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Abstract

Large language model editing methods fre-
quently suffer from overfitting, wherein factual
updates can propagate beyond their intended
scope, overemphasizing the edited target even
when it’s contextually inappropriate. To ad-
dress this challenge, we introduce REACT
(Representation Extraction And Controllable
Tuning), a unified two-phase framework de-
signed for precise and controllable knowledge
editing. In the initial phase, we utilize tailored
stimuli to extract latent factual representations
and apply Principal Component Analysis with
a simple learnbale linear transformation to com-
pute a directional “belief shift” vector for each
instance. In the second phase, we apply control-
lable perturbations to hidden states using the ob-
tained vector with a magnitude scalar, gated by
a pre-trained classifier that permits edits only
when contextually necessary. Relevant exper-
iments on EVOKE benchmarks demonstrate
that REACT significantly reduces overfitting
across nearly all evaluation metrics, and ex-
periments on COUNTERFACT and MQuAKE
shows that our method preserves balanced basic
editing performance (reliability, locality, and
generality) under diverse editing scenarios.

1 Introduction

Large language models (LLMs) have become indis-
pensable in modern applications, powering a wide
array of systems from chatbots to content genera-
tors (Zhao et al., 2023; Xu et al., 2024). Despite
their widespread utility, ensuring that these models
maintain up-to-date and accurate factual informa-
tion remains a critical challenge, particularly when
extensive retraining is impractical (Zhang et al.,
2024b). This necessity has spurred interest in the
field of knowledge editing, where targeted updates
to a model’s internal knowledge base are pursued
without compromising overall performance (Wang
et al., 2023; Yao et al., 2023; Cheng et al., 2023).
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Figure 1: Illustration of overfitting in LLM editing.
Overfitting occurs when the model disproportionately
emphasizes the edited target fact, even in contexts ir-
relevant to the edit. As shown on the right side, after
editing the fact about Luka Doncic’s team to "Lakers,"
the overfitted model incorrectly assigns high probability
to "Lakers" even for a query about Doncic’s teammates.

Recent advances in knowledge editing have
sought to address these issues by incrementally
incorporating new facts into LLMs (De Cao et al.,
2021). However, many existing approaches en-
counter significant challenges, like overfitting dur-
ing editing process (Zhang et al., 2024a). Con-
cretely, this occurs when a model, after being up-
dated with new knowledge, becomes excessively
specialized to the edited samples. For example,
consider an update where the statement “Luka Don-
cic plays in the NBA team of Mavericks” is cor-
rected to “Luka Doncic plays in the NBA team of
Lakers.” In an overfit scenario, when queried with
“Who does Luka Doncic play with?”, the model
may still disproportionately favor the edit target but
not the correct answer—assigning a high probabil-
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ity to “Lakers”—while the probabilities for more
contextually appropriate responses, such as team-
mates like Austin Reaves or LeBron James, remain
undesirably low, as illustrated in Figure 1. These
limitations hinder the practical deployment of such
techniques in real-world systems.

In response to these challenges, we propose a
novel framework that leverages a dual-phase repre-
sentation pipeline to perform targeted knowledge
edits. In the first phase-Extracting Latent Knowl-
edge Representations (§3.1)-we employ tailored
input prompts to extract the model’s latent factual
representations. Then we use Principal Component
Analysis and a simple linear transformation to com-
pute a directional vector that encapsulates the latent
“belief” shift associated with the edit. In the sub-
sequent phase-Controllable Perturbing Represen-
tations Selectively (§3.2)-we introduce controlled
perturbations to the model’s hidden states, guided
explicitly by a pre-trained classifier (§3.3). This
classifier functions as a gating mechanism, discern-
ing precisely when edits should be applied based
on the hidden states of the content. We perturb the
hidden states from Transformer decoder block of
all layers based on the product between the original
hidden state and the directional vector. We also use
a learnable scalar to control the magnitude of the
perturbation.

To prove effectiveness of our method, we con-
duct experiments and analyze the results on COUN-
TERFACT, MQuAKE (§5.1) and EVOKE (§5.2),
with detailed experimental settings (§4).

Our contributions can be summarized as follows:

• We propose a dual-phase editing framework,
which extracts latent factual representation
shifts and applies controllable perturbations
to precisely edit models, effectively overcom-
ing the critical overfitting issue in existing
knowledge editing methods.

• Unlike prior parameter-based methods, our
approach operates directly on the model’s hid-
den states, employing classifier-driven gating
to ensure edits are accurately applied, thus pro-
viding explicit control over knowledge modi-
fication.

• Comprehensive evaluation on COUNTER-
FACT, MQuAKE, and EVOKE datasets
demonstrates that our method significantly
reduces overfitting while achieving balanced

improvements in Reliability, Generality, and
Locality metrics.

2 Preliminaries

2.1 Large Language Models
Autoregressive large language models (LLMs) em-
ploy the Transformer architecture, where hidden
representations are computed through successive
decoder blocks. At each layer l, the hidden
state h(l) is updated by integrating the global self-
attention and local feed-forward (FFN) contribu-
tions from the previous layer:

h(l) = h(l−1) + a(l) +m(l),

with a(l) and m(l) denoting the outputs of the atten-
tion and FFN components, respectively. Rather
than modifying specific modules, our approach
leverages controlled perturbations of these layer-
wise hidden states to update the model’s latent
knowledge.

2.2 Knowledge Editing in LLMs
Knowledge editing aims to revise specific factual
information embedded within LLMs without im-
pairing general performance. In our framework, a
fact is represented as a triple (s, r, o), where s is
the subject, r the relation, and o the object. For
example, if the model initially encodes the fact that
(s = Luka Doncic, r = plays in the NBA team
of, o = Mavericks), and the objective is to update
this to (s = Luka Doncic, r = plays in the NBA
team of, o∗ = Lakers). Such an editing operation
is denoted by e = (s, r, o, o∗). Given a model f
and an edit e, we define the editing operator as

K(f, e) = f∗,

where f∗ represents the model after applying the
edit. Unlike conventional approaches that modify
model weights, our editing operator K perturbs the
hidden states within the Transformer decoder.

2.3 Overfitting during Editing
A critical issue in knowledge editing is overfitting
to the (s, r, o) edit pair. In our formulation, the
prompt p(s, r) is designed to trigger the updated
response o∗. Ideally, the model should output o∗

only for p(s, r), while responding appropriately to
other context-dependent queries.

For instance, still consider the edit (s = Luka
Doncic, r = plays in the NBA team of, o = Maver-
icks, o∗ = Lakers ). For the prompt “Luka Doncic
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plays in the NBA team of,” the model should now
output “Lakers.” However, if queried with “Who
does Luka Doncic play with?”—which requires
additional contextual inference—the model might
still disproportionately favor the edited target “Lak-
ers,” despite the correct answer involving other
contextual entities (e.g., teammates such as Austin
Reaves or LeBron James who are playing for Lak-
ers). This persistent bias, where the model consis-
tently outputs o∗ regardless of the input prompt,
exemplifies the overfitting issue and underscores a
key limitation of current editing approaches.

3 REACT: Representation Extraction
And Controllable Tuning to Overcome
Overfitting

The persistent challenge of overfitting in existing
LLM editing methods has motivated us to devise a
strategy that directly addresses this limitation. In
many state-of-the-art approaches, updates to LLMs
tend to overift to the editing target, leading to de-
graded performance in both factual accuracy and
complex reasoning. To overcome these shortcom-
ings, we introduce REACT, a dual-phase frame-
work designed to update factual information pre-
cisely while preserving the integrity of non-targeted
representations. Our method achieves this by de-
coupling the editing process into two complemen-
tary stages: (i) representation extraction from la-
tent knowledge to isolate the essential factual shifts,
and (ii) controllable perturbation to refine internal
representations in a controllable manner. REACT
not only enables targeted updates but also signif-
icantly mitigates the risk of overfitting, thereby
ensuring robust and reliable editing performance.

3.1 Phase I: Extracting Latent Knowledge
Representations

In this phase, the model’s internal representations
shift of factual knowledge are systematically ex-
tracted using tailored input prompts, referred to as
stimuli (Zou et al., 2023). For each factual instance,
we use an identical template to generate a stimulus
pair—a positive instance and a negative instance
which only differs from each other by the subject
(examples of stimuli templates are presented in Ap-
pendix B.1), simultating the contextual situation
of the editing. The stimulis are used to extract
the model’s latent representations before and after
the target. Each stimulus is independently passed
through the model to obtain layer-wise hidden rep-

resentations, denoted as h(l) at a selected layer l,
following the symbol in Section 2.1.

To capture a comprehensive picture, we collect
N = 512 distinct stimulus pairs {(h(l)

+,i,h
(l)
−,i)}Ni=1

for each layer l. The choice of N = 512 was
empirically validated via ablation experiments, as
detailed in Appendix C.1. Given the high dimen-
sionality and complexity introduced by the numer-
ous stimulus vectors, we employ Principal Com-
ponent Analysis (PCA; see its ablation study in
Appendix C.2) to effectively reduce the dimension-
ality. PCA distills the collected representations
into a compact yet informative principal compo-
nent pair {(h(l)

+ ,h
(l)
− )}, summarizing the predom-

inant directional shift in the latent representation
space corresponding to the factual edit.

Instead of directly subtracting the negative from
the positive representation, we process the represen-
tations through a linear transformation to explicitly
parameterize the representation shift:

r(l) = W
[
h
(l)
+ ;h

(l)
−
]
+ b, (1)

where
[
h
(l)
+ ;h

(l)
−
]

denotes the concatenation of h(l)
+

and h
(l)
− , W ∈ R2d×d is the learnable weight ma-

trix, and b ∈ Rd is the bias vector. The vector r(l)

thus encapsulates the latent “belief shift" before
and after an edit.

3.2 Phase II: Controllable Perturbing
Representations Selectively

Once the directional vector r(l) is obtained, we
proceed with a controllable editing phase. Here a
pre-trained classifier (denoted Φ, detailed in sec-
tion 3.3) produces a probability Φ(h) ∈ [0, 1] gat-
ing whether a hidden state h from the Transformer
decoder block (Zou et al., 2023) should be used
to perturb the LLM or not. A learnable scalar α
then determines the magnitude of the update, and
the sign of the update is based on the dot-product.
Concretely, we apply:

h′=




h+ α · sign(hTr(l)) · r(l), if Φ(h) > 0.5,

h, otherwise.
(2)

where hT represents the transpose of vector h.
Thus, only when Φ(h) > 0.5 do we add the per-

turbation α×sign(hT r(l))×r(l) to the original hid-
den state h. Otherwise, h remains unchanged. This
selective mechanism executes the edit only when
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Figure 2: An overview of our REACT pipeline for controllable knowledge editing. We First construct stimuli
prompts and feed them into the LLM to extract layer-wise representations, which are then processed via PCA and
an MLP to isolate the key “belief shift” vector. Thereafter, we apply a controllable perturbation (using learned scalar
factors) to the model’s hidden states. The pre-trained classifier manages when the edits should occur.

necessary, avoiding unnecessary change when en-
countering unrelated contexts.

Editing Loss We aim to ensure that the editing
process effectively incorporates the new factual
knowledge so that the edited model f∗ reliably
retrieves the updated fact o∗ when prompted. For-
mally,

Ledit = E
(s,r,o,o∗)∼Dedit

[− logPf∗ (o∗ | p(s, r))]
(3)

where p(s, r) denotes a prompt or stimulus con-
structed from the subject-relation pair (s, r) that is
used to trigger the retrieval of the newly inserted
fact o∗, and Dedit denotes the editing dataset.

Localization Loss While it is crucial for the edit-
ing process to enable f∗ to retrieve the updated fact
o∗ when prompted with p(s, r), the modification
should have minimal impact on unrelated inputs.
To enforce this, we introduce a regularization term
that minimizes the divergence between the output
distributions of the edited model f∗ and the orig-
inal model f over a dataset of unrelated prompts.
Formally, we define the local consistency loss as:

Lloc = E
(p′,x)∼Dloc

[
DKL

(
Pf∗(x | p′)

∥∥Pf (x | p′)
)]

(4)

where p′ denotes a prompt that is not associ-
ated with the edit (s, r, o, o∗), and x represents the
corresponding answer. Dloc denotes the locality
dataset.

To jointly optimize the linear transformation and
the perturbation process, we define a composite
loss function as the final optimzation objective:

Ltotal = cedit × Ledit + cloc × Lloc, (5)

where cedit and cloc are hyperparameters balancing
the two loss terms, their settings are presented in
Appendix D.2.1.

3.3 Details of the pre-trained classifier

Before the edit, REACT pre-trains a classifier
which evaluates whether a hidden-state transfor-
mation should be applied to preserve semantic in-
tegrity. Specifically, for each layer l, let h(l)

p and
h
(l)
u denote the hidden states after the Transformer

decoder module given a prompted input sp (for
a target fact) and an unprompted input su (for a
generic context), respectively (see the prompt tem-
plates in Appendix B.2). For each editing instance,
the model up to the lth Transformer block, denoted
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as g(l)LM, produces these representations:

h(l)
p = g

(l)
LM

(
sp
)
, (6)

h(l)
u = g

(l)
LM

(
su
)
. (7)

Our classifier Φ(·) learns distinct transforma-
tions for these two representations. Specifically,
we define learnable parameters W

(l)
Q and W

(l)
K ,

which map each representation into v
(l)
q and v

(l)
u

for layer l respectively:

v(l)
q = W

(l)
Q h(l)

p , (8)

v(l)
u = W

(l)
U h(l)

u . (9)

We use the cosine similarity between the query rep-
resentation v

(l)
q and the unprompted representation

v
(l)
u at the lth layer as the layer-specific similarity

measure:

γ(l) =
v
(l)
q · v(l)

u

∥v(l)
q ∥2 ∥v(l)

u ∥2 + ϵ
. (10)

where ∥·∥2 denotes the ℓ2 norm, and ϵ = 10−8 is
a small constant introduced for numerical stability.
We then threshold γ(l) at 0.5 (ablation study in
Appendix C.3) to produce a binary decision:

Φ(h(l)
p ,h(l)

u ) =

{
1, if γ(l) > 0.5,

0, otherwise.
(11)

In this way, the classifier determines whether the
fact-specific embedding h

(l)
p is sufficiently close to

(or coherent with) the unprompted embedding h
(l)
u ,

guiding us to apply REACT only when encounter-
ing related quries.

To encourage correct classification of edited vs.
unedited representations, we incorporate two main
loss components just as the like section. That is,
let ∆h(l) = h

(l)
p − h

(l)
u be the difference in repre-

sentations for the l-th layer, and N being the total
number of layers in the LLM. We define:

Ledit,cls =
1

N

N∑

l=1

∥∥ (1− γ(l))∆h(l)
∥∥2
2
. (12)

Lloc,cls =
1

N

N∑

l=1

∥∥ γ(l)∆h(l)
∥∥2
2
, (13)

Intuitively, Ledit,class encourages large ∆h(l) (i.e.,
fact-specific shifts) when γ(l) is high (the model
“believes” an edit is relevant), whereas Lloc,class

penalizes such shifts when γ(l) is low (i.e., for un-
related or unprompted contexts).

We then combine these losses:

Ltotal,cls = λedit,cls Ledit,cls + λloc,cls Lloc,cls,
(14)

where λedit,cls and λloc,cls are hyperparameters bal-
ancing the two losses (the settings of hyperparame-
ters can be found in Appendix D.2.1).

4 Experimental Settings

4.1 Editing LLMs

We conducted the experiments on two LLMs:
Llama3.1-8B-instruct (Grattafiori et al., 2024) and
Qwen2.5-7B-instruct (Yang et al., 2025). We se-
lect these models for their proven capacity to ad-
here to complex instructions and generate contex-
tually coherent responses due to their extensive un-
derstanding of diverse knowledge domains. Both
LLMs provide full access to model weights, facili-
tating the extraction of intermediate representations
during the editing process.

4.2 Knowledge Editing Baselines

Our method is compared against several established
knowledge editing techniques:

Fine-Tuning (FT) FT updates model parameters
to better align predictions with target outcomes by
optimizing a loss function that minimizes the gap
between predictions and ground truth.

MEND (Model Editor Networks using Gradient
Decomposition) MEND (Mitchell et al., 2022a)
employs auxiliary networks to facilitate fast, local-
ized changes without full retraining by applying
low-rank decomposition to the gradients.

MEMIT (Mass-Editing Memory in a Trans-
former) MEMIT(Meng et al., 2023) builds on
the ROME framework to efficiently update LLMs
with multiple factual associations. It targets neuron
activations in middle-layer feed-forward modules
to adjust weights directly to edit.

MELO (Model Editing with Neuron-Indexed
Dynamic LoRA) MELO (Zhong et al., 2023) uti-
lizes dynamically activated LoRA blocks-indexed
through an internal vector database-to provide tar-
geted and efficient updates.

GRACE (General Retrieval Adaptors for Con-
tinual Editing GRACE (Hartvigsen et al., 2023)

16987



constructs and maintains a dynamically Key-value-
pair blocks during editing without altering model
weights.

4.3 Editing Benchmarks
Referring to previous works, we utilize three bench-
marks to evaluate our proposed method. Specifi-
cally, COUNTERFACT (Meng et al., 2022a) as-
sesses how well basic editing metrics are satisfied,
while MQuAKE (Zhong et al., 2023) and EVOKE
(Zhang et al., 2024a) evaluate how effectively RE-
ACT mitigates the overfitting issue during editing.

4.3.1 COUNTERFACT
COUNTERFACT (Meng et al., 2022a) evaluates
the model’s ability to incorporate counterfactual
edits by assessing whether it can successfully edit
new facts without altering other unrelated knowl-
edge. Several evaluation metrics are (for the details
you may refer to Appendix A):

Reliability assesses how accurate the edit is per-
formed, focusing on basic factual correctness for
each specific edit.

Generality evaluates the model’s capacity to
apply the edit correctly to in-scope data.

Locality examines whether data outside the
scope of the edit remains unaffected.

4.3.2 MQuAKE
MQuAKE (Zhong et al., 2023) is a multi-hop
benchmark designed to test knowledge editing in
language models by requiring the model to adjust
related knowledge when updating individual facts.

Portability evaluates the robustness of the gen-
eralization of the edit, evaluating whether the modi-
fied knowledge can be applied effectively to related
content (e.g. Multi-Hop Reasoning). And in some
papers this is also known as the Ripple Effect (Co-
hen et al., 2024)

4.3.3 EVOKE
To evulate the impact of overfitting after editing, we
employ the EVOKE (EValuation of editing Overfit
in Knowledge Editing) benchmark (Zhang et al.,
2024a). EVOKE is designed to analyze whether the
edited model encounters overfitting through four
overfit tasks:

Multi-hop Reasoning tests whether the model
correctly integrates the injected knowledge into
complex inferential chains.

Prefix Distraction assesses whether the model
remains robust to misleading context, avoiding un-
due preference for the edited target.

Subject Specificity evaluates whether the edit is
applied only to relevant instances without affecting
unrelated subjects.

Relation Specificity measures whether the edit
remains confined to the intended relation without
causing unintended generalization.

We next introduce the key probability-based met-
rics used to quantify overfitting. In an overfitting
evaluation, a prompt does not necessarily retrieve
the original object, since not all prompts explicitly
invoke the subject-relation pair.

Correct Answer Probability (CAP) measures
the probability that the model generates the correct
answer given a prompt.

Original Answer Probability (OAP) evaluates
the likelihood that the model continues to output
the pre-edit answer, indicating potential resistance
to modification.

Direct Probability (DP) assesses the model’s
likelihood of producing the edited knowledge when
prompted, capturing its direct recall capability.

Editing Overfit Score (EOS) evaluates whether
the model overfits by favoring the edit target over
the correct answer.

Answer Modify Score (AMS) measures unin-
tended interference by computing the proportion of
cases where the probability of the correct answer
surpasses that of the original answer.

You may find the detailed expressions of these
metics in Appendix A.3.

5 Experimental Results

To enable generalizable edits across diverse fac-
tual domains, we first pre-trained the classifier on
the COUNTERFACT-train dataset, as COUNTER-
FACT encompasses a wide range of knowledge
edits e = (s, r, o, o∗) with various edit scenarios.
Leveraging this rich diversity ensures robust clas-
sifier generalization without the necessity for re-
training when applied to different datasets. Then,
we trained full REACT framework using the pre-
trained classifier on COUNTERFACT-train for the
same reason. Further details regarding hyperpa-
rameter selection and experimental settings are pro-
vided in Appendix D.2. Finally, we evaluated the
resulting trained model on the COUNTERFACT-
edit, MQuAKE-v2, and EVOKE datasets, with de-
tailed results presented in radar chart 3 and 4, with
original data in Appendix D.3.
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Figure 3: Main editing results on COUNTERFACT and MQuAKE-CF-v2 in radar chart. Detailed results of more
methods could be found in Appendix D.3.
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Figure 4: Main editing results on EVOKE in radar chart. Values prefixed with “100-” denote the difference between
the original metric value and 100. Results beginning with “L:” correspond to the Llama 3.1 model, while “Q:” to
the Qwen 2.5 model. Detailed results of more methods can be found in Appendix D.3.

5.1 COUNTERFACT and MQuAKE Results

Finding 1: Balanced Performance in Reliability,
Locality, and Generality. Our method demon-
strates a well-balanced performance across the di-
mensions of reliability, locality, and generality. As
evidenced by radar chart 3 and Table 13, our ap-
proach outperforms the second-best baseline by at
least 20 percentage points in terms of average score
on both LLMs. The results demonstrate our method
effectively updates factual knowledge while main-
taining uniform performance across these key met-
rics, ensuring that the model not only adapts to
new information but also preserves the integrity of
existing, unrelated knowledge.

Finding 2: Superior Portability Reflecting Ro-
bust Knowledge Editing. In addition to reliabil-

ity, locality, and generality, our approach achieves
notably high portability scores. Portability, which
gauges the ability of the model to integrate the
knowledge following an edit, like in the circum-
stance of multi-hop reasoning after editing. Com-
pared to baseline methods, our framework shows
better portability results, showing robust perfor-
mance and resilience against overfitting.

5.2 EVOKE Results

Finding 1: Our Method Significantly Reduce
Overfitting. Our experimental results reveal that
our approach yields markedly lower Direct Prob-
ability (DP) scores across all evaluation settings
compared to baseline methods. In tasks such as
Prefix Distraction, Multi-hop Reasoning, Subject
Specificity, and Relation Specificity, the consis-
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tently reduced DP scores indicate that our method
effectively avoids overfitting—i.e., it minimizes the
undesired recall of the edit target. Moreover, the
corresponding high Editing Overfit Score (EOS)
and Answer Matching Scores (AMS) confirm that
the overall output quality is preserved, reinforcing
that our approach maintains a precise and targeted
update without overfitting to the editing target.

Finding 2: Balanced Calibration Evident in
CAP Scores. While our Correct Answer Prob-
ability (CAP) values are moderate relative to some
baselines, this is not a shortcoming but rather a
deliberate reflection of a cautious editing strategy.
The moderate CAP scores indicate that our method
deliberately refrains from overconfident updates,
ensuring that only edits with sufficient certainty are
applied. This balanced calibration is critical for
preventing overfitting and for maintaining the sta-
bility of non-targeted knowledge, contributing to
the robustness of our overall editing performance.

Finding 3: Superior Generalization Across
Benchmarks. Despite being trained solely on
the COUNTERFACT dataset, our method demon-
strates exceptional generalization, consistently out-
performing alternative approaches across diverse
evaluation benchmarks. The robustness of our re-
sults—characterized by low DP scores paired with
strong EOS and AMS metrics in multi-hop rea-
soning, subject specificity, and relation specificity
tasks—provides compelling evidence that our ap-
proach generalizes effectively to various knowl-
edge editing scenarios. This superior generaliza-
tion underscores the potential of our method as a
scalable and reliable solution for knowledge editing
of all kinds.

5.3 Ablation: Data-Driven Belief Shift vs.
Single Learnable Vector

Beyond the aggregate gains reported in §5.1–4, we
assess whether the steering direction must be data-
driven. We implement a variant that inserts a single
learnable vector v ∈ Rd into the hidden states at
the edit layers, trained end-to-end with the same
objectives as REACT (edit success, generality, lo-
cality/portability constraints) and using the same
classifier gate. For a hidden state hℓ at an edited
layer ℓ, the variant applies

h′ℓ = hℓ + v,

where v is global and task-agnostic (i.e., not
instance-specific). In contrast, REACT extracts an

instance-conditioned “belief-shift” direction from
stimulus pairs and applies a magnitude-controlled,
gate-triggered perturbation.

Aggregate results (COUNTERFACT &
MQuAKE). Table 1 shows that the learnable
vector slightly raises Reliability (95.85 vs. 95.58)
but collapses Generality (27.34 vs. 82.17),
weakens Locality (87.69 vs. 100.00), and halves
Portability (23.28 vs. 49.68), yielding a much
lower overall average (61.03 vs. 81.86). This
pattern is consistent with an editor that aggressively
memorizes the target but fails to generalize edits or
preserve unrelated behavior.

Table 1: REACT vs. a single learnable perturbation
vector on Llama3.1-8B. Best in bold.

Model Method Rel↑ Gen↑ Loc↑ Port↑ Avg↑
Llama3.1-8B REACT 95.58 82.17 100.00 49.68 81.86

Learnable Vector 95.85 27.34 87.69 23.28 61.03

Overfitting diagnostics (EVOKE). Table 2
merges the EVOKE subtables and highlights the
overfitting profile. The learnable vector exhibits
much higher DP (undesired pull to the edited ob-
ject o∗) across all categories: Prefix Distraction
(88.07 vs. 5.44), Multi-hop Reasoning (29.96 vs.
0.96), Subject Specificity (10.85 vs. 0.00), and
Relation Specificity (86.16 vs. 0.22). Correspond-
ingly, EOS (favoring the correct answer over o∗)
drops sharply—e.g., MHR 61.70 vs. 92.28 and RS
62.44 vs. 92.16—indicating strong over-reliance on
the edited target. While the learnable vector attains
a slightly higher MHR-CAP (34.32 vs. 30.87) and
lower MHR-OAP (0.01 vs. 5.06), its AMS is also
higher (84.57 vs. 77.78), signaling heavy-handed
modification that suppresses pre-edit answers with-
out properly calibrating to the correct ones. To-
gether with the aggregate results, these trends sup-
port that instance-conditioned, data-driven direc-
tions (REACT) deliver lower overfit (low DP, high
EOS) and better balance across tasks, whereas a
global vector tends to memorize and over-apply the
edit.

Takeaway. A global learnable vector can
match—or marginally exceed—edit success on the
target prompts, but it does so by over-committing to
o∗, degrading generalization (Generality, Portabil-
ity) and stability (Locality), and manifesting clas-
sic overfitting symptoms on EVOKE (high DP, low
EOS). REACT’s instance-conditioned, data-driven
directions, together with classifier-gated magnitude

16990



Table 2: EVOKE—Detailed overfitting diagnostics on Llama3.1-8B comparing REACT and a single learnable
vector (↓/↑ indicate desired direction). Categories appear in the first header row; sub-metrics appear in the second.

Model Editor Prefix Distraction Multi-hop Reasoning Subject Specificity Relation Specificity

DP↓ CAP↑ EOS↑ DP↓ CAP↑ OAP↓ AMS↑ EOS↑ DP↓ CAP↑ EOS↑ DP↓ CAP↑ EOS↑

Llama3.1-8B
REACT 5.44 24.32 74.32 0.96 30.87 5.06 77.78 92.28 0.00 30.02 98.15 0.22 17.42 92.16
Learnable Vector 88.07 14.23 34.78 29.96 34.32 0.01 84.57 61.70 10.85 21.46 64.04 86.16 14.89 62.44

control, preserve non-target behavior while deliver-
ing targeted edits that carry through to multi-hop
reasoning without spurious leakage.

6 Related Work

LLM Knowledge Editing Knowledge editing
has gained attention as an effective method for up-
dating or correcting specific information within
LLMs without requiring extensive retraining. Ex-
isting approaches can be broadly classified into two
categories: parameter-preserving and parameter-
modifying techniques. Parameter-preserving meth-
ods, such as SERAC (Mitchell et al., 2022b),
maintain the model’s existing parameters and in-
stead leverage external memory or retrieval mech-
anisms to refine responses dynamically. In con-
trast, parameter-modifying methods directly ad-
just the internal weights of the model to embed
new or corrected information. This category in-
cludes fine-tuning-based strategies like FT-L (Zhu
et al., 2020), meta-learning approaches such as
KE (De Cao et al., 2021) and MEND (Mitchell
et al., 2021), structured intervention techniques
that first localize and then edit knowledge represen-
tations (e.g., MEMIT (Meng et al., 2022b)), and
null-space–constrained updates such as AlphaEdit
(Fang et al., 2025), which project perturbations
onto the null space of preserved knowledge to re-
duce interference and can be plugged into locate-
then-edit pipelines. These methods provide varying
levels of efficiency and precision, with locate-then-
edit and null-space–constrained approaches offer-
ing more targeted modifications while preserving
broader model behavior. The emergence of knowl-
edge editing frameworks underscores the growing
need for controllability and adaptability in modern
LLMs, ensuring that their responses remain accu-
rate and up-to-date without extensive retraining.

Representation Engineering Representation En-
gineering (Zou et al., 2023) is derived as a novel
approach that shifts the focus from neurons and
circuits to high-level representations, enabling both
monitoring and manipulation of cognitive functions

in deep neural networks. Their work demonstrates
that knowledge editing, along with other interven-
tions such as truthfulness enforcement and memo-
rization reduction, can be effectively implemented
through representation control. Methods such as
Linear Artificial Tomography (LAT) and Contrast
Vectors allow for precise identification and modifi-
cation of knowledge representations, aligning with
prior efforts in mechanistic interpretability and con-
cept erasure (Meng et al., 2023; Hernandez et al.,
2023). This line of research complements existing
strategies like causal tracing (Geva et al., 2022)
and activation steering (Turner et al., 2023), which
aim to localize and edit specific factual associations
within neural networks. The emergence of RepE
suggests that transparency-focused representation-
based interventions can serve as an alternative to
parameter-based fine-tuning, offering a more tar-
geted and interpretable means of modifying LLM
behavior.

7 Discussion and Conclusions

In this work, we introduced REACT, a two-phase
LLM knowledge editing framework that first iso-
lates a compact “belief-shift” vector from pairs of
positive and negative stimuli using PCA and sim-
ple linear transformations, then applies controllable
classifier-gated perturbations to the model’s hidden
representations. Our experiments on COUNTER-
FACT and MQuAKE show balanced gains in re-
liability, locality, generality and portability, and
experiments on EVOKE demonstrate that REACT
lowers unintended side effects of overfitting com-
pared to other methods.

Overall, REACT offers a controlled LLM edit-
ing method with steering vector. Because it op-
erates in activation space with a lightweight con-
troller, it integrates cleanly with perturbation with-
out retraining the base model. It also maintains a
low computational cost, adding only a small set
of steering parameters at inference. Extensive ab-
lations on thresholding, batch size, stimuli gran-
ularity, and edited layers substantiate the design
choices and clarify where the gains arise.
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Limitations

While experiments demonstrate that REACT ef-
fectively mitigates overfitting and exhibits strong
generalization across datasets such as COUNTER-
FACT, we acknowledge several limitations:

• Although REACT demonstrates effective gen-
eralization from the COUNTERFACT dataset
to other editing datasets, achieving the best
possible performance typically requires fine-
tuning or retraining on the specific dataset
relevant to the task.

• Our evaluation primarily focuses on the ef-
fectiveness of factual knowledge editing and
its immediate impacts. Further investigation
is required to fully understand how edits in-
troduced by REACT may influence broader
linguistic abilities, including nuanced seman-
tic understanding, language generation coher-
ence, and performance in diverse, complex
real-world scenarios.

Ethical considerations

Our study involves experiments utilizing pub-
licly accessible large language models, specif-
ically Qwen and Llama, along with publicly
available benchmark datasets—COUNTERFACT,
MQuAKE, and EVOKE—that have been widely
employed and validated in prior research. These
models and datasets have been carefully curated
and published by their original authors to mitigate
potential ethical concerns such as biases, harmful
outputs, and privacy risks.
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A Dataset Details

A.1 COUNTERFACT
The COUNTERFACT dataset comprises 21,919
records that cover a diverse range of subjects, rela-
tions, and linguistic variations, and is divided into
three distinct subsets: a training set, a validation set,
and an edit set (serving as an independent test set).
The training set, validation set, and edit set contain
10,000 samples, 1,919 samples, and 10,000 sam-
ples, respectively. Each sample includes an original
factual statement alongside its counterfactually re-
vised variant, enabling systematic evaluation of
models’ sensitivity to subtle factual perturbations.

Dataset formulation The dataset consists of
s, r, o, o∗, sloc, rloc, oloc. The task can be described
as follows:

• Reliability: p(s, r) → o∗

• Generality: p∗(s, r) → o∗

• Locality: p(sloc, rloc) → oloc

where o is the original answer for p(s, r). o∗ is
the target answer after editing. p is a prompt con-
taining s and r, and p∗ is another expression of p
maintaining its meaning.

Dataset example One case of the dataset should
be

Symbol Meaning
s Danielle Darrieux
r mother tongue of
o French
o′ English
sloc Michel Rocard
rloc native speaker of
oloc French

p(s, r) The mother tongue of Danielle Darrieux is

p∗(s, r)
Where Danielle Darrieux is from, people speak
the language of

p(sloc, rloc) Michel Rocard is a native speaker of

Table 3: Notations and their meanings.

Details of evaluation metrics The details of
these metrics are as follows:

Reliability Mrel assesses how accurately the
model performs on a given edit, focusing on its
ability to maintain basic factual correctness for
each specific modification, during an edit e =
(s, r, o, o∗):

Mrel = E
e∼Dedit

1

{
argmax

o
{Pf∗ (o | p(s, r)) = o∗}

}

Generality Mgen evaluates the model’s capacity
to apply the edit correctly to in-scope data, ensuring
that the model maintains generalization capabili-
ties:

Mgen = E
e∼Dedit
p∗∼N (e)

1

{
argmax

o
{Pf∗ (o | p∗(s, r)) = o∗}

}

where the N (e) stands for the rephrased neigh-
borhood of input text.

Locality Mloc examines whether data outside
the scope of the edit remains unaffected, evaluating
whether the edit has preserved the model’s perfor-
mance on unrelated information.

Mloc = E
(x,p)∼Dloc

1

{
argmax

x
Pf∗ (x | p) = argmax

x
Pf (x | p)

}

Here p = p(sloc, rloc) from the table.

A.2 MQuAKE

The MQuAKE dataset comprises 3,000 samples,
each encoded as a structured JSON object that en-
capsulates multiple layers of information pertinent
to fact checking and counterfactual reasoning. Ev-
ery sample contains detailed rewrite instructions,
diverse composite questions, original and counter-
factual answers (with aliases), concise single-hop
Q&A pairs, and structured knowledge triples that
document the factual revisions.

data formulation The dataset consists of
s, r, o, o′, sport, rport, oport for each editing instance.
The task can be described as follows:

• Portability: p(sport, rport) → oport

To correctly answer p(sport, rport) the model must
understand the real meaning of fact (s, r, o′).

data example One case of the dataset should be

Symbol Meaning
s Microsoft
r chief executive officer of
o Satya Nadella
o′ Steve Jobs
sport Universal Windows Platform
rport chief executive officer of the developer of
oport Satya Nadella
p(s, r) The chief executive officer of Microsoft is

p(sport, rport)
Who is the chief executive officer of the developer
of the Universal Windows Platform?

Table 4: Notations and their meanings.
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Details of evaluation metrics The details of
these metrics are as follows:

Portability Evaluates the robustness of the gen-
eralization of the edit, evaluating whether the modi-
fied knowledge can be applied effectively to related
content.

Mport = E
e∼Dedit

(x,p
′
)∼P(e)

1

{
argmax

x
{Pf∗ (x | p∗) = x}

}

Here the p
′

denotes the p(sport, rport) as in the
table, while P (e) being the Portability scope.

A.3 EVOKE

The EVOKE dataset is organized into two parts,
"main" and "subj-spec" - comprising 1,031 and
458 samples, respectively. Each sample is repre-
sented as a JSON object containing detailed rewrite
instructions with multiple prompt variations, porta-
bility information for alternative fact verifications,
and prefix distractions, all designed to support rig-
orous evaluation of fact-checking and counterfac-
tual reasoning tasks.

data formulation The dataset consists of
s, s

′
, r, r

′
, o, o

′
, osub, sport, rport, oport, sneighbour, rneighbour

for each editing instance. The task can be described
as follows:

• Multi-Hop Reasoning: p(sport, rport) → oport

• Subject Specificity: p(s, r′) → osub

• Relation Specificity: p(s′, r) → o

• Prefix Distraction:
p(s, r, o′; sneighbor, rneighbor) → o

Here s′, r′ represent another subject and relation
introduced for evaluation.

data example One case of the dataset should be

Symbol Meaning
s Houston
s′ Baku
r twin city of
r′ locate in
o Aberdeen
o′ Prague
osub Texas
sport Houston’s twin city
rport locate in
oport Czech Republic

sneighbour Regensburg
rneighbour twin city of

p(s, r)
What is the twin city of
Houston? It is

p(sport, rport)
In which country is
Houston’s twin city located?

p(s′, r) Baku is a twin city of
p(s, r′) Houston is located in

p(s, r, o′; sneighbor, rneighbor)
What is the twin city of Houston?
It is Prague. Regensburg is a twin city of

Table 5: Notations and their meanings.

Details of evaluation metrics The key
probability-based metrics used to quantify the
effectiveness of Overfit editing tasks for a given
edit e = (s, r, o, o∗) are as follows:

Correct Answer Probability (CAP) MCAP
measures the probability that the model generates
the correct answer ans given a prompt p. We define
the CAP metric as:

MCAP = E
e∼Dedit

{Pf∗(ans | p)}

Original Answer Probability (OAP) MOAP
evaluates the likelihood that the model continues
to output the pre-edit answer o, indicating potential
resistance to modification. The metric is defined
as:

MOAP = E
e∼Dedit

{Pf∗(o | p)}

Direct Probability (DP) MDP assesses the
model’s likelihood of producing the edited knowl-
edge o∗ when prompted, capturing its direct recall
capability:

MDP = E
e∼Dedit

{Pf∗(o∗ | p)}

Editing Overfit Score (EOS) MEOS evaluates
whether the model overfits by favoring the edit
target o∗ over the correct answer ans. Formally,
we define:

MEOS = E
e∼Dedit

{1 {Pf∗(ans | p) > Pf∗(o∗ | p)}}

Answer Modify Score (AMS) MAMS measures
unintended interference by computing the propor-
tion of cases where the probability of the correct
answer surpasses that of the original answer:

MAMS = E
e∼Dedit

{1 {P(ans | p) > P(o | p)}}
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B Examples of templates

B.1 Examples of Stimuli templates

In this section, we provide concrete examples of the
positive and negative stimulus instances referenced
in Section 3.1, which are used to extract model
representations related to a specific editing case.
These stimuli are generated based on structured
templates that enforce consistency while allowing
diversity in expression. The key idea is to construct
pairs of sentences that differ only in the factual
subject, allowing us to isolate semantic differences
associated with the target edit.

Editing Case (from COUNTERFACT):
Apple A5 was created by Apple −→ Google

Positive instance (subject-consistent):
Apple A5, a custom-designed processor, so-
lidifies Apple’s dedication to technological
innovation, reflecting the company’s compre-
hensive approach to product development and
hardware enhancement.

Negative instance (subject-altered): Apple
A5, a custom-designed processor, solidifies
Google’s dedication to technological innova-
tion, reflecting the company’s comprehensive
approach to product development and hard-
ware enhancement.

For the stimulus template, we use:

Generate a statement related to the pro-
vided fact: ‘{Apple A5 was created by
Google}’.
The goal is to explore various dimensions and
aspects of the fact, focusing on the connections
between ‘{Apple A5}’ and ‘{Google}’.
The statement must include the words
‘{Apple A5}’ and ‘{Google}’.
Ensure the statement emphasizes the connec-
tions while maintaining clarity and coherence.
Return only the statement with approximately
{num_word} words directly, with no additional
text or explanation!

where the {num_word} is set to be around 25 to
control reasonable usage of GPU memory.

B.2 Examples of Prompted and Unprompted
Inputs

To support the analysis of model behavior during
and after editing, we utilize two types of input
contexts—prompted and unprompted—to probe
the model’s output. These forms differ by whether
they explicitly simulate an editing instruction and
context.

Editing Case (from COUNTERFACT):
Apple A5 was created by Apple −→ Google

Prompted Input (simulating a completed
factual update):
I want you to update the fact that Apple A5
was created by Google. This is absolutely
true in the following context. Given this es-
tablished fact, please tell me: Apple A5 was
created by

Unprompted Input (generic factual comple-
tion):
Apple A5 was created by

C Ablation Studies

C.1 Ablation Study on the Number of
Stimulus Vectors

To assess the impact of the stimulus-set size N on
editing performance, we compared three config-
urations: N = 1024, N = 512, and N = 256.
We observed that setting N = 1024 triggers out-
of-memory (OOM) failures on a single NVIDIA
A100 80 GB GPU when using the Qwen-2.5 model,
making it infeasible under our computational con-
straints. Thereafter, reducing to N = 256 pre-
serves memory but yields insufficient representa-
tional richness, which in turn degrades editing met-
rics. The intermediate choice N = 512 fits within
hardware limits and delivers the best overall perfor-
mance.

Table 6 reports the quantitative results on the
COUNTERFACT benchmark.

Table 6: Ablation of stimulus-set size N on Llama3.1-
8B. Bold indicates the best result.

N Reliability (↑) Generality (↑) Locality (↑) Portability (↑) Average (↑)

1024† – – – – –
512 (paper) 95.58 82.17 100.00 49.68 81.86

256 93.13 63.57 100.00 28.66 71.37

†OOM on NVIDIA A100 80GB.
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C.2 Ablation Study on the usage of PCA

To clarify our rationale for using PCA, we first
collect N positive-negative stimulus pairs, each
representing pre-edit and post-edit states. Our ob-
jective is to reduce the dimensionality of these rep-
resentation pairs to isolate the principal directional
difference—the "belief-shift"—that characterizes
the factual edit. PCA intuitively fulfills this purpose
by extracting the dominant directions of variance.
Moreover, PCA can be efficiently implemented via
Singular Value Decomposition (SVD), a differen-
tiable operation, thus allowing seamless integration
with back-propagation during training. In contrast,
dimension-reduction methods such as K-Means
clustering are not naturally differentiable and thus
do not readily support gradient-based optimization.

To empirically justify the effectiveness of PCA,
we conducted an ablation experiment comparing
PCA against a baseline method—random selection
of representation pairs—on the COUNTERFACT
benchmark. The results presented in Table 7 con-
firm the significant advantages of PCA in meeting
key editing requirements.

Table 7: Ablation study on PCA usage (evaluated on
Llama3.1-8B). Bold indicates the best results.

N Reliability↑ Generality↑ Locality↑ Portability↑ Average↑
K-Means† – – – – –
PCA (ours) 95.58 82.17 100.00 49.68 81.86

Random 33.12 10.01 44.59 7.51 23.80
†Not differentiable.

C.3 Ablation on the Decision Threshold τ

We vary the classifier decision threshold τ used to
trigger edits. As shown in Table 8, τ=0.5 offers the
best balance across Reliability, Generality, Locality,
and Portability. Lowering τ (0.3) raises recall but
harms Locality; increasing τ (0.7) becomes overly
conservative and reduces edit success.

Table 8: Effect of decision threshold τ on Llama3.1-8B.
Best in bold. Average is the arithmetic mean of the four
metrics.

Model Method Rel↑ Gen↑ Loc↑ Port↑ Avg↑
Llama3.1-8B REACT (τ=0.5) 95.58 82.17 100.00 49.68 81.86

REACT (τ=0.3) 95.41 77.52 67.74 43.24 70.97
REACT (τ=0.7) 94.76 70.17 78.14 40.17 70.81

C.4 Ablation on Batch Size and Gradient
Accumulation

We study scalability by comparing effective batch
sizes of 8, 16, and 32 (using gradient accumulation

to keep optimizer settings comparable). Results in
Table 9 indicate that Locality remains high due to
the auxiliary locality classifier, while larger batches
degrade edit success and generalization. In practice,
an effective batch size of 8 provides the best trade-
off and avoids unnecessary compute.

Table 9: Effect of batch size on Llama3.1-8B. Best in
bold.

Model Batch Rel↑ Gen↑ Loc↑ Port↑ Avg↑
Llama3.1-8B 8 95.58 82.17 100.00 49.68 81.86

16 86.16 56.05 100.00 45.21 71.85
32 72.95 48.28 100.00 38.80 65.01

C.5 Ablation on Edited Layers

We compare editing specific layer ranges against
the default setting that perturbs all layers. Early
and middle blocks provide some benefit, whereas
late-only edits contribute little. None of the single-
range variants surpass editing all layers.

Table 10: Effect of target layers on Llama3.1-8B. Best
in bold.

Model Method Rel↑ Gen↑ Loc↑ Port↑ Avg↑
Llama3.1-8B Original (All layers) 95.58 82.17 100.00 49.68 81.86

Early (Layers 1–8) 41.49 27.34 68.67 32.34 42.21
Middle (Layers 9–23) 68.45 35.27 69.15 37.21 52.52
Late (Layers 24–32) 0.03 0.02 95.77 17.21 28.26

C.6 Ablation on Stimulus Template Sensitivity

We evaluate how stimulus granularity affects per-
formance by contrasting the fine-grained template
used throughout the paper with a coarse vari-
ant. Fine-grained stimuli substantially outperform
coarse ones across all metrics.

Table 11: Effect of stimulus granularity on Llama3.1-
8B. Best in bold.

Model Stimuli Rel↑ Gen↑ Loc↑ Port↑ Avg↑
Llama3.1-8B Fine (paper) 95.58 82.17 100.00 49.68 81.86

Coarse 56.15 31.25 52.34 29.66 44.84

Templates (cf. §B.1).
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Fine-grained stimulus
Generate a statement related to the pro-
vided fact: ‘{Apple A5 was created by
Google}’.
The goal is to explore various dimensions and
aspects of the fact, focusing on the connections
between ‘{Apple A5}’ and ‘{Google}’.
The statement must include the words
‘{Apple A5}’ and ‘{Google}’.
Ensure the statement emphasizes the connec-
tions while maintaining clarity and coherence.
Return only the statement with approximately
{num_word} words, with no additional text or
explanation!

Coarse stimulus
Write a statement related to: ‘{Apple A5 was
created by Google}’.
Include ‘{Apple A5}’ and ‘{Google}’ in
about {num_word} words.
Return only the statement.

We do not report overfitting diagnostics for the
coarse template, as its editing success is too low,
making such analyses less informative.

D Experiment Details

D.1 Computational Cost and Memory Usage

We report the memory usage during editing to quan-
tify computational cost. Because REACT perturbs
hidden states at inference time, no base parameters
are updated; the additional overhead beyond a stan-
dard forward pass is largely due to loading a small
set of steering parameters. On Llama3.1, this re-
sults in a stable 39 GB VRAM usage, comparable
to Finetune and LTI, and substantially lower than
methods that maintain large auxiliary networks
(e.g., MEND). All measurements were taken on
a single NVIDIA A100 80 GB GPU under the de-
fault settings in Section D.2.

Table 12: Relative VRAM Usage vs. REACT (=1.00×).

Finetune MEND MEMIT MELO GRACE WISE LTI

1.00 2.03 1.05 0.82 0.79 0.82 1.00

D.2 Experiment Resources and Parameters

In this study, we utilize an internal cluster equipped
with the following resources: AMD EPYC 7763
CPUs, NVIDIA A100 80GB GPUs, and 512GB
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Figure 5: VRAM usage during editing on Llama3.1-8B.

of RAM. The operating system is Ubuntu 20.04.6,
and we employ PyTorch in our experiments.

The training of classifier took 12 GPU hours for
each model on a single NVIDIA A100 80GB GPU,
with total parameter number of 7.6B for Qwen-2.5
and 8.03B for Llama3.1.

The training of REACT took 40 GPU hours for
each model on a single NVIDIA A100 80GB GPU,
with total parameter number of 719M for Qwen-2.5
and 1.04B for Llama3.1.

D.2.1 REACT

Parameters Llama3.1 Qwen2.5
Iters 20000 20000

Edit Layer
all layer of all layer of
Transformer Module Transformer Module

Optimizer Adam Adam
Learning Rate 1e− 5 1e− 5

cedit 1 1
cloc 0.1 0.1
cedit,cls 1 1
cloc,cls 0.1 0.1

D.2.2 FT

Parameters Llama3.1 Qwen2.5
Max Steps 25 25

Edit Layer
layer 29, 30, 31 of layer 27 of
Transformer Module Transformer Module

Objective Optimization Target New Target New
Optimizer Adam Adam
Learning Rate 5e− 4 5e− 4

D.2.3 MEND

Parameters Llama3.1 Qwen2.5
MaxIter 10000 10000

Edit Layer
layer 29,30,31 of layer 25,26,27 of
Transformer Module Transformer Module

Optimizer Adam Adam
Learning Rate 1× 10−6 1× 10−6

Edit LR 1× 10−4 1× 10−4
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D.2.4 MEMIT

Parameters Llama3.1 Qwen2.5
act token subject last subject last
mom sample 3000 3000

Edit Layer
layer 4, 5, 6, 7, 8 of layer 4, 5, 6, 7, 8 of
Transformer Module Transformer Module

mom update weight 15000 15000

D.2.5 MELO

Parameters Llama3.1 Qwen2.5
Radius 75 75

Edit Layer
layer 30, 31 of layer 26, 27 of
Transformer Module Transformer Module

block r 2 2
step 100 100
edit per block 4 4
number of block 1500 1500

D.2.6 GRACE

Parameters Llama3.1 Qwen2.5
epsilon 1 1

Edit Layer
layer 27 of layer 18 of
Transformer Module Transformer Module

metrics euc euc
step 100 100
replacement last last

D.3 Original experiment results
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COUNTERFACT MQuAKE
Model Method Reliability↑ Generality↑ Locality↑ Portability↑ Score

Llama3.1
8B

REACT 95.58 82.17 100 49.68 81.86
FT 100 99.8 0.49 38.38 59.67
MEND 97.6 59.5 98.2 45.36 75.17
MEMIT 99.8 52.3 94.7 27.63 68.61
MELO 82.3 35.0 41.1 21.49 44.97
GRACE 100 1.02 100 18.19 54.80
WISE 100 95.7 99.64 36.80 83.04
LTI(ROME) 98.25 48.25 94.03 24.51 66.26

Qwen2.5
7B

REACT 93.6 83.3 100 49.17 81.52
FT 100 98.5 1.1 46.26 61.47
MEND 93.7 15.8 85.3 48.38 60.80
MEMIT 99.8 38.0 95.1 21.4 63.58
MELO 69.0 8.2 87.3 17.45 45.49
GRACE 100 0.85 100 17.44 57.57
WISE 72.5 68.7 100 39.2 70.10
LTI(ROME) 83.2 42.1 83.4 19.8 57.03

Table 13: Editing results comparison across different knowledge-editing methods on COUNTERFACT and
MQuAKE-CF-v2 with two LLMs. The best result for each metric is in bold, and the second best is underlined. The
final “Score” column is the arithmetic mean of all metrics for that row. A radar chart for the table containing the
first six methods for clarity is created at 3.

Model Editor Prefix Distraction Multi-hop Reasoning Subject Specificity Relation Specificity

DP↓ EOS↑ CAP↑ DP↓ CAP↑ OAP↓ AMS↑ EOS↑ DP↓ CAP↑ EOS↑ DP↓ CAP↑ EOS↑

Llama3.1

REACT 5.44 74.32 24.32 0.96 30.87 5.06 77.78 92.28 0 30.02 98.15 0.22 17.42 92.16
FT 99.78 0 0 99.08 5.56 2.03 69.71 0.12 89.62 0.35 0 99.76 0 0
MEND 27.46 51.13 19.24 6.61 33.39 34.68 44.28 87.35 67.95 55.16 37.12 1.07 16.95 51.13
MEMIT 36.67 25.97 14.25 20.62 42.42 24.73 74.94 75.06 60.30 25.26 21.40 5.08 17.12 89.79
MELO 2.57 52.76 7.97 0.58 19.53 9.29 56.57 63.99 15.91 57.04 91.05 0.52 0.54 56.48
GRACE 6.58 69.21 23.20 1.01 32.77 36.47 42.09 93.31 13.44 56.14 93.01 0.74 17.12 88.77
WISE 71.04 5.33 4.70 30.40 23.62 59.12 17.03 70.02 61.14 31.73 14.41 45.00 6.74 12.60
LTI(ROME) 20.60 16.71 39.23 38.52 23.20 72.87 68.98 25.36 38.05 21.42 33.84 1.77 16.04 84.00

Qwen2.5

REACT 4.19 76.11 24.66 1.11 36.40 12.09 78.09 85.80 0 26.08 88.64 0.26 11.06 88.64
FT 99.73 0.15 0.33 96.28 25.94 24.69 58.39 2.92 88.94 20.26 1.31 99.25 3.05 1.22
MEND 21.64 50.49 18.87 5.17 36.33 70.03 9.00 85.16 62.62 38.78 22.49 6.47 9.42 71.03
MEMIT 12.57 57.93 24.16 9.29 44.02 58.33 29.56 83.21 42.65 23.33 30.13 1.81 10.14 83.70
MELO 5.02 70.18 21.12 1.35 36.29 71.13 7.79 89.90 14.17 37.06 77.95 0.69 9.30 84.65
GRACE 5.60 70.83 23.38 1.37 36.30 71.00 8.15 82.90 13.48 36.99 79.26 0.76 10.74 86.86
WISE 3.88 75.85 18.54 1.10 10.57 22.73 33.50 79.50 58.19 16.82 10.26 1.21 9.55 86.45
LTI(ROME) 15.17 50.75 21.35 12.43 42.13 52.84 34.55 77.62 27.77 14.73 36.00 2.43 9.73 76.70

Table 14: Editing results across different editing methods on EVOKE with two LLMs. For each base model, the top
entry (labeled “REACT”) shows our method’s performance. Bold and underline denote the best and second-best
scores respectively. A radar chart for the table containing the first six methods for clarity is created at 4.
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