling of
outputs, which is not possible using closed-source
models like GPT-4o. In addition, open-weight mod-
els facilitate reproducibility of our findings.

In addition, as mentioned in Section 4.3, our cali-
bration approaches rely on generating multiple out-
puts for each question in our datasets. For each set
of generations, we take the output with the highest
model probability (sum over log token probabili-
ties given by the model) as our primary prediction.
The probability for the primary prediction is then
relearned (calibrated) using the techniques of this
paper. Table 5 in the Appendix shows the accuracy
of the primary prediction on two datasets.

5.3 Computing Sub-Clause Frequencies

To run MPS using parsed sub-clause frequencies
as signals, we sample outputs via nucleus sampling
and beam search. In our experiments, we set the

16962

https://huggingface.co/tscholak/cxmefzzi

number of samples for each method to k = 10,3

leading to a total of 20 samples. Beam search takes
the top k = 10 outputs by probability (after length
normalization) using a beam width of 2k. Then, we
compute sub-clause frequencies for each sample
using all samples from nucleus sampling and beam
search (as illustrated in Figure 2).

We note that we remove a small proportion of
outputs that have syntactic errors since the correct-
ness of such outputs can be determined quite easily
with automated SQL parsers.

5.4 Metrics for Calibration

We now present the evaluation metrics we use to
measure calibration. Specifically, we consider ex-
pected calibration error, adaptive calibration error,
and Brier score together in order to provide a more
holistic and robust evaluation of calibration.

First, given some set of probability bins Si, we
define ℓ1-calibration error as the following:

ℓ1-CE(s) =
k∑

i=1

PX∼D(s(X) ∈ Si) |∆i(s)| . (6)

(Recall the definition of ∆i from Definition 1.)
As Equation 6 suggests, calibration error is highly
dependent on the choice of probability bins Si. We
consider two variations:

1. expected calibration error (ECE) (Naeini
et al., 2015): bins Si are defined as k equal-
width bins: [0, 1k), [

1
k ,

2
k), . . . , [

k−1
k , 1].

2. adaptive calibration error (ACE) (Nixon
et al., 2019): bins Si are defined such that
the all sizes of all bins are the same (i.e.,
PX∼D(s(X) ∈ Si) =

1
k).

In addition to minimizing calibration error, it is
often desirable to output a wide range of scores s
that can help users better distinguish between high
and low confidence outputs. The spread of scores
is sometimes referred to as resolution (Bröcker,
2009) in the literature, where higher resolution cor-
responds to a larger spread. Calibration error, how-
ever, does not capture this spread. For example,
as an extreme case, an algorithm could output the
same probability s(x) = PD(Y = 1) for all exam-
ples in x ∈ D. Despite being perfectly calibrated
(i.e., calibration error of 0), this scoring function

3These numbers were set after initial experiments on the
development set. We note that we did not attempt to further
tune these hyperparameters, which can only lead to better
results for our proposed approach.

serves no purpose in communicating risk for indi-
vidual examples X .

Consequently, another metric that is often con-
sidered for evaluating calibration is Brier score,
which is the mean squared error of s(x)

BS(s) = EX∼D[(Y − s(X))2] (7)
Intuitively, a lower Brier score is desirable since
correct outputs (Y = 1) should be accompanied
by higher probability estimates (s(X) closer to 1)
and incorrect outputs (Y = 0) by lower probabil-
ity estimates (s(X) closer to 0). Moreover, unlike
calibration error, Brier score penalizes algorithms
with low resolution.4

6 Results

6.1 Calibration

Table 1 presents the results of our LLM-based text-
to-SQL parsers on both datasets using the two ap-
proaches to calibration: Platt scaling (PS) and multi-
variate Platt scaling (MPS) with sub-clause frequen-
cies (SCF). Here, MPS uses SCF scores derived
from both nucleus sampling and beam search. As
reference, we report results for uncalibrated proba-
bilities (Stengel-Eskin and Van Durme, 2023) that
are generated directly from the model.

We observe that the probabilities produced by the
LLMs are consistently and significantly miscali-
brated across all experiments. However, Platt scal-
ing (PS) improves calibration across both datasets
and models. In some cases, PS improves calibra-
tion metrics by very wide margins (e.g., LLAMA

3.1 8B INSTRUCT on SPIDER shows a reduction
of 0.17 in Brier score and 0.37 in ECE and ACE).

Our method (MPS) further improves performance
of calibration, cutting calibration error by over 50%
in some cases (e.g., T5 3B on SPIDER). We high-
light that MPS maintains this advantage across all
datasets and models, providing strong evidence for
the utility of using the sub-clause structure of SQL
syntax to derive additional signals si for producing
calibrated probabilities.

6.2 Evaluating Error Detection

We evaluate our methods for calibration on the re-
lated task of error detection to demonstrate their
additional utility. In particular, we assess how the
(calibrated) probabilities derived from MPS can be

4In fact, as shown in Bröcker (2009, Equation 13), Brier
score can be decomposed into calibration error and (negative)
resolution, thereby capturing both properties that are valuable
for uncertainty quantification.

16963

Dataset Model Method Brier (↓) ECE (↓) ACE (↓) AUC (↑)

SPIDER

T5 3B
Uncalibrated 0.1893 0.1632 0.1632 0.7200
PS 0.1656 0.0623 0.0628 0.7200
MPS (ours) 0.1566 0.0264 0.0253 0.7785

LLAMA 3.1 8B INSTRUCT

Uncalibrated 0.3576 0.4161 0.4147 0.7123
PS 0.1726 0.0437 0.0449 0.7123
MPS (ours) 0.1626 0.0244 0.0260 0.7475

BIRD

LLAMA 3.1 8B INSTRUCT

Uncalibrated 0.2378 0.1722 0.1688 0.6913
PS 0.2129 0.0556 0.0739 0.6913
MPS (ours) 0.1950 0.0418 0.0423 0.7353

LLAMA 3.1 70B INSTRUCT

Uncalibrated 0.2866 0.2343 0.2324 0.6650
PS 0.2316 0.0549 0.0631 0.6650
MPS (ours) 0.2141 0.0314 0.0323 0.7173

Table 1: We report Brier score, expected calibration error (ECE), and adaptive calibration Error (ACE) on the
SPIDER and BIRD datasets. In addition, we report AUC for the task of error detection. These metrics are calculated
after applying Platt scaling (PS, baseline) to token probabilities and Multiplicative Platt scaling (MPS, ours) to
token probabilities and parsed frequencies (derived from nucleus sampling and beam search). For reference, we also
report (Uncalibrated) how well calibrated the model token probabilities are prior to applying Platt scaling.

used to detect errors in the model outputs. Using
AUC as our evaluation metric, our results charac-
terize the trade-offs between true and false positive
rates when choosing different thresholds for de-
termining if a SQL output is erroneous (e.g., one
could predict that a SQL output is wrong whenever
MPS produces a probability ≤ 0.3). In Table 1, we
again show that MPS using SCF performs the best,
achieving higher AUC across all datasets and mod-
els. We note that because PS applies a monotonic
transformation to the uncalibrated model proba-
bilities, it—unlike MPS—can only affect calibra-
tion but not error detection (i.e., AUC remains un-
changed after applying PS).

7 Analysis

7.1 Calibration Plots

Figure 3 shows the calibration plots using ECE,
comparing probabilities calibrated by PS and MPS.
To convey the number of examples in each bin,
we scale the radius of each marker by the bin size.
Generally, we observe that calibration errors are
closer to 0 (i.e., points lie closer to y = x) for MPS
compared to PS, reflecting the lower ECE of MPS.

In addition, we examine qualitatively the spread
of the probabilities produced by PS and MPS. In
most cases, a more spread out or higher resolution
forecast is more desirable for uncertainty quantifi-
cation and is correlated with smaller Brier scores
(see Section 5.4). For the SPIDER dataset, we ob-

serve that probabilities produced by PS with T5
3B are heavily concentrated around 0.8. PS with
LLAMA 3.1 8B INSTRUCT only outputs probabil-
ities ≥ 0.5. Similarly, on the BIRD dataset, PS
with LLAMA 3.1 8B INSTRUCT mostly outputs
probabilities around a single value (0.3), while for
PS with LLAMA 3.1 70B INSTRUCT, most prob-
abilities produced by PS fall between 0.4 and 0.7.
In contrast, we observe that MPS consistently pro-
duces probabilities that are more spread out (while
still lying close to y = x).

In Figure 4, we plot adaptive calibration error,
where each point (or bin) represents roughly the
same number of samples. Qualitatively, these plots
are similar to those in Figure 3 and thus lead to
similar findings—our method, MPS, is better cal-
ibrated (scatter plot close to the x = y line) and
has higher resolution (varied values on the x-axis)
when compared to PS.

7.2 Comparing Calibration across Models

When examining (uncalibrated) probabilities gener-
ated directly by the LLM on SPIDER, we observe
that those produced by fine-tuned T5 3B are better
calibrated (i.e., Brier score, ECE, and ACE are al-
most 2x smaller) than those of the larger LLAMA

3.1 8B INSTRUCT model, despite the two models
achieving similar test accuracies (Table 5). How-
ever, after applying (multivariate) Platt scaling, the
differences become small, providing strong evi-

16964

Figure 3: Calibration curves (using fixed-width ECE-style bins) comparing Platt scaling (blue) applied to final token
probabilities, and (ours) multivariate Platt scaling (orange) applied to token probabilities and sub-clause frequencies.
The radius of the markers in the scatter plot are proportional to the number of points in the corresponding probability
bin. For instance, the blue marker near (0.8, 0.8) of the top-left plot corresponds to 67.4% of the data with predicted
probabilities in the range [0.8, 0.9). Across all models (T5, Llama) and datasets (SPIDER, BIRD), our method is
better calibrated (scatter plot close to the x = y line), and has higher resolution (varied values on the x-axis).

Figure 4: Calibration curves (using ACE) comparing (baseline) Platt scaling (PS, blue) applied to final token
probabilities, and (ours) multivariate Platt scaling (MPS, orange) applied to token probabilities and sub-clause
frequencies. Across all models (T5, Llama) and datasets (SPIDER, BIRD), our method is better calibrated (scatter
plot close to the x = y line), and has higher resolution (varied values on the x-axis).

dence that when evaluating calibration for LLMs,
post-hoc calibration (e.g., Platt scaling) should be
conducted before forming conclusions about how
well-calibrated LLMs are relative to each other.

On BIRD, Table 1 reports that the smaller
LLAMA 3.1 8B INSTRUCT MODEL is better cali-
brated w.r.t. Brier score than its larger 70B counter-
part, both before and after applying (multivariate)
Platt scaling. We stress, however, that Brier score
cannot be compared across models that achieve
such different test accuracies (Table 5) since Brier
score is very sensitive to this value. For example,
the base rates (i.e., the Brier score when simply out-
putting the proportion of correct outputs P (Y = 1)
for all data points) for LLAMA 3.1 8B INSTRUCT

and LLAMA 3.1 70B INSTRUCT are 0.2300 and
0.2489 respectively, and so one might expect that
the Brier score of the 8B variant to be lower, post-
calibration.

7.3 Ablation Study for Deriving SCF Scores

We run ablation studies to identify the impact of
using different methods for computing the outputs

used to calculate the SCF scores: nucleus sampling
only, beam search only, or both (which corresponds
to the results for MPS presented in Table 1). We
emphasize that regardless of this choice, MPS out-
performs PS in all cases.

The results, available in full in Table 6 in the Ap-
pendix, show that no single sampling method is
better than the other, with different methods being
best depending on the dataset and LLM used. We
find that using both provides the most well-rounded
performance across all experiments. However, we
stress that data and model specific optimal perfor-
mances could be obtained if one were to treat signal
si selection as a hyperparameter that can be tuned.

7.4 Sensitivity analysis for MPS

In Table 2, we show the performance of MPS with
the size of the calibration set. We see that the perfor-
mance of MPS declines as the size of the calibration
set decreases.

Next, we study the impact of the number of model
outputs k used to calculate SCF scores for MPS
in 3. As expected, the larger number of outputs

16965

used increases performance of calibration, with
a noticeable increase for more than 1 output and
with k = 5 as used in the experiments in this pa-
per being a good trade-off between latency and
performance and larger values bringing additional
improvements.

dataset factor Brier ECE ACE AUC

SPIDER

all 0.164 0.023 0.023 0.746
2−1 0.166 0.033 0.036 0.741
2−2 0.168 0.036 0.039 0.737
2−3 0.173 0.047 0.050 0.725
2−4 0.175 0.045 0.048 0.713
2−5 0.180 0.060 0.063 0.691
2−6 0.192 0.094 0.099 0.637

BIRD

all 0.194 0.035 0.032 0.737
2−1 0.197 0.035 0.036 0.727
2−2 0.200 0.042 0.043 0.717
2−3 0.206 0.056 0.055 0.701
2−4 0.212 0.065 0.066 0.686
2−5 0.227 0.106 0.106 0.668
2−6 0.243 0.141 0.141 0.627

Table 2: We evaluate MPS on outputs from LLAMA 3.1
8B INSTRUCT on SPIDER and BIRD when reducing
the size of the calibration set. We sample a factor of the
original calibration set to run MPS and evaluate on the
test set, taking an average over 10 random runs.

Dataset k Brier ECE ACE AUC

SPIDER

10 0.164 0.023 0.023 0.746
5 0.167 0.027 0.030 0.732
3 0.168 0.028 0.025 0.726
1 0.170 0.040 0.038 0.717

BIRD

10 0.194 0.035 0.032 0.737
5 0.194 0.041 0.035 0.732
3 0.195 0.046 0.041 0.728
1 0.203 0.029 0.041 0.695

Table 3: We evaluate MPS on outputs from LLAMA 3.1
8B INSTRUCT on SPIDER and BIRD when reducing
the number of additional model outputs k that are used
to calculate SCF scores.

7.5 Uncertainty scores used for post-hoc
calibration

We study additional methods for computing the
base uncertainty scored used for calibration and
consider specifically perplexity, P(True) (Kadavath
et al., 2022), and verbalized confidence (Tian et al.,
2023). We ran Platt scaling (PS) on additional base
uncertainty scores using outputs from LLAMA 3.1

8B INSTRUCT on the SPIDER dataset and present
the results in Table 4.

While applying PS to verbalized confidence per-
forms poorly, PS is able to achieve low calibration
error on the other base scores. However Brier score
and AUC vary greatly. For example, PS on perplex-
ity performs poorly w.r.t to Brier score and AUC
but the best w.r.t ECE and ACE. Finally, we stress
that MPS using SCF scores (Table 1) still performs
better than all these configurations of PS, highlight-
ing the effectiveness of our proposed method.

Base score Brier ECE ACE AUC
Model Probabilities 0.173 0.044 0.045 0.712
Perplexity 0.185 0.022 0.028 0.613
P(True) 0.177 0.027 0.037 0.678
Verbalized Confidence 0.19 0.034 0.052 0.564

Table 4: We run Platt Scaling on various base scoring
functions on outputs from LLAMA 3.1 8B INSTRUCT
on the SPIDER dataset. In general, we find that aside
from when using verbalized confidence, Platt Scaling
performs similarly across base scores. We stress, how-
ever, that using combining MPS with model probabili-
ties outperforms PS in across all metrics.

8 Conclusion

Uncertainty quantification remains an open, yet
crucial problem for LLMs. In this paper, we study
calibration for text-to-SQL parsing, with a focus
on measuring the effectiveness of post-hoc cali-
bration methods (in contrast to previous works
like Stengel-Eskin and Van Durme (2023)). We
introduce a method, multivariate Platt scaling, that
leverages the structured nature of outputs for this
task and uses sub-clause frequency scores as inputs.
Our experiments demonstrate that this method sig-
nificantly gives better calibrated probabilities for
the correctness of the query output by the LLM
than the baseline approaches. Furthermore, we per-
formed several analyses to show that calibration has
a large, positive impact on the output of LLMs for
this semantic parsing task. We hope that this work
will inspire future research and developments in
this domain, both in terms incorporating structured
outputs in uncertainty quantification and for the
purpose of improving calibration of text-to-SQL
modeling as a whole.

16966

9 Limitations

First, the datasets used in our experiments are solely
in English, although our methods are applicable to
other languages directly as long as a large language
model covering the target language is available.
This choice allows for consistency and comparabil-
ity across the datasets, but it does not test the gener-
alizability of our findings to other languages. In fu-
ture work, we plan to extend our research to a mul-
tilingual setting to address this limitation, for exam-
ple using the multi-lingual SPIDER dataset (Jose
and Cozman, 2023).

The proposed method for calibration requires
generating multiple candidate output SQL queries
given a natural language input. This generation in-
troduces an increase in inference time, although
sampling can be performed in parallel, limiting the
potential latency of the response if calibration was
included in a real-world application.

The experiments with the LLAMA 3.1 models
are limited to zero-shot prompts. We did not ex-
periment with additional fine-tuning or instruction-
tuning with text-to-SQL task data, as the models
already obtain good performance on the test set and
were potentially already trained with data for this
task. However, our approach can easily be adopted
and used with such models, as shown in experi-
ments with the T5-3B model trained using SPI-
DER.

10 Ethical Considerations

We use publicly available datasets intended for the
task of text-to-SQL semantic parsing. The datasets
and large language models we used have permis-
sive licenses allowing for research use. We do not
envision any potential risks associated with the task
discussed in this paper.

11 Acknowledgements

This research is supported by a grant from the
Bloomberg Data Science Ph.D. Fellowship Pro-
gram to the first author.

References
John Blatz, Erin Fitzgerald, George Foster, Simona Gan-

drabur, Cyril Goutte, Alex Kulesza, Alberto Sanchis,
and Nicola Ueffing. 2004. Confidence estimation for
machine translation. In COLING 2004: Proceedings
of the 20th International Conference on Computa-
tional Linguistics, pages 315–321, Geneva, Switzer-
land. COLING.

Ali Borji. 2023. A categorical archive of chatgpt fail-
ures. arXiv preprint arXiv:2302.03494.

Jochen Bröcker. 2009. Reliability, sufficiency, and the
decomposition of proper scores. Quarterly Journal
of the Royal Meteorological Society: A journal of
the atmospheric sciences, applied meteorology and
physical oceanography, 135(643):1512–1519.

Shijie Chen, Ziru Chen, Huan Sun, and Yu Su. 2023a.
Error detection for text-to-sql semantic parsing. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 11730–11743.

Ziru Chen, Shijie Chen, Michael White, Raymond
Mooney, Ali Payani, Jayanth Srinivasa, Yu Su, and
Huan Sun. 2023b. Text-to-sql error correction with
language models of code. In Proceedings of the 61st
Annual Meeting of the Association for Computational
Linguistics (Volume 2: Short Papers), pages 1359–
1372.

Gianluca Detommaso, Martin Bertran, Riccardo
Fogliato, and Aaron Roth. 2024. Multicalibration
for confidence scoring in LLMs. arXiv preprint
arXiv:2404.04689.

Li Dong, Chris Quirk, and Mirella Lapata. 2018. Con-
fidence modeling for neural semantic parsing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 743–753, Melbourne, Australia.
Association for Computational Linguistics.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan,
et al. 2024. The Llama 3 Herd of Models. arXiv
preprint arXiv:2407.21783.

Markus Freitag and Yaser Al-Onaizan. 2017. Beam
search strategies for neural machine translation. arXiv
preprint arXiv:1702.01806.

Dawei Gao, Haibin Wang, Yaliang Li, Xiuyu Sun,
Yichen Qian, Bolin Ding, and Jingren Zhou. 2023.
Text-to-sql empowered by large language mod-
els: A benchmark evaluation. arXiv preprint
arXiv:2308.15363.

Alessandra Giordani and Alessandro Moschitti. 2012.
Translating questions to SQL queries with generative
parsers discriminatively reranked. In Proceedings
of COLING 2012: Posters, pages 401–410, Mumbai,
India. The COLING 2012 Organizing Committee.

D. C. Gondek, A. Lally, A. Kalyanpur, J. W. Murdock,
P. A. Duboue, L. Zhang, Y. Pan, Z. M. Qiu, and
C. Welty. 2012. A framework for merging and rank-
ing of answers in deepqa. IBM Journal of Research
and Development, 56(3.4):14:1–14:12.

Parikshit Gopalan, Michael P Kim, Mihir A Singhal, and
Shengjia Zhao. 2022. Low-degree multicalibration.
In Conference on Learning Theory, pages 3193–3234.
PMLR.

16967

https://aclanthology.org/C04-1046
https://aclanthology.org/C04-1046
https://doi.org/10.18653/v1/P18-1069
https://doi.org/10.18653/v1/P18-1069
https://aclanthology.org/C12-2040
https://aclanthology.org/C12-2040
https://doi.org/10.1147/JRD.2012.2188760
https://doi.org/10.1147/JRD.2012.2188760

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In International conference on machine learn-
ing, pages 1321–1330. PMLR.

Chirag Gupta. 2022. Post-hoc calibration without distri-
butional assumptions. Ph.D. thesis, Carnegie Mellon
University.

Chirag Gupta, Aleksandr Podkopaev, and Aaditya Ram-
das. 2020. Distribution-free binary classification: pre-
diction sets, confidence intervals and calibration. Ad-
vances in Neural Information Processing Systems, 33.

Chirag Gupta and Aaditya Ramdas. 2022. Top-label
Calibration and Multiclass-to-binary Reductions. In
International Conference on Learning Representa-
tions.

Chirag Gupta and Aaditya Ramdas. 2023. Online Platt
scaling with calibeating. In International Conference
on Machine Learning, pages 12182–12204. PMLR.

Ursula Hébert-Johnson, Michael Kim, Omer Reingold,
and Guy Rothblum. 2018. Multicalibration: Calibra-
tion for the (computationally-identifiable) masses. In
International Conference on Machine Learning, pages
1939–1948. PMLR.

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and
Yejin Choi. 2020. The curious case of neural text de-
generation. In International Conference on Learning
Representations.

Daniel Hsu and Arya Mazumdar. 2024. On the sam-
ple complexity of parameter estimation in logistic
regression with normal design. In The Thirty Sev-
enth Annual Conference on Learning Theory, pages
2418–2437. PMLR.

Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong,
Zhangyin Feng, Haotian Wang, Qianglong Chen, Wei-
hua Peng, Xiaocheng Feng, Bing Qin, et al. 2023.
A survey on hallucination in large language models:
Principles, taxonomy, challenges, and open questions.
arXiv preprint arXiv:2311.05232.

Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant
Krishnamurthy, and Luke Zettlemoyer. 2017. Learn-
ing a neural semantic parser from user feedback. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 963–973, Vancouver, Canada.
Association for Computational Linguistics.

Zhengbao Jiang, Jun Araki, Haibo Ding, and Graham
Neubig. 2021. How Can We Know When Language
Models Know? On the Calibration of Language Mod-
els for Question Answering. Transactions of the As-
sociation for Computational Linguistics, 9:962–977.

Marcelo Archanjo Jose and Fabio Gagliardi Cozman.
2023. A multilingual translator to sql with database
schema pruning to improve self-attention. Interna-
tional Journal of Information Technology, 15(6):3015–
3023.

Christopher Jung, Georgy Noarov, Ramya Ramalingam,
and Aaron Roth. 2022. Batch multivalid conformal
prediction. In International Conference on Learning
Representations.

Saurav Kadavath, Tom Conerly, Amanda Askell, Tom
Henighan, Dawn Drain, Ethan Perez, Nicholas
Schiefer, Zac Hatfield-Dodds, Nova DasSarma, Eli
Tran-Johnson, et al. 2022. Language models
(mostly) know what they know. arXiv preprint
arXiv:2207.05221.

Meelis Kull, Miquel Perello Nieto, Markus Kängsepp,
Telmo Silva Filho, Hao Song, and Peter Flach.
2019. Beyond temperature scaling: Obtaining well-
calibrated multi-class probabilities with dirichlet cali-
bration. Advances in neural information processing
systems, 32.

Aviral Kumar and Sunita Sarawagi. 2019. Calibration
of encoder decoder models for neural machine trans-
lation. arXiv preprint arXiv:1903.00802.

Fabian Kuppers, Jan Kronenberger, Amirhossein Shan-
tia, and Anselm Haselhoff. 2020. Multivariate confi-
dence calibration for object detection. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition workshops, pages 326–327.

Jinyang Li, Binyuan Hui, Ge Qu, Jiaxi Yang, Binhua Li,
Bowen Li, Bailin Wang, Bowen Qin, Ruiying Geng,
Nan Huo, et al. 2024. Can LLM already Serve as
a Database Interface? A Big Bench for Large-scale
Database Grounded Text-to-SQLs. Advances in Neu-
ral Information Processing Systems, 36.

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022.
Teaching models to express their uncertainty in words.
Transactions on Machine Learning Research.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. 2023.
Generating with confidence: Uncertainty quantifica-
tion for black-box large language models. arXiv
preprint arXiv:2305.19187.

Terrance Liu and Zhiwei Steven Wu. 2024. Multi-group
uncertainty quantification for long-form text genera-
tion. arXiv preprint arXiv:2407.21057.

Christopher Mohri and Tatsunori Hashimoto. 2024.
Language models with conformal factuality guaran-
tees. arXiv preprint arXiv:2402.10978.

Mahdi Pakdaman Naeini, Gregory Cooper, and Milos
Hauskrecht. 2015. Obtaining well calibrated proba-
bilities using bayesian binning. In Proceedings of the
AAAI conference on artificial intelligence, volume 29.

Alexandru Niculescu-Mizil and Rich Caruana. 2005.
Predicting good probabilities with supervised learning.
In Proceedings of the 22nd international conference
on Machine learning, pages 625–632.

Jeremy Nixon, Michael W. Dusenberry, Linchuan
Zhang, Ghassen Jerfel, and Dustin Tran. 2019. Mea-
suring calibration in deep learning. In Proceedings of

16968

https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.18653/v1/P17-1089
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://doi.org/10.1162/tacl_a_00407
https://openreview.net/forum?id=8s8K2UZGTZ

the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops.

John Platt et al. 1999. Probabilistic outputs for support
vector machines and comparisons to regularized like-
lihood methods. Advances in large margin classifiers,
10(3):61–74.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language interfaces
to databases. In Proceedings of the 8th international
conference on Intelligent user interfaces, pages 149–
157.

Mohammadreza Pourreza and Davood Rafiei. 2024.
Din-sql: Decomposed in-context learning of text-to-
sql with self-correction. Advances in Neural Informa-
tion Processing Systems, 36.

Daking Rai, Bailin Wang, Yilun Zhou, and Ziyu Yao.
2023. Improving generalization in language model-
based text-to-SQL semantic parsing: Two simple se-
mantic boundary-based techniques. In Proceedings of
the 61st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), pages
150–160, Toronto, Canada. Association for Computa-
tional Linguistics.

Torsten Scholak, Nathan Schucher, and Dzmitry Bah-
danau. 2021. Picard: Parsing incrementally for con-
strained auto-regressive decoding from language mod-
els. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, pages
9895–9901.

Glenn Shafer and Vladimir Vovk. 2008. A tutorial on
conformal prediction. Journal of Machine Learning
Research, 9(3).

Chenglei Si, Chen Zhao, Sewon Min, and Jordan Boyd-
Graber. 2022. Re-examining calibration: The case of
question answering. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
2814–2829.

Elias Stengel-Eskin and Benjamin Van Durme. 2023.
Calibrated interpretation: Confidence estimation in
semantic parsing. Transactions of the Association for
Computational Linguistics, 11:1213–1231.

Chang-Yu Tai, Ziru Chen, Tianshu Zhang, Xiang Deng,
and Huan Sun. 2023. Exploring chain of thought
style prompting for text-to-sql. In Proceedings of the
2023 Conference on Empirical Methods in Natural
Language Processing, pages 5376–5393.

Katherine Tian, Eric Mitchell, Allan Zhou, Archit
Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
and Christopher D Manning. 2023. Just ask for cali-
bration: Strategies for eliciting calibrated confidence
scores from language models fine-tuned with human
feedback. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing,
pages 5433–5442.

Nicola Ueffing and Hermann Ney. 2005. Word-level
confidence estimation for machine translation using
phrase-based translation models. In Proceedings of
Human Language Technology Conference and Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 763–770, Vancouver, British Columbia,
Canada. Association for Computational Linguistics.

Bing Wang, Yan Gao, Zhoujun Li, and Jian-Guang Lou.
2023. Know what I don’t know: Handling ambiguous
and unknown questions for text-to-SQL. In Find-
ings of the Association for Computational Linguistics:
ACL 2023, pages 5701–5714, Toronto, Canada. Asso-
ciation for Computational Linguistics.

Shuo Wang, Zhaopeng Tu, Shuming Shi, and Yang Liu.
2020. On the inference calibration of neural machine
translation. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 3070–3079.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V
Le, Ed H Chi, Sharan Narang, Aakanksha Chowdhery,
and Denny Zhou. 2022. Self-consistency improves
chain of thought reasoning in language models. In
The Eleventh International Conference on Learning
Representations.

Miao Xiong, Zhiyuan Hu, Xinyang Lu, YIFEI LI, Jie
Fu, Junxian He, and Bryan Hooi. 2023. Can LLMs
Express Their Uncertainty? An Empirical Evaluation
of Confidence Elicitation in LLMs. In The Twelfth In-
ternational Conference on Learning Representations.

Ziyu Yao, Yu Su, Huan Sun, and Wen-tau Yih. 2019.
Model-based interactive semantic parsing: A unified
framework and a text-to-SQL case study. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 5447–5458, Hong
Kong, China. Association for Computational Linguis-
tics.

Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga,
Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingn-
ing Yao, Shanelle Roman, et al. 2018. Spider: A
large-scale human-labeled dataset for complex and
cross-domain semantic parsing and text-to-sql task.
arXiv preprint arXiv:1809.08887.

Victor Zhong, Caiming Xiong, and Richard Socher.
2017. Seq2sql: Generating structured queries from
natural language using reinforcement learning. arXiv
preprint arXiv:1709.00103.

Kaitlyn Zhou, Jena Hwang, Xiang Ren, and Maarten
Sap. 2024. Relying on the unreliable: The impact of
language models’ reluctance to express uncertainty.
In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), pages 3623–3643, Bangkok, Thailand.
Association for Computational Linguistics.

16969

https://doi.org/10.18653/v1/2023.acl-short.15
https://doi.org/10.18653/v1/2023.acl-short.15
https://doi.org/10.18653/v1/2023.acl-short.15
https://aclanthology.org/H05-1096
https://aclanthology.org/H05-1096
https://aclanthology.org/H05-1096
https://doi.org/10.18653/v1/2023.findings-acl.352
https://doi.org/10.18653/v1/2023.findings-acl.352
https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/D19-1547
https://doi.org/10.18653/v1/2024.acl-long.198
https://doi.org/10.18653/v1/2024.acl-long.198

A Supplementary experiments

Accuracy of language models. In Table 5 we show model performance on SPIDER and BIRD. For
our experiments, we sample 10 outputs using nucleus sampling and 10 using beam search. Then for each
query, we take the model output (among all outputs sampled) with the highest model probability (sum
over log token probabilities) as our prediction. Table 5 shows the performance when choosing outputs in
this way, picking the top output among the set of samples generated by (1) nucleus sampling (Nucleus),
(2) beam search (Beam), and (3) both (N+B). Generally speaking, we do not see significant different in
model accuracy among these three choices and thus choose (3) for our experiments out of convenience.
We also note that that LLAMA 3.1 70B INSTRUCT is a very strong model, performing on par or better
on BIRD than various published methods that combine GPT-4 with more advanced prompting strategies
(Pourreza and Rafiei, 2024; Gao et al., 2023).

Dataset Model Nucleus Beam N + B

SPIDER
T5 3B 73.52% 73.52% 73.52%

LLAMA 3.1 8B INSTR. 74.77% 73.77% 74.60%

BIRD
LLAMA 3.1 8B INSTR. 34.60% 35.65% 35.85%

LLAMA 3.1 70B INSTR. 52.28% 53.18% 53.35%

Table 5: We report the accuracy of each model on the corresponding dataset’s test set.

Varying sampling method for deriving SCF scores. As discussed in Section 7.3, in Table 6, we show
how the performance of MPS varies based on the choice of deriving SCF scores (from nucleus sampling
only, beam search only, or both).

Stratified Magnitude Analysis. We study the magnitude of adding features derived from parsing
additional samples and how this impacts calibration scores. We thus analyze outputs with the largest
(absolute) difference in output probability between MPS and PS by aggregating the top and bottom 1%,
5%, 10%, and 20% of samples, ordered by the difference (∆) in the calibrated probability produced by
PS and MPS.

We see that across all strata, MPS produces probabilities that are more calibrated, suggesting that queries
for which MPS and PS disagree on the most are those for which MPS is better calibrated on. For example,
in the top 1%, PS on average produces a probability of 0.464 while MPS produces an average probability
of 0.825, which is closer to the true proportion of correct samples of 0.714. Full results are in the Table 7,
where we show how and to what degree MPS shifts its calibrated probability output when compared to
PS. In particular, we show the average probability for top 1%, 5%, 10%, and 20% samples, sorted by the
change ∆ in probability between MPS and PS. We see that MPS shifts the probabilities so that for each set
of examples, the calibration error is smaller when compared to PS. Finally, we show examples of queries
with the largest absolute difference in probability between MPS and PS in the Tables 14, 15, 16 and 17.

Analysis by Query Complexity. In the SPIDER dataset, each example is annotated with difficulty
ratings of easy, medium, hard, and extra hard Yu et al. (2018), while in BIRD, examples are annotated
with difficult ratings of simple, moderate, and challenging Li et al. (2024). We calculate metrics for each
level of difficulty in order to see if there is any relationship between query difficulty and calibration, as
identified in Stengel-Eskin and Van Durme (2023, Figure 6) for LLMs’ uncalibrated probability outputs.
However, our experiments—unlike previous work—do not show consistent patterns in ECE, ACE and
AUC across models and datasets if performance is measured after post-hoc calibration (i.e., applying PS
and MPS).

Note that while for completeness, we report Brier score in Tables 8 and 9, we cannot use Brier score to
compare between levels of difficulty since the model accuracy for each difficulty varies substantially (See
Section 7.2) for a more detailed explanation.

16970

Dataset Model Method Brier ECE ACE AUC

SPIDER

T5 3B

Uncalibrated 0.1893 0.1632 0.1632 0.7200

(PS) Token Probs. 0.1656 0.0623 0.0628 0.7200

(MPS)
+ Nucleus 0.1639 0.0460 0.0538 0.7229
+ Beam 0.1565 0.0241 0.0308 0.7804
+ N + B 0.1566 0.0264 0.0253 0.7785

LLAMA 3.1 8B INSTR.

Uncalibrated 0.3576 0.4161 0.4147 0.7123

(PS) Token Probs. 0.1726 0.0437 0.0449 0.7123

(MPS)
+ Nucleus 0.1625 0.0280 0.0360 0.7506
+ Beam 0.1687 0.0244 0.0230 0.7194
+ N + B 0.1626 0.0244 0.0260 0.7475

BIRD

LLAMA 3.1 8B INSTR.

Uncalibrated 0.2378 0.1722 0.1688 0.6913

(PS) Token Probs. 0.2129 0.0556 0.0739 0.6913

(MPS)
+ Nucleus 0.1976 0.0574 0.0542 0.7307
+ Beam 0.1989 0.0425 0.0442 0.7213
+ N + B 0.1951 0.0418 0.0423 0.7353

LLAMA 3.1 70B INSTR.

Uncalibrated 0.2866 0.2343 0.2324 0.6650

(PS) Token Probs. 0.2316 0.0549 0.0631 0.6650

(MPS)
+ Nucleus 0.2130 0.0290 0.0267 0.7203
+ Beam 0.2215 0.0384 0.0416 0.6921
+ N + B 0.2141 0.0314 0.0323 0.7173

Table 6: We report how the performance of Multiplicative Platt Scaling (MPS) is affected by changes in whether the
parsed frequencies are derived from nucleus sampling only (Nucleus), beam search only (Beam), and both nucleus
sampling and beam search (N + B). For reference, we also include the performance of only using token probabilities
(i.e., PS). We report Brier score, expected calibration error (ECE), and adaptive calibration Error (ACE) on the
SPIDER and BIRD datasets. ECE and ACE are calculated using 10 bins. In addition, we report AUC for the task of
error detection.

Weight / Sub-clause Analysis of MPS. We conduct additional analysis on the weights produced for
MPS on outputs from LLAMA 3.1 8B INSTRUCT. In Tables 10 and 11, we report the sum and absolute
sum of (standardized) weights corresponding to each sub-clause type for SPIDER and BIRD respectively.
Generally, the learned feature weights represent to what extent the final probability of correctness should
be shifted, given how consistent the language model is in generating a particular sub-clause. In addition,
conduct an ablation study in which we remove features corresponding to each sub-clause type as input
into MPS. Tables 12 and 13 show the impact of each sub-clause on the calibration metrics for SPIDER
and BIRD respectively.

We find that our aggregate sub-clause score (AGG) is the most significant feature utilized by MPS, which
is expected given that it aggregates information from all sub-clauses (i.e., product of SCF scores). Not
only does it have the highest weight (Tables 10 and 11), but removing it from MPS most significantly
degrades ACE and ECE for both SPIDER and BIRD (Tables 12 and 13). On the other hand, we find that
the SCF scores corresponding to DISTINCT, HAVING, LIMIT, and set operations have small weights (Tables
10 and 11). Removing these clauses also has minimal impact on MPS’s performance (Tables 12 and 13).
While trends for the remaining sub-clauses are not as consistent between the two datasets, they are still
unsurprising. For example, removing SELECT and WHERE features, two of the more important and common
sub-clauses for SQL, significantly impacts MPS for BIRD, especially with respect to AUC. Finally, we
note that while the improvement of MPS over PS with respect to Brier score illustrates that incorporating
all sub-clauses as a whole is important for calibration (i.e., our main empirical result), Tables 12 and 13

16971

Dataset Model Prob. ∆ PS MPS Correct

SPIDER

T5 3B

1%
top + 0.361 0.464 0.825 0.714
bottom - 0.380 0.739 0.359 0.476

5%
top + 0.223 0.635 0.857 0.764
bottom - 0.280 0.680 0.400 0.425

10%
top + 0.187 0.729 0.916 0.859
bottom - 0.224 0.682 0.458 0.521

20%
top + 0.169 0.775 0.944 0.904
bottom - 0.167 0.692 0.525 0.528

Llama 3.1 8B Instruct

1%
top + 0.310 0.591 0.902 0.810
bottom - 0.351 0.638 0.287 0.429

5%
top + 0.254 0.631 0.884 0.879
bottom - 0.276 0.654 0.378 0.477

10%
top + 0.227 0.651 0.878 0.888
bottom - 0.234 0.659 0.425 0.500

20%
top + 0.189 0.669 0.858 0.857
bottom - 0.180 0.671 0.491 0.577

BIRD

Llama 3.1 8B Instruct

1%
top + 0.371 0.386 0.757 0.929
bottom - 0.236 0.480 0.244 0.286

5%
top + 0.305 0.400 0.705 0.676
bottom - 0.200 0.409 0.210 0.149

10%
top + 0.267 0.410 0.677 0.642
bottom - 0.181 0.396 0.215 0.176

20%
top + 0.211 0.402 0.613 0.598
bottom - 0.156 0.378 0.222 0.209

Llama 3.1 70B Instruct

1%
top + 0.330 0.456 0.786 0.857
bottom - 0.376 0.658 0.282 0.429

5%
top + 0.272 0.486 0.758 0.808
bottom - 0.297 0.556 0.259 0.397

10%
top + 0.243 0.508 0.751 0.774
bottom - 0.261 0.519 0.258 0.356

20%
top + 0.205 0.520 0.724 0.757
bottom - 0.214 0.507 0.293 0.353

Table 7: For each combination of dataset and model, we aggregate the top and bottom 1%, 5%, 10%, and 20% of data
points, ordered by the difference (∆) in the calibrated probability ouputted by Platt scaling (PS) and multiplicative
Platt scaling (MPS) to summarize how adding features derived from parsing additional samples affects calibration.
In addition, we report the proportion of outputs in each quantile that are actually correct. Between PS and MPS, we
bold the method who has the smaller calibration error in each bucket. As show in these results, among the outputs
for which MPS and PS differ the most (i.e., each quantile), MPS produces more calibrated probabilities in all case.

show that removing any individual sub-clause does not significantly impact Brier score for MPS.

Examples of when MPS outperforms PS the most. In Tables 14, 15, 16, 17, we show specific examples
of queries from the SPIDER and BIRD datasets for which MPS and PS differ the most. In particular,
we show examples of correct outputs where MPS shifts the calibrated probability upwards the most and
incorrect outputs where MPS shifts probabilities downwards.

16972

Model Difficulty Size Acc Method Brier ECE ACE AUC

T5 3B

easy 22% 0.917
PS 0.081 0.126 0.115 0.691
MPS 0.076 0.075 0.069 0.714

medium 40% 0.770
PS 0.161 0.052 0.057 0.678
MPS 0.153 0.023 0.030 0.756

hard 22% 0.641
PS 0.198 0.081 0.087 0.727
MPS 0.188 0.060 0.060 0.764

extra 16% 0.533
PS 0.246 0.155 0.155 0.674
MPS 0.234 0.135 0.123 0.711

LLAMA 3.1 8B INSTR.

easy 22% 0.893
PS 0.096 0.089 0.087 0.721
MPS 0.085 0.044 0.043 0.778

medium 40% 0.783
PS 0.164 0.082 0.083 0.697
MPS 0.151 0.051 0.049 0.741

hard 22% 0.646
PS 0.220 0.035 0.053 0.628
MPS 0.221 0.071 0.068 0.628

extra 16% 0.594
PS 0.233 0.063 0.103 0.587
MPS 0.219 0.035 0.037 0.679

Table 8: Results on SPIDER, grouped by the difficulty of the SQL query. We observe that ECE, ACE, and AUC (for
error detection) are not well-correlated with the difficulty of the query. Note that while for completeness, we report
Brier score, it cannot be use to compare between levels of difficulty since the model accuracy for each difficulty
varies substantially (See Section 7.2) for a more detailed explanation.

Model Difficulty Size Acc Method Brier ECE ACE AUC

LLAMA 3.1 8B INSTR.

simple 62% 0.420
PS 0.226 0.044 0.076 0.681
MPS 0.209 0.043 0.043 0.720

moderate 29% 0.286
PS 0.201 0.066 0.070 0.621
MPS 0.185 0.064 0.055 0.708

challenging 9% 0.173
PS 0.161 0.163 0.230 0.778
MPS 0.135 0.147 0.137 0.801

LLAMA 3.1 70B INSTR.

simple 62% 0.591
PS 0.228 0.074 0.076 0.655
MPS 0.210 0.034 0.041 0.714

moderate 29% 0.479
PS 0.239 0.040 0.039 0.627
MPS 0.222 0.045 0.036 0.688

challenging 9% 0.324
PS 0.230 0.125 0.119 0.581
MPS 0.213 0.104 0.120 0.632

Table 9: Results on BIRD, grouped by the difficulty of the SQL query. We observe that ECE, ACE, and AUC (for
error detection) are not well-correlated with the difficulty of the query. Note that while for completeness, we report
Brier score, it cannot be use to compare between levels of difficulty since the model accuracy for each difficulty
varies substantially (See Section 7.2) for a more detailed explanation.

16973

sub-clause abs. weight (↓) weight
FROM 0.826 0.227
AGG 0.687 0.687
SELECT 0.507 -0.137
ORDER 0.282 0.134
WHERE 0.260 0.082
GROUP 0.199 0.199
ON 0.191 -0.186
HAVING 0.168 0.129
DISTINCT 0.131 0.131
LIMIT 0.102 0.102
Set Op. 0.038 0.038

Table 10: We report the sum and absolute sum of (standardized) weights corresponding to each sub-clause type for
MPS trained on LLAMA 3.1 8B INSTRUCT outputs on SPIDER.

sub-clause abs. weight (↓) weight
AGG 0.343 0.343
SELECT 0.310 0.302
WHERE 0.255 0.242
ORDER 0.224 0.087
ON 0.205 -0.158
FROM 0.180 0.172
GROUP 0.178 0.165
DISTINCT 0.081 -0.010
HAVING 0.077 0.041
LIMIT 0.066 -0.022
Set Op. 0.029 0.016

Table 11: We report the sum and absolute sum of (standardized) weights corresponding to each sub-clause type for
MPS trained on LLAMA 3.1 8B INSTRUCT outputs on BIRD.

Removed Feature Brier ECE ACE AUC
— 0.164 0.023 0.023 0.746

AGG 0.001 0.006 0.008 0.000
Set Op. 0.000 0.000 0.000 -0.000
DISTINCT -0.000 -0.002 0.004 0.001
SELECT -0.001 -0.001 0.005 0.002
FROM 0.001 0.002 0.002 -0.005
ON 0.000 0.000 0.000 0.001
WHERE -0.000 0.005 0.002 0.002
GROUP -0.001 0.006 0.008 0.004
HAVING 0.000 0.000 0.000 -0.001
ORDER 0.000 -0.000 -0.000 -0.000
LIMIT -0.000 0.001 0.001 0.000

Table 12: We report the change in performance of MPS when sub-clauses are removed as input signals. The ablation
study is conducted on MPS trained using LLAMA 3.1 8B INSTRUCT outputs for SPIDER. We bold values that are
significantly large (delta greater than 0.005).

16974

Removed Feature Brier ECE ACE AUC
— 0.194 0.035 0.032 0.737

AGG 0.001 0.016 0.015 -0.003
Set Op. -0.000 -0.000 -0.000 0.000
DISTINCT -0.000 0.002 0.001 0.001
SELECT 0.005 0.002 0.008 -0.017
FROM 0.000 -0.001 0.003 0.000
ON 0.001 0.005 0.000 -0.003
WHERE 0.002 -0.000 0.008 -0.007
GROUP -0.000 0.005 -0.000 0.000
HAVING -0.000 0.002 0.000 0.000
ORDER 0.000 0.006 0.005 0.001
LIMIT 0.000 0.001 0.001 -0.001

Table 13: We report the change in performance of MPS when sub-clauses are removed as input signals. The ablation
study is conducted on MPS trained using LLAMA 3.1 8B INSTRUCT outputs for BIRD. We bold values that are
significantly large (delta greater than 0.005).

Question Output Label PS MPS ∆

Return the names
and ages of pilots
who have flown
Piper Cub and are
older than 35, or
have flown the F-
14 Fighter and are
younger than 30.

SELECT pilot_name,
age

FROM pilotskills
WHERE plane_name='Piper Cub'

AND age > 35
UNION
SELECT pilot_name,

age
FROM pilotskills
WHERE plane_name='F-14 Fighter'

AND age < 30

Correct 0.275 0.928 + 0.652

Find the receipt
numbers where
both Cake and
Cookie were
bought.

SELECT t1.receiptnumber
FROM receipts AS t1

JOIN goods AS t2
ON t1.customerid=t2.id

WHERE t2.food="Cake"
INTERSECT
SELECT t1.receiptnumber
FROM receipts AS t1

JOIN goods AS t2
ON t1.customerid=t2.id

WHERE t2.food="Cookie"

Incorrect 0.611 0.145 - 0.466

Table 14: Example SQL outputs from T5 3B on the BIRD dataset, which were selected in the following way: We
calculate the difference (∆) in (calibrated) probability outputted by Platt scaling (PS, baseline) and multiplicative
Platt scaling (MPS, ours). We then split outputs by their label (whether the output is correct or incorrect). For
correct examples, we select the one with the largest positive change in ∆, and for incorrect examples, we select the
one with the largest negative change in ∆.

16975

Question Output Label PS MPS ∆

What is the top
speed and power
of the vehicle man-
ufactured in the
year of 1996?

SELECT top_speed,
power

FROM vehicle
WHERE build_year=1996

Correct 0.551 0.942 + 0.391

Find the name of
all the services
which either have
been used by
customer "Hardy
Kutch" or have
been rated as
"good" in one
of the customer
interactions.

SELECT T1.service_details
FROM services AS T1
INNER JOIN
customers_and_services AS T2

ON T1.service_id=T2.service_id
INNER JOIN
customer_interactions AS T3

ON T2.customer_id=T3.customer_id
WHERE T3.status_code='good'
OR T2.customer_id=(
SELECT customer_id
FROM customers
WHERE
customer_details='Hardy Kutch'

)

Incorrect 0.654 0.237 - 0.417

Table 15: Example SQL outputs from LLAMA 3.1 8B INSTRUCT on the SPIDER dataset, which were selected
in the following way: We calculate the difference (∆) in (calibrated) probability outputted by Platt scaling (PS,
baseline) and multiplicative Platt scaling (MPS, ours). We then split outputs by their label (whether the output
is correct or incorrect). For correct examples, we select the one with the largest positive change in ∆, and for
incorrect examples, we select the one with the largest negative change in ∆.

Question Output Label PS MPS ∆

How many majors
are there in "Col-
lege of Humani-
ties and Social Sci-
ences"?

SELECT COUNT(*)
FROM major
WHERE college='college of

humanities and
social sciences'

Correct 0.377 0.783 + 0.406

Which different
county has the
most number of
closed schools?
Please provide
the name of each
school as well as
the closure date.

SELECT county,
school,
closeddate

FROM schools
WHERE statustype='Closed'

Incorrect 0.461 0.186 - 0.274

Table 16: Example SQL outputs from LLAMA 3.1 8B INSTRUCT on the BIRD dataset, which were selected in the
following way: We calculate the difference (∆) in (calibrated) probability outputted by Platt scaling (PS, baseline)
and multiplicative Platt scaling (MPS, ours). We then split outputs by their label (whether the output is correct
or incorrect). For correct examples, we select the one with the largest positive change in ∆, and for incorrect
examples, we select the one with the largest negative change in ∆.

16976

Question Output Label PS MPS ∆

What segment
did the customer
have at 2012/8/23
21:20:00?

SELECT T1.segment
FROM customers AS T1
INNER JOIN transactions_1k AS T2
ON T1.customerid=T2.customerid
WHERE T2.date='2012-08-23'

AND T2.time='21:20:00'

Correct 0.443 0.804 + 0.361

What is the title
of the post that
is owned by cs-
gillespie and has
the highest popu-
larity?

SELECT title
FROM posts
WHERE
ownerdisplayname='csgillespie'

ORDER BY viewcount DESC
LIMIT 1

Incorrect 0.686 0.256 - 0.429

Table 17: Example SQL outputs from LLAMA 3.1 70B INSTRUCT on the BIRD dataset, which were selected
in the following way: We calculate the difference (∆) in (calibrated) probability outputted by Platt scaling (PS,
baseline) and multiplicative Platt scaling (MPS, ours). We then split outputs by their label (whether the output
is correct or incorrect). For correct examples, we select the one with the largest positive change in ∆, and for
incorrect examples, we select the one with the largest negative change in ∆.

16977

B Deriving parsed frequencies (SCF)

In Figure 2 of the main body, we provide an example of how we parse a SQL query. As noted in the figure,
however, we make two simplifications in the example: (1) We assume the SQL query is composed of a
single SELECT statement and (2) we only count sub-clauses for SELECT, FROM, ON, WHERE, and GROUP BY.
We now provide the exact details of our parsing procedure.

Figure 5: We illustrate two examples on how a SQL query is parsed via its tree structure representation. The red box
denotes the set operation and two sub-queries that are used for calculating our SCF signals. In the left example, we
have a SQL statement that is not composed of multiple SELECT statements. Hence, the set operation is denoted as
NONE, and we derive two sub-queries, one of which is the original statement itself (SELECT A...) and the other of
which is simply [NONE]. In the right example, we parse it via the logicical execution order of the query (done
automatically via standard SQL parsing libraries), giving us a set operation EXCEPT with two sub-queries. We note
sub-query 1 can be further parsed into an additional tree (blue box) with the set operation UNION.

Queries composed of multiple SELECT statements. In our dataset, (two) SELECT statements can be
composed together using the set operators UNION, INTERSECT, and EXCEPT. In these cases, we then
individually parse each SELECT statement that is being composed together using the set operator (i.e., if
we represent the SQL statement in its tree structure, we then traverse the tree). Note that theoretically, the
sub-statements being composed together may be another query that is composed (via another set operator)
of multiple sub-statements. Thus, we can recursively traverse the tree structure of the sub-statements until
we reach a “leaf”, which in our case, is a SQL statement that does not contain any set operators (i.e., a
single SELECT statement). We illustrate tree traversal in Figure 5.

Additional sub-clauses not shown in Figure 2. We parse each (single) SELECT statement (found at
leaves of a SQL output’s tree representation (Figure 5)) into the following nine sub-clauses / keywords:

• DISTINCT
• SELECT
• FROM
• ON
• WHERE
• GROUP BY
• HAVING
• ORDER BY
• LIMIT

If a query does not contain one of the above, we tag it as NONE. Parsing was done automatically using the
SQLGlot library (link).

16978

https://github.com/tobymao/sqlglot

Algorithm 1 SCF (sub-clause frequency scorer)

1: Input: SQL query Q and set of additional queries Qadditional
2: return 1

|Qadditional|
∑

Q′∈Qadditional
Q-MATCH(Q,Q′)

Algorithm 2 Q-MATCH (query match function)

1: Input: SQL queries QA and QB

2: Let QA1 and QA2 be the subqueries of QA {See Figure 5; red box}
3: Let QB1 and QB2 be the subqueries of QB

4: Set sset_op = 1 [SET_OP(QA) = SET_OP(QB)]
{SET_OP returns the set operation (e.g., UNION) of the input query}

5: Set s1 = [SQ-MATCH(QA1 , QB1),SQ-MATCH(QA2 , QB2)] {Algorithm 3}
6: Set s2 = [SQ-MATCH(QA1 , QB2),SQ-MATCH(QA2 , QB1)]
7: if

∑
s1 ≥

∑
s1 then

8: return [sset_op, s1]
9: else

10: return [sset_op, s2]
11: end if

Algorithm 3 SQ-MATCH (sub-query match function)

1: Input: SQL (sub-)queries Q1 and Q2

2: Let the set of sub-clauses C = { DISTINCT, SELECT, FROM, ON, WHERE, GROUP BY, HAVING,
ORDER BY, LIMIT }

3: for sub-clause c ∈ C do
4: if Q1 = NONE AND Q2 = NONE then
5: Set sc = 1
6: else if Q1 = NONE AND Q2 ̸= NONE then
7: Set sc = 0
8: else if Q1 ̸= NONE AND Q2 = NONE then
9: Set sc = 0

10: else
11: Set sc = TRAVERSE_AND_MATCH(c,Q1, Q2)

{TRAVERSE_AND_MATCH(c,Q1, Q2) traverses the tree representation (Figure 5; blue box)
of Q1 and Q2, returning 1 (TRUE) if sub-clause c matches at every corresponding node and 0
(FALSE) otherwise.}

12: end if
13: return (sc)c∈C {Return array of scores for each sub-clause}
14: end for

Computing the final SCF scores. We summarize our procedure for calculating SCF scores in the
pseudocode found in Algorithms 1, 2, and 3. We also provide more details below:

To compute our sub-clause frequency scores, we must match the sub-clauses of each output to the set
of additional outputs generated by the model. To constrain the number of signals si in our framework,
we only conduct matching (or frequency scoring) at the second level (starting from the root) of the tree
(corresponding to the dotted red square in Figure 5), which we denote as sub-queries 1 and 2. This
corresponds to checking for the proportion of exact matches on

• (1) the set operation (i.e., NONE, UNION, INTERSECT, EXCEPT) matches
• (9) sub-clauses for sub-query 1
• (9) sub-clauses for sub-query 2

16979

In addition, we add a signal that is the product of the above 19 scores as an additional feature.5 Thus in
total, we have 20 SCF signals si, in addition to the log sum token probability produced by the model
directly (i.e., the one used for standard Platt scaling). Note that when using samples from nucleus sampling
only or beam search only, we use these 20 (+1) signals. In the case where use both (N + B), we concatenate
these signals, giving us 40 (+1) in total.

Matching sub-queries. We note some special cases when comparing two sub-queries, Q1 and Q2.
These cases can also be found in Algorithm 3.

Cases:

• Q1 = NONE AND Q2 = NONE:
– return TRUE for all sub-clauses

• Q1 = NONE AND Q2 ̸= NONE:
– return FALSE for all sub-clauses

• Q1 ̸= NONE AND Q2 = NONE:
– return FALSE for all sub-clauses

• Q1 ̸= NONE AND Q2 ̸= NONE:
– traverse the tree representation of subqueries Q1 and Q2 (Figure 5; blue box), return whether

sub-clauses match at every node for each (of the 9) sub-clause types.

Finally, note that as discussed above, each query has two sub-queries QA1 , QA2 , QB1 , and QB2 . To
determine which sets of sub-queries from QA and QB should go together, we compute the number of
matches (over the 9 sub-clauses) for all possible pairings

• (QA1 , QB1) and (QA2 , QB2)
• (QA1 , QB2) and (QA2 , QB1)

and choose the set of pairings that yield the highest number of exact sub-clause matches (out of 9+9 = 18
total). This part of the procedure is described in Algorithm 2.

5We found in initial testing that adding this product of scores as an additional feature made results across experiments more
consistent. However, we did not further investigate or tune this signal to optimize calibration performance.

16980

C Additional experimental details

C.1 Prompts
In our experiments, we used the following prompts described below. Note that for both prompts, the
[schema] is serialized in the format: [table] : [column] , [column], ... | [table] : ... |
...

C.1.1 SPIDER
T5 3B. The prompt format is as follows: [question] | [db_id] | [schema]

LLAMA 3.1 8B INSTRUCT. Using zero-shot prompting, the prompt format is as follows:

<|start_header_id|> system <|end_header_id|>
You are a helpful assistant who answers questions about database tables by responding
with SQL queries. Users will provide you with a database id [DB_ID], followed by the
schema of the database.
The schema given by the user will be formatted as the following: TABLE_1 : column_1,
column_2, ... | TABLE_2 : column_1, column_2, ... | ...
After, the user will ask a question. You should respond with a SQL query that can be
executed on the provided database schema to answer the user’s question.
Your response should be formatted as: [DB_ID] | [SQL_QUERY]. Your SQL query
[SQL_QUERY] should begin with SELECT and end with a semicolon.
<|start_header_id|> user <|end_header_id|>
[question] | [db_id] | [schema]
<|start_header_id|> assistant <|end_header_id|>

C.1.2 BIRD
LLAMA 3.1 8B INSTRUCT / 70B INSTRUCT. Using zero-shot prompting, the prompt format is as
follows:

<|start_header_id|> system <|end_header_id|>
You are a helpful assistant who answers questions about database tables by responding
with SQL queries. Users will provide you with a database id [DB_ID], followed by the
schema of the database.
The schema given by the user will be formatted as the following: TABLE_1 : column_1,
column_2, ... | TABLE_2 : column_1, column_2, ... | ...
After, the user will ask a question. You should respond with a SQL query that can be
executed on the provided database schema to answer the user’s question.
Finally, users will provide additional evidence relating the question to the schema.
You may use this information to help you answer the question
Your response should be formatted as: [DB_ID] | [SQL_QUERY]. Your SQL query
[SQL_QUERY] should begin with SELECT and end with a semicolon.
<|start_header_id|> user <|end_header_id|>
[question] | [db_id] | [schema] | [evidence]
<|start_header_id|> assistant <|end_header_id|>

C.2 Hyperparameters.
For generating SQL outputs using the models we evaluate, we use the Hugging Face’s transform-
ers library. To generate outputs using nucleus sampling, we set top_p=0.95, temperature=1.0,
and num_return_sequences=10. Using beam search, we set num_return_sequences=10 and
num_beams=20. We set max_new_tokens=512.

For implementing Platt scaling and multivariate Platt scaling, we train a logistic regression model using
scikit-learn with default parameters. We do not conduct any hyperparameter tuning when running these

16981

https://scikit-learn.org/1.5/modules/generated/sklearn.linear_model.LogisticRegression.html

calibration methods.

C.3 GPU requirements.
For generating SQL outputs using T5 3B PICARD and LLAMA 3.1 8B INSTRUCT, we use a single
NVIDIA A100 80GB GPU. For generating outputs using LLAMA 3.1 8B INSTRUCT, we use eight
NVIDIA A100 80GB GPUs. Generations (for the calibration and test sets combined) took approximately
the following number of GPU hours:

• SPIDER; T5 3B PICARD : 4 hours
• SPIDER; LLAMA 3.1 8B INSTRUCT : 4 hours
• BIRD; LLAMA 3.1 8B INSTRUCT : 4 hours
• BIRD; LLAMA 3.1 70B INSTRUCT 18 (x 8 GPUs) hours

Our choice of using 8 A100s for LLAMA 3.1 70B INSTRUCT was due to the resources being available to
us, rather than it being necessary for evaluating a model with a beam size of 20 (in doing so, we expedited
our experiments so that we could generate all outputs from Llama 70B on BIRD in under a day). We also
note that in many cases, beam search is still a standard (and better performing) strategy for text-to-SQL.
In such instances, the only additional inference cost is running nucleus sampling extra K = 10 times,
which in our experiments, takes about 50-70% less GPU hours compared to running beam search once.

C.4 Licenses
Wikidata and Wikipedia are licensed under the Creative Commons CC0 License. LLAMA 3.1 models are
licensed under Meta’s Llama 3.1 license. The fine-tuned, T5 3B PICARD (link) checkpoint and Hugging
Face’s transformers library are licensed under Apache 2.0 license. To help parse SQL queries, we use
SQLGlot (link), released under the MIT license. The SPIDER dataset (link) is released under Apache 2.0.
The BIRD dataset (link) is released under CC BY-SA 4.0.

16982

https://huggingface.co/tscholak/cxmefzzi
https://github.com/tobymao/sqlglot
https://github.com/taoyds/spider/
https://github.com/AlibabaResearch/DAMO-ConvAI/tree/main/bird

