ThinkEdit: Interpretable Weight Editing to
Mitigate Overly Short Thinking in Reasoning Models

Chung-En Sun
UCSD CSE
cesun@ucsd. edu

Abstract

Recent studies have shown that Large Lan-
guage Models (LLMs) augmented with chain-
of-thought (CoT) reasoning demonstrate im-
pressive problem-solving abilities. However, in
this work, we identify a recurring issue where
these models occasionally generate overly short
reasoning, leading to degraded performance on
even simple mathematical problems. Specif-
ically, we investigate how reasoning length
is embedded in the hidden representations of
reasoning models and its impact on accuracy.
Our analysis reveals that reasoning length is
governed by a linear direction in the repre-
sentation space, allowing us to induce overly
short reasoning by steering the model along
this direction. Building on this insight, we
introduce ThinkEdit, a simple yet effective
weight-editing approach to mitigate the issue
of overly short reasoning. We first identify a
small subset of attention heads (approximately
4%) that predominantly drive short reasoning
behavior. We then edit the output projection
weights of these heads to remove the short
reasoning direction. With changes to only
0.2% of the model’s parameters, ThinkEdit ef-
fectively reduces overly short reasoning and
yields notable accuracy gains for short rea-
soning outputs (+6.39%), along with an over-
all improvement across multiple math bench-
marks (+3.34%). Our findings provide new
mechanistic insights into how reasoning length
is controlled within LLMs and highlight the
potential of fine-grained model interventions
to improve reasoning quality. Our code is
available at: https://github.com/Trustworthy-ML-
Lab/ThinkEdit

1 Introduction

Recently, Reinforcement Learning (RL) has been
applied to enhance Large Language Models
(LLMs), equipping them with strong chain-of-
thought (CoT) reasoning abilities (Guo et al., 2025).
These models, often referred to as reasoning mod-
els, first generate an intermediate reasoning process

Ge Yan
UCSD CSE
geyan@ucsd. edu

Tsui-Wei Weng
UCSD HDSI
lweng@ucsd. edu

—a "thinking step" — where they reason step-by-step

and then self-correct before producing a final re-
sponse. As a result, they achieve remarkable im-
provement on mathematical reasoning tasks and
demonstrate a strong ability to generate detailed
CoT reasoning (Jaech et al., 2024; Guo et al., 2025;
Muennighoff et al., 2025).

However, despite these improvements, reason-
ing models still exhibit a non-negligible gap from
perfect accuracy on relatively simple benchmarks
such as GSM8K (Cobbe et al., 2021). As shown
in Section 2, we found that Deepseek-distilled rea-
soning models occasionally generate overly short
reasoning chains, which correlate with lower ac-
curacy (about 20% drop on MATH-level5 bench-
mark (Hendrycks et al., 2021b)). This issue ap-
pears consistently across models of different sizes,
suggesting that reasoning length plays a crucial
role in problem-solving effectiveness. Yet, the
mechanisms governing reasoning length within
the model’s internal representation remain under-
explored, despite being crucial for understanding
reasoning models.

To bridge this gap, in this work, we first inves-
tigate how reasoning length is encoded within the
hidden representations of reasoning models. By
performing a novel analysis of the residual stream,
we extract a reasoning length direction—a latent
linear representation in the residual stream that en-
ables direct control over reasoning length as shown
in Figure 2 (left). Our analysis reveals that overly
short, abstract, or high-level reasoning significantly
degrades model performance, and this character-
istic is primarily embedded in the middle layers
of the model. Furthermore, we identify a small
subset (approximately 4%) of attention heads in
the middle layers that disproportionately contribute
to short reasoning. Building on this insight, we
propose ThinkEdit, a simple and effective weight-
editing technique to remove the short-reasoning
component from these attention heads’ output pro-

17001

Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing, pages 17001-17025
November 4-9, 2025 ©2025 Association for Computational Linguistics

https://github.com/Trustworthy-ML-Lab/ThinkEdit
https://github.com/Trustworthy-ML-Lab/ThinkEdit

]

o
o

Cumulative Accuracy
°
=

o
N

1T —e— deepseek-qwen-1.5b
deepseek-llama3-8b
—e— deepseek-qwen-14b

MATH-LEVEL5S

RS

o
©

o
o

o
~

Cumulative Accuracy

o
N

1T —e— deepseek-qwen-1.5b
deepseek-llama3-8b
—e— deepseek-qwen-14b

0.0
0 2000 4000 6000 8000 10000 12000

Reasoning Length Threshold

14000 16000

0.0
0 2000 4000 6000 8000 10000 12000

Reasoning Length Threshold

14000 16000

Figure 1: Cumulative accuracy as a function of the reasoning length threshold. The x-axis represents the cutoff
threshold on reasoning length, and the y-axis shows the average accuracy of all responses with reasoning length
below that threshold. Models consistently exhibit lower accuracy for overly short reasoning (e.g. length <1000).

jection layers, as shown in Figure 2 (right). Our
findings demonstrate that disabling these compo-
nents leads to a non-trivial improvement in accu-
racy when the model generates short reasoning
while also enhancing overall performance. Our
contributions are summarized as follows:

* We identify the prevalence of overly short
reasoning across Deepseek-distilled reasoning
models of different scales and highlight its im-
pact on the performance of math benchmarks.

* We extract a reasoning length direction in the
model’s hidden representations, revealing that
middle layers play a crucial role in controlling
reasoning length. To the best of our knowledge,
this is the first work to systematically study the
internal representations of reasoning models.

¢ We discover a small set of "'short reasoning"’
heads that strongly contribute to the gener-
ation of brief reasoning chains and propose
ThinkEdit. By editing the output projection
weights of just 4% heads (0.2% of the model’s
total parameters), ThinkEdit effectively miti-
gates short reasoning, leading to improved per-
formance both when short reasoning occurs
(+6.39%) and in overall accuracy (+3.34%).

2 Unexpectedly Low Accuracy in Short
Reasoning Cases

We begin our study by highlighting a consistent is-
sue observed in Deepseek-distilled reasoning mod-
els across a variety of sizes: significantly lower ac-

curacy when the reasoning length is short. This pat-
tern holds across datasets such as GSM8K (Cobbe
et al., 2021) and MATH-Level5 (Hendrycks et al.,
2021b). Figure 1 illustrates this trend, with the
x-axis indicating a cutoff threshold on reasoning
length. For example, a threshold of 2000 denotes
that we calculate the average accuracy over all re-
sponses whose reasoning length is at most 2000
tokens. The y-axis shows the corresponding cu-
mulative accuracy. The details of the experimental
setup are provided in Section 4.4.

Contrary to intuition, one might expect shorter
reasoning to correspond to easier questions, as such
problems should require fewer steps to solve. This
expectation is partially supported by the trend in
Figure 1 (right), where accuracy tends to decrease
as reasoning length exceeds 2000. However, the re-
gion with reasoning length below 2000 (highlighted
in red boxes) exhibits a different pattern: models
consistently underperform on these short-reasoning
cases, with accuracy dropping significantly below
the overall average. This suggests that, rather than
efficiently solving simple problems with brief rea-
soning, models often fail when producing overly
short chains of thought.

Motivated by this observation, we focus on inves-
tigating how a model’s internal representations gov-
ern reasoning length and influence accuracy. In Sec-
tion 3, we analyze the relationship between hidden
representations, reasoning length, and model per-
formance. Building on these insights, we propose
ThinkEdit, a simple yet effective weight-editing
method, in Section 4, which modifies the output
layer of a few key attention heads to mitigate the
problem of overly short reasoning.

17002

Step 1: Extract Reasoning Length Directions
r[)mlp et I e .
Extact post-MLP
reasoning length direction
L —ml; —ml,
paten L | U;" b= rfmlopng Tef’;fan Eq.(1)
y;
. Extract post-attention
Residual Multi-head Attention reasoning length dlrectlon
Stream Q Q Q Q V?tm = rtflinrllg - rt’ short Eq.(1)

Trans decoder block ver £)

Step 2: Perform on Attention Heads

Multi-layer Perceptron

~. ' . e h
e Om} Layer of! Weight Editing on W

~Cheadh || W e WA = (—vftm) (—vgtm))
| GO TE™
Transformer de ((x(h or block (layer £)

Figure 2: The overview of ThinkEdit framework. We first identify that there exist linear directions for controlling
reasoning length in the hidden space, and then perform weight editing on the key attention heads.

3 Understanding How Representations
Affect Reasoning Length

In this section, we explore how reasoning length is
encoded in the hidden representation of a reasoning
model. In Section 3.1, we provide an overview of
the transformer structure, highlighting the specific
points in the residual stream where the representa-
tion of interest resides. Then, in Section 3.2, we
present our method for extracting linear directions
that allow control over reasoning length. Finally,
in Section 3.3, we analyze the performance of rea-
soning models when guided by these extracted rea-
soning length directions.

3.1 Background of Transformer Structure
and Notations

A transformer model consists of multiple stacked
layers, each containing a multi-headed self-
attention (Attn) module followed by a feed-forward
Multi-Layer Perceptron (MLP). The model main-
tains an evolving Residual Stream, where repre-
sentations are progressively refined as they pass
through layers. The update at each layer ¢ can be
expressed as:

ri = r?ﬂ% + Attn(LayerNorm(rznlq))

rznlp 3" + MLP(LayerNorm(r"™))

where rzn_lpl is the hidden state entering layer /,
which is also the output of the MLP from the pre-
vious layer £ — 1, 73"" represents the intermediate
state of the res1dua1 stream after the self-attention
module, and 7"P denotes the final output after the
MLP transformation.

Our focus is on the hidden representations 5"

and r?ﬂp as illustrated in Figure 2 (left), which

capture the model’s state after the self-attention
and MLP transformations, respectively.

3.2 Extracting Reasoning Length Directions

To investigate how reasoning length is encoded
in a model’s hidden representation, we begin by
collecting the model’s responses to 2,000 prob-
lems from the GSM8K (Cobbe et al., 2021) train-
ing set. In each response, the chain-of-thought
(CoT) is enclosed between special tags <think>
and </think>. We measure the length of each
CoT by counting only the tokens within these tags.
We then construct two datasets Diong and Dspore,
where Do consists of responses whose CoT ex-
ceeds 1000 tokens and Dgpor¢ includes those under
100 tokens. Each entry in these datasets contains:
(1) the problem statement, (2) the extracted CoT,
enclosed by <think> and </think> tags, and (3)
the step-by-step calculation process leading to the
final answer.

Next, we input the problem statement along with
its CoT into the model and extract hidden represen-
tations at each layer ¢ for both the post-attention

and post—MLP residual streams, denoted as 75"

and ré P, respectively. Specifically, let 73" (i, t)
and r?l (i,t) represent the hidden representations
at layer ¢ for token position ¢ in the response to
problem ¢. We first compute the mean hidden
representation over the chain-of-thought (CoT) to-
kens, where 7; denotes the set of token positions
enclosed within the <think> and </think> tags,
and then compute the mean across all problems
in the datasets Diong and Dgpor, yielding layerwise
embeddings:

?Zy ‘p’ZW"erlt

teT;

17003

where z € {attn, mlp} denotes the representation
type and y € {long, short} indicates the reasoning-
length group. Finally, we define the reasoning-
length direction at layer £ as the vector difference
between the “long” and “short” embeddings:

_ —mlp —mlp
- TZ,long — T4 short*

(1
These two vectors, v3™, vznlp € R? (with d denot-
ing the hidden dimension), capture how the model’s
representation differs when reasoning chains are
notably longer or shorter. In the next section, we an-
alyze how modifying these directions in the resid-
ual stream influences both reasoning length and
overall model performance.

attn __ —attn —attn mlp
Vg = rZ,long - Tﬁ,shortv Uy

3.3 Effects of Reasoning-Length Direction

In Section 3.2, we have obtained the steering vec-
tors v2™ and P for reasoning length. We now in-
vestigate how modifying the residual stream along
these directions affects both reasoning length and
model accuracy. We begin with global steering,
where we apply a uniform shift « across all layers,
and then delve into layerwise steering experiments
to locate the portions of the network most responsi-

ble for reasoning length.

Steering Reasoning Models with v2™ and v}"?.

Let a be a scalar weight in the range [—0.08, 0.08].
For each layer ¢, we apply the following transfor-
mations:

attn attn attn

ri — i oo™, r?llp%r?ﬂp—i-avznlp. (2)

This operation steers the model’s internal states ei-
ther roward longer reasoning (if a > 0) or toward
shorter reasoning (if a < 0).

Experimental Setup. We evaluate the effect of
reasoning-length directions using two test sets:

* GSMSK (200 problems) (Cobbe et al., 2021):
A simpler benchmark, consisting of the first 200
problems from the GSMSK test set.

* MATH-Level5 (140 problems) (Hendrycks
et al., 2021b): A more challenging benchmark,
comprising 140 problems selected from the
MATH test set. Specifically, we extract 20 level-
5 examples from each of 7 categories.

We set a maximum reasoning length of 8,192 to-
kens for GSM8K and 16,384 tokens for MATH-
Level5. Upon reaching this limit, the model
is prompted to finalize its answer immediately.

We experiment on three reasoning models of
varying sizes: deepseek-distill-qwen-1.5B,
deepseek-distill-11ama3-8B, and deepseek-
distill-qwen-14B.

Global Steering on GSMS8K and MATH-LevelS.
Figure 3 (Top) shows the effect of applying
the attention-based direction v3"™ on GSMS8K.
We vary a from —0.08 (shorter reasoning) to
+0.08 (longer reasoning). Across all models,
increasing « extends the length of CoT (Fig-
ure 3, top right), indicating that 3" indeed
encode reasoning-length attributes. In terms
of accuracy, the larger 8B and 14B models
improve when steered toward longer reason-
ing—particularly deepseek-distill-11lama3-8B

, which benefits most from positive
steering with 10% accuracy improvement. In con-
trast, the smaller deepseek-distill-qwen-1.5B
(blue line) model experiences a 10% drop in ac-
curacy. Figure 3 (Bottom) presents the results for
the more challenging MATH-Level5 dataset. Simi-
lar to GSMSK, our extracted directions effectively
control reasoning length as expected, with negative
« consistently leading to shorter CoT and positive
a extending them. In terms of accuracy, shorter
reasoning also consistently degrades performance.
However, unlike GSMS8K, there is no clear trend
indicating that longer reasoning reliably enhances
accuracy; while moderate positive o might provide
some benefits, excessively long reasoning often
negatively impacts performance. We also present
results using the MLP-based direction v?ﬂp in Ap-
pendix A.1, which exhibit similar trends.

Layerwise Steering Analysis. We perform a lay-
erwise experiment to identify which layers produce
reasoning-length directions with the strongest im-
pact. As shown in Appendix A.2, middle layers are
most effective, suggesting their key role in encod-
ing reasoning-length representations.

Budget Control with Steering Representations.
Recent work (Muennighoff et al., 2025) proposed
an interesting approach to enforce budget con-
straints by stopping the CoT or appending "Wait" to
prolong it. However, stopping the CoT prematurely
may cause incomplete reasoning and appending
"Wait" may risk misalignment with the model’s
natural CoT. Alternatively, steering representations
may allow for a more coherent way to modulate
reasoning length (see Appendix A.8) — by directly
manipulating the model’s internal representations,

17004

GSM8K - Steering with v2t™"

Accuracy vs. a

AVG Reasoning Length vs. a

0.95 A

0.90

—8— deepseek-qwen-1.5b
—®— deepseek-llama3-8b
—8— deepseek-qwen-14b

6000 -

5000 -

0.5

6000 -

F-
£
0.85 2
o 3 4000 A
o
€ 080+ g
S 2 3000 A
< g
0.75 - @
o
% 2000
0.70 - — o
/ % —e— deepseek-qwen-1.5b 1000
0.65 1 ¢ —o— deepseek-llama3-8b
—eo— deepseek-qwen-14b 0
—0.08 -0.06 -0.04 —-0.02 000 002 004 006 008 ~0.08 -0.06 -0.04 -0.02 000 002 004 006 008
a a
MATH-level5 - Steering with v2t™"
Accuracy vs. a AVG Reasoning Length vs. a
0.9 —e— deepseek-qwen-1.5b
: 14000 1 —g— deepseek-llama3-8b
—8— deepseek-qwen-14b
0.8 1 12000 4
=
©
0.7 § 10000 |
g 2
£ 067 ‘€ 8000
3 8
< 3
o
g
z

0.4 1

—o— deepseek-qwen-1.5b
—8— deepseek-llama3-8b
—o— deepseek-qwen-14b

0.3 1

0.00 0.02 0.04 0.06 0.08

a

—-0.08 -—0.06 -0.04 -0.02

4000 -

2000 -

0.00 0.02 0.04 0.06 0.08

a

-0.08 -0.06 -0.04 -0.02

Figure 3: Global steering results. Top: On GSMSK, positive o extends reasoning length and improves accuracy in
the 8B and 14B models, while negative o shortens reasoning and lowers accuracy. Bottom: On MATH-Level5,
negative « similarly shortens reasoning and reduces accuracy.

one can more effectively balance the computational
cost and performance.

Key insights.
observe that:

Based on these experiments, we

1. While steering the model toward longer rea-
soning (o > 0) does not always guarantee im-
proved performance, steering toward short rea-
soning (o < 0) consistently degrades accuracy.
This suggests that the overly short reasoning
with reduced accuracy, as observed in Section 2,
is driven by a specific and identifiable pattern
in the hidden representations.

Layerwise analysis reveals that the middle lay-
ers play a key role in regulating reasoning
length.

Based on these findings, we hypothesize that cer-
tain critical components within the middle layers

may contribute to short reasoning. In the next sec-
tion, we pinpoint these components and perform
weight editing to mitigate their effects.

4 ThinkEdit: Mitigate Overly Short
Reasoning through Weight Editing

Building on the insights from Section 3.3, in this
section, we propose ThinkEdit, an effective weight-
editing method to mitigate overly short reasoning.
We start by analyzing whether specific components
within reasoning models significantly contribute
to the phenomenon of short reasoning. Our focus
is on pinpointing particular attention heads, as the
attention mechanism plays a crucial role in infor-
mation propagation across tokens. To explore this,
we begin with an overview of the multi-head atten-
tion mechanism in Section 4.1, where we define the
contribution of individual attention heads. Using
this definition, we identify short reasoning heads

17005

in Section 4.2 and remove the short reasoning com-
ponent from these heads in Section 4.3. Finally, in
Section 4.4, we evaluate ThinkEdit, and show that
it effectively mitigates the overly short reasoning
issue.

4.1 Overview of Attention-Head Structure

A self-attention layer typically includes multiple
attention heads, each responsible for capturing dis-
tinct token-to-token dependencies. Let d denote the
model’s hidden dimension, and H the number of at-
tention heads. Each head h operates on a subspace

of size dj, = % using the following steps:

* Q, K, and V Projections. Given a hidden-

state r € RT*4 (for T tokens), each head h
computes:

Q" =rWp, K" =W, VP =rW,

where Q", K" V" ¢ RT*4_ Each head
h has its own learnable projection matrices
th, W,f W € R¥dn | which transform the
hidden representation r into query, key, and
value vectors.

* Self-Attention Computation. The head out-

puts an attention-weighted combination of V"
h _ QMKMT h Txdy,
A = softmax< NG vhoe R 7%,

« Output Projection. Each head’s output A"
is merged back into the residual stream via a
learned projection matrix W/ € R >4, pro-
ducing the final per-head contribution C":

ch = AMwh e RTX, (3)

The final multi-head attention output is then
obtained by summing the contributions from
all heads, and this result is added to the residual
stream.

The per-head contribution C" directly reflects how
each attention head modifies the residual stream.
This contribution serves as the primary focus of our
analysis, as it allows us to pinpoint attention heads
that drive short reasoning behavior.

4.2 Identify Short Reasoning Attention Heads

For a response to problem i, let 7; be the set of
token positions corresponding to the CoT, i.e., the
tokens enclosed by <think> and </think> tags.
Then, the overall average per-head contribution

over all problems in the short reasoning dataset
. —h
Dghort 18 given by C'* € R%:

—h 1 1 ho-
"= chit) | . @
’Dshort| Z |7;‘ Z (Z) ()

1€ Dshort teT;

Equation 4 first averages the per-head contribu-
tions C"(i,t) over the CoT token positions for each
problem ¢ and then averages these values across
all problems in Dgpore. Recall that the reasoning
length direction after an attention layer is defined
as v = 70— T)hon in Equation 1, v € R
To quantify the short reasoning contribution of head
h, we project " onto the negative of the reasoning

length direction (i.e., the short reasoning direction).
attn
Using the unit vector o)™ = vﬁ—m”, we define the

Hv[

scalar projection as ﬁi‘hm c R:
—h —h N
Cohort = <C) _Uétm> .)

—h . .
Here, C,, quantifies the degree to which head
h’s average contribution aligns with the short rea-

. N —h .
soning direction. Larger values of C ., indicate
that the head strongly promotes short reasoning

behavior. We visualize Uilhort for each attention
head h with heatmap in Figure 4. Only a small sub-
set of heads exhibits notably high alignment with
the short reasoning direction, and these heads tend
to cluster in the middle layers. This observation
aligns with our analysis in section 3.3, where we
found that reasoning length is primarily encoded in
the middle layers. Crucially, the sparsity of these
"short reasoning heads" suggests that it may be
possible to effectively mitigate overly short rea-
soning behavior with minimal modifications to the
model. In the following section, we use these in-
sights to develop a targeted intervention ThinkEdit
that removes short reasoning components while
leaving the vast majority of the model’s parameters
unchanged.

4.3 Editing Short Reasoning Heads

We introduce how ThinkEdit effectively removes
the short reasoning direction from the output projec-
tion matrices of the "short reasoning heads". Specif-
ically, we identify the top 4% of attention heads

with the largest éﬁhort values (as defined in Sec-
tion 4.2), marking them as short reasoning heads.
Let W)t € R4 > be the output projection matrix
of head & in layer ¢, and let —93™ € R? denote
the short reasoning direction at layer . We then

update W) via:

17006

Short Reasoning Attention Head Distribution

deepseek-qwen-14b

deepseek-llama3-8b

deepseek-qwen-1.5b

Lo 8 Lo

s

15 L10
«» 120
4

S
@ L2s
3

N N T S @

Heads

Heads

- |
3 * & &
Heads

Figure 4: Heatmap illustrating the short reasoning contribution Csimn for each attention head h. Heads with higher
values (in red) show stronger alignment with short reasoning behavior.

W;Le « W(iu(l _ (7@Zmn)(7@Emn)—|—)7 (6)

where [is the d x d identity matrix. Intuitively,
this operation projects each row of W/ onto the
subspace orthogonal to —23"™", thereby removes the
short reasoning component from the head’s output
contribution. Unlike the approach in Section 3.3,
which adds a fixed direction to activations regard-
less of the input, ThinkEdit modifies the weights
of selected attention heads. This makes the ad-
justment input-dependent, allowing more precise
control over reasoning length while preserving the
model’s overall behavior.

4.4 Performance of Reasoning Models after
ThinkEdit

Experimental Setup. We evaluate the reasoning
models after applying ThinkEdit on four mathe-
matical reasoning benchmarks:

* GSMS8K (Cobbe et al., 2021): A test set of
1,319 grade-school-level math word problems.

* MMLU Elementary Math (Hendrycks et al.,
2021a): A subset of 378 elementary school
math questions from the MMLU benchmark.

* MATH-Levell: A collection of 437 easy
(Level 1) problems drawn from the MATH
dataset (Hendrycks et al., 2021b).

* MATH-LevelS: The most challenging subset
of the MATH dataset with 1,324 problems.

* MATH-500 (Lightman et al., 2023): A curated
set of 500 high-quality math problems designed
to assess advanced mathematical reasoning.

For all datasets, we set a maximum CoT length of
16,384 tokens. If this limit is reached, the model

is prompted to immediately finalize its answer. To
mitigate randomness, each dataset is evaluated over
10 independent runs, and the mean accuracy is re-
ported. We do not include the phrase "Please reason
step by step" in any prompt, aiming to assess the
model’s inherent reasoning capabilities.

Overall Accuracy. Table 1 reports the overall ac-
curacy (in %) before and after applying ThinkEdit.
Across all math benchmarks, we observe con-
sistent improvements in accuracy. Notably, the
deepseek-distill-qwen-1.5B model shows a
substantial gain on the MMLU Elementary Math
subset. Manual inspection reveals that the unedited
model occasionally ignores the multiple-choice
format, leading to wrong answers. In contrast,
the edited model adheres to the instructions more
reliably. This suggests that ThinkEdit may not
only enhance reasoning quality but also improve
instruction-following behavior. On the more chal-
lenging MATH-Level5 and MATH-500 datasets,
the accuracy gains are more modest but still posi-
tive, suggesting that while editing short-reasoning
heads has a stronger impact on simpler problems, it
might still provide meaningful improvements even
for harder tasks that require longer and more com-
plex reasoning chains.

Accuracy Under Short Reasoning. Table 2
shows the average accuracy for the top 5%, 10%,
and 20% of responses with the shortest reason-
ing traces. After applying ThinkEdit, we observe
substantial accuracy improvements in these short-
reasoning cases across most benchmarks. Inter-
estingly, even for the challenging MATH-Level5
and MATH-500 datasets, short-reasoning accuracy
improves noticeably. This suggests that ThinkEdit
can effectively improve the reasoning quality when

17007

Model GSMSK MMLU Elem. Math MATH-Levell MATH-Level5 MATH-500
deenseck-qwen-14B Original 90.80 + 0.36 95.08 + 0.65 96.32 + 0.35 90.25 + 0.72 91.48 + 0.55
pseek-q ThinkEdit (4%) 93.78 £ 0.50 96.56 + 0.84 96.36-0.52 91.03+0.44 91.92+0.63
deepseck-llama3-8B Original 82.26 4 0.91 96.01 + 0.62 93.46 + 0.84 85.49 4 0.83 87.26 £ 1.16
P ThinkEdit (4%) 89.44 + 0.55 96.19 £ 0.73 94.44+0.31 86.491+0.54 88.06 % 1.09
deepseck-qwen.1.5p Original 79.15 4 1.08 68.52 £ 1.56 93.00 + 0.33 75.48 £ 0.90 82.22 £ 1.29
pseek-q . ThinkEdit (4%) 84.56 £ 0.79 90.66 £ 0.97 93.66 + 0.62 75.05 =+ 0.82 82.24 + 0.89
Table 1: Overall accuracy (%) of each model before and after applying ThinkEdit.
Model GSMSK MMLU Elem. Math ~ MATH-Levell MATH-Level5 MATH-500
deepseck-qwen-14p Original 96.31/95.65/92.93 93.89/96.22/95.60 99.52/99.30/97.70 89.39/94.32/96.25 86.40/91.40/93.50
pseek-q ThinkEdit (4%) 96.31/96.18/96.77 97.78/95.14/96.53 99.52/99.53/98.62 96.67/97.88/98.11 91.20/93.20 / 95.00
deeoseckllama3.gh Original 88.92/87.18/85.82 97.22/96.49/96.80 97.14/94.88/94.83 78.64/88.79/93.41 82.00/81.40/88.30
P ThinkEdit (4%) 96.31/95.50/94.68 97.78/97.57/97.60 99.05/99.07/97.82 95.76/97.42/97.46 95.60 / 93.80 / 95.40
d K Lsp Original 88.46/87.48/85.02 62.78/62.16/60.53 97.62/95.12/9391 91.52/95.00/95.72 82.40/89.80/93.40
CEpSEEl-qWen-1.50 pinkEdit (4%) 92.62/92.90/92.32 87.78/88.11/88.67 95.71/95.58/96.44 95.15/96.59/97.27 90.80/92.00 /94.20

Table 2: Accuracy (%) of the top 5% / 10% / 20% shortest reasoning responses.

the models generate short CoT.

Reasoning Length of the Shortest Responses.
We analyze how ThinkEdit affects reasoning
length in Appendix A.3. It modestly increases the
length of the shortest responses (Table 3), help-
ing to address overly brief reasoning. However,
as shown in Table 4, the overall reasoning length
remains largely stable across datasets, with a net
change of -0.27% across all models and datasets.

In summary, ThinkEdit markedly improves model
performance on short-reasoning instances and
yields a substantial overall accuracy gain. We
also explore different editing percentages and com-
pare our approach to simply appending “Wait” to
prompt longer reasoning; detailed results are pro-
vided in Appendix A.4. Additionally, results for
deepseek-distill-qwen-32B are reported in Ap-
pendix A.5. To test the generality of our method,
we further evaluate on non-math domains in Ap-
pendix A.6. Beyond demonstrating accuracy gains,
Appendix A.7 examines how ThinkEdit shapes rea-
soning behaviors, revealing more explicit and struc-
tured chains of thought. Finally, We provide sev-
eral concrete examples illustrating how ThinkEdit
enhances reasoning quality in Appendix A.9.

5 Related Works

Reasoning Models. Recent advances in rea-
soning models have significantly improved the
problem-solving abilities of LLMs in domains such
as mathematics, coding, and science. OpenAl’s
o1 (Jaech et al., 2024) represents a major shift to-
ward deliberate reasoning by employing reinforce-
ment learning (RL) to refine its strategies. By gen-

erating explicit "Thinking" steps before producing
answers, o1 achieves strong performance on com-
plex tasks. As a more cost-efficient alternative,
DeepSeek-r1 (Guo et al., 2025) demonstrates that
pure RL can also effectively enhance reasoning.
It introduces Group Relative Policy Optimization
(GRPO) (Shao et al., 2024), a novel method that
eliminates the need for a separate reward model,
enabling more efficient RL training.

Controllable Text Generation. Controllable text
generation has been explored across various do-
mains (Liang et al., 2024), with methods generally
classified into training-time and inference-time con-
trol. These approaches aim to steer LLMs toward
generating text with specific attributes while pre-
serving fluency and coherence. Training-time con-
trol is achieved through fine-tuning (Zeldes et al.,
2020; Wei et al., 2022) or reinforcement learning
(Ouyang et al., 2022; Rafailov et al., 2023), lever-
aging diverse datasets to shape model behavior.
Inference-time control encompasses prompt engi-
neering (Shin et al., 2020; Li and Liang, 2021),
representation engineering (Subramani et al., 2022;
Zou et al., 2023a; Konen et al., 2024; Oikari-
nen et al., 2025), interpretable neuron interven-
tion through concept bottleneck models (Sun et al.,
2025b, 2024), and decoding-time interventions
(Dathathri et al., 2020), allowing flexible and effi-
cient control without retraining.

In this work, we focus on the representation en-
gineering paradigm to investigate how reasoning
length is embedded within model representations.
Specifically, we introduce a linear "reasoning-
length direction" in the representation space to ex-
amine its impact on reasoning capabilities.

17008

Attention heads and MLP neurons interven-
tion. A growing body of research explores the
role of attention heads and neurons within the
Multi-Layer Perceptron (MLP) layers in shaping
language model behavior. Studies such as (Zhou
et al., 2025; Zhao et al., 2025; Chen et al., 2024)
examine how safety mechanisms are embedded
in well-aligned models to defend against harmful
prompts and jailbreak attacks (Zou et al., 2023b;
Liu et al., 2024; Sun et al., 2025a). Findings indi-
cate that a small subset of attention heads and MLP
neurons play a critical role in safety alignments.
Similarly, research on hallucination mitigation has
investigated the contributions of attention heads
and MLP neurons. (Ho et al., 2025) demonstrates
that filtering out unreliable attention heads can re-
duce erroneous generations, while (Yu et al., 2024)
finds that activating subject-knowledge neurons
helps maintain factual consistency. In (Li et al.,
2025), the authors design efficient and training-
free machine skill unlearning techniques for LLMs
through intervention and abstention.

In our work, we investigate how attention heads
relate to reasoning processes, examining their im-
pact on the reasoning length and quality.

6 Conclusion

In this work, we first identified overly short rea-
soning as a common failure mode in Deepseek-
distilled reasoning models. To understand how
reasoning length is controlled, we analyzed the
model’s hidden representations and uncovered a la-
tent direction linked to reasoning length. Building
on this, we pinpointed 4% of attention heads that
drive short reasoning, and propose ThinkEdit to
mitigate the issue, leading to significant accuracy
gains for short reasoning outputs (+6.39%), along
with an overall improvement (+3.34%) across mul-
tiple math benchmarks.

Limitations

A limitation of our work is that ThinkEdit pri-
marily improves model performance by addressing
cases of overly short reasoning. For reasoning mod-
els that already tend to produce sufficiently long
or verbose outputs, the benefits of ThinkEdit may
be limited. Nonetheless, our study provides valu-
able insights by highlighting the often-overlooked
issue of overly brief reasoning and examining how
reasoning length is represented within the model’s
hidden states. This opens an important research

direction for advancing the interpretability of rea-
soning models by linking internal representations
to observable reasoning behaviors.

Acknowledgement

This research was supported by grants from
NVIDIA and utilized NVIDIA’s A100 GPUs on
Saturn Cloud. The authors are partially supported
by Hellman Fellowship, Intel Rising Star Faculty
Award, and National Science Foundation under
Grant No. 2313105, 2430539.

References

Jianhui Chen, Xiaozhi Wang, Zijun Yao, Yushi Bai, Lei
Hou, and Juanzi Li. 2024. Finding safety neurons in
large language models. CoRR.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian,
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro
Nakano, Christopher Hesse, and John Schulman.
2021. Training verifiers to solve math word prob-
lems. CoRR.

Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane
Hung, Eric Frank, Piero Molino, Jason Yosinski, and
Rosanne Liu. 2020. Plug and play language models:
A simple approach to controlled text generation. In
ICLR.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, and 1 others. 2025. Deepseek-
rl: Incentivizing reasoning capability in llms via
reinforcement learning. arXiv.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.
2021a. Measuring massive multitask language under-
standing. In ICLR.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul
Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. 2021b. Measuring mathematical
problem solving with the math dataset. NeurIPS.

Zheng Yi Ho, Siyuan Liang, Sen Zhang, Yibing Zhan,
and Dacheng Tao. 2025. Novo: Norm voting off
hallucinations with attention heads in large language
models. ICLR.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richard-
son, Ahmed EI-Kishky, Aiden Low, Alec Hel-
yar, Aleksander Madry, Alex Beutel, Alex Carney,
Alex Iftimie, Alex Karpenko, Alex Tachard Passos,
Alexander Neitz, Alexander Prokofiev, Alexander
Wei, Allison Tam, Ally Bennett, Ananya Kumar, and
80 others. 2024. Openai ol system card. CoRR.

17009

Kai Konen, Sophie Jentzsch, Diaoulé Diallo, Peer
Schiitt, Oliver Bensch, Roxanne El Baff, Dominik
Opitz, and Tobias Hecking. 2024. Style vectors for
steering generative large language models. In EACL
Findings.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
ACL/IJCNLP.

Yongce Li, Chung-En Sun, and Tsui-Wei Weng. 2025.
Effective skill unlearning through intervention and
abstention. In NAACL.

Xun Liang, Hanyu Wang, Yezhaohui Wang, Shichao
Song, Jiawei Yang, Simin Niu, Jie Hu, Dan Liu,
Shunyu Yao, Feiyu Xiong, and Zhiyu Li. 2024. Con-
trollable text generation for large language models:
A survey. CoRR.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei
Xiao. 2024. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. In ICLR.

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke
Zettlemoyer, Percy Liang, Emmanuel Candes, and
Tatsunori Hashimoto. 2025. sl: Simple test-time
scaling.

Tuomas Oikarinen, Ge Yan, and Tsui-Wei Weng. 2025.
Evaluating neuron explanations: A unified frame-
work with sanity checks. In ICML.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll L. Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray,
John Schulman, Jacob Hilton, Fraser Kelton, Luke
Miller, Maddie Simens, Amanda Askell, Peter Welin-
der, Paul F. Christiano, Jan Leike, and Ryan Lowe.
2022. Training language models to follow instruc-
tions with human feedback. In NeurIPS.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D. Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In NeurIPS.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,
and Daya Guo. 2024. Deepseekmath: Pushing the
limits of mathematical reasoning in open language
models. CoRR.

Taylor Shin, Yasaman Razeghi, Robert L. Logan IV,
Eric Wallace, and Sameer Singh. 2020. Autoprompt:
Eliciting knowledge from language models with au-
tomatically generated prompts. In EMNLP.

Nishant Subramani, Nivedita Suresh, and Matthew E.
Peters. 2022. Extracting latent steering vectors from
pretrained language models. In ACL Findings.

Chung-En Sun, Xiaodong Liu, Weiwei Yang, Tsui-Wei
Weng, Hao Cheng, Aidan San, Michel Galley, and
Jianfeng Gao. 2025a. Iterative self-tuning llms for
enhanced jailbreaking capabilities. In NAACL.

Chung-En Sun, Tuomas Oikarinen, Berk Ustun, and
Tsui-Wei Weng. 2025b. Concept bottleneck large
language models. In /ICLR.

Chung-En Sun, Tuomas Oikarinen, and Tsui-Wei Weng.
2024. Crafting large language models for enhanced
interpretability. In ICML 2024 Workshop on Mecha-
nistic Interpretability.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022. Finetuned
language models are zero-shot learners. In /CLR.

Lei Yu, Meng Cao, Jackie C. K. Cheung, and Yue Dong.
2024. Mechanistic understanding and mitigation
of language model non-factual hallucinations. In
EMNLP Findings.

Yoel Zeldes, Dan Padnos, Or Sharir, and Barak Peleg.
2020. Technical report: Auxiliary tuning and its
application to conditional text generation. CoRR.

Yiran Zhao, Wenxuan Zhang, Yuxi Xie, Anirudh Goyal,
Kenji Kawaguchi, and Michael Shieh. 2025. Under-
standing and enhancing safety mechanisms of 1lms
via safety-specific neuron. /CLR.

Zhenhong Zhou, Haiyang Yu, Xinghua Zhang, Rongwu
Xu, Fei Huang, Kun Wang, Yang Liu, Junfeng Fang,
and Yongbin Li. 2025. On the role of attention heads
in large language model safety. ICLR.

Andy Zou, Long Phan, Sarah Chen, James Campbell,
Phillip Guo, Richard Ren, Alexander Pan, Xuwang
Yin, Mantas Mazeika, Ann-Kathrin Dombrowski,
Shashwat Goel, Nathaniel Li, Michael J. Byun, Zifan
Wang, Alex Mallen, Steven Basart, Sanmi Koyejo,
Dawn Song, Matt Fredrikson, and 2 others. 2023a.
Representation engineering: A top-down approach
to Al transparency. CoRR.

Andy Zou, Zifan Wang, J. Zico Kolter, and Matt Fredrik-
son. 2023b. Universal and transferable adversarial
attacks on aligned language models. CoRR.

17010

Table of Contents

A Appendix 11
A.1 Gobal Steering with the MLP-based Direction vj™ 11
A.2 Layerwise Analysis of Steering along Reasoning Length Direction 12
A.3 The Impact of ThinkEdit on Reasoning Length 13
A.4 ThinkEdit with Varying Editing Rates vs. the "Wait" Appending Baseline 14
A.5 ThinkEdit Results for 32B Reasoning Model 16
A.6 ThinkEdit Results on Non-Math Domains 17
A.7 Behavioral Analysis: ThinkEdit Encourages Deeper Reasoning 18
A.8 Examples of Steering the Reasoning Length 19
A.9 Examples of Fixing the Overly Short Reasoning with ThinkEdit 22

A Appendix
A.1 Gobal Steering with the MLP-based Direction fu?‘lp

Figure 5 replicates the global steering analysis using the MLP-based direction vznlp. The observed trends
closely mirror those from attention-based steering: increasing « extends reasoning length across both
datasets, and the effect on accuracy is model- and dataset-dependent. On GSM8K, larger models benefit
from longer reasoning, while smaller models degrade. On MATH-Level5, overly long reasoning may hurt
performance, despite consistent control over CoT length. These results show that both attention and MLP
directions capture similar reasoning-length attributes.

GSMB8K - Steering with vj"P

Accuracy vs. a AVG Reasoning Length vs. a
0.95 6000 1 _g— deepseek-qwen-1.5b
—o— deepseek-llama3-8b
0.90 4 5000 | —®— deepseek-qwen-14b
£
0857 2 4000 4
g
o)
o
@ 0.80 1 £
3 é 3000 A
£ ©
0.75 &
g 2000 A
z
0.70
| y —e— deepseek-qwen-1.5b 1000 +
0651/ * —o~ deepseek-llama3-8b
—o— deepseek-qwen-14b o
-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08
a a

MATH-level5 - Steering with v;"?

Accuracy vs. a AVG Reasoning Length vs. a
0.94 14000 1 —g— deepseek-qwen-1.5b
—&— deepseek-llama3-8b
08 12000 1 —®— deepseek-qwen-14b
s
071 2 10000
)
g g
I] £ 8000
5 0.6 §
2 ©
& 6000
0.5 g
<
0.4 4 4000 1
—e— deepseek-qwen-1.5b
—o— deepseek-llama3-8b 2000
0.31 —e— deepseek-qwen-14b
-0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08 -0.08 -0.06 -0.04 -0.02 0.00 0.02 0.04 0.06 0.08
a a

Figure 5: Global steering with the reasoning length direction extracted from MLPs. The trend is similar as steering
with attention-based directions.

17011

A.2 Layerwise Analysis of Steering along Reasoning Length Direction

To identify which layers are most influenced by the reasoning-length direction, we perform a layerwise
experiment on the GSMS8K dataset (Figure 6). Specifically, we use vznlp to steer each MLP layer separately,
applying o = +£1 at a single layer ¢. Notably, the middle layers elicit the largest fluctuations, suggesting

they encode key representations for controlling reasoning length.

1.000

Layerwise

deepseek-qwen-14b: Accuracy

0.975 A
0.950

> 0.925 -

Accurac

0.900 A
0.875 A

0.850
0.825 A

0.800

Accuracy

Figure 6: Layerwise steering on GSM8K with v;”lp . We apply a@ = £1 to one layer at a time, revealing that the

Accuracy

~®- a=1.0
@ a=-10
—— Baseline (a =0)

0 10

20 30 40

Layer ¢

deepseek-llama3-8b: Accuracy

1 -® a=10
@ a=-10
—— Baseline (a =0)

0 5 10 15 20 25 30
Layer ¢

deepseek-qwen-1.5b: Accuracy

0.85

0.80 1

0.75 A

0.70

0.65 A

@ a=1.0
- a=-1.0
—— Baseline (a=0)

10

15 20 25

Layer ¢

AVG Reasoning Length AVG Reasoning Length

AVG Reasoning Length

Steering with v,

3000

mlip

deepseek-qwen-14b: Reasoning Length

2500 A

2000

1500 4

1000 +

500 A

@ a=10
@ a=-10
== Baseline (a =0)

0

20
Layer £

deepseek-llama3-8b: Reasoning Length

7000 -
6000 -
5000 -
4000 -
3000 -
2000 -
1000 +

04

0 a=1.0
- a=-1.0
—— Baseline (a=0)

15
Layer £

deepseek-qwen-1.5b: Reasoning Length

7000 -
6000 -
5000 -
4000 -
3000 -
2000 A

1000 1-

0

@ a=1.0
@ a=-1.0
== Baseline (a =0)

10

15 20 25

Layer £

middle layers wield the strongest control over reasoning length and accuracy.

17012

A.3 The Impact of ThinkEdit on Reasoning Length

Table 3 reports the average reasoning length among the top 5%, 10%, and 20% shortest responses.
We observe that ThinkEdit consistently increases the reasoning length in these short-answer scenarios,
suggesting that the intervention discourages excessively short reasoning, and therefore leads to higher
accuracy as shown in Table 2. Interestingly, Table 4 shows that the average reasoning length remains similar
between the original and ThinkEdit models. To summarize these trends, we compute the average change in
reasoning length across all datasets: +2.94% for deepseek-qwen-14b, +3.53% for deepseek-11ama3-8b,
and -5.73% for deepseek-qwen-1.5b, resulting in an overall average change of -0.27%. These results
suggest that ThinkEdit selectively increases reasoning length for short responses without significantly
altering overall response length.

Model GSMSK MMLU Elem. Math MATH-Levell MATH-Level5 MATH-500
deepseek-qwen-14B Original 76.6/86.5/99.1 65.8/72.2/80.6 93.7/1143/188.6 628.8/858.4/1125.9 198.7/434.3/697.0
P 4 ThinkEdit (4%) 101.7/113.6/131.0 82.7/91.8/105.6 146.7/188.6 / 346.0 745.5/926.6 / 1163.7 361.3/559.3/764.6

73.0/83.1/96.6 371.0/438.1/518.2
110.3/131.8/164.6 398.5/462.4/541.8

80.3/97.2/130.3
176.3/221.3/336.0

617.9/854.9/1126.5
806.1/963.3 /1185.1

159.5/357.5/644.5
372.5/553.2/772.9

Original

deepseek-llama3-8B ThinkEdit (4%)

78.8/89.4/103.0
103.3/118.9/144.8

61.6/68.5/71.6
80.6/92.5/112.9

88.8/110.3/219.7
172.7/336.9 / 543.6

804.6/1017.9 /1314.0
853.0/1003.5/1221.9

249.7/506.5 /760.7
530.8/676.0/ 837.4

Original

deepseek-qwen-1.5B ThinkEdit (4%)

Table 3: Average reasoning length for the top 5% / 10% / 20% shortest responses (in tokens).

Model GSMSK MMLU Elem. Math MATH-Levell MATH-Level5 MATH-500

354.5 + 684.4
538.2 + 829.6

184.9 £175.3
291.4 + 607.5

1600.5 + 1885.2
1670.4 + 1951.2

4306.2 £ 3816.1 3096.8 = 3308.0
4243.7 4+ 3814.0 3079.7 £ 3276.6

Original

deepseek-qwen-14B ThinkEdit (4%)

deepseek-llama3-8B Original 597.3 +1109.0 1486.6 + 2036.7 1646.6 +2275.0 4789.1 +4315.4 3507.6 £ 3917.5
P ThinkEdit (4%) 927.7 +£1486.3 1517.9 +2041.5 1723.7 £2152.3 4773.5 £4327.4 3509.5 £+ 3842.9
deepseek-qwen-1.5B Original 768.1 +1837.2 517.0 + 1502.8 2080.9 + 2740.5 6360.0 + 5336.4 4260.3 + 4668.2
P q) ThinkEdit (4%) 1126.6 & 2018.0 768.9 +1651.4 1946.3 4 2438.4 5522.4 £ 5036.9 3821.1 £ 4384.9

Table 4:

Overall reasoning length (in tokens) before and after applying ThinkEdit (4% edit rate).

17013

A.4 ThinkEdit with Varying Editing Rates vs. the ""Wait'' Appending Baseline

We conduct a comprehensive evaluation of ThinkEdit with different editing rates and compare it against
a simple baseline that appends the word "Wait" to reasoning sequences shorter than 500 tokens. This
baseline is intended to prompt the model to continue thinking before answering when the reasoning is too
short. The methods compared are:

e ThinkEdit (8%): Edits 8% of total attention heads.

ThinkEdit (4%): Edits 4% of total attention heads.

ThinkEdit (2%): Edits 2% of total attention heads.

* Append ""Wait'': Appends "Wait" to reasoning with fewer than 500 tokens to artificially extend
reasoning length.

¢ Original: The unmodified model output.

As shown in Table 5, higher editing rates in ThinkEdit consistently improve performance on GSM8K and
MMLU Elementary Math. However, for the MATH-series datasets, moderate editing rates yield better
results than the most aggressive edits. The "Append Wait" baseline yields only marginal gains across
all datasets, indicating that simply forcing the model to produce longer reasoning does not necessarily
improve accuracy. A closer look at the short reasoning cases in Table 7 shows that all versions of
ThinkEdit substantially outperform the "Append Wait" baseline. This further supports the observation
that longer reasoning alone is insufficient without proper internal adjustment of the model.

In terms of reasoning length (Tables 6 and 8), the "Append Wait" method generally leads to longer
outputs than ThinkEdit (2%), confirming that it effectively increases response length. However, despite
this, it fails to match the performance of ThinkEdit, highlighting that ThinkEdit is a more effective
strategy addressing the accuracy drops of overly short reasoning.

Model GSMSK MMLU Elem. Math MATH-Levell MATH-Level5 MATH-500
ThinkEdit (8%) 94.30 + 0.28 96.93 + 0.50 96.09 + 0.35 90.92 + 0.41 91.26 + 0.52
ThinkEdit (4%) 93.78 + 0.50 96.56 + 0.84 96.36 + 0.52 91.03 + 0.44 91.92 + 0.63
deepseek-qwen-14B ThinkEdit (2%) 93.50 + 0.31 96.53 + 0.54 96.50 =+ 0.46 91.15 + 0.59 91.78 4 0.58
Append "Wait" 91.30 + 0.55 95.37 £ 0.70 96.52 + 0.55 90.60 =+ 0.41 91.22 =+ 0.57
Original 90.80 =+ 0.36 95.08 =+ 0.65 96.32 + 0.35 90.25 + 0.72 91.48 + 0.55
ThinkEdit (8%) 90.18 + 0.60 96.11 =+ 0.67 94.39 + 0.61 86.13 & 0.46 87.64 + 0.88
ThinkEdit (4%) 89.44 + 0.55 96.19 + 0.73 94.44 +0.31 86.49+0.54 88.06 + 1.09
deepseek-llama3-8B ThinkEdit (2%) 88.97 + 0.78 96.08 + 0.86 94.12 + 0.47 85.91 + 0.48 87.60 & 0.81
Append "Wait" 84.28 =+ 0.64 95.93 + 0.70 93.96 -+ 0.55 85.33 4 0.79 87.66 + 1.26
Original 82.26 + 0.91 96.01 + 0.62 03.46 + 0.84 85.49 + 0.83 87.26 + 1.16
ThinkEdit (8%) 84.81 + 0.69 92.38 + 1.04 94.00 + 0.75 75.32 + 1.11 82.56 + 1.21
ThinkEdit (4%) 84.56 + 0.79 90.66 =+ 0.97 93.66 + 0.62 75.05 + 0.82 82.24 + 0.89
deepseek-qwen-1.5B ThinkEdit (2%) 83.34 + 0.79 86.24 + 1.12 93.89 + 0.76 74.94 4+ 0.85 82.74 + 0.77
Append "Wait" 79.81 4 0.77 76.64 + 1.18 93.34 + 0.86 75.06 + 0.72 82.98 + 1.00
Original 79.15 + 1.08 68.52 + 1.56 93.00 + 0.33 75.48 + 0.90 82.22 + 1.29
Table 5: Overall accuracy (%) of ThinkEdit with different editing rates.
Model GSMSK MMLU Elem. Math ~ MATH-Levell MATH-Level5 MATH-500
ThinkEdit (8%) 598.1 +£1011.8 336.6 + 550.3 1586.1 + 1827.4 4150.5 +3819.1 3009.5 & 3336.7
ThinkEdit (4%) 538.2 & 829.6 291.4 + 607.5 1670.4+1951.2 4243.7 +3814.0 3079.7 + 3276.6
deepseek-qwen-14B ThinkEdit (2%) 479.8 + 968.5 285.1 + 756.8 1645.4 + 1946.6 4327.2 + 3863.4 3138.3 + 3372.8
Append "Wait" 447.3 4 652.6 273.0 + 215.8 1595.8 + 1810.5 4265.9 & 3749.0 3071.5 & 3275.6
Original 354.5 + 684.4 184.9 + 175.3 1600.5 + 1885.2 4306.2 + 3816.1 3096.8 + 3308.0
ThinkEdit (8%) 971.8 +1447.7 1488.3 + 1979.5 1692.8 +2200.5 4642.1 4 4253.3 3463.3 & 3800.1
ThinkEdit (4%) 927.7 & 1486.3 1517.9 +£2041.5 1723.7 +£2152.3 4773.5+4327.4 3509.5 & 3842.9

deepseek-llama3-8B

ThinkEdit (2%)
Append "Wait"
Original

849.7 +1454.8
670.2 +1073.0
597.3 +1109.0

1520.1 £2103.0 1765.7 +2315.1 4825.2 +4383.4

1514.4 + 2009.1
1486.6 + 2036.7

1639.9 + 2134.8
1646.6 + 2275.0

4795.3 £ 4296.2
4789.1 £4315.4

3503.8 £ 3838.4
3502.5 £ 3859.1
3507.6 £ 3917.5

deepseek-qwen-1.5B

ThinkEdit (8%)
ThinkEdit (4%)
ThinkEdit (2%)
Append "Wait"
Original

1166.2 + 1986.4
1126.6 + 2018.0
912.7 +1835.3
847.1 £ 1835.7
768.1 + 1837.2

890.7 + 1851.7
768.9 + 1651.4
701.0 £ 1748.9
660.1 + 1823.7
517.0 + 1502.8

1912.8 4 2287.6
1946.3 4+ 2438.4
1918.0 4 2420.6
2163.7 £+ 2847.0
2080.9 £ 2740.5

5567.4 £+ 5083.4
5522.4 £+ 5036.9
5641.9 £ 5101.5
6363.9 + 5352.9
6360.0 £ 5336.4

3772.6 £ 4296.0
3821.1 £+ 4384.9
3880.3 £ 4402.4
4287.1 £4710.3
4260.3 £ 4668.2

Table 6: Overall reasoning length (in tokens) of ThinkEdit with different editing rates.

17014

Model GSMSK MMLU Elem. Math MATH-Levell MATH-Level5 MATH-500
ThinkEdit (8%) 96.46/97.02/97.38 97.22/95.95/95.73 98.57/97.91/97.47 98.48/98.56/98.22 91.60/93.00/94.60
ThinkEdit (4%) 96.31/96.18/96.77 97.78/95.14/96.53 99.52/99.53/98.62 96.67/97.88/98.11 91.20/93.20/95.00
deepseek-qwen-14B ThinkEdit (2%) 96.62/96.03/96.12 96.11/96.22/96.27 100.00/99.77/98.85 95.76/97.65/98.07 89.60/92.60 / 94.70
Append "Wait" 94.62/94.20/93.19 96.67/97.30/96.93 100.00/99.30/98.39 90.15/94.47/96.33 85.20/89.20/93.30
Original 96.31/95.65/92.93 93.89/96.22/95.60 99.52/99.30/97.70 89.39/94.32/96.25 86.40/91.40/93.50
ThinkEdit (8%) 96.31/96.49/95.97 97.78/97.57/98.40 99.05/99.30/98.85 97.12/97.58/97.39 95.20/94.20 / 94.80
ThinkEdit (4%) 96.31/95.50/94.68 97.78/97.57/97.60 99.05/99.07/97.82 95.76/97.42/97.46 95.60 /93.80 / 95.40
deepseek-llama3-8B ThinkEdit (2%) 97.08/95.27/93.95 97.78/98.65/97.87 100.00/99.30/98.62 95.61/96.89/97.12 92.80/93.60 / 94.40
Append "Wait" 88.15/89.01/88.29 97.78/97.57/97.87 98.57/97.21/95.75 79.55/89.02/93.45 86.40/86.00/90.70
Original 88.92/87.18/85.82 97.22/96.49/96.80 97.14/94.88/94.83 78.64/88.79/93.41 82.00/81.40/88.30
ThinkEdit (8%) 95.38/94.20/92.97 93.89/92.70/91.87 94.76/96.05/96.90 96.21/97.20/96.78 94.00 / 93.60 / 94.40
ThinkEdit (4%) 92.62/92.90/92.32 87.78/88.11/88.67 95.71/95.58/96.44 95.15/96.59/97.27 90.80/92.00/94.20
deepseek-qwen-1.5B ThinkEdit (2%) 92.46/92.37/92.05 77.22/80.54/79.73 96.19/95.81/97.36 93.79/95.83/95.80 92.80/94.40 / 94.90
Append "Wait" 88.92/87.10/86.77 82.22/79.46/76.13 96.67/96.74/96.44 92.27/94.85/95.72 86.00/90.60 /92.30
Original 88.46/87.48/85.02 62.78/62.16/60.53 97.62/95.12/9391 91.52/95.00/95.72 82.40/89.80/93.40

Table 7: Accuracy (%) on the top 5% / 10% / 20% shortest responses for ThinkEdit with different editing rates.

Model GSMSK MMLU Elem. Math MATH-LvI1 MATH-LvI5 MATH-500
ThinkEdit (8%) 113.2/129.4/153.6 86.9/99.0/117.2 180.7/238.5/372.3 768.1/925.6/1136.0 414.7/573.9/759.0
ThinkEdit (4%) 101.7/113.6/131.0 82.7/91.8/105.6 146.7/188.6/346.0 745.5/926.6/1163.7 361.3/559.3/764.6

deepseek-qwen-14B ThinkEdit (2%) 95.4/106.3/1202 79.1/87.1/98.7 125.1/150.2/243.4 698.5/906.6/1157.2 270.2/492.6/733.3
Wait 127.2/145.0/166.0 104.1/114.4/127.6 159.3/191.8/281.9 672.1/875.5/1132.1 293.6/495.7/720.6
Original 76.6/86.5/99.1 65.8/72.2/80.6 937/1143/188.6 628.8/858.4/11259 198.7/434.3/697.0
ThinkEdit (3%) 160.4/185.7/225.2 426.0/484.4/559.4 209.5/267.2/380.8 825.3/978.8/1190.7 422.6/567.4/759.5
ThinkEdit (4%) 110.3/131.8/164.6 398.5/462.4/541.8 176.3/221.3/336.0 806.1/963.3/1185.1 372.5/553.2/772.9

deepseek-llama3-8B ThinkEdit (2%) 93.2/106.9/1274 396.5/464.2/5432 137.4/173.3/277.1 791.2/954.8/1185.1 305.2/506.3/737.6
Wait 132.2/148.2/169.1 444.5/501.7/565.9 148.4/179.2/244.0 680.8/887.3/1147.1 277.9/452.1/693.5

Original

73.0/83.1/96.6

371.0/438.1/518.2

80.3/97.2/130.3

617.9/854.9/1126.5

159.5/357.5/644.5

deepseek-qwen-1.5B

ThinkEdit (8%)
ThinkEdit (4%)
ThinkEdit (2%)
Wait

Original

115.9/138.2/180.1
103.3/118.9/144.8
97.2/109.4/126.3
120.6/137.0/158.0
78.8/89.4/103.0

87.4/103.7/130.1
80.6/92.5/112.9
75.9/85.0/99.5

101.6 /112.9/ 128.0
61.6/68.5/71.6

247.3/396.1/571.3
172.7/336.9/543.6
127.9/174.1/416.4
147.9/180.1/310.2
88.8/110.3/219.7

859.4/1003.7/1216.6
853.0/1003.5/1221.9
818.0/984.5/1214.3
822.7/1020.9 / 1306.0
804.6/1017.9/1314.0

595.9/719.8 / 871.6
530.8/676.0/837.4
435.0/612.9/800.6
341.8/556.6/791.8
249.7/506.5 /760.7

Table 8: Average reasoning length (in tokens) of the top 5% / 10% / 20% shortest responses for ThinkEdit with
different editing rates.

17015

A.5 ThinkEdit Results for 32B Reasoning Model

We report results for the larger deepseek-distill-qwen-32B model. Although ThinkEdit does not yield
overall accuracy gains on the MATH-series datasets (Table 9), it consistently achieves higher accuracy on
short reasoning responses similar to the smaller models (Table 11).

Model GSMSK MMLU Elem. Math MATH-Levell MATH-Level5 MATH-500
ThinkEdit (8%) 95.34 + 0.23 98.10 +0.17 95.31 +0.38 91.16 + 0.45 91.44 £ 0.57
ThinkEdit (4%) 95.25 + 0.25 98.02 + 0.31 96.02 + 0.42 91.31 + 0.50 91.60 £+ 0.65

deepseek-qwen-32B ThinkEdit (2%) 94.90 £ 0.34 97.49 + 0.49 96.27 + 0.54 91.31 £ 0.29 91.62+0.74
Append "Wait" 92.72 + 0.54 96.16 + 0.45 96.27 + 0.39 91.32 + 0.46 91.46 £ 0.51
Original 92.97 + 0.39 95.93 + 0.83 96.41 + 0.45 91.27 £+ 0.53 91.62 + 0.58

Table 9: Overall accuracy (%) of deepseek-distill-qwen-32B with different ThinkEdit edit-rates.

Model

GSMSK

MMLU Elem. Math

MATH-Levell

MATH-Level5

MATH-500

ThinkEdit (8%) 665.6 + 762.8 312.3 + 332.0 1548.6 + 1473.4 3676.7 £ 3388.7 2665.6 £ 2885.1
ThinkEdit (4%) 445.8 £ 684.7 287.7 £ 600.0 1484.7 + 1587.7 3821.1 £ 3518.3 2736.4 £ 2948.8
deepseek-qwen-32B ThinkEdit 2%) 405.3 £ 620.5 238.8 +315.9 1485.3 + 1622.1 3947.0 £ 3564.7 2816.1 £ 3029.2
Append "Wait" 405.5 £ 519.0 280.6 + 401.5 1484.8 + 1619.1 4103.9 £ 3606.0 2878.8 +3029.3
Original 306.2 + 515.4 168.9 £+ 105.3 1457.6 + 1621.0 4100.7 £ 3608.7 2872.0 £ 3034.8

Table 10: Overall reasoning length (in tokens) for deepseek-distill-qwen-32B.

Model GSMSK MMLU Elem. Math MATH-Levell MATH-Level5 MATH-500
ThinkEdit (8%) 99.08/98.47/97.95 98.33/97.57/97.07 99.52/98.60/97.36 99.55/99.39/98.64 94.40/95.40/96.10
ThinkEdit (4%) 98.92/97.71/97.83 97.78/97.57/97.20 100.00 / 100.00 / 98.74 98.03/98.64/97.99 92.00/94.40/95.80

deepseek-qwen-32B ThinkEdit (2%) 98.92/98.24/97.68 96.67/97.03 /96.80 99.05/98.84/98.51 97.58/98.26/98.22 90.00/92.60/94.70
Append "Wait" 97.08/96.03/95.21 95.00/96.76 /96.27 99.52/99.30/98.05 94.09/96.89/97.61 84.80/90.40/93.20
Original 98.31/97.18/96.20 97.78/97.03/95.87 100.00/ 100.00 / 98.97 93.03/96.36/97.35 86.40/92.00 / 94.00

Table 11: Accuracy (%) on the top 5% / 10% / 20% shortest responses for deepseek-distill-qwen-32B.

Model GSMSK MMLU Elem. Math MATH-LvI1 MATH-LvI5 MATH-500
ThinkEdit (8%) 105.2/121.8/148.6 89.2/100.5/117.7 367.8/492.8/625.4 793.5/919.5/1094.6 567.1/677.0/811.1
ThinkEdit (4%) 95.2/105.8/120.1 85.9/96.1/110.6 146.9/202.2/360.9 751.1/905.4/1101.0 446.7/600.0/768.9

deepseek-qwen-32B ThinkEdit 2%) 93.2/103.6/116.6 79.1/88.6/101.5 124.3/155.3/307.6 746.4/910.8/1123.7 371.3/563.0/759.8
Append "Wait" 125.7/143.0/163.7 109.6/121.1/135.9 151.4/182.0/247.2 725.7/914.4/1153.4 328.4/521.3/739.4
Original 76.7/86.7/99.6 69.3/76.1/84.3 89.9/109.4/149.6 672.7/886.7/1139.2 216.4/454.9/705.9

Table 12:

deepseek-distill-qwen-32B.

17016

Average reasoning length (tokens) of the top 5% / 10%

/ 20% shortest responses for

A.6 ThinkEdit Results on Non-Math Domains

We include supplementary experiments on three non-math subjects from MMLU—High School Computer
Science, Formal Logic, and Professional Accounting. These tasks do not directly require mathematical
calculation, but they still demand structured reasoning and logical consistency. As shown in Tables 13 and
14, ThinkEdit not only improves overall accuracy but also mitigates failure cases that arise from overly
short reasoning traces. This indicates that ThinkEdit can boost performance in reasoning-heavy domains
beyond mathematics.

Model Variant MMLU HS CS MMLU Formal Logic MMLU Prof. Accounting
d K 2B Original 96.50 & 1.18 93.49 4+ 1.29 84.22 + 1.05
cepseek-qwen- ThinkEdit (4%) 97.20 + 0.92 94.05 + 1.80 83.40 4 1.89
deepseck-qwen-14B Original 93.50 £ 1.58 91.27 +2.08 75.85 £ 1.89
pseek-q ThinkEdit (4%) 94.80 + 1.14 91.51 + 1.98 77.09 + 1.63
deevseck.llama3-8B Original 84.00 + 3.83 63.41 £ 1.47 57.06 £ 1.48
P ThinkEdit (4%) 88.90 + 1.91 65.40 + 2.85 57.52 + 1.40
deeoseek-dwen-1.5B Original 63.90 + 4.38 51.27 + 3.00 3571 £ 2.85
pseek-q : ThinkEdit (4%) 68.30 = 3.02 52.30 & 3.07 37.09 + 1.78

Table 13: Overall accuracy on MMLU non-math subjects.

Model Variant MMLU HS CS MMLU Formal Logic MMLU Prof. Accounting
deeoseek-awen-32B Original 98.00 /98.00 / 97.50 85.00/88.33/91.60 89.29/87.86/87.86
pseek-q ThinkEdit (4%) 100.00 / 99.00 / 99.50 88.33/88.33/92.00 92.86/91.07 / 91.96
deepseck-qwen-14B Original 96.00 / 94.00 / 96.00 78.33/85.83/90.40 82.14/82.50/84.82
pseek-q ThinkEdit (4%) 100.00 / 99.00 / 99.50 85.00 / 90.00 / 92.00 90.00 /91.43 /90.36
deepseckllama3-8B Original 72.00/76.00 / 81.00 75.00/75.83 / 74.00 70.71/70.71/ 67.32
P ThinkEdit (4%) 96.00 /95.00 / 96.00 80.00/77.50 / 81.20 75.00/74.64 / 70.54
d Kawen-1.5B Original 66.00 /66.00 / 71.00 48.33/51.67/61.60 32.86/32.14/33.21
cepseek-qwen-1. ThinkEdit (4%) 92.00 / 89.00 / 84.00 60.00 / 61.67 / 67.20 43.57/43.21/40.36

Table 14: Accuracy on the top 5% / 10% / 20% shortest responses on MMLU non-math subjects.

17017

A.7 Behavioral Analysis: ThinkEdit Encourages Deeper Reasoning

To better understand how ThinkEdit influences reasoning quality beyond final correctness, we analyze
model behavior over all examples (correct and incorrect). We quantify (i) the average number of LaTeX
equations written in the <think> trace, (ii) the percentage of examples whose final answer is explicitly
boxed in <think>, and (iii) the average reasoning length (tokens) within <think>.

Across the four base models, ThinkEdit consistently produces more equations (+55.2% on average),
boxes the final answer more often (+60.5%), and writes longer reasoning traces (+48.0%) compared to
the original models. The effect is especially pronounced for smaller models (e.g., deepseek-qwen-1.5B:
equations +83.9%, boxing +84.4%). These results indicate that the edits reliably encourage more explicit
and structured chains of thought across the board.

Model Variant Equations in CoT Wrap Answer in CoT (%) Reasoning Length (tokens)
deepseek-qwen-32B ?;;illz]};lm (4%) ;32 ié:)(s) 38§3§
deepseek-qwen-14B ?;iill?é(lin (4%) ;;‘1‘ ;;;g 241‘21;82
deepseek-llama3-8B %rliilﬁ;lm (4%) 2(2); ggg; ggggg
deepseek-qwen-1.5B ?ﬁiill?gclht %) ;3; gflggi 171523;1654

Table 15: Behavioral comparison over all datasets. ThinkEdit generates more equations, is more likely to box the
final answer, and produces longer reasoning traces than the original models, indicating more explicit and structured
CoT across cases.

17018

A.8 Examples of Steering the Reasoning Length

To demonstrate the effect of steering the reasoning length, we present two examples from gsm8k in
Figures 7 and 8. Each figure contains three different reasoning outputs:

 Left: The model’s response when steered towards shorter reasoning with « = —0.04.
* Middle: The original unaltered response.
* Right: The model’s response when steered towards longer reasoning with o = 0.04.

These examples highlight that steering along the reasoning direction effectively modulates the reasoning
length without causing unintended truncation or artificial elongation. In contrast to naive methods such as
forcibly stopping the reasoning process—resulting in incomplete reasoning—or appending redundant
tokens like "Wait" to artificially extend responses, our approach enables the model to generate complete
and coherent reasoning of varying lengths. By directly manipulating the internal representation, we achieve
a more controlled and flexible mechanism for managing reasoning length, which could be particularly
useful for constrained computational budgets.

17019

Toulouse has twice as many sheep as Charleston. Charleston has 4 times as many sheep as
Seattle. How many sheep do Toulouse, Charleston, and Seattle have together if Seattle has
20 sheep?

v Steer to Short Reasoning (a=-0.04)
<think> First, determine the number of sheep in Seattle, which is given as 20.

Next, calculate the number of sheep in Charieston by multiplying Seattle's.
sheep by 4, resulting in 80 sheey

Then, find the number of sheep in Toulouse by multiplying Charleston's sheep
by 2. which gives 160 sheep.

Finally, add the sheep from all three cities together to find the total number of
sheep. </think>

Let's determine the number of sheep each city has and then find the total
together.

1. Seattle's Sheep:
[\text{Seattle's sheep) = 20]

2. Charleston’s Sheep:
Charleston has 4 times as many sheep as Seattle.

[\text{Charleston's sheep} = 4 \times \text{Seattle's sheep}
= 4 \times 20 = 80]

3. Toulouse's Sheep:
Toulouse has twice as many sheep as Charleston.

l \Aextmuleuse 8] sheeo) 2 \times \text{Charleston's
eep} = 60]

4. Total Sheep Together:
[text{Total sheep} = \text{Toulouse's sheep}
\text{Charleston's sheep} + \text{Seattle's sneen) =160 +
80+20=

[\boxed {260} |

v Original (a=0.0)

<think> Okay, 50 | have this problem here about the number of sheep in
different cities: Toulouse, Charleston, and Seattle. It says that Toulouse has
twice as many sheep as Charleston. Then, Charleston has four times as many
sheep as Seattle. And the question is asking how many sheep all three
have together, given that Seattle has 20 sheep.

Hmm, let me try to break this down. | think the key here is to find out how
many sheep each city has and then add them up. Since we're given information
about relationships between the number of sheep in different cities, maybe |
can use that to find the numbers.

First, it says Seattle has 20 sheep. That's straightforward. Now, Charleston has
four times as many sheep as Seattle. So if Seame has 20, then Charlestan must
have 4 times 20. Let me calculate that: 4 * 50 Charleston has 80
sheep.

Next, Toulouse has twice as many sheep as Charleston. Since Charleston has.
80, Toulouse must have 2 times 80. Let me do that multiplication: 2 * 80 = 160.
S0, Toulouse has 160 sheep.

Now, to find the total number of sheep altogether, | need to add up the sheep
from each city. That would be Toulouse's sheep plus Charleston's sheep plus
Seattle’s sheep. So, that's 160 + 80 + 20.

Let me add those numbers: 160 + 80 is 240, and then 240 + 20 is 260. So
altogether, they have 260 sheep.

Wait, let me double-check ta make sure I didn't make a mistake. If Seattle has
20, Charleston has 4 times that, which is 80. Toulouse has twice as many as.

Charleston, 50 2 times 80 is 160. Adding them together: 20 + 80 is 100, and
100 + 160 is 260. Yeah, that seems right.

DS T e T N B e o Gy i
Toulouse relative to Charleston, Charleston relative to And the numbers
were given for Seattle, 50 could work backward from There. o, think 260 15
the correct total number of sheey

Final Answer The total number of sheep s boxed{260}. </think>

Seattle has 20 sheep. Charleston has four times as many sheep as Seattle,
which is calculated as: [4 \times 20 = 80]

Toulouse has twice as many sheep as Charleston, which is calculated as: [2
‘times 80 = 160]

Adding the number of sheep from each city together: [160 + 80 + 20 = 260]

‘Thus, the total number of sheep is (\boxed {260}).

v Steer to Long Reasoning (a=0.04)

<think> Okay, 50 | have this problem here about the number of sheep

ferent ctlee: Toulouse, Charlestan, and Seattle. Hmm, let me read it again. It
Gaye, “Toulouse has twice a5 many shacp s Chiaisston. Charicston has 4 times
as many sheep as Seattle. How many sheep do Toulouse, Charlesten, and
Seattle have together if Seattle has 20 sheep?*

Alright, let me break this down. So, we have three cities: T, C, and . The
problem is giving me relationships between their sheep populations. Let me
translate that into equations.

First, “Toulouse has twice as many sheep as Charleston.” So, if | let C represent
the number of sheep in Charleston, then T is 2°C. Got that.

Secand, "Charleston has 4 times as many sheep as Seattle.” So, if S is the
number in Seattle, then C is 4*5. Hmm, so § is Seattle, which is given as 20
sheep. So, that should help me find C first.

Trid, they are asking fur the total number of sheep in all three cities together,
So, I need to find T+

Alright, let's write down what we know:
1LT=2%¢
2.C=4%S

3.5=20

So, let's plug in S first. Since S is 20, then C is 420. Let me calculate that: 420 is
80. So, Cis 80.

Then, T is twice as many as C, sa T is 280. 280 is 160. So, T is 160.

S0, now, we have:

So, adding them all up: 160 + 80 + 20. Let me do that: 160 + 80 is 240, and
240 + 20 s 260. S, together, they have 260 sheep.

Wait, let me double-check. Maybe | made a mistake in the relationships.
First, T s twice as much as C. So, T = 2°C. Yeah, that seems right.

Cis four times as much as S. So, C = 4S. So, 420 is 80. That seems okay.
Then, T is 280, which is 160. So, that's correct.

Adding them all up: 160 + 80 is 240, plus 20 is 260. Hmm, that seems.
straightforward.

Wait, just to make sure, let me think about it differently. If Seattle has 20, then
Charleston has 4 times that, which is 80. Then Toulouse is twice that, which is
160. So, 20, 80, 160. Yeah, that seems to make sense.

Is there another way to think about it7 Maybe in terms of ratios.
So, T is twice as big as C ar\d c \slnur times as big ESS So, Tis 225, which is.

4S. Wait, is that right? Wi 45, and T s 2C, so T is 245, which is 85. Wait,
ol on, that's Confliting with my eaier thought.

Wait, 505 is 20. 50, if T is 85, that would be 160. Wait, but earlier | thought
was 2C, which is 280, which is 160. So, same result. So, maybe the ratio thing
is comrect.

Wait, maybe | confused myself for a second. So, S i 420, which is 80. T
is 280, which is 160. So, that's 4 times 5, 8 times 5, and 16 times S? Wait, no,
that doesn't make sense.

Wait, no, T is 2C, which is 245, which is 85. So, T is 85, Cis 45, S is S. So, the
ratio is 8:4:1. S0, 8 parts T, 4 parts C, 1 part 5.

50,if S is 20, that's 1 part. So, 1 part is 20, 4 parts is 80, 8 parts is 160. So,
that's the same as before. S0, total is 8+4+1=13 parts. 13720 is 260. So, yeah,
that's another way to get 260.

So, that seems to check out

wait, 5o maybe | vercomplcated i, but | think both methods ead to the same
answer. So, that gives me more confider

Wait, another way: let's use algebra. Let me assign variables.
0.

Let me let S be the number of sheep in Seattle. So, § =
Then, C is 45, 50 C = 420 = 80

Then, Tis 2C, so T = 280 = 160.

Total sheep: T+ C + S = 160 + 80 + 20 = 260.

So, that's the straightforward way, just plugging in.

I think I'm confident that 260 is the correct answer.

Wait, just to think about if I misread the problem: “Toulouse has twice as many
sheep as Charleston. Charleston has 4 times as many sheep as Seattle.” Sa, T
is twice as much as C, which is four times as much as S. 50, T is 2*(dS) = 8.
So, Tis 85, C s 45, S is S. So, yeah, 8S, 45, .

S0, if S is 20, then T is 820=160, C is 420=80,
20 = 260.

s 20. S0, total is 160 + 80 +

S0, yeah, that seems correct

Is there a chance that the relationships are the other way around? Like, maybe
Tis half of C, or something? But the problem says "Toulouse has twice as many
sheep as Charleston.” 5o, T is bigger than C. So, T = 2C. So, that's correct.

Similarly, "Charleston has 4 times as many sheep as Seattle.” So, C = 45. So,
that's correct

50, yeah, | think 260 is the right answer.
et stenctnerweyzlet e tink o semslofrotos]] s =/othe

ratio of C:S i 4:L. Then, T is twice C, so the ratio of T:C is 2:1. So, combining
These, TCs 18 2141 something? Wait, no.

Wait, let's see. If C is 4 times S, 50 C:S is 4:1. Then, T is 2 times C, so T:C is 2:1.
So, in terms of T.C:S, Tis 2, C is 1, S is 0.25. o, 2:1:0.25.

But that's in e of C. So, if we make it in terms of S, since S is 1, Cis 4, Tis
8.50, T.C:S is

So, 8 parts T, 4 parts C, 1 part .
So, each part is 20 sheep because S is 20, 50 1 part is 20,

So, T s 8 parts: 8°20=160.

Cis 4 parts: 420=80.

S s 1 part: 20.

So, total is 8+4-+1=13 parts, 13°20=260, So, yeah, that's another way.

50, all these methods are leading me to 260. So, | think that's the right answer.

I don't think | made any mistakes here. So, yeah, I think 260 is the total number
of sheep in Toulouse, Charleston, and Seattle.

Final Answer The total number of sheep is \boxed {260}. </think>

Given the relationships between the number of sheep in Toulouse, Charleston,
and Seattle, we start by translating the problem into equations.

1. Toulouse has twice as many sheep as Charleston: (T
2. Charleston has 4 times as many sheep as Seattle: { C
3. Seattle has 20 sheep: (5 = 20)

C)
45)

First, we find the number of sheep in Charleston (C): [C = 45 = 4 \times 20 =
801]

Next, we find the number of sheep in Toulouse (T): [T = 2C = 2 \times 80 =
160]

Now, we have the number of sheep in each city: - Toulouse: 160 - Charleston:
80 - Seattle: 20

Adding them together gives the total number of sheep: [T+ C + 5 = 160 + 80
+20=260]

Thus, the total number of sheep is (\boxed{260}).

Figure 7: GSM8k Example 1: Steering the reasoning length of deepseek-distill-llama3-8b. Left: shorter reasoning
(a = —0.04), Middle: original response, Right: longer reasoning (o« = 0.04).

17020

In a dance class of 20 students, 20% enrolled in contemporary dance, 25% of the remaining
enrolled in jazz dance, and the rest enrolled in hip-hop dance. What percentage of the
entire students enrolled in hip-hop dance?

v Steer to Short Reasoning (a=-0.04)

<think> First, determine the number of students enrolled in
contemporary dance by calculating 20% of the total 20
students.

Next, find out how many students remain after those who
enrolled in contemporary dance. This is done by subtracting the
number of contemporary dance students from the total number
of students.

Then, calculate the number of students enrolled in jazz dance
by taking 25% of the remaining students.

Finally, determine the percentage of students enrolled in hip-
hop dance by subtracting the number of students enrolled in
contemporary and jazz dances from the total number of

students and then converting this to a percentage. </think>

To determine the percentage of students enrolled in hip-hop
dance, follow these steps:

1. Calculate the number of students enrolled
in contemporary dance:

[\text{Contemporary Dance Students} = 20\%
\times 20 = 0.20 \times 20 = 4 \text{ students}]

~

. Find out how many students remain after
those who enrolled in contemporary dance:

[\text{Remaining Students} = 20 - 4 = 16
\text{ students}]

w

. Calculate the number of students enrolled
in jazz dance:

[\text{Jazz Dance Students} = 25\% \times 16 =
0.25 \times 16 = 4 \text{ students}

4. Determine the number of students enrolled
in hip-hop dance:

[\text{Hip-Hop Dance Students} = 16 - 4 = 12
\text{ students}]

5. Calculate the percentage of students
enrolled in hip-hop dance:

[\text{Percentage of Hip-Hop Dance Students}
= \left(\frac{12} {20} \right) \times 100\% = 60\
%1

Final Answer:

[\boxed {60\%} 1

v Original («=0.0)

<think> Okay, so | have this problem here about a dance class
with 20 students. It says that 20% enrolled in contemporary
dance, 25% of the remaining enrolled in jazz dance, and the
rest enrolled in hip-hop dance. | need to find out what
percentage of the entire students enrolled in hip-hop dance.

Hmm, let me break this down step by step. First, the class has
20 students total. So, I can think of this as 100% of the
students

The first group is 20% enrolled in contemporary dance. Let me

calculate how many students that is. 20% of 20 is 0.20 times

20, which is 4 students. So, 4 students are taking contemporary
ance.

Now, the problem says 25% of the remaining enrolled in jazz
dance. Okay, so after taking out the 20% for contemporary, we
have 20 minus 4, which is 16 students left. So, 25% of these 16
students will take jazz dance. Let me compute that. 25% of 16
is 0.25 times 16, which is 4 students. So, 4 students are taking
Jjazz dance.

Now, the rest enrolled in hip-hop dance. So, if we have 16
students left and 4 of them are taking jazz, then the remaining
number of students is 16 minus 4, which is 12. So, 12 students.
are taking hip-hop dance.

The question is asking for the percentage of the entire students
who enrolled in hip-hop dance. So, out of the total 20 students,
12 are taking hip-hop. To find the percentage, | can take the
number of hip-hop dancers divided by the total number of
students and then multiply by 100.

So, that's 12 divided by 20. Let me compute that. 12 divided by
20'is 0.6. Multiply by 100 gives 60%. Therefore, 60% of the
students enrolled in hip-hop dance.

Wait, let me double-check my steps to make sure | didn't make
a mistake. First, 20% of 20 is 4 for contemporary. Then, 25% of
16 is 4 for jazz. Subtracting those, 16 minus 4 is 12 for hip-hop.
12 out of 20 is indeed 60%. That seems right.

| wonder if there's another way to approach this problem
without calculating the exact numbers. Maybe using fractions
or percentages directly. Let me think.

So, 20% are in contemporary. That leaves 80% of the students.
Then, 25% of the remaining 80% are in jazz. So, 25% of 80% is
20% of the total students. So, 20% for jazz. Therefore, the rest,
which is 80% minus 20%, so 60%, are in hip-hop dance. Oh,
that's another way to see it. So, 60% of the total students are in
hip-hop dance. That matches my earlier calculation.

So, that's a good confirmation. It seems that regardless of
whether | calculate it step by step with numbers or do it more
abstractly with percentages, | end up with the same answer,
60%.

| think that's solid. So, I'm confident that the percentage is
60%.

Final Answer The percentage of students who enrolled in hip-
hop dance is \boxed{60\%}. </think>

First, we note that the dance class has 20 students.

1. 20% of the students enrolled in contemporary
dance: [20\% \text{ of } 20 = 0.20 \times 20 = 4
\text{ students}]

2. The remaining students after contemporary
dance are: [20 - 4 = 16 \text{ students}]

3. 25% of the remaining students enrolled in jazz
dance: [25\% \text{ of } 16 = 0.25 \times 16 = 4
\text{ students}]

4. The remaining students after jazz dance enrolled
in hip-hop dance: [16 - 4 = 12 \text{ students}]

w

. To find the percentage of the entire students who
enrolled in hip-hop dance: [\frac{12}{20} \times
100 = 60\%]

Thus, the percentage of the entire students who enrolled in hip-
hop dance is \boxed{60\%}.

v Steer to Long Reasoning (a=0.04)

<think> Okay, so | have this problem here about a dance class
with 20 students. Let me try to figure it out step by step. Hmm,
20% enrolled in contemporary dance, then 25% of the
remaining enrolled in jazz dance, and the rest in hip-hop. | need
to find what percentage of all the students are in hip-hop.
Alright, let's break it down.

First, the total number of students is 20. 20% of them are in
contemporary dance. So, let me calculate that. 20% of 20 is 0.2
times 20, which is 4 students. So, 4 students are doing
contemporary dance. That leaves the rest of the students,
right? So, 20 minus 4 is 16 students remaining.

Now, 25% of the remaining 16 students enrolled in jazz dance.
Let me see, 25% is a quarter, so a quarter of 16 is... 16 divided
by 4 is 4. So, 4 students are in jazz dance. That means the rest
must be in hip-hop. So, 16 minus 4 is 12 students in hip-hop.

Wait, so out of 20 students, 12 are in hip-hop. So, what
percentage is that? | need to convert 12 into a percentage of
20. So, 12 divided by 20 is 0.6, and 0.6 times 100 is 60%. So,
60% of the students are in hip-hop dance.

Let me double-check that because percentages can sometimes
be tricky. So, 20 students. 20% is 4 in contemporary. Then, 25%
of the remaining 16 is 4 in jazz. So, 4+4 is 8 in contemporary
and jazz. 20 minus 8 is 12 in hip-hop. 12 over 20 is 0.6, so0 60%.
Yeah, that seems right.

Alternatively, maybe | can think about it in fractions. 20% is
1/5, 50 1/5 in contemporary, then 25% is 1/4 in jazz. So, 1/5 +
1/4 is... common denominator is 20. Se, 4/20 + 5/20 is 9/20. So,
9/20 is 45% in contemporary and jazz. So, 100% minus 45% is
55%7 Wait, no, hold on, that doesn't match my previous
answer. Hmm, something's wrong here.

Wait, maybe | messed up. Let me think again. So, 20% is 4,
25% of the remaining is 4, 50 4+4 is 8. 8 out of 20 is 40%, so
40% in contemporary and jazz. Then, 60% in hip-hop. So, why
did | get 45% before? Maybe | did the fractions wrong.

Wait, 20% is 1/5, 25% is 1/4. So, 1/5 + 1/4 is 4/20 + 5/20 is
9/20, which is 0.45, so 45%. Hmm, but that's not matching the
actual numbers. Because in reality, 4+4 is 8, which is 40%, so
maybe the fractions are wrong because 25% is 1/4 of the
remaining, not of the total. So, maybe the way | added them
was incorrect.

Yeah, right. Because 25% is 1/4 of the remaining 16, not 1/4 of
the total 20. So, when I did the fractions, | was adding 1/5 and
1/4 of the total, which is wrong because the 1/4 is only of the
remaining. So, actually, the correct way is 20% is 4, then 25%
of 16 is 4, 50 4+4=8, 50 40% in contemporary and jazz, and
60% in hip-hop.

So, maybe the fractions approach was confusing me because
the second percentage is relative to a subset, not the total. So,
that's why adding the fractions directly didn't work. So, better
to stick with the actual numbers.

S0, to recap: 20 students. 20% is 4 in contemporary. 25% of 16
remaining is 4 in jazz. 16 minus 4 is 12 in hip-hop. 12 is 60% of
20. So, yeah, 60% is the answer.

Another way to think about it is, instead of dealing with
percentages, maybe use variables. Let me try that.

Let me denote:

Let total students = 20.

Let € be the number in contemporary dance.
Let] be the number in jazz dance.

Let H be the number in hip-hop.

Given that C = 0.2 *20 = 4.

Then,] is 25% of the remaining students, which is 25% of (20 -
C) =0.25(20 - 4) = 0.2516 = 4.

Therefore,] = 4.

Therefore, H=20-C-]=20-4-4=12
Therefore, H = 12, which is 12/20 = 0.6 = 60%.
Same result. So, that seems consistent.

So, yeah, | think 60% is the answer. So, the percentage of the
entire students enrolled in hip-hop dance is 60%.

Final Answer The percentage of the entire students enrolled in
hip-hop dance is \boxed{60\%}. </think>

First, we know that 20% of the 20 students enrolled in
contemporary dance. Calculating that, we get:

[0.2\times 20 = 4]

So, 4 students are enrolled in contemporary dance. This leaves
16 students remaining. Next, 25% of these remaining 16
students enrolled in jazz dance:

[0.25\times 16 =4]

So, 4 students are enrolled in jazz dance. Therefore, the
remaining students must be enrolled in hip-hop dance:

[16-4=12]

To find what percentage 12 is of the entire 20 students, we
calculate:

[\frac{12} {20} \times 100 = 60\%]

Thus, the percentage of the entire students enrolled in hip-hop
dance is \boxed {60\%}.

Figure 8: GSM8k Example 2: Steering the reasoning length of deepseek-distill-llama3-8b. Left: shorter reasoning
(v = —0.04), Middle: original response, Right: longer reasoning (o = 0.04).

17021

A.9 Examples of Fixing the Overly Short Reasoning with ThinkEdit

To illustrate the effectiveness of our ThinkEdit approach in addressing the overly short reasoning issue,
we show two representative examples from the GSM8K and MATH-level5 datasets.

Example from GSM8K. The example is shown in Figure 9. In this problem, the Original model
misinterprets the question and quickly provides an incorrect conclusion. In contrast, after applying
ThinkEdit, the model first organizes the given information and displays a detailed reasoning process that
leads to the correct answer.

Example from MATH-LEVELS. The example is shown in Figure 10. Both the Original model and the
model with ThinkEdit begin with an incorrect line of reasoning. However, the original model does not
revise its approach and proceeds to an incorrect final conclusion. In contrast, the model with ThinkEdit
revisits its reasoning steps, recognizes the mistake, and corrects the process in time to reach the correct
solution.

These examples demonstrate ThinkEdit can facilitate deeper, more accurate reasoning by guiding the
model to properly utilize problem details, reconsider faulty steps, and ultimately yield correct solutions.

17022

The Doubtfire sisters are driving home with 7 kittens adopted from the local
animal shelter when their mother calls to inform them that their two house
cats have just had kittens. She says that Patchy, the first cat, has had thrice
the number of adopted kittens, while Trixie, the other cat, has had 12. How
many kittens does the Doubtfire family now have?

X Original Model

<think> First, identify the total number of kittens the Doubtfire family already has from their
two house cats. Patchy has had 3 times as many kittens as Trixie. If Trixie has 12 kittens,
then Patchy has 3 multiplied by 12, which equals 36 kittens.

Next, add the number of kittens from the house cats to the number from the adopted
kittens. The family has 36 kittens from Patchy and 12 from Trixie, making a total of 48
kittens at home.

Then, add the 7 adopted kittens from the shelter to the existing total. Adding 7 to 48 gives a
final total of 55 kittens in the Doubtfire family. </think>

Let's break down the problem step by step to find out how many kittens the Doubtfire family
has now.

1. Identify the Number of Kittens from Each Cat:

° Patchy the Cat: Has had 3 times the number of adopted kittens
° %S'ixne teﬁe Cat: Has had 12 adopted kittens.
2. Calculate the Number of Kittens from Patchy:

[\text{Kittens from Patchy} = 3 \times \text{Kittens from Trixie} = 3 \times 12
=36]

w

Determine the Total Number of Kittens at Home:

[\text{Total kittens from house cats} = \text{Kittens from Patchy} +
\text{Kittens from Trixie} = 36 + 12 = 48]

IS

Add the Adopted Kittens from the Shelter:

[\text{Total kittens} = \text{Total kittens from house cats} + \text{Adopted
kittens} = 48 + 7 =55

Final Answer:

[\boxed{55}]

v ThinkEdit Model

<think> First, let's identify the information given:

* The Doubtfire sisters have 7 kittens that they adopted from the shelter.

+ Their mother says that their two house cats, Patchy and Trixie, have each had
their own kittens.

* Patchy has had thrice the number of adopted kittens.

« Trixie has had 12 kittens.

Wait, hold on. It says that Patchy, the first cat, has had thrice the number of adopted kittens,
while Trixie, the other cat, has had 12. So, the 7 kittens they adopted from the shelter—does
that refer to the house cats or the shelter kittens?

I think the 7 kittens are the ones they adopted from the shelter, separate from their house
cats. 5o, their house cats, Patchy and Trixie, have each had their own kittens. Patchy has
had thrice as many as the shelter kittens, and Trixie has had 12.

Wait, maybe the wording is that Patchy has had thrice the number of adopted kittens,
meaning compared to Trixie. Or is it thrice the number of the 7 kittens?

Wait, the problem says: "Patchy, the first cat, has had thrice the number of adopted kittens,
while Trixie, the other cat, has had 12." So, "adopted kittens"—does that refer to the 7 they
adopted from the shelter, or is it referring to the kittens that Patchy and Trixie have had?

| think it's referring to the 7 kittens. So, Patchy has had thrice as many as the 7, se 21, and
Trixie has had 12.

So, the total number of kittens would be 7 (shelter kittens) plus 21 (Patchy's kittens) plus 12
(Trixie's kittens).

Wait, but the shelter kittens are 7, and the house cats have their own kittens. So, the total
numberis 7 + 21 + 12.

But wait, is that correct? Let me read again.

"They are driving home with 7 kittens adopted from the local animal shelter when their
mother calls to inform them that their two house cats have just had kittens. She says that
Patchy, the first cat, has had thrice the number of adopted kittens, while Trixie, the other
cat, has had 12."

So, the 7 kittens are the ones they are driving home. Their mother is telling them about their
house cats, Patchy and Trixie, who have each had kittens. So, Patchy has had thrice the
number of kittens as the 7 they are driving home. So, thrice 7 is 21. Trixie has had 12

So, total kittens now are the 7 in the car plus 21 from Patchy and 12 from Trixie. So, 7 + 21
+12 = 40.

Wait, but is Trixie's 12 also relative to the 77 Or is it 12 total? The problem says "Patchy, the
first cat, has had thrice the number of adopted kittens, while Trixie, the other cat, has had
120

Hmm, the wording is a bit ambiguous. Maybe "number of adopted kittens" refers to the 7
they are driving home. So, Patchy has had thrice that, so 21, and Trixie has had 12. So, total
kittens are 7 (shelter) + 21 (Patchy) + 12 (Trixie) = 40.

Alternatively, if “adopted kittens" refers to the kittens Patchy and Trixie have adopted, but
that wouldn't make sense because they are the house cats.

| think the first interpretation is correct. So, total kittens now are 40.
But wait, let me double-check. The problem says "their two house cats have just had
kittens." So, Patchy has had thrice the number of adopted kittens—so 7 is the number of
adopted kittens, so thrice that is 21. Trixie has had 12.
So, yes, total kittens are 7 + 21 + 12 = 40.
But wait, hold on. Are the 7 kittens in the car considered as adopted? Or are they separate
from the house cats' kittens? Because the problem says they adopted 7 from the shelter,
and their house cats had kittens. So, the total number is the 7 plus the house cats' kittens.
So, yes, 7 + 21 + 12 = 40.
Alternatively, if "Patchy has had thrice the number of adopted kittens" means that Patchy
has had 3 times as many as Trixie, and both together have had 12. But that wouldn't make
sense because it says Patchy has had thrice the number of adopted kittens, while Trixie has
had 12. So, it's more likely that Patchy has had 3 times 7, which is 21, and Trixie has had 12,
so total 21 + 12 = 33, plus the 7 they are driving home, making 40.
Yes, that makes sense.
So, the answer is 40 kittens.
Final Answer The Doubtfire family now has \boxed {40} kittens. </think>
The Doubtfire sisters are driving home with 7 kittens adopted from the local animal shelter.
Their mother informs them that their two house cats, Patchy and Trixie, have just had
kittens. Patchy has had thrice the number of adopted kittens, while Trixie has had 12.

1. The 7 kittens are adopted from the shelter.

2. Patchy, the first cat, has had thrice the number of these 7 kittens. Therefore,

Patchy has had (3 \times 7 = 21) kittens.
3. Trixie, the other cat, has had 12 kittens.

To find the total number of kittens, we add the 7 kittens from the shelter, the 21 kittens from
Patchy, and the 12 kittens from Trixie:

[7+21+12=40]
Thus, the Doubtfire family now has (\boxed {40}) kittens.

Figure 9: An example of ThinkEdit from the GSM8K dataset. The original model provides a short, flawed
explanation. After ThinkEdit, the model’s reasoning process is more thorough.

17023

At the national curling championships, there are three teams of four players
each. After the championships are over, the very courteous participants each
shake hands three times with every member of the opposing teams, and once
with each member of their own team.

How many handshakes are there in total?

X Original Model

<think> First, determine the total number of participants. There are three teams, each with
four players, making a total of 12 participants.

Next, calculate the number of handshakes within each team. Each team member shakes
hands once with their teammates. For one team, this results in 4 players shaking hands with
3 others each, totaling 6 handshakes. Since there are three teams, the total intra-team
handshakes are 18.

Then, calculate the number of handshakes between teams. Each player shakes hands three
times with each member of the opposing teams. For one player, this involves 3 players from
each of the other two teams, resulting in 6 handshakes per player. With 12 players in total,
this gives 72 handshakes across all inter-team interactions.

Finally, add the intra-team and inter-team handshakes together to find the total number of
handshakes: 18 + 72 = 90. </think>

Let's break down the problem step by step.

Total Participants: - There are 3 teams, each with 4 players. - Total participants = 3 x 4 =
12 players.

Handshakes Within Each Team: - Each player shakes hands once with each of their
teammates. - For one team: - Number of handshakes = (\binom{4}{2} = \frac{4 \times 3}
{2} = 6) - Since there are 3 teams: - Total intra-team handshakes =6 x 3 = 18
handshakes

Handshakes Between Teams: - Each player shakes hands three times with each
member of the opposing teams. - For one player: - Number of opponents from other teams
= 8 (since there are 12 - 4 = 8 players not in their team) - Total handshakes per player = 8
x 3 = 24 handshakes - For all 12 players: - Total inter-team handshakes = 12 x 24 = 288
handshakes

Total Handshakes: - Add intra-team and inter-team handshakes: - Total handshakes = 18 +
288 = 306 handshakes

[\boxed {306}]

v ThinkEdit Model

<think> To determine the total number of handshakes, | need to consider how often each
participant shakes hands with others. Each person shakes hands three times with every
opponent and once with their own team member.

First, let's think about the interactions within the same team. Each team has four players,
and each one shakes hands once with the others. So for one team, that's 4 players each
shaking hands once with 3 teammates, which is 4 * 3 = 12 handshakes, but since each
handshake is between two people, | need to divide by 2 to avoid double-counting. So within
one team, it's 6 handshakes.

But wait, actually, no. If each player shakes hands once with each team member, then for a
team of four, each handshake is unique. So it's actually 4 choose 2, which is 6 handshakes.
So yeah, 6 handshakes per team.

But there are three teams, so that's 3 * 6 = 18 handshakes within the same teams.

Now, between teams, each person shakes hands three times with every member of the
opposing teams. So let's figure out how many inter-team handshakes there are.

Each team has four players, and there are three teams, so each player has 4 * 3 = 12
opponents. Each handshake is three times, so that's 12 * 3 = 36 handshakes per player. But
since each handshake involves two people, we need to divide by 2 to avoid double-counting.
S0 36 * 3/2 = 54 handshakes between teams.

Wait, hold on. Let me think again.

If each of the 4 players on one team shakes hands three times with each of the 4 players on
another team, that's 4 * 4 * 3 = 48 handshakes between two teams. But since there are
three teams, each pair of teams has 48 handshakes. How many pairs of teams are there? It's
3 choose 2, which is 3. So total inter-team handshakes would be 48 * 3 = 144.

But that seems high. Maybe I'm overcounting. Let me verify.

Alternatively, think of it as each pair of opposing players shakes hands three times. There
are 3 teams, so each player is on one team, and there are two other teams. Each player has
4 opponents on each of the other two teams, so 8 opponents in total. Each of these 8 pairs
shakes hands three times, so per player, that's 8 * 3 = 24 handshakes. Since there are 12
players in total (4 per team * 3 teams), that's 12 * 24 / 2 = 144 handshakes. So that
matches.

So inter-team handshakes are 144.

Now, adding the intra-team handshakes: 6 per team * 3 teams = 18.
Total handshakes: 144 + 18 = 162.

Wait, but that seems a bit high. Let me check another way.

Total number of participants is 12. Each person shakes hands with 11 others. But the
number of handshakes isn't 12 * 11 because each handshake is counted twice. So total
handshakes would be (12 * 11) / 2 = 66, but that's if each pair shakes hands once. However,
in this case, some pairs shake hands three times and some once.

So perhaps | need to calculate the total number of handshakes as follows:

Within the same team: Each team has 4 players, each shaking hands once with each of the
other 3, so 4 * 3/2 = 6 handshakes per team. Three teams, so 18.

Between teams: For each pair of teams, each player on one team shakes hands three times
with each player on the other team. So for two teams, that's 4 * 4 * 3 = 48 handshakes.
There are 3 pairs of teams, so 48 * 3 = 144,

Total handshakes: 18 + 144 = 162.

Alternatively, let's think about each player's total handshakes. Each player shakes hands
once with their 3 teammates and three times with each of the 8 opponents (since there are
4 opponents on each of the other two teams). So that's 3 + (4* 3*2) =3 + 24 = 27
handshakes per player. Wait, 4 opponents on each of two teams, so 4 * 2 = 8 opponents,
each with 3 handshakes, so 8 * 3 = 24, plus 3 teammates each with 1 handshake: 24 + 3 =
s

So each player has 27 handshakes, and there are 12 players, so total handshakes counted
this way would be 12 * 27 = 324, But since each handshake is counted twice, we divide by
2: 324 /2 = 162. So that confirms it.

Therefore, the total number of handshakes is 162.
Final Answer The total number of handshakes is \boxed{162}. </think>

To determine the total number of handshakes at the national curling championships, we
need to consider both intra-team and inter-team handshakes.

1. Intra-team handshakes:

> Each team has 4 players, and each player shakes hands once with
each of the other 3 teammates.

© For one team, the number of handshakes is calculated as
(\binom{4}{2} =6).

© There are 3 teams, so the total number of intra-team handshakes
is (3 \times 6 = 18).

2. Inter-team handshakes:

o Each player shakes hands three times with each member of the
opposing teams.

© Each player has 4 opponents on each of the other two teams,
resulting in 8 opponents in total.

- Each pair of opposing players shakes hands three times, so for
each player, the number of handshakes is (8 \times 3 = 24).

© Since there are 12 players in total, the total number of
handshakes counted this way is (12 \times 24 = 288).

= However, each handshake is counted twice, so we divide by 2:
(288/2=144).

3. Total handshakes:

= Adding the intra-team and inter-team handshakes gives (18 +
144 = 162).

Thus, the total number of handshakes is (\boxed{162}).

Figure 10: An example of ThinkEdit from MATH-level5. While both models initially make a wrong assumption,

the model after applying ThinkEdit corrects itself and arrives at the correct final reasoning.

17024

17025

